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4.6 In the following remarks we use some standard facts from alge­
braic number theory (cf.[CaF],[Wl]). 

(a) Since xis a K-character, x(r) n O* has finite index in x(r). In 
view of the facts that O is integrally closed and x(r) C K, we get that 
x(r) CO*. Also since V(O) is discrete in V and 'r/ is K-rational, rm is 
discrete in V. 

(b) Denote by K1 the set of all x = {xw}wEB E Ks such that 

II I Xw lw= 1. 
wES 

The group O* is diagonally embedded in K1. For each w E S let 
Aw : K:V --+R be the map x --+ log lxlw• Put Rw = Im(>.w)- So, Rw 
coincides with R if v is archimedean and Rw is a cyclic subgroup of R if 
v is nonarchimedean. Let >. : K1 --+ TI Rw be the direct sum of all Aw 

wES 
and let R = Im(>.). Then Risa locally compact abelian group,>.(O*) 
is a lattice in R and Ker(>.) n O* is the group of roots of unity in K 
[CaF,ch.2, 18.1]. Therefore there exists 8 > 0 such that if~ E O* and 
11 - ~lw < 8 for all w-:/- v then~ is a root of unity in K. 

(c) Let A= TI Aw be a subset of G. We will say that A is S(v)­
wEB 

small if for every w -:/- v in S the following holds : if c E K:V is such 
that 

then I c - 1 lw< 8. In particular, if c E O* then, in view of (b), c is a 
root of unity. 

(d) Clearly, every element g E G is contained in a S(v)-suflitiently 
small neighbourhood. 

The consideration of S(v)-sufliciently small subsets for~-algebraic 
varieties was suggested by G.A.Margulis. 

4.7 Proposition. Let <p: G/rN--+ G/r x V, cp(grN) = (gr,gm). 
Then <p is a proper map. 

Proof. Let {gS N} be a sequence in G /r N such that ¢(gir N) con­
verges to (er, q) E G/r XV. Fix Ci E G and 'Yi Er such that Yi = Ci"fi 

for all i and limiCi = c. As {'Yim} C Vis discrete (cf. 4.6(a)), there 
exists io such that 'Yim= 'Yiom for all i ~ io. So, "/SN = 'YiorN for all 
i ~ i 0 • Therefore {gS N} is bounded in G /r N which proves that <p is a 
proper map. 

4.8 The above proposition implies the following 
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Corollary. Let D 0 and L be compact subsets in G. Then there 
exists a compact D in G such that D 0 CDC D 0 N and 

(10) DN n Lr C DrN. 

Furthermore, if O is a neighbourhood of D then O contains a neigh­
bourhood 'V of D 0 such that 

WN n Lr C wrN. 

According to 4.7, ¢-1(Lr /r, D 0 m) is a compact subset of D 0 N/rN. 
Now, the existence of D satisfying ,(10) follows by a simple continuity 
argument. The second part can be proved in a similar way. 

4.9 Let A be a subset of G. Following [DM2], a point x EA will be 
called a point of (P, r)-self-intersection in A if there exists I E r - rP 
such that x1 E A. The next proposition corresponds to Corollary 3.5 in 
[DM2]. 

Proposition. Let D 0 and L be compact subsets of G and Y be the 
(closed} subset of all points of (P, r)-self-intersections in D 0 • Assume 
that D 0 N n Lr c D 0 rN. Then for every relatively compact neighbour­
hood '11 of Y there exists an open neighbourhood O of D 0 such that 

does not contain points of (P, r)-self-intersections. 

Proof. Assume the contrary, that is, there exists a sequence of 
neighbourhoods {Oi} of D 0 such that Oi ::::, Oi+1, n Oi = D 0 and there 

i 
exist gi,g';, E (Oi - wrP) n Lr with gi = Ci'Yi, g';, = en';,, where ci EL, 
'Yi and ,';, E r, and ,;1,';, (/. rp. Passing to subsequences, we may 
(and will) assume that each of the sequences {Ci}, {gim} and {g';,m} 
converges. Since rm is discrete, there exists i 0 such that ,im = 'Yio m 
and ,';,m = ,Lm for all i ~ i 0 • Put c = lim;ci. Then C,i0 m and c,Lm E 

Dom. Therefore C,i 0 , c,L E DoN n Lr C DorN. As 'Yi;/,L (/. rP, we 
get that C'Yio E Yrp. The latter contradicts the fact that C,i0 (/. wrp. 
The proposition is proved. 

4.10 Proof of Proposition 3.4 Let K, c G/r, c > 0 and C be 
as in the formulation of Proposition 3.4. According to 4.3 and 4.4, it is 
enough to prove (2) for U as defined in 4.5. Also, in view 4.6(d) we can 
(as we will) suppose that C is S(v) - small subset of X(P, U). 
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The proposition will be proved by induction on dimP. (The proof 
is trivial for dimP = 0.) 

Using 4.2, we can find a compact B = TI Bw in X(P, U)m C V 
wES 

such that Bw = Cwm for all w -/- v, Bv :) Cvm, and for any neigh-
bourhood A 0 of Bv in V(Kv) there exists a neighbourhood A of Cvm 
in V(Kv) such that 

(11) 
E: 

0{t E I(r) I u(t)a EA}~ 2k0{t E I(r) I u(t)a E Ao}, 

for all a E Xv - A0 , where k is the order of the group of roots of unity 
in K. (Here and later on 0 is the Haar measure on F and J(r) is an 
interval in F with radius r centered at 0.) 

Applying 3.3, we fix a compact L c G such that K, c Lr /r and 

(12) 
1 E: 

O(I(r))°{t E I(r) I u(t)x E Lr/r} ~ 1- 4, 

for all x EK. 
In view of 4.7, 4.8 and (9), there exists a compact D 0 C X(P, U) 

which satisfies 

and 

D 0 N n Lr C D 0 rN. 

Denote by Y the subset of all points of (P, r)-self- intersection in 
D 0 • If y E Y there exists 'Y E r - rp such that Y'Y E Y. This implies 
that Uy C Qy where Q = Q(Ks) and Q is a group from the class 
F contained in P n -yP-y-1, in particular, dimQ < dimP.Since D 0 is 
compact and r is discrete in G, there are finitely many proper algebraic 
subgroups P 1 , ... , P s of P such that Pi E F for all i and LJ X (Pi, U) :) 

i~l 

Y. Denote Ci = X(Pi, U)nY, i = 1, 2, ... , s. By the induction hypothesis 
there exists for every i a compact Di C X(Pi,U) so that if <I> 0 is any 
neighbourhood of LJ Di then we have an open neighbourhood '1! of 

i~l 

U Ci such that 
i~l 

(13) 
1 E: 

O(I(r))°{t E J(r) I u(t)x E wr/r} ~ 4, 

for all x E K - <I> 0 r /r and any interval I(r ). 
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Put D = LJ Di. Now, let us fix a neighbourhood <Po of D. We will 
i~O 

prove that there exists a neighbourhood <L> of C which satisfies (2). Let 
\[I be a neighbourhood of LJ Ci which satisfies (13) for the last choice of 

i~l 

1>0 • Using 4.9, 4.8 and the definition of D 0 , one can find a neighbourhood 
!1 of D 0 such that n c 1>0 , the set (!1- wrp) n Lr is without points of 
(P, r)-self-intersections, and 

This, together with (9) and the fact that Bis S(v)-small, implies 
that there exists a compact S(v)-small neighbourhood W 0 of B in V 
such that 

(14) 

Using the property (11) of B, as well as the fact that U acts trivially 
on V(Kw) for all w-/- v, we fix a neighbourhood W of C in V such that 
if a E X(P,U)m - W0 and J is a maximal subinterval of J(r) with 
u(I)a C W 0 then 

(15) 
E: 

0{t E JI u(t)a E W}:::; 2k 0(I). 

We will prove that <L> = 77- 1 (W) is the neighbourhood of C which 
we need. Let X = gr EK - <Par ;r. Denote 

J(l) = {t E J(r) I u(t)x ,f. Lr/r or u(t)x E wr/r} 

and 
JC2) = {t E J(r) I u(t)x E (<L>r/rnLr/r)-wr/r}. 

It is clear that 

(16) J(l) U JC2)::) {t E J(r) I u(t)x E <L>r/r}. 

In view of (12) and (13) 

(17) 

Assume that there exists 'Y E r with g"(m E W0 • Then since x E 

Lr /r, it follows from (14) that g"( E nrN which, in view of the inclusion 
n C <Po, implies that X E <L>or ;r. Contradiction. Therefore, 
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(18) 

for all I E r. 
Next, for every q E grm, we define a subset Jq in I(r) in the follow­

ing way: (i) if v is nonarchimedean then t E Jq iff t is contained by a 
subintervalJ ofl(r) such that u(I)g1m C W0 and u(t')x E Lr /r-wr/r 
for some t' E I, and (ii) if v is archimedean then t E Jq iff t is con­
tained by a subinterval [a, ,BJ in I(r) such that u([a, ,B])91m C W0 

and u(,B)x E Lr /r - wr /r. Let t E Jq n Jq, where q = g"(m and 
q' = g1 'm. Denote by Jq(t) (resp. Jq,(t) ) the maximal interval in Jq 
(resp. Jq,) containing t. It follows from the definition of Jq and Jq, 
( and from the fact that in the nonarchimedean case if two intervals have 
nonempty intersection then one of them contains the other) that there 
exists t 0 E Jq(t)nJq, (t) such that u(t0 )x E Lr /r-wT /r. It follows from 
(14) that u(t0 )g1 and u(t0 )g1 ' belong to OrN. Since (OrN-Wrp)nLr 
is a set without (P, r)-self-intersections, we obtain that 1 1 = 18, where 
8 Erp. Therefore u(t0 )91'm = x(8)u(t0 )91m. 

Since x(8) E O*, u(t0 )g1 m and u(t0 )g1'm belong to W 0 , and Wo is 
S(v)-small set, using 4.6(c) we obtain that 

(19) q' =~q, 

where~ is a root of unity in K. 
Applying (15) and (18), we get 

;k 0(Jq(t)) 2 0(Jq(t) n JC2>). 

Since for any t and t' in Jq either Jq(t) = Jq(t') or Jq(t) n Jq(t') = 0, 
we obtain 

(20) .!._0(J.) > 0(J. n JC2>). 2k q - q 

Now since LJ Jq :> J(2), it follows from (19) and (20) that 
q 

~0(I(r)) 2 ~0(UqJq) 2 2ck L0(Jq) 2 L0(Jq n JC2)) 2 0(JC2>). 
q q 

This, in view of (16) and (17), completes the proof. 
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§5. Applications to the Hermitian forms. 

5.0 In this section we prove Theorem 5 and its corollaries, after 
first developping the necessary algebraic background for the irrational 
hermitian forms. We conclude the section by giving some examples and 
making some remarks about possible generalizations and strenghtenings 
of Theorem 5. 

5.1 Let R be a ring with center Z and an involution a- (i.e. a- is 
an antiautomorphism of R of order two). Also let ,\ E Z be such that 
a,\,\ = 1. A >..-hermitian form (relatively to the involution a-) on the 
right free R-module Rn is a sesquilinear map h : Rn x Rn ---+ R such 
that 

(21) h(x, y) = ,\ah(y, x) 

for all x, y E Rn. The hermitian form h is nondegenerate if the map 
h: Rn ---+HomR(Rn, R), (hx)(y) = h(x, y), is an isomorphism of abelian 
groups [Sch, 7.1.3]. Further on, by an hermitian form we will mean al­
ways a nondegenerate hermitian form. 

5.2 Unless something else is specified, in the subsections 5.2 - 5.5 we 
will denote by D a central division algebra of degree r over an arbitrary 
infinite field L of characteristic -/= 2. As in the Introduction, K is a 
subfield of L such that either L =Kor Lis a quadratic extension of K. 
Let K1 be any field extension of K, D1 = D ®K K1 and L1 = L ®K K1. 
(In the applications, D will be a division algebra over a number field L, 
K1 will stand for the completion Kv of Kat a valuation v of K, L1 = Lv 
and D1 = Dv.) We will assume that D 1 admits an involution T which is 
a Li/ Ki-involution, that is, K1 = { x E L 1 I T x = x }. (Recall that T is 
an involution of first (respectively, second) kind if L 1 = K 1 (respectively, 
L1-/= K1).) 

There are two possibilities: either L1 is a field or L 1 = K 1 EBK1. 
Let first L1 be a field. Then D 1 coincides with a matrix algebra Ms(~) 
with entries from a central division algebra~ over L 1. It is known [Kl, 
Theorem, p.37] that ~ admits an involution - : ~ ---+ ~ which is of the 
same kind as T. We can define a standard involution a- on D 1 as follows: 
a(%)= (aji) for all(%) EMs(~)-

Now let L1 = K1 EB K1. Then the restriction of Ton L 1 transposes 
the direct summands of L1. This implies that D 1 = Ms(~) EB Ms(~ 0 ) 

where ~ is a division algebra with center K 1 and ~ 0 is the division 
algebra opposite to ~ (i.e. ~ 0 coincides with ~ as abelian group and 
has the multiplication x.y = yx). In this case T(x,y) = (y,x) for all 
(x, y) E D1. 
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The relation between the different involutions of the same kind on 
D 1 is given by the following Proposition. Its proof is similar to [Sch, 
8.7.4]. 

Proposition. Let a and T be Li/ K 1 -involutions on D1 . Then 
T = ao Int( d), where d is an invertible element of D1 such that ad = ±d 
when a and T are involutions of first kind, and ad = d when a and T 

are involutions of second kind. 

Proof. By the Scolem-Noether theorem, T = aolnt(b) where b E 
D 1 . A simple direct argument shows that 

So, ab = lb where l E L 1 . This implies that uzz = 1. Hence if a is of 
first kind then l = ±l and we can choose d = b. Otherwise there exists 
c E L1 such that l = ~, c E L. (The existence of c follows from the 

u C 

Hilbert 90 theorem if L1 is a field. If L1 = K 1 EB K 1 and l = (s, s-1) 
then we can choose c = ( s, l) since a acts on L by interchanging the 
two coordinates.) Put d = cb. It is easy to check that ad = d. The 
proposition is proved. 

5.3 Let h be a A-hermitian form on D1, n 2: 1, with respect to 
T. Since T AA = 1, we get that A = ± 1 if T is of first kind. Let T be of 
second kind and let c be an invertible element in L 1. It follows from (21) 

that ch is a N-hermitian form with respect to T where A'= A (Tee). By 

Hilbert 90 theorem (and its simple analog when L1 = K1 EB K1) c can 
. TC 
be chosen in such a way that A= -. In this case, ch is a I-hermitian 

C 
form. 

Let d E D 1 be such that T d = cd where c = ±1. An easy computa­
tion shows that r' = roint(d) is an involution on D 1 and h' = dh is an 
cA-hermitian form with respect to r' [Sch, 7.6.7]. The converse of this 
assertion is given by the following proposition. 

Proposition. Leth be a A-hermitian form on D1 with respect to a 
Li/ K 1 -involution T and h' be a N-hermitian form on D1 with respect to 
a Li/ K 1 -involution r'. Assume that h' = ah where a E D 1 . Then there 

exist a E L1 and d E D 1 such that a = ad, r' = rolnt( d), A' = A ( T:) 
and .T d = ±d if T is of first kind and T d = d if T is of second kind. 
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Proof. Since h and h' are nondegenerate hermitian forms a is an 
invertible element in Di, Let x, y E Df and c E Di. Then 

c'c)h'(x,y) = aCc)h(x,y) = aCc)a-ih'(x,y). 

Hence 

(22) r' C = a(7 c)a-i. 

On the other hand, T1 = Tolnt(d) with d as in Proposition 5.2. 
Then dh is a >.-hermitian form with respect to T 1. Applying (22) with 
dh instead of h we get that ad-i is in the center of Di i.e. a= ad where 

a E Li, The fact that>.'= >-(r:) follows from (21). The proposition 

is proved. 
5.4 Leth be a >.-hermitian form on Df with respect to an involution 

T such that >. = ±1 if T is of first kind and >. = 1 if T is of second kind 
(see 5.3). Denote by Nrd : Mn(Di) ___, Li the usual reduced norm on 
Mn(Di) if Di is a simple algebra and the direct sum of the reduced 
norms on Mns(Li) and Mns(Li 0 ) if Di = Ms(Li) EBMs(Li 0 ) (see 5.1). 
The special unitary group corresponding to h is defined by SU ( h) = {g E 

Mn(Di) INrd(g) = 1 and h(x,y) = h(gx,gy) for all x,y E Df}. The 
group SU(h) coincides with the group of Ki-rational points of a Ki­
algebraic group SU(h). The hermitian form h is isotropic if SU(h) 
is Ki-isotropic, equivalently, if SU(h) contains a diagonizable over Ki 
infinite subgroup. It is known ( and follows easily from the classification 
results in [Ti2] and [Kl]) that any classical algebraic group defined over 
an infinite field Ki of characteristic -=/- 2 can be realized as SU(h) for 
certain h. If Tis of first kind then SU(h) gives all Ki-algebraic groups 
of types Bm, Cm and Dm, If T is of second kind then we get all Ki­
algebraic groups of type Am, Note that if Li is a field then his isotropic 
if and only if h represents nontrivially 0. If Li = Ki EB Ki (i.e. Di = 
Ms(Li) EB Ms(Li 0 )) then the description of Tin 5.2 implies that SU(h) 
coincides with the image of SLns(Li) in Mns(Li) EB Mns(Li 0 ) under the 
embedding g---, (g,g-i). In particular, SU(h) is Ki-isotropic if and 
only if ns > 1. 

Let us summarize the last observations in the following lemma. 

Lemma.Assume that either n -=/- 1 or Di '# Li EB Li O where Li is a 
division algebra. Then h is isotropic if and only if h represents nontriv­
ially zero. 
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Remark. Let K be a number field, K 1 = Kv be the completion of 
K at a valuation v of K and h be isotropic. Recall that if G is a simple 
Kv-isotropic Kv-algebraic group then the subgroup of G(Kv) generated 
by its unipotent elements has finite index [BTil, 6.14]. Also, if Lv is a 
field then the only central division algebras over Lv with an involution of 
the first kind (respectively, an Lv/ Kv-involution of second kind) are Lv 
itself and the unique quaternion division algebra (respectively, Lv itself) 
[Sch, 10.2.2]. Using these facts and the above description of SU(h), one­
can easily see that the unipotent elements in SU(h) generate a subgroup 
of finite index (and, therefore, Zariski dense subgroup) if and only if (a) 
rn 2". 3 if T is of first kind and T =I= id, (b) rn 2". 2 if T is of second kind, 
and (c) n 2". 3 if T = id. If the inequality in some of the cases (a)-(c) 
is not fulfilled then SU(h) is abelian, it consists of semisimple elements, 
and Theorem 5 (as well as Theorem 1) is not true (see 5.8). 

5.5 Proposition. With the notations from 5.4, let E be a subgroup 
of SU(h)n SLn(D) which is Zariski dense in SU(h). Assume that (a) 
rn 2". 3 if T is of first kind and T =I= id, (b} rn 2". 2 if T is of second 
kind, and (c} n 2". 3 if T = id. Then there exist, defined by E, an 
involution a on D of the same kind as T and an hermitian form h 0 on 
Dn with respect to a such that h = ah 0 , a E D 1. In particular, SU(h)n 
SLn(D) =SU(ho)-

Proof. Let M = (h(ei,eJ)) be the matrix of h relatively to the 
standard basis e1, ... , en of Dt Denote by p : Mn(D1) ---+ Mn(D1) the 
involution P(aij) = (7 aJi), (aij) E Mn(D1)- Then PM= >..M with>.. E L1 
and SU(h) = {g ESLn(D1) I PgMg = M}. Let I: Mn(D1) ---+ Mn(D1) 
where 1 a = M-1(Pa)M for all a E Mn(D1). Since L1 coincides with the 
center of D 1, we get that J is an involution of the same kind as p. Let 
G be the Zariski closure of E in SLn(D) and L[E] be the L-subalgebra 
of Mn(D) generated by E over L. It is easy to see that Lis I-invariant 
and I g = g-1 for each g E E. Therefore the restriction of I on L[E] 
induces an involution which will be denoted also by I. It follows from 
the assumptions (a)-(c) in the formulation of Theorem 5 (see also 5.4) 
that the algebra Mn(D1) is generated by SU(h) over L1. Since E is 
Zariski dense in SU(h), this implies that Mn(D1) is generated by E over 
L1. Therefore L[E] = Mn(D). Now, the existence of the involution I on 
Mn ( D) implies the existence of an involution a on D of the same kind as 
p (and T)[Kl,Theorem, p.37]. Let J: Mn(D)---+ Mn(D), J(aij) = ("aji)­
According to Proposition 5.2, I = Jolnt(N) where N E GLn(D) and 
JN = >..N, >.. = ±1. Since SU(h) = {g E SLn(D1) I 1g = g-1}, we have 
that G = {g E SLn(D) I JgNg = N}. Therefore G = SU(h0 ) where h 0 

is the >..-hermitian form with respect to a having matrix N. 
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In view of 5.3, having replaced h by a suitable multiple, we may 
(and will) assume that T = a (equivalently, I= J). Therefore 

9-1 = N-l(Ig)N = M-l(Ig)M 

for all g E G. So, MN- 1 commutes with each g E G. Therefore MN- 1 

is in the center of Mn(D 1 ) i.e. h = ah0 where a E D1. The proposition 
is proved. 

5.6 Proof of Theorem 5. We will use the notations from the 
formulation of Theorem 5 in the Introduction. Let G 1 be the £-algebraic 
group corresponding to SLn(D), i.e G1(L) =SLn(D). Let G = RL;KG1 
where RL/K is Weil's restriction of scalars. Then G(Kv) = SLn(Dv) for 
each V E s. Put G = G(Ks), r = SLn(A) and H = IlvESSU(hv)­
It follows from [BTil, 3.18] that, under the natural action of G on the 
space of all hermitian forms on D8, the orbit Gh is closed and, therefore, 
homeomorphic to G / H. Hence, the almost S-integer equivalence implies 
the proper equivalence and, also, the assertion (ii) from the formulation 
of Theorem 5 is equivalent to the density of Hr in G. 

Let us prove that (i) implies (ii). In view of the above remark, it 
is enough to show that Hur is dense in G. Since r is a lattice in G, 
it follows from Theorem 1 that there exists a connected K-algebraic 
group L of G and a subgroup of finite index L' in L = L(Ks) such 
that the closure of Hur /r in G /r coincides with L'r /r, 1:: = L' n r is 
Zariski dense in L, and L' c@ntains Hu. Note that SU(hv) is a maximal 
connected algebraic subgroup of SLn ( D) and L' nSU ( hv) is Zariski dense 
in SU(hv) for all v E S 0 • This implies that either L(Kv) = SU(hv) for 
all v E S0 or L = G. In the first case, it follows from Proposition 5.5 
that there exists an hermitian form h0 on Dn determined by 1:: and such 
that hs0 is multiple of h0 • This contradicts our hypothesis. Let L = G. 
We will show that L'r = G. This is clear when n > l because G(Kv), 
v E S, does not contain subgroups of finite index and, therefore, L' = G. 
Let n = l. It follows from the general description of the orders [Wl, 
ch. 5] that r is the intersection of G with an open compact subgroup of 
G(Vs) where Vs is the S-adele ring (i.e. Vs is the restricted topological 
product of all fields Kv, v (/. S, relative to the rings of integers Ov C Kv, 
v (/. S). By the strong approximation theorem, the projection of r into 
G(Ks-sJ is dense. Therefore L'r = G, which proves the implication. 

Next we will prove that (ii) implies (i). Assume the contrary, that 
is , hs0 is a multiple of a rational form h0 on Dn. Let L1 = SU(h0 ), 

L1 = L1(Ks) and C = IlvES-SoSU(hv)- Since Hur is dense in G, L1r 
is closed, £ 1 :::, Hu and C is compact, we get that G = CL1r. Note 
that Hu commutes elementwise with C. Therefore every Hu-ergodic 
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component of the Haar measure on G /r is concentrated on gL1f /r for 
some g E C. In particular, Hu does not act ergodically on G /r . On 
the other hand, by a generalization of a theorem of Moore about the 
Mautner property [MTo2, 2.1], every Hu-invariant £ 2-function on G/f 
is invariant under the action of the smallest normal subgroup G0 C G 
containing Hu. It is clear that G0 = G(KsJ- Since G 0 f is dense in G 
by the strong approximation, GO acts ergodically on G /r. Therefore, 
the action of Hu is ergodic. Contradiction. The theorem is proved. 

5. 7 Proof of Corollary 1 Since Dn is dense in D 8 ( weak ap­
proximation), we can approximate each Xi by a vector Yi E Dn in 
such a way that y1, y2 , ••. , Yn-l are linearly independent over D and 

I hs(xi,x1) - hs(Yi,Yj) \<~for all i,j = 1,2, ... ,n- l. Denote by 

e1, e2, ... , en the standard basis of nn. There exists g ESLn ( D) such 
that gei = Yi for all i = 1, 2, ... , n - l. Put Yn = gen and h' = h~. 
In view of Theorem 1, hs is almost S-integer equivalent to h'. Hence 

c 
there exists 'Y ESLn(A) such that\ hs(xi,Xj) - hs('Yei,'Ye1) \< 2 for all 

i, j = 1, 2, ... , n - l. This implies (1) with Zi = ')'ei. The Corollary is 
proved. 

5.8 Examples and concluding remarks. 1. Let us show that the 
assumptions in the formulation of Theorem 5 are essential and can not 
be relaxed. Let a, b E 7Jl - { 0} and D = { a, b} be the quaternion algebra 
over~ defined by a and b, i.e. D =~ ~i ~j ~k where i 2 = a, j 2 = b 
and k = ij - ji. Assume that DOC)= D ~ R is isomorphic to M2(R). 

Let T: D---+ D be the standard involution of D, i.e. ,.(x+yi+zj +tk) = 
x - yi - zj - tk), and let A= 7Jl + 7Jli + 7Jlj + 7Jlk. Recall that Tacts on 
DCC) as follows : 

T (X y) = ( t -y) 
Z t -z X ' 

[Sch, p.361]. Denote by G the ~-algebraic group corresponding to 
SL1(D) (i.e G~) =SL1(D)) and put r =SL1(D)nA. Then G(R) =SL2(R) 
and, in view of a classical result of Borel and Harish-Chandra [M4, 
I.3.2.4], SL2(R)/f is compact if and only if Dis a division algebra. Let 
T be the subgroup of all diagonal matrices in SL2(R) and K =S02(R). 
Then X = K\SL2(R)/f can be regarded as a Riemannian surface with 
constant curvature -1, and the action of T by left transformations on 
SL2(R)/r induces the geodesic flow on X. It is a standard fact that 
there exists a relatively compact, non-compact, and non-dense T-orbit 
on X. (We refer to [Stl, Lemma 2] for a more general result due to 
Margulis.) Thus, there exists a g ESL2(R) such that fgT is neither 
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dense nor closed in SL2 (R). Put a 0 = ( t ~ 1) and a = ga0 g- 1 • 

Then ra = -a and h(x,y) = rxay is an isotropic -I-hermitian form 
on D 00 • Since rgT is not closed, h is not rational, and since rgT is 
not dense in SL2 (R), there are hermitian forms which are properly but 
not almost S-integer equivalent to h. In the case when D is a division 
algebra (say, { a, b} = {-1, 3} ), we get an example showing that if n = l 
and r = 2 (i.e. the assumption (a) in the formulation of Theorem 1 is 
not fulfilled) then (i) does not imply (ii). If D =M2~) and A =M2(Zl) 

then a = ( =J ~8) , where {3, 'Y, 8 E R. It is easy to see that if the 

quadratic form f(x, y) = {3x2 + 2"fXY + 8y2 is isotropic and irrational 
then the closure of f(Zl2) in R does not contain O and there exists a 
properly equivalent to f quadratic form which is not almost S-integer 
equivalent to f. This shows that the assumption ( c) in Theorem 5 is 
essential. (We refer to [M3, 1.2] and [G, 4.2] for explicit examples of 
quadratic forms with the same properties.) Concerning (b), note that if 
r = n = l then hs is always rational. 

2. We use the notations from Corollary 1. It is easy to see that 
if n ~ 2 then hs is anisotropic if and only if the map D8 ---+ Ds, 
x ---+ h8 (x,x), is proper. This implies that if hs is anisotropic then 
the subset {hs(z,z) I z E An} C Ds is discrete. Let n = l. Then 
N rd { hs ( z, z) I z E An} is discrete in Ls. This means that the assertion 
analogous to Corollary 1 is not true for n = l. Similar arguments 
show that Theorem 5 can not be modified to be true for "equivalent" 
instead of "properly equivalent" hermitian forms. (Two hermitian forms 
hs and h's are equivalent if they are conjugated by an element from 
GLn(Ds) = IlvEsGLn(Dv).) 

3. Almost the same proofs allow to establish similar results to The­
orem 5 and its corollaries when considering finite dimensional central 
simple algebras with involutions Ts of "mixed" type (i.e. Ts = ffivES Tv 
where Tv, v E S, is an involution of first or second type). 

4. Recently Eskin, Margulis and Mozes proved the quantitative 
version of the Oppenheim conjecture for real quadratic forms [EMM]. 
It is plausible to obtain quantitative results in the general framework of 
the hermitian forms over division algebras in the S-arithmetic case. 

5. Another very interesting application of the dynamical approach 
to the number theory is the recent proof by Kleinbock and Margulis 
[KM] of conjectures of Bauer and Sprindzhuk from the theory of the 
Diophantine approximation on manifolds. It is of interest to generalize 
these results to the S-arithmetic setting as well. 
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