Remarks on critical points of phase functions and norms of Bethe vectors

Evgeny Mukhin and Alexander Varchenko
Dedicated to Peter Orlik on his sixtieth birthday

Abstract

. We consider a tensor product of a Verma module and the basic linear representation of $s l(n+1)$. We prove that the corresponding phase function, which is used in the solutions of the KZ equation with values in the tensor product, has a unique critical point and show that the Hessian of the logarithm of the phase function at this critical point equals the Shapovalov norm of the corresponding Bethe vector in the tensor product.

§1. Introduction

Let \mathfrak{g} be a simple Lie algebra with simple roots α_{i} and Chevalley generators $e_{i}, f_{i}, h_{i}, i=1, \ldots, n$. Let V_{1}, V_{2} be representations of \mathfrak{g} with highest weights λ_{1}, λ_{2}. The Knizhnik-Zamolodchikov (KZ) equation on a function u with values in $V_{1} \otimes V_{2}$ has the form

$$
\kappa \frac{\partial}{\partial z_{1}} u=\frac{\Omega}{z_{1}-z_{2}} u, \quad \kappa \frac{\partial}{\partial z_{2}} u=\frac{\Omega}{z_{2}-z_{1}} u
$$

where $\Omega \in \operatorname{End}\left(V_{1} \otimes V_{2}\right)$ is the Casimir operator. Solutions with values in the space of singular vectors of weight $\lambda_{1}+\lambda_{2}-\sum_{i=1}^{n} l_{j} \alpha_{j}$ are given by hypergeometric integrals with $l=\sum_{i=1}^{n} l_{j}$ integrations, see [SV].

For an ordered set of numbers $I=\left\{i_{1}, \ldots, i_{m}\right\}, i_{k} \in\{1, \ldots, n\}$, and a vector v in a representation of \mathfrak{g}, denote $f^{I} v=f_{i_{1}} \ldots f_{i_{m}} v$. The hypergeometric solutions of the KZ equation have the form

$$
u=\sum u_{I, J} f^{I} v_{1} \otimes f^{J} v_{2}, \quad u_{I, J}=\int_{\gamma} \tilde{\Phi} \tilde{\omega}_{I, J} d t_{1} \wedge \cdots \wedge d t_{l}
$$

where v_{1}, v_{2} are highest weight vectors of V_{1}, V_{2}; the summation is over all pairs of ordered sets I, J, such that their union $\left\{i_{k}, j_{s}\right\}$ contains a
number i exactly l_{i} times, $i=1, \ldots, n ; \gamma$ is a suitable cycle; $\tilde{\omega}_{I, J}=$ $\tilde{\omega}_{I, J}\left(z_{1}, z_{2}, t_{1}, \ldots, t_{l}\right)$ are suitable rational functions, the function $\tilde{\Phi}=$ $\tilde{\Phi}\left(z_{1}, z_{2}, t_{1}, \ldots, t_{l}\right)$, called the phase function, is given by

$$
\begin{aligned}
\tilde{\Phi}=\left(z_{1}-z_{2}\right)^{\left(\lambda_{1}, \lambda_{2}\right) / \kappa} & \prod_{j=1}^{l}\left(t_{j}-z_{1}\right)^{-\left(\lambda_{1}, \alpha_{t_{j}}\right) / \kappa}\left(t_{j}-z_{2}\right)^{-\left(\lambda_{2}, \alpha_{\iota_{j}}\right) / \kappa} \\
& \times \prod_{1 \leq i<j \leq l}\left(t_{i}-t_{j}\right)^{\left(\alpha_{\iota_{i}}, \alpha_{\iota_{j}}\right) / \kappa}
\end{aligned}
$$

Here (,) is the Killing form and $\alpha_{t_{i}}$ denotes the simple root assigned a the variable t_{i} by the following rule. The first l_{1} variables $t_{1}, \ldots, t_{l_{1}}$ are assigned to the simple root α_{1}, the next l_{2} variables $t_{l_{1}+1}, \ldots, t_{l_{1}+l_{2}}$ to the second simple root α_{2}, and so on.

Define the normalized phase function Φ by the formula

$$
\begin{gather*}
\Phi\left(\lambda_{1}, \lambda_{2}, \kappa\right)=\prod_{j=1}^{l} t_{j}^{-\left(\lambda_{1}, \alpha_{t_{j}}\right) / \kappa}\left(1-t_{j}\right)^{-\left(\lambda_{2}, \alpha_{t_{j}}\right) / \kappa} \tag{1}\\
\times \prod_{1 \leq i<j \leq l}\left(t_{i}-t_{j}\right)^{\left(\alpha_{t_{i}}, \alpha_{t_{j}}\right) / \kappa}
\end{gather*}
$$

We also substitute $z_{1}=0, z_{2}=1$ in the rational functions $\tilde{\omega}_{I, J}$ and denote the result $\omega_{I, J}$.

Conjecture 1. If the space of singular vectors of weight $\lambda_{1}+\lambda_{2}-$ $\sum_{i=1}^{n} l_{j} \alpha_{j}$ is one-dimensional, then there is a region Δ of the form $\Delta=$ $\left\{t \in \mathbb{R}^{l} \mid 0<t_{\sigma_{l}}<\cdots<t_{\sigma_{1}}<1\right\}$ for some permutation σ, such that the integral $\int_{\Delta} \Phi d t$ can be computed explicitly. Moreover, up to a rational number independent on $\lambda_{1}, \lambda_{2}, \kappa$, it is equal to an alternating product of Euler Γ-functions whose arguments are linear functions of weights λ_{1}, λ_{2}.

Example. The Selberg integral. Let $\mathfrak{g}=s l(2)$. Let V_{1} and V_{2} be $s l(2)$ modules with highest weights $\lambda_{1}, \lambda_{2} \in \mathbb{C}$. Then the normalized phase function (1) has the form
(2) $\Phi\left(\lambda_{1}, \lambda_{2}, \kappa\right)=\prod_{j=1}^{l} t_{j}^{-\lambda_{1} / \kappa}\left(1-t_{j}\right)^{-\lambda_{2} / \kappa} \prod_{1 \leq i<j \leq l}\left(t_{i}-t_{j}\right)^{2 / \kappa}$.

Conjecture 1 holds for $\mathfrak{g}=s l(2)$ according to the Selberg formula

$$
\begin{aligned}
& l!\int_{\Delta} \Phi\left(\lambda_{1}, \lambda_{2}, \kappa\right) d t_{1} \ldots d t_{l} \\
& \quad=\prod_{j=0}^{l-1} \frac{\Gamma\left(\left(-\lambda_{1}+j\right) / \kappa+1\right) \Gamma\left(\left(-\lambda_{2}+j\right) / \kappa+1\right) \Gamma((j+1) / \kappa+1)}{\Gamma\left(\left(-\lambda_{1}-\lambda_{2}+(2 l-j-2)\right) / \kappa+2\right) \Gamma(1 / \kappa+1)}
\end{aligned}
$$

where $\Delta=\left\{t \in \mathbb{R}^{l} \mid 0<t_{1}<\cdots<t_{l}<1\right\}$.

Using the phase function Φ and the rational functions $\omega_{I, J}$, one can construct singular vectors in $V_{1} \otimes V_{2}$. Namely, if t^{0} is a critical point of the function Φ, then the vector $\sum \omega_{I, J}\left(t^{0}\right) f^{I} v_{1} \otimes f^{J} v_{2}$ is singular, see [RV]. The equation for critical points, $d \Phi=0$, is called the Bethe equation and the corresponding singular vectors are called the Bethe vectors.

Conjecture 2. If the space of singular vectors of a given weight in $V_{1} \otimes V_{2}$ is one-dimensional, then the corresponding phase function has exactly one critical point modulo permutations of variables t_{i} assigned to the same simple root.

Example. The conjecture holds for $\mathfrak{g}=s l(2)$. If $\left(t_{1}, \ldots, t_{l}\right)$ is a critical point of the function $\Phi\left(\lambda_{1}, \lambda_{2}, \kappa\right)$ given by (2), then

$$
\sigma_{k}(t)=\binom{l}{k} \prod_{j=1}^{k} \frac{\lambda_{1}-l+j}{\lambda_{1}+\lambda_{2}-2 l+j+1}
$$

where $\sigma_{1}(t)=\sum t_{j}, \sigma_{2}(t)=\sum t_{i} t_{j}$, etc, are the standard symmetric functions, see [V], so there is a unique critical point up to permutations of coordinates.

The rational functions $\omega_{I, J}(t)$ are invariant with respect to permutation of variables assigned to the same simple root. Thus, Conjecture 2 implies that there is a unique Bethe vector X.

The space $V_{1} \otimes V_{2}$ has a natural bilinear form B, called the Shapovalov form, which is the tensor product of Shapovalov forms of factors.

Conjecture 3. The length of a Bethe vector X equals the Hessian of the logarithm of the phase function Φ with $\kappa=1$ at a critical point t^{0},

$$
B(X, X)=\operatorname{det}\left(\frac{\partial^{2}}{\partial t_{i} \partial t_{j}} \ln \Phi\left(t^{0}\right)\right)
$$

Example. The conjecture holds for $\mathfrak{g}=\operatorname{sl}(2)$, see [V].

In this paper we prove Conjectures 1,2 and 3 for the case when $\mathfrak{g}=$ $s l(n+1), V_{1}$ is a Verma module and V_{2} is the basic linear representation.
§2. The integral
Let

$$
\begin{equation*}
\bar{\Phi}_{n}(\alpha, \beta)=t_{1}^{\alpha_{1}}\left(1-t_{1}\right)^{\beta_{1}} \prod_{j=2}^{n} t_{j}^{\alpha_{j}}\left(t_{j}-t_{j-1}\right)^{\beta_{j}} . \tag{3}
\end{equation*}
$$

Theorem 1. Let $\alpha_{i}>0, \beta_{i}>0, i=1, \ldots n$. Then

$$
\begin{aligned}
& \int_{\Delta_{n}} \bar{\Phi}_{n}(\alpha, \beta) d t_{1} \ldots d t_{n} \\
& \quad=\prod_{j=1}^{n} \frac{\Gamma\left(\beta_{j}+1\right) \Gamma\left(\alpha_{j}+\cdots+\alpha_{n}+\beta_{j+1}+\cdots+\beta_{n}+n-j+1\right)}{\Gamma\left(\alpha_{j}+\cdots+\alpha_{n}+\beta_{j}+\cdots+\beta_{n}+n-j+2\right)}
\end{aligned}
$$

where $\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0<t_{n}<\cdots<t_{1}<1\right\}$.
Proof. The formula is clearly true for $n=1$.
Fix t_{1}, \ldots, t_{n-1} and integrate with respect to t_{n}. We obtain the recurrent relation

$$
\begin{aligned}
& \int_{\Delta_{n}} \bar{\Phi}_{n}(\alpha, \beta) d t_{1} \ldots d t_{n}=\frac{\Gamma\left(\alpha_{n}+1\right) \Gamma\left(\beta_{n}+1\right)}{\Gamma\left(\alpha_{n}+\beta_{n}+2\right)} \times \\
& \quad \times \int_{\Delta_{n-1}} \bar{\Phi}_{n-1}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{1}, \ldots, \beta_{n-2}, \beta_{n-1}+\beta_{n}+\alpha_{n}+1\right) d t_{1} \ldots d t_{n-1}
\end{aligned}
$$

which implies the Theorem.
Q.E.D.

§3. The critical point

Let $\mathfrak{g}=s l(n+1)$. Let V_{1} be a Verma module of highest weight $\lambda,\left(\lambda, \alpha_{i}\right)=\lambda_{i}$. Let V_{2} be the basic linear representation, that is the irreducible representation with highest weight $\omega,\left(\omega, \alpha_{i}\right)=\delta_{i, 1}$.

The nontrivial subspaces of singular vectors of a given weight in the tensor product $V_{1} \otimes V_{2}$ are one dimensional and have weights $\lambda+\omega-$ $\sum_{i=1}^{k} \alpha_{i}, k=0, \ldots, n$. The computations for weights $\lambda+\omega-\sum_{i=1}^{k} \alpha_{i}$, $k<n$, are reduced to the case $\mathfrak{g}=\operatorname{sl}(k+1)$. Consider the normalized phase function $\Phi_{n}(\lambda, \kappa)$ corresponding to the weight $\lambda+\omega-\sum_{i=1}^{n} \alpha_{i}$.

We have $\Phi_{n}(\lambda, \kappa)=\Phi(\lambda, \omega, \kappa)$, where $\Phi(\lambda, \omega, \kappa)$ is given by (1). Note that

$$
\Phi_{n}(\lambda, \kappa)=\bar{\Phi}_{n}\left(-\lambda_{1} / \kappa, \ldots,-\lambda_{n} / \kappa,-1 / \kappa, \ldots,-1 / \kappa\right)
$$

where $\bar{\Phi}_{n}$ is given by (3).
Theorem 2. The function $\Phi_{n}(\lambda, \kappa)$ has exactly one critical point $t^{n}=\left(t_{1}^{n}, \ldots, t_{n}^{n}\right)$ given by

$$
t_{j}^{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\prod_{i=1}^{j} \frac{\lambda_{i}+\cdots+\lambda_{n}+n-i}{\lambda_{i}+\cdots+\lambda_{n}+n-i+1}
$$

Proof. The computation is obvious if $n=1$.
The equation $\partial \Phi_{n} / \partial t_{n}=0$ has the form

$$
t_{n}^{n}=\frac{\lambda_{n}}{\lambda_{n}+1} t_{n-1}^{n}
$$

Substituting for t_{n}^{n} in the equations $\partial \Phi_{n} / \partial t_{i}=0, i=1, \ldots, n-1$ and comparing the result with the equation $d \Phi_{n-1}=0$, we obtain
$t_{k}^{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=t_{k}^{n-1}\left(\lambda_{1} \ldots, \lambda_{n-2}, \lambda_{n-1}+\lambda_{n}+1\right), \quad k=1, \ldots, n-1$.
This recurrent relation implies the Theorem.
Q.E.D.

§4. The norm of the Bethe vector

Let V be a \mathfrak{g} module with highest weight vector v. The Shapovalov form $B():, V \otimes V \rightarrow \mathbb{C}$ is the unique symmetric bilinear form with the properties

$$
B\left(e_{i} x, y\right)=B\left(x, f_{i} y\right), \quad B(v, v)=1
$$

for any $x, y \in V$. The Shapovalov form on a tensor product of modules is the tensor product of Shapovalov forms of factors.

Let $\mathfrak{g}=s l(n+1)$. Let $V_{1}=V_{\lambda}$ be a Verma module of highest weight λ. Let $V_{2}=V_{\omega}$ be the basic linear representation. Then the space of singular vecors in $V_{\lambda} \otimes V_{\omega}$ of weight $\lambda+\omega-\sum_{i=1}^{n} \alpha_{i}$ is one-dimensional and is spanned by the Bethe vector $X^{n}(\lambda)$ corresponding to the critical point of the function $\Phi_{n}(\lambda, \kappa)$. The Bethe vector has the form

$$
X^{n}(\lambda)=x_{0}^{n} \otimes f_{n} \ldots f_{1} v_{0}+x_{1}^{n} \otimes f_{n-1} \ldots f_{1} v_{0}+\cdots+x_{n}^{n} \otimes v_{0}
$$

where $x_{i}^{n} \in V_{\lambda}$ and v_{0} is the highest weight vector in V_{ω}. Here, $x_{0}^{n}=$ $a^{n} v_{\lambda}$, where v_{λ} is the highest weight vector in V_{λ} and a^{n} is the value of the corresponding rational function

$$
\omega_{\emptyset,(n, n-1, \ldots, 1)}(t)=\frac{1}{t_{1}-1} \prod_{i=1}^{n-1} \frac{1}{t_{i+1}-t_{i}}
$$

at the critical point t^{n} of function $\Phi_{n}(\lambda, \kappa)$, given by Theorem 2. For a description of all other rational functions whose values at t^{n} determine $x_{1}^{n}, \ldots, x_{n}^{n}$, see [SV]. We have

$$
a^{n}=(-1)^{n} \prod_{k=1}^{n} \frac{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k+1\right)^{n-k+1}}{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k\right)^{n-k}}
$$

Theorem 3.

(4) $B\left(X^{n}(\lambda), X^{n}(\lambda)\right)=\prod_{k=1}^{n} \frac{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k+1\right)^{2(n-k)+3}}{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k\right)^{2(n-k)+1}}$.

Proof. We also claim

$$
\begin{equation*}
B\left(x_{n}^{n}, x_{n}^{n}\right)=\frac{B\left(X^{n}(\lambda), X^{n}(\lambda)\right)}{\lambda_{1}+\cdots+\lambda_{n}+n} \tag{5}
\end{equation*}
$$

Formulas (4), (5) are readily checked for $n=1$.
The vectors $\left\{v_{0}, f_{1} v_{0}, f_{2} f_{1} v_{0}, \ldots, f_{n} \ldots f_{1} v_{0}\right\}$ form an orthonormal basis of V_{ω} with respect to its Shapovalov form. Clearly, we have
$B\left(X^{n}(\lambda), X^{n}(\lambda)\right)=\left(\frac{a^{n}(\lambda)}{a^{n-1}\left(\lambda^{\prime}\right)}\right)^{2} B\left(X^{n-1}\left(\lambda^{\prime}\right), X^{n-1}\left(\lambda^{\prime}\right)\right)+B\left(x_{n}^{n}, x_{n}^{n}\right)$,
where λ^{\prime} is the $\operatorname{sl}(n)$ weight, such that $\left(\lambda^{\prime}, \alpha_{i}\right)=\lambda_{i+1}, i=1, \ldots, n-1$.
The vector X^{n} is singular. In particular it means that $e_{i} x_{n}^{n}=0$ for $i>1$ and $e_{1} x_{n}^{n}=-x_{n-1}^{n}$. The vector x_{n}^{n} has the form $x_{n}^{n}=$ $\sum_{\sigma} b_{\sigma}^{n} f_{\sigma(1)} \ldots f_{\sigma(n)} v_{\lambda}^{n}$, where the coefficients b_{σ}^{n} are the values of the corresponding rational functions at the critical point given by Theorem 2.

Let $b^{n}=b_{\sigma=\mathrm{id}}^{n}$. Then we have

$$
\begin{gathered}
B\left(x_{n}^{n}, x_{n}^{n}\right)=B\left(x_{n}^{n}, b^{n} f_{1} \ldots f_{n} v_{\lambda}^{n}\right)=-b^{n} B\left(x_{n-1}^{n}, f_{2} \ldots f_{n} v_{\lambda}^{n}\right)= \\
=-b^{n} \frac{a_{n}}{a_{n-1}} B\left(x_{n-1}^{n-1}, f_{1}, \ldots f_{n-1} v_{\lambda^{\prime}}^{n-1}\right)=-\frac{b^{n}}{b^{n-1}} \frac{a_{n}}{a_{n-1}} B\left(x_{n-1}^{n-1}, x_{n-1}^{n-1}\right),
\end{gathered}
$$

where x_{n-1}^{n-1} is a component of the singular vector in $V_{\lambda^{\prime}} \otimes V_{\omega}$.

The coefficient b^{n} is the value of the function

$$
\omega_{(n, n-1, \ldots, 1), \emptyset}(t)=\frac{1}{t_{n}} \prod_{i=1}^{n-1} \frac{1}{t_{i}-t_{i+1}}
$$

at the critical point t^{n}, given by Theorem 2 . We have

$$
b^{n}=(-1)^{n-1} \frac{a_{n}}{\lambda_{1}+\cdots+\lambda_{n}+n} \prod_{k=1}^{n} \frac{\lambda_{k}+\cdots+\lambda_{n}+n-k+1}{\lambda_{k}+\cdots+\lambda_{n}+n-k}
$$

Now, formulas (4), (5) are proved by induction on n. Q.E.D.

Theorem 4.

$$
B\left(X^{n}(\lambda), X^{n}(\lambda)\right)=\operatorname{det}\left(\frac{\partial^{2}}{\partial t_{i} \partial t_{j}} \ln \Phi_{n}(\lambda, \kappa=1)\left(t^{n}\right)\right)
$$

where t^{n} is the critical point of the phase function $\Phi_{n}(\lambda, \kappa)$ given by Theorem 2.

Proof. It is sufficient to prove the Theorem for $\lambda_{i}>0, \kappa<0$. We tend κ to zero and compute the asymptotics of the integral $\int_{\Delta_{n}} \Phi_{n} d t$.

On the one hand, the integral is evaluated by Theorem 1 . We compute the asymptotics using the Stirling formula for Γ-functions.

On the other hand, the asymptotics of the same integral can be computed by the method of stationary phase, since the critical point t^{n} of the function Φ_{n} is non-degenerate by Theorem 1.2.1 in [V]. Then the asymptotics of the integral is

$$
(2 \pi \kappa)^{l / 2} \Phi_{n}(\lambda, \kappa)\left(t^{n}\right)\left(\operatorname{Hess}\left(\kappa \ln \Phi_{n}(\lambda, \kappa)\left(t^{n}\right)\right)^{-1 / 2}\right.
$$

Note that $\kappa \ln \Phi_{n}(\lambda, \kappa)=\ln \Phi_{n}(\lambda, 1)$, and

$$
\Phi_{n}(\lambda, \kappa)\left(t^{n}\right)=\prod_{k=1}^{n} \frac{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k+1\right)^{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k+1\right) / \kappa}}{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k\right)^{\left(\lambda_{k}+\cdots+\lambda_{n}+n-k\right) / \kappa}}
$$

Comparing the results we compute the Hessian explicitly and prove the Theorem.
Q.E.D.

References

[RV] N. Reshetikhin, A. Varchenko, Quasiclassical asymptotics of solutions to the KZ equations, Geometry, Topology and Physics for R. Bott, Intern. Press, (1995), 293-322.
[SV] V. Schechtman, A. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math., 106, (1991), 139-194.
[V] A. Varchenko, Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Mathematica 97, (1995), 385-401.

Evgeny Mukhin
Mathematical Sciences
Research Institute, 1000 Centennial Drive, Berkeley, CA 94720-5070 U. S. A.
mukhin@msri.org

Alexander Varchenko
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, U. S. A.
av@math.unc.edu

