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Abstract. 

Consider the set of surface-curve pairs (X,C), where X is a 
normal surface and C is an algebraic curve. In this paper, we de
fine a family :F of normal surface-curve pairs, which is closed under 
coverings, and which contains all smooth surface-curve pairs (X, C), 
where X is smooth and C has smooth irreducible components with 
normal crossings. We give a modification of W. Neumann's defini
tion of plumbing graphs, their associated 3-dimensional graph mani
folds, and intersection matrices, and use this construction to describe 
rational intersection matrices and boundary manifolds for regular 
branched coverings. 

§1. Introduction 

Let (X, C) be a surface-curve pair, consisting of a normal surface 
X and an algebraic curve C C X. The boundary manifold of a regu
lar neighborhood M(X,C) of C in X can be simply described by taking 
any smooth model (X,C) of (X,C), and using W. Neumann's associ
ated plumbing graphs r plumb(X, C) (see [Neu]). The intersection matrix 
S(X, C) of a surface-curve pair (X, C) is the matrix with entries the pair
wise rational intersections of irreducible components of C with respect 
to some ordering. When (X, C) is a smooth surface-curve pair, where X 
is smooth and C has smooth irreducible components with normal cross
ings, the intersection matrix S(X, C) only depends on the combinatorics 
of C, and thus is also determined by rplumb(X,C). Neumann defines 
the intersection matrix S(r plumb) for the plumbing graph of a smooth 
surface-curve pair (X,C), so that S(X,C) = S(rplumb(X,C)). 

A modified definition of plumbing graphs is useful for dealing with 
branched coverings. A (regular) covering of surface-curve pairs 

p: (Y, V) - (X,C) 
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is a finite surjective morphism 

p:Y-+X 

so that V = p- 1(C) and the restriction 

p:Y\V-+X\C 

is a (regular) unbranched covering. Even if (X, C) is a smooth surface
curve pair, the covering (Y, V) of (X,C) need not be smooth. 

Let S be the collection of smooth surface-curve pairs. We will define 
a family F of normal surface-curve pairs, which contains S and is closed 
under coverings, in the sense that: if (X, C) E F, and p : (Y, V) -+ (X, C) 
is a covering of surface-curve pairs, then (Y, V) E F. We modify Neu
mann's definition of plumbing graphs and their intersection matrices 
to describe the local topology of surface-curve pairs in F and their in
tersection matrices. This gives a method for studying coverings and 
computing intersection matrices without having to pass to smooth mod
els, and generalizes the results of [Hirl] and [Hir2], where formulas for 
intersection matrices of abelian coverings are given. 

The reader is reminded of basic definitions and properties of graphs 
of groups and complexes in Section 2. The modified definition of plumb
ing graphs, and their associated 3-manifolds and coverings are given in 
Sections 3. Section 4 contains a definition of normal surface-curve pairs, 
their associated plumbing graphs, and associated intersection matrices. 
Formulas for invariants of the plumbing graph of a covering of a normal 
surface-curve pair from covering data are given in Section 5. 

§2. Graphs of groups and complexes 

The concept of plumbing graph comes out of a more general con
struction by which finite CW-complexes and finitely generated groups 
are described in terms of information attached to the nodes and vertices 
of a graph. We give the basics of these definitions in this section. 

By a gmph r we mean a collection of vertices V(f) and oriented 
edges Y(r). For any y E Y(r), we write o(y) for the initial point and 
t(y) for the terminal point. We will always assume that graphs are finite 
and connected. Furthermore, given y E Y(I'), we will assume y E Y(r), 
where 

o(y) 
t(y) 

= t(y), 

= o(y). 

and 

For any vertex v E V(r), denote by d(v) the degree of the graph rat v. 
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A graph of groups G(r) over r is a collection of groups 

Gv, VE V(r), 

Gy, y E Y(r), 

so that Gy = Gy; and monomorphisms 

h : Gy ---+ Gt(y), 

for each y E Y(f). 
A path on r is an ordered, possibly empty, collection 

c= (y1,--·,Yk), 

where 
Yi E Y(r) for i = 1, ... ,k, 

and 
t(yi) = o(Yi+1), for i = 1, ... , k - 1. 

Given a path c = (y1, ... , Yk) on rand collection r = (r0 , ... , rk), where 
ro E Go(yi), and ri E Gt(y;), for i = 1, ... ,k. Let jc,rl be the word 

Let F( G(r)) be the group of words le, rl subject to the relations in the 
vertex and edge groups Gv and Gy, and the relation 

yry = r1, 

if and only if r = hy(r1)-
The fundamental group 1r1(G(f)) can be defined in two ways. The 

first is in terms of a basepoint v0 E V(r). A path c = (y1, ... , Yk) is a 
closed circuit based at vo, where Vo E V(r), if 

vo = o(y1) = t(yk)-

The fundamental group 1r1(G(r),vo) is defined to be the set of words 
le, rl, where c is a closed circuit based at vo. 

The second way to describe the fundamental group 1r1(G(r)) is in 
terms of a maximal tree insider. A maximal tree Tin r is a subgraph 
containing all vertices of r, and such that, given any two distinct vertices 
v1, v2 E V(f), there is a unique path c = (Y1, ... , Yk) in Tso that 

Yi =f- Yi+l, 

for i = 1, ... , k - 1, and v1 = o(y1), v2 = t(yk)- The fundamental 
group 1r1(G(f), T) is the group F(G(f)) modulo the normal subgroup 
generated by the edges in Y(T) thought of as elements of F(G(r)). 
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Lemma 0.1 ([Ser], p. 43). The natural homomorphism 

n1(G(r),vo) - n1(G(r),T), 

given by including n1(G(r), v0 ) in F(G(r)) and then taking the quotient 
by the normal subgroup generated by Y(T), is an isomorphism. 

Given a maximal tree T of r, there are natural maps 

'1/Jv: Gv - n1(G(r), T) 

induced by the natural inclusion of Gv in F(G(r)). 

Lemma 0.2 ([Ser], Theorem 11, Corollary 1). The maps '1/Jv are 
monomorphisms. 

The fundamental group of G(r) can also be considered as the fun
damental group of a naturally associated finite CW-complex. A graph 
of complexes E(r), is a collection of finite CW-complexes 

Xv, VE V(r), 

and subcomplexes 
Xy C Xt(y), y E Y(r), 

such that the induced maps 

are injective, with homeomorphisms 

so that hv = h:; 1 . 

Given a graph of complexes E(r), the associated graph complex, 
which we will also denote by E(r), is the CW-complex obtained by 
gluing together the Xv along the Xy according to the identifications hy. 
Setting Gv = n1(Xv), for v E V(r), and Gy = n1(Xy), for y E Y(r), 
gives a corresponding graph of groups G1::(r). 

Theorem 1 ([Hem], Theorem 2.1). The fundamental group of 
G1:: (r) is isomorphic to the fundamental group of E(r). 

A morphism between graphs of complexes 

w : E' (r') - E(r) 
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is a morphism of graphs 

'11r: r' - r 
and cellular maps 

so that 

Xv - Xwr(v), 

Xy - Xwr(y), 

commutes, for ally E Y(f'). 
An ( unbranched) covering 

VE V(f'), 

y E Y(f'), 

p: ~'(r') - ~(r) 

is a morphism of graph complexes so that 

Pr: f' - f 

is onto, and 

Pv Xv - Xpr(v), 

Xy - Xpr(y), 

VE V(f'), 

y E Y(f') 

and 

and 

are unbranched coverings. Note that if p is an unbranched covering, 
then the induced map 

on graphs of groups induces a monomorphism of groups 

for any Vo E f'. 
An unbranched covering 

P: ~'(r') - ~(r) 

is regular if the maps Pv and Py are regular coverings, for all v E V(f') 
and all y E Y(f'). Regular coverings ~'(f') of ~(r) correspond to 
epimorphisms 
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where F is a finite group. 
Fix a maximal tree in r. A lift 

£:T--+r' 

of T in the covering graph r', is a morphism of graphs so that 

pr(f(v)) = v, 

Pr(f(y)) = Y, 

VE V(T), 

y E Y(T). 

and 

Identify Gv = 1r1(Xv) and Gy = 1r1(Xy) with the corresponding 
subgroups of 

1r1(Gr:(r)) = 1r1(Gr:(r), T). 

For each v E V(r), let '1/Jv be the restriction of 'ljJ to Gv, and, for each 
y E Y(r), let '1/Jy be the restriction of 'ljJ to Gy. 

Let 

Fv = 1Pv(Gv), 

Fy = '1/Jy(Gy), 

v E v(r), 
y E Y(r). 

and 

Note that the conjugacy classes of Gv and Gy, and hence Fv and Fy 
don't depend on the choice of maximal tree T. 

For y E Y(r), let s(y) = 'lj)(y), where we identify Y(r) with its 
natural image in 1r1(Gr:(r), T). 

The following propositions and corollaries follow from elementary 
properties of coverings. 

Proposition 2. For v E V(r), the identification 

[aFv] = af(v) 

gives a one-to-one correspondence between elements in the preimage 
p-1(v) cosets of Fv in F. Furthermore, for v' E p-1(v), the covering 

has defining map 
1Pv: 1r1(Ev) = Gv--+ Fv. 

Corollary 3. The number of vertices in p- 1(v) is 

#lp- 1(v)I = [F: Fv] 

where [F : Fv] is the index of Fv in F. For v' E p- 1(v), the degree of 
the covering 

is #IFvl, the order of Fv. 



Plumbing Graphs for Normal Surface-Curve Pairs 133 

Similarly, for the edges, we have the following. 

Proposition 4. For y E Y(f), the identification 

o:£(y) = [o:Fy] 

gives a one to one correspondence between the edges in p- 1(y) and cosets 
of Fy in F so that 

t(o:£(y)) = o:(s(y)£(t(y)) = [o:s(y)Ft(y)]

Furthermore, the covering 

has defining map 
"Py: n1(~y) = Cy - Fy. 

Corollary 5. For y E Y(r), 

for y' E p- 1 (y), the covering 

has degree #IFyl; and, if t(y) = v and v' E p- 1(v), we have 

#{ , 1( ) ( ') '} #Fv y E p- y : t y = V = #Fy. 

§3. Plumbing graphs 

In [Wal], F. Waldhausen defines a 3-dimensional graph manifold to 
be a manifold with a torus decomposition into Seifert fibered pieces, 
noting that this gives the manifold an underlying graph structure. Neu
mann distills the information using plumbing graphs in [Neu], and devel
ops a calculus for determining the topological equivalence of two graph 
manifolds. In this section, we review the part of his definition of graph 
manifold which applies to smooth surface-curve pairs, and then define a 
modification which we later show applies to normal surface-curve pairs. 

A plumbing graph r plumb = (r' g' e) is a finite connected graph r' 
together with maps 

g V(f) - Z~o 

e V(f) - Z 
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Given a plumbing graph r plumb, there is an associated graph of com
plexes M(r plumb) given as follows. For each vertex v E V(r), let Sv 
be an oriented surface of genus g(v), with d(v) boundary components, 
labeled by the edges y E Y(r), where t(y) = v; and let fv : Mv ---t Sv be 
an 8 1-bundle map, with trivializations at the boundary components of 
Sv, so that fv has Euler number e(v). 

Let h : 8 1 x 8 1 ---t 8 1 x 8 1 be the automorphism defined by h( a, b) = 
(b, a). We can think of has being induced by the action of 

H = [~ ~] 

on 1r1 ( 8 1 x 8 1), with respect to the natural identification 

Let Ty E Mt(y) be the boundary component of Mt(y) associated to 
the oriented edge y. The local trivialization of fv at Ty, canonically 
identifies Ty with 8 1 x 8 1 so that fvlTy is projection onto the second 
component. 

The graph of complexes associated to r plumb consists of the mani
folds 

Xv Mv, v E v(r), and 

Xy Ty, y E Y(r). 

with gluing maps 

Tv 
hy 

Ty -
II II 

8 1 X 8 1 h 8 1 X 8 1 -
The graph of complexes M(r plumb) is a graph manifold. 

Let Fin(S1 x 8 1) be the set of finite unbranched coverings of S 1 x S 1 

to itself. A modified plumbing graph f;!iumb = (r, g, e, m) is a plumbing 
graph with maps 

m: Y(r) ---t Fin(S1 X 8 1) 

so that 

(1) the induced maps 

m(y). : ZEB Z ---t ZEB Z 
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are non-negative upper triangular matrices in M2 (Z), 

b(y)] 
c(y) 

where O ~ b(y) < a(y) and c(y) > O; and 
(2) the matrices m(y)* and Hm('fl)* have the same image in 'll., EB 'll.,, 

Given a modified plumbing graph r;iumb = (r, g, e, m), we define an 
associated graph manifold M(r;iumb) to have vertex and edge manifolds 
as for r plumb = (r, g, e)' except that we identify Ty with 8 1 X 8 1 so that 
if R is the element of GL(2, 'll.,) giving 

then hy : Ty - Ty is the map induced by R. We thus have a commutative 
diagram 

Ty 

m(y)l 

hy 
---4 Ty 

m(y) 1 
8 1 X 8 1 ~ 8 1 X 8 1 

Since h = h- 1 , it follows that hy = h; 1 . 

Morphisms and coverings of modified plumbing graphs are mor
phisms and coverings of the associated graph manifolds 

1¥ : M(r;iumb) - M(r;iumb1
) 

such that the following diagram commutes: 

T m(\J!r(y)) 51 X 51 
\J!r(y) 

Given a plumbing graph r plumb, one can associate a modified plumb
ing graph r;iumb' by setting all maps m(y) to be the identity. One can 
easily verify that, in this case, the definitions for the associated graph 
manifold, and morphisms are the same. 

§4. Normal surface-curve pairs 

Let X be a normal complex projective surface, and let C C X be 
an algebraic curve. We will assume for simplicity that C is connected. 
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Let ICI be the set of irreducible curves in C, and let P = Sing(C). Let 
:F be the family of surface-curve pairs (X, C) satisfying the following 
conditions: 

(1) each CE ICI is unibranched; 
(2) Sing(X) n C c P; and 
(3) for each p E Sing(C), there is a locally defined finite covering of 

surface-curve pairs 

µp: (X,C) - (C2 , {x = O} U {y = O})) 

defined near the germ (X,p). 

A surface-curve pair (X, C) E :Fis call a normal surface-curve pair. 
The following is immediate. 

Lemma 5.1. The family of normal surface-curve pairs is closed 
under coverings of surface-curve pairs. 

The fundamental group n1 (C2 \ {x = O} U {y = O}) is canonically 
isomorphic to the integer lattice Z EB Z, with natural generators given 
by meridian loops around {x = O} and {y = O}. Thus, finite coverings 
correspond to 2-dimensional lattices of finite index. Given p E P, and 
C,D EC containing p, let a, b, c be non-negative integers so that (a, 0) 
and (b, c) generate the sublattice, and O ::; b < a. Note that the numbers 
a, b, care uniquely determined given the ordering of C and D. Changing 
the ordering corresponds to changing the order of the canonical basis for 
Z EB Z, and hence corresponds to switching columns of the matrix 

[~ !] , 
and column-reducing to get 

[a' b'] = [a b] R 
0 d O c ' 

where O ::; b' < a and RE GL(2, Z). 
The matrix R can be obtained from a continued fraction expansion 

[m1, ... , mk] for a/b, where 

a l 
,; = m1 - 1 

m2--
l 
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Lemma 5.2. The matrix R is given by 

where 

Mi= (Mi)- 1 = [~ :it] , 
for i = 1, ... , k. Furthermore, 

One proof of this lemma comes from a study of the singularity ( X, p) 
( see Theorem 7). 

Theorem 6 ([Laufj, [Hir2]). The germ (X,p) is smooth if and 
only if b = 0. In this case, C must have a normal crossing at p. Other
wise, the germ (X,p) can be desingularized by replacing p by exceptional 
curves E1, ... , Ek, with self-intersections 

for i = 1, ... , k, 

where [m1, ... , mk] is the continued fraction expansion for a/b. 

Note that reversing the order of the pair of curves C and D passing 
through top simply reverses the order of E1, ... , Ek- The exceptional 
curves and the proper transforms of C and D are arranged as in the 
graph of Figure 1, 

• • • • • 
Figure 1. 

where all edges in the graph correspond to normal crossing intersec
tions. 

Given a surface-curve pair (X, C) E :F, with specified maps µp for 
p E Sing(X), there is a canonically associated modified plumbing graph 
r;iumb = r;iumb(X,C) given as follows. Let (X,c) be a minimal desin
gularization of ( X, C) obtained from the µP as in [Laufj. For each C E IC I, 
let CE C' be the proper transform of C. 

(1) The graph r for r;iumb has vertices and edges 

V(r) { vc : C E ICI }, and 

Y(r) { Yv,c : p E P n c }, 
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where t(yp,c) = vc; and for each p E 'P, if C, DE ICI is the pair 
of curves so that p E C n D, then we have 

(2) for each C E ICI, let 

and 

g(vc) 

e(Vc) 

Yp,C = Yp,D; 

= g(C) = g(C), 

e(c) = 82 ; 

(3) for each y = Yp,C E Y(r), let 

and 

m(yp,C) : 8 1 X 8 1 - 8 1 X 8 1 

be the finite unbranched covering induced by the matrix 

[a(y) b(y)] 
0 c(y) ' 

where (a(y), 0) and (b(y), c(y)) generate the image of 

(µP)*: 11"1(X \CUD) - 11"1(C2 \ {x = O} U {y = O}), 

and O ~ b(y) < a(y), 0 < c(y). 
Let M(X, C) be the boundary of a regular neighborhood of C in X. 

Theorem 7. The graph manifold M(r plumb(X,C)) is homeomor
phic to M(X,C). 

Proof. For the case when Xis smooth see [Neu], p. 333. When X 
has a singularity at p, since ( X, C) is a normal surface-curve pair, there 
are exactly two curves C, DEC so that p E C n D. The link Sp of the 
singularity (X,p) is a lens space, and X \ C looks locally like a cone over 
S 3 \ L near p, where Lis an oriented Hopf link. Let Tc and Tv be the 
torus boundary components of Mc and Mv near p. Then 

where U(Cp) is a regular neighborhood of C in X, is homeomorphic to a 
thickened torus with boundary components Tc and Tv. Identifying Mp 
with the product of a torus and an interval determines a homeomorphism 
of Tc to Tv, which we will now describe. 

Let y = Yp,C (so we have o(y) = D and t(y) = C), and suppose 

m(y) _ [a(y) b(y )] 
* - 0 c(y) · 
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Then ( X, p) can be desingularized as in Figure 1. 
Give Tc and TD trivializations so that Mc and MD have Euler 

number equal to the self intersections of the proper transforms C and 
Din the minimal desingularization (X, C) of (X, C). 

Consider the plumbing graph of ( X' c) over p, which is shown in 
Figure 1. The vertices corresponding to the Ei have corresponding ver
tex manifolds which are thickened tori with two boundary components. 
If we give these boundary components trivializations so that the Euler 
number of the associated 8 1-bundle is -mi, then the boundary compo
nents are identified via the product structure by the map 

8 1 X 8 1 -t 8 1 X 8 1 

corresponding to Mi. 
The gluing map 

hy: Tc - TD 

can be thought of as a composition of the gluing maps for the plumbing 
graph of (X' c) over p. Thus, hy is the map corresponding to 

as in Lemma 5.2. 
By the construction, 

ho m(y) = m(y) o hy, 

and it is also easy to see that Mi = Mi-l, for i = 1, ... , k, and 

Q.E.D. 

Given a non-modified plumbing graph r plumb, and an ordering of the 
vertices v1 , ... , Vk E V(f), the associated intersection matrix 8(r plumb) 

is the k x k matrix with entries ai,j, where 

if i = j 
otherwise 

where n(i,j) is the number of y E Y(f), with o(y) =Viand t(y) = Vj-
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When r:iumb is modified, then we define the intersection matrix 
S(r:iumb) to be the matrix with entries ai,j given by 

'°" b(y) 
e(vi) + L., a( ) 

yEY(r) y 
t(y)=v; 

I: 
yEY(r) 

o(y)=v,,t(y)=v; 

gcd(a(y), b(y)) 
a(y) 

if i = j 

otherwise 

Note that the intersection matrices for the modified and non-modified 
plumbing graphs agree if and only if b(y) = 0 for ally E Y(r). 

Theorem 8. If (X, C) is a normal surface-curve pair, then the 
intersection matrix S(r:iumb(X,C)) equals S(X,C). 

Proof. The formula for intersection numbers of distinct pairs fol
lows directly from [Hir2] (see Lemma 3.5 and Lemma 3.7). For the self 
intersections, recall that, for any C E ICI, the pull-back C of C in the 
minimal desingularization is defined to be the divisor equal to the proper 
transform C of C plus the unique rational multiples of the exceptional 
curves, determined by the condition that 

C.E=O, 

for any exceptional curve E (see [Mum]). This implies that for each 
p E P n C, we need only be concerned with the coefficient rp of the 
unique exceptional curve Ev over p which intersects C. That is, 

02 = (C)2 

c. (c + L rvEv) 
pE"PnC 

= (C)2 + I: rp. 
pE"PnC 

The rest follows from the calculations in [Hir2] (see Lemma 3.7). Q.E.D. 

§5. Applications to computations on coverings 

Let (X,C) be a normal surface-curve pair, and let 
r:iumb = r:iumb(X,C) be its modified plumbing graph. Let 

p: (Y, V) - (X,C) 
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be a regular covering defined by the epimorphism 

¢: 1r1(X,C) - F. 

In this section, we describe the intersection matrix and modified plumb
ing data for the covering (Y, V) in terms of r~umh' and the induced 
defining map 

where Tis a maximal tree in r. 
Let Fv = 'lj;(Gv), Fy = '¢(Cy), and let Iv = 'lj;(Zv), where Zv is the 

subgroup of Gv = 1r1(Mv) generated by the fiber of the S 1-bundle Mv, 
For each y E Y(f), let s(y) = 'lj;(y), where y is considered as an element 
of 1r1(G(f~umb), T). (This s(y) is called the twisting data in [Hirl] and 
[Hir2]) 

Let r' be the graph consisting of vertices 

and edges 

where, if y' 
[o:s(y)Fv], 

V(f') = {[o:Fv] : v E V(f), o: E F} 

Y(f') = {[o:Fy] : y E Y(f), 0: E F}; 

[o:Fy], let y' = [o:Fw], and let t(y') = v' where v' 

Lemma 8.1. The graph f' is the underlying graph of the covering, 
and the map 

is given by 

Pr([o:Fv]) 

pr([o:Fy]) 

Pr: f' - r 

v, v E v(r), 

Y, y E Y(f). 

and 

Note that this presentation of the graph f' contains within it a 
natural lifting of a maximal tree T in r. Giving an identification of 
V(f') with IVI requires some extra information. Choose a section 

T: T - M(X,C). 

This amounts to choosing base-points in Mv and My, for all v E V(f) 
and y E Y(f), and connecting paths, for each y E Y(f), connecting 
the base-point in My to the base-point in Mt(y)· The section T lifts to 
the boundary manifold M(Y, V) and gives a natural identification of IVI 
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with the vertices in V(r') so that the lift of r(v) lies on DE IDI if and 
only if 

for all a E F. We will call such an identification a compatible identifica
tion of IDI with V(r'). 

The genus associated to vertices in r', and hence to the components 
of V are given as follows. 

Lemma 8.2. For v' E V(r'), and pr(v') = v, the genus g(v') is 
given by 

g(v') = ~ (2 - #~v (2 - 2g(v) - d(v)) - I: #;v) . 
# V yEY(r) # y 

t(y)=v 

Proof. The formula follows from additive properties of the topo-
logical Euler characteristic, Corollary 3, and Corollary 5. Q.E.D. 

The map m : Y(r') ---+ Fin( 8 1 x 8 1) can also be written in terms of 
the covering data and the modified plumbing graph of the base. 

Lemma 8.3. For y' E Y(r'), and y = pr(y'), m(y') is the com
position 

m(y') = m(y) o Py, 

where Py E Fin(81 x 8 1) is the unique map induced by 

such that 

m(y')* = [a'6y) ~;~~~] ' 

where O ~ b'(y) < a'(y) and O < c'(y). 

Proof. This lemma is a consequence of the definitions of modified 
plumbing graphs and Proposition 4, noting that the form of m(y') can 
be arranged by composing with an automorphism of the domain of 1Py· 

Q.E.D. 

Lemma 8.3, leads to the following formulas for intersection matrices 
of coverings, generalizing the results of [Hir2]. 
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Theorem 9. The intersection matrix S(Y, D), with respect to a 
compatible identification of IDI with V(r'), is given by 

[aFv]-[,8Fw] = L # (aFv n,8s(y)- 1Fw) gcd(a'(y),b'(y)), 

yEY(r) #(Iv+ Iw) a'(y) 
o(y)=v 
t(y)=w 

when v, w E V(r) are distinct pairs, and 

[ D] [,BD] = #(aFv n,8Fv) 
Ctrv, rv (#Iv) 2 . 

Proof. The first formula follows from Theorem 8, and Proposi
tion 2, while the second formula follows from [Hir2] (see Lemma 3.3). 

Q.E.D. 

The second formula in Theorem 9 leads to the following formula for 
the Euler numbers attached to vertices of r'. 

Lemma 9.1. Given v' E V(r'), and v = p(v'), the Euler number 
e( v') is given by 

( ') #Fv '"' b'(y) #Fv 
e v = (#I )2 - ~ a'(y) #F . 

v yEY(r) Y 
t(y)=v 

Proof. The formula follows from Theorem 8 and Theorem 9. Q.E.D. 

This completes the description of the covering modified plumbing 
graph. 

Note that the above formulas depend only on the map 'I/; restricted 
to Gv, Gy, Zv, and Y(r). This leads to the question of which defining 
maps for the boundary manifold 'I/; are induced by global defining maps 
on 1r1 (X \ C), and thus to the question of the relation between 1r1 (X \ C) 
and 1r1 (M(X \ C)). 

In general (when C supports an ample divisor), the fundamental 
group of the boundary manifold of C in X surjects onto the fundamen
tal group of X \ C under the map induced by inclusion. To understand 
the kernel of this map is a harder problem and includes the problem of 
understanding the effect of locations of singularities on C on the funda
mental group of the complement. 
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