Advanced Studies in Pure Mathematics 25, 1997 CR-Geometry and Overdetermined Systems pp. 386-405

Prolongation Projection Commutativity Theorem

Jose M. Veloso

Abstract.

If the symbol g_k of a SPDE R_k is 2-acyclic, then the operations of prolongation and projection on R_k commute

$$\rho_{k+l+1}^{k+l+2}\left((R_k)_{+l+2}\right) = \left(\rho_{k+l}^{k+l+1}\left((R_k)_{+l+1}\right)\right)_{+1}$$

We apply this to study contact of three-dimensional CR-manifolds.

§1. Introduction

S. Chern and J. Moser [2] proved that two real hypersurfaces of \mathbb{C}^2 have a contact of fifth order and in the non-umbilic case of sixth order. The *G*-structure associated to a real hypersurface is of order two but their definition involves fifth order derivatives. Studying these facts through the SPDE of jets of biholomorphic functions between the real hypersurfaces, we found the following theorem:

Theorem 1.1 (Prolongation projection commutativity theorem). Let $R_k \subset J_k(M, N, \rho)$ be a system of partial differential equations such that

(i) $\alpha: R_k \to N$ is a submersion

(ii) the symbol g_k of R_k is 2-acyclic

(iii) g_{k+1} is a vector bundle on $(\rho_k^{k+1})^{-1}(R_k)$

Then, for every $l \geq 0$,

$$\rho_{k+l+1}^{k+l+2}\left((R_k)_{+l+2}\right) = \left(\rho_{k+l}^{k+l+1}\left((R_k)_{+l+1}\right)\right)_{+1}.$$

Theorem 1.2 (Formal integrability theorem [4]). Under the hypothesis of the above theorem and the assumption that

$$\rho_k^{k+1}((R_k)_{+1}) = R_k,$$

Received October 2, 1995.

we get that

$$\rho_{k+l}^{k+l+1}: (R_k)_{+l+1} \to (R_k)_{+l}$$

is a submersion for every $l \geq 1$.

The formal integrability theorem for linear PDE systems was first proved by Quillen [6] and with weak assumptions by Goldschmidt [3], who also proved it in the non-linear case [4]. A version of this theorem using involutivity is in Kuranishi [5]. All these publications used the set R_k of integral jets of the PDE system to prove the theorem. Ruiz [7, 8, 9] utilizes the sheaf I_k of functions which are null on R_k ; this approach seems to us more natural and we follow this approach.

In Section 2 we present the basic facts following [7, 8, 9]. Section 3 contains the proof of Theorem 1.1. In Section 4 we apply the theorem to study contact of three-dimensional CR-manifolds. Corollary 4.1 shows that the *G*-structure associated to a CR-manifold M is the projection in order two of fifth order jets which have fifth-order contact with the hyperquadric Im $w = z\overline{z}$. Theorem 4.3 relates the normal form of M [2] with the invariants of Cartan [1].

I'd like to thank to A.M.Rodrigues and J.Verderesi for several discussions on this subject. I dedicate this paper to prof.M.Kuranishi, in occasion of his seventieth birthday. He was very kind to me and my contacts with him were always stimulating.

$\S 2.$ Basic definitions

Let M, N be manifolds, T = TN the tangent bundle of $N, \rho: M \to N$ a submersion, and $J_k = J_k(M, N, \rho)$ the manifold of k-jets of local sections of $\rho: M \to N$. Denoting by $\rho_l^k: J_k \to J_l, k > l$, the canonical projections, and by $\rho_0^k = \beta_k: J_k \to M$ and $\rho_{-1}^k = \alpha_k: J_k \to N$ the projections to *target* and *source* respectively, the sheaf of algebras of C^{∞} -functions on J_k will be denoted by F_k . If $Z_k \in J_k$, let be $Z_l = \rho_l^k(Z_k)$, for $l \leq k$. In particular, $\beta_k(Z_k) = Z$ and $\alpha_k(Z_k) = z$.

We identify Z_k with the linear application (cf. [7])

$$Z_k = (Z_k)_* : T_z N \to T_{Z_{k-1}} J_{k-1}$$

given by

$$(Z_k)_* = (j^{k-1}\sigma)_* v$$

where $Z_k = j_z^k \sigma$.

If θ is a vector field on N, we define the *formal derivative*

 $\partial_{\theta}: F_k \to F_{k+1}$

by

$$(\partial_{\theta} f)(Z_{k+1}) = df(Z_{k+1})_*(\theta_z))$$

where $f \in F_k$. This derivative has the properties

- (i) $\partial_{a.\theta} f = a.\partial_{\theta} f$
- (ii) $\partial_{[\theta,\eta]} = [\partial_{\theta}, \partial_{\eta}]$

where a is a real function on N, and η is a vector field on N. Let $x = (x^1, \dots, x^n)$ be a chart on $U \subset N$, $(x, y) = (x^1, \dots, x^n, y^1, \dots, y^m)$ a chart on $\rho^{-1}(U)$, and $(x, y^j_{\alpha}, 0 \leq j \leq m, 0 \leq |\alpha| \leq k)$ a chart on $(\rho_0^k)^{-1}(U)$, where

$$y^j_{\alpha}(j^k_z\sigma) = rac{\partial^{|lpha|}\sigma^j}{\partial x^{lpha}}(z)$$

and $\sigma = (\sigma^1, \cdots, \sigma^m)$ is a section of ρ on U.

In this coordinate system

$$(Z_{k+1})_*(\frac{\partial}{\partial x^i}) = \frac{\partial}{\partial x^i} + \sum_{|\alpha| \le k} y^j_{\alpha+1_i}(Z_{k+1}) \frac{\partial}{\partial y^j_{\alpha}}$$

and

$$\partial_i f = rac{\partial}{\partial x^i} + \sum_{|lpha| \leq k} rac{\partial f}{\partial y^j_lpha} y^j_{lpha+1_i}$$

where $f \in F_k$, and ∂_i denotes ∂_{θ} when $\theta = \partial/\partial x^i$.

Let $Q_k = \operatorname{Ker}(\rho_{k-1}^k)_*$ be the vector bundle on J_k of vertical tangent vectors with respect to ρ_{k-1}^k . The fiber of Q_k on Z_k is denoted by Q_{Z_k} . The dual bundle of Q_k is denoted by Q_k^* . If $f \in F_k$, then $d(\partial_{\theta} f) |_{Q_{Z_{k+1}}}$ depends only on $df |_{Q_{Z_k}}$ and $\theta(z)$. So we have a map

$$d_K: T_z N \otimes Q_{Z_k}^* \to Q_{Z_{k+1}}^*$$

defined by

$$d_K(\theta_z \otimes df \mid_{Q_{Z_k}}) = d(\partial_\theta f) \mid_{Q_{Z_{k+1}}}$$

In coordinates

$$d_K(\frac{\partial}{\partial x^i} \otimes dy^j_{\alpha} \mid_{Q_{Z_k}}) = dy^j_{\alpha+1_i} \mid_{Q_{Z_{k+1}}}$$

If $Q_{Z_{\infty}}^* = \sum_{k \ge 0} Q_{Z_k}^*$, we define Koszul's complex $(\Lambda T_z \otimes Q_{Z_{\infty}}^*, d_K)$ by

$$d_K(v_1\wedge\cdots\wedge v_l\otimes\mu) = \ \sum_{i=1}^l (-1)^{i+1} v_1\wedge\cdots\wedge v_{i-1}\wedge v_{i+1}\wedge\cdots\wedge v_l\otimes d_K(v_i\otimes\mu).$$

Definition 2.1. A system of partial differential equations (SPDE) is a subsheaf of ideals I_k of F_k locally finitely generated. The subset R_k of J_k ,

$$R_k = \{Z_k \in J_k : f(Z_k) = 0, \forall f \in I_k\}$$

is the set of integral jets of I_k . In case (R_k, N, α_k) is a submersion, I_k (or R_k) is said to be regular. The subsheaf of ideals of F_{k+1} generated by

$$(\rho_k^{k+1})^* I_k \cup \{\partial_\theta f : f \in I_k, \theta \in \Gamma(TN)\}$$

is called the prolongation $(I_k)_{+1}$ of I_k .

We shall write I_{k+1} instead of $(I_k)_{+1}$. The subsheafs $I_{k+l}, l \geq 2$ are defined inductively. Suppose (x^1, \dots, x^n) is a chart on N, and $f_p, 1 \leq p \leq r$ a system of (local) generators of I_k , then a system of (local) generators of I_{k+l} is given by $\{\partial_{\alpha}f_p: 1 \leq p \leq r, 0 \leq |\alpha| \leq l\}$, where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\partial_{\alpha}f_p = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}f_p$. We will assume that F_k is contained in F_{k+l} , through the inclusion $(\rho_k^{k+l})^*: F_k \to F_{k+l}$.

Definition 2.2. The symbol h_{Z_k} at the integral jet Z_k of I_k is the subset of $Q_{Z_k}^*$ defined by

$$h_{Z_k} = \{ df \mid Q_{Z_k} : f \in I_k \}$$

The family of symbols on R_k is denoted by h_k , i.e. $(h_k)_{Z_k} = h_{Z_k}$.

If $Z_{k+1} \in (\rho_k^{k+1})^{-1}(Z_k)$, with $Z_k \in R_k$, put $h_{Z_{k+1}} = d_K(T_z \otimes h_{Z_k})$, and $h_{Z_{k+l+1}} = d_K(T_z \otimes h_{Z_{k+l}}), l \ge 1$ for every $Z_{k+l+1} \in (\rho_k^{k+l+1})^{-1}(Z_k)$. Also, we put

$$h_{k+l} = \{h_{Z_{k+l}} : Z_{k+l} \in (\rho_k^{k+l})^{-1}(R_k)\}.$$

In case $Z_{k+l} \in R_{k+l}, h_{Z_{k+l}}$ coincides with the symbol of I_{k+l} at Z_{k+l} , i.e. $h_{Z_{k+l}} = dI_{k+l} |_{Q_{Z_{k+l}}}$. Let us put $h_{Z_{\infty}} = \sum_{l \ge 0} h_{Z_{k+l}}$. Then $h_{Z_{\infty}} \subset Q_{Z_{\infty}}^*$, and from $d_K(T_z \otimes h_{Z_{\infty}}) \subset h_{Z_{\infty}}$ it follows that $(\Lambda T_z \otimes h_{Z_{\infty}}, d_K)$ is a

subcomplex of Koszul's complex. The (j,k+l+1)-th homology group of this subcomplex is

$$H_{(j,k+l+1)}(Z_k) = \frac{\ker(d_K : \Lambda^j T_z \otimes h_{Z_{k+l+1}} \to \Lambda^{j-1} T_z \otimes h_{Z_{k+l+2}})}{d_K(\Lambda^{j+1} T_z \otimes h_{Z_{k+l}})}$$

for $l \geq 0$.We say that h_{Z_k} is *r*-acyclic if $H_{j,k+l+1}(Z_k) = 0$, for $0 \leq j \leq r$, $l \geq 0$ and h_k is *r*-acyclic if h_{Z_k} is r-acyclic for every $Z_k \in R_k$. Clearly, h_k is 0-acyclic. If $g_{Z_k} \subset Q_{Z_k}$ is defined by $g_{Z_k}^{\perp} = h_{Z_k}$, then g_{Z_k} is also called the symbol of R_k at Z_k . It is proved in [9] that h_{Z_k} is 1-acyclic if and only if g_{Z_k} is 2-acyclic in the sense of [4].

§3. The prolongation projection commutativity theorem

Let us put

$$I_{k+l}^{k+l+1} = \{ f \in F_{k+l} : (\rho_{k+l}^{k+l+1})^* f \in I_{k+l+1} \}$$

for $l \geq 0$. It is clear that $I_{k+l} \subset I_{k+l}^{k+l+1}$. If R_{k+l}^{k+l+1} denotes the set of integral jets of I_{k+l}^{k+l+1} , then $\rho_{k+l}^{k+l+1}(R_{k+l+1}) \subset R_{k+l}^{k+l+1}$. In general the equality doesn't hold. The following proposition gives a condition for this.

Proposition 3.1. If I_k is a regular SPDE, and h_{k+l+1} is a vector bundle on $(\rho_k^{k+l+1})^{-1}(R_k)$, then

$$R_{k+l}^{k+l+1} = \rho_{k+l}^{k+l+1}(R_{k+l+1}).$$

Furthermore, if $f_p, 1 \leq p \leq r$ are local independent generators of I_k , then I_{k+l}^{k+l+1} is generated by

$$\{\partial_{\alpha}f_p, 1 \le p \le r, | \alpha | \le l; g_t, 1 \le t \le s\},\$$

where $g_t = \sum_{p=1}^r (\sum_{|\beta|=l+1} a_t^{\beta,p} \partial_\beta f_p + b^p f_p)$ with $a_t^{\beta,p} \in F_k, b^p \in F_{k+l+1}$.

Proof: Let U_k be an open set in J_k , where $f_p, 1 \le p \le r$ are defined, and $U_{k+j} = (\rho_k^{k+j})^{-1}(U_k), j \ge 1$. By hypothesis, df_1, \dots, df_r are linearly independents at every $Z_k \in U_k$, then

$$U_k \cap R_k = \{ Z_k \in J_k : f_p(Z_k) = 0, 1 \le p \le r \}.$$

Let us put $V_{k+j} = U_{k+j} \cap (\rho_k^{k+j})^{-1}(R_k), j \ge 0$. Since h_{k+l+1} is a vector bundle on V_{k+l+1} , for every $p, 1 \le p \le r$, there exist $\Lambda_p \subset \{\alpha \in \mathbf{N}^n :$ $|\alpha| = l + 1$ such that $\{d(\partial_{\alpha_p} f_p) |_{Q_{Z_{k+l+1}}}, 1 \leq p \leq r, \alpha_p \in \Lambda_p\}$ is a basis of $h_{Z_{k+l+1}}, Z_{k+l+1} \in V_{k+l+1}$ (eventually shrinking U_k). Then, given q and α , $1 \leq q \leq r, |\alpha| = l + 1$, there exist functions $A_{q,\alpha}^{p,\alpha_p}$ on V_k , such that

$$d(\partial_{\alpha} f_{q}) \mid_{Q_{Z_{k+l+1}}} + \sum_{p=1}^{\prime} \sum_{\alpha_{p} \in \Lambda_{p}} A_{q,\alpha^{p}}^{p,\alpha_{p}}(Z_{k}) d(\partial_{\alpha_{p}} f_{p}) \mid_{Q_{Z_{k+l+1}}} = 0$$

for every $Z_{k+l+1} \in V_{k+l+1}$. This is so since $d(\partial_{\alpha}f_p) \mid_{Q_{Z_{k+l+1}}}$ depends only on Z_k . Let $a_{q,\alpha}^{p,\alpha_p}$ be extensions to U_k of functions $A_{q,\alpha}^{p,\alpha_p}$. Then $\partial_{\alpha}f_p + \sum a_{q,\alpha}^{p,\alpha_p}\partial_{\alpha_p}f_p$ are constant on the fibers of the submersion $\rho_{k+l}^{k+l+1} \mid_{V_{k+l+1}} : V_{k+l+1} \to V_{k+l}$. This implies that, given q and $\alpha, 1 \leq q \leq r, |\alpha| = l + 1$, there are functions $g_{q,\alpha}$ on U_{k+l} such that $\partial_{\alpha}f_q + \sum a_{q,\alpha}^{p,\alpha_p}\partial_{\alpha_p}f_p - g_{q,\alpha}$ are identically zero on V_{k+l+1} , which is the zero set of functions $(\rho_{k+l}^{k+l+1})^*f_p, 1 \leq p \leq r$. By implicit function theorem there are functions $b_{q,\alpha}^p \in U_{k+l+1}$ such that

$$\partial_{\alpha} f_q + \sum a_{q,\alpha}^{p,\alpha_p} \partial_{\alpha_p} f_p - g_{q,\alpha} + \sum b_{q,\alpha}^p f_p = 0$$

in U_{k+l+1} . Then I_{k+l+1} is generated by

$$\{\partial_{\beta}f_p, \mid \beta \mid \leq l; g_{p,\alpha}, \mid \alpha \mid = l+1; \partial_{\alpha_p}f_p, \alpha_p \in \Lambda_p; 1 \leq p \leq r\}$$

where $g_{p,\alpha} \in F_{k+l}$. So I_{k+l}^{k+l+1} is generated by

$$\{\partial_{eta}f_p, |eta| \leq l; g_{p,lpha}, |lpha| = l+1; 1 \leq p \leq r\}$$

which proves the second part of Proposition. Since $\partial_{\alpha_p} f_p$ are independents, given $Z_{k+l} \in R_{k+l}^{k+l+1} \cap U_{k+l}$, there exist $Z_{k+l+1} \in U_{k+l+1}$ such that $\partial_{\alpha_p} f_p(Z_{k+l+1}) = 0$. This implies $Z_{k+l+1} \in R_{k+l+1}$, so $R_{k+l}^{k+l+1} \subset \rho_{k+l}^{k+l+1}(R_{k+l+1})$, which completes the proof.

 R_{k+l+1} is not necessarily a manifold, nor R_{k+l}^{k+l+1} . To guarantee this, we need the following Proposition, which is dual of a result in [3].

Proposition 3.2. If I_k is a regular SPDE such that

(i) h_k is 1-acyclic;

(ii) h_{k+1} is a vector bundle on $(\rho_k^{k+1})^{-1}(R_k)$ then h_{k+l+1} is a vector bundle on $(\rho_k^{k+l+1})^{-1}(R_k)$ for every $l \ge 0$.

Proof: By induction on l, suppose h_{k+l+1} is a vector bundle. For every $Z_{k+l+2} \in (\rho_k^{k+l+2})^{-1}(\mathbb{R}^k)$ the sequence

$$\Lambda^2 T_z \otimes h_{Z_{k+l}} \xrightarrow{d_K} T_z \otimes h_{Z_{k+l+1}} \xrightarrow{d_K} h_{Z_{k+l+2}}$$

is exact by (i), then $\dim(T_z \otimes h_{Z_{k+l+1}}) = \dim h_{Z_{k+l+2}} + \dim(d_K(\Lambda^2 T_z \otimes h_{Z_{k+l}}))$. If I_k is generated by f_1, \dots, f_r , then h_{k+l} is generated by the restrictions to $(\rho_k^{k+l})^{-1}(R_k)$ of $d(\partial_\alpha f_p) |_{Q_{k+l}}, 1 \leq p \leq r, |\alpha| = l$, and similarly, $d_K(\Lambda^2 T \otimes h_{k+l})$ and h_{k+l+2} are generated by a finite number of C^{∞} -sections. Since the rank of a linear system with variables coefficients is a lower semicontinuous function, $\dim h_{k+l+2}$ and $\dim(\Lambda^2 T \otimes h_{k+l})$ are lower semicontinuous functions, so by induction hypothesis and the above equality, it follows $\dim h_{k+l+2}$ and $\dim d_K(\Lambda^2 T \otimes h_{k+l})$ are constant functions, which proves h_{k+l+2} is a vector bundle.

Theorem 3.1 (Prolongation projection commutativity theorem). If I_k is a SPDE such that

(i) h_k is 1-acyclic;

(ii) h_{k+1} is a vector subbundle on $(\rho_k^{k+1})^{-1}(R_k)$; then

$$(I_{k+l}^{k+l+1})_{+1} = I_{k+l+1}^{k+l+2}$$

or equivalently

$$(R^{k+l+1}_{k+l})_{+1} = R^{k+l+2}_{k+l+1}$$

for all $l \geq 0$.

Proof: Let $f_p, 1 \le p \le r$ be a set of independent generators of I_k . It follows from Proposition3.2 that h_{k+l+1} is a vector bundle for every $l \ge 0$, and applying Proposition3.1, I_{k+l+1}^{k+l+2} is generated by $\partial_{\beta}f_p, 1 \le p \le r, |\beta| = l+1$, and functions

$$g_t = \sum_{p=1}^r \sum_{i,j=1}^r \sum_{|\alpha|=l} a_{i,j,t}^{\alpha,p} \partial_i \partial_j \partial_\alpha f_p + b_t^p f_p,$$

where $a_{i,j,t}^{\alpha,p} \in F_k, b_t^p \in F_{k+l+2}, a_{i,j,t}^{\alpha,p} = a_{j,i,t}^{\alpha,p}$ and $1 \le t \le s$. To show $I_{k+l+1}^{k+l+2} \subset (I_{k+l}^{k+l+1})_{+1}$, we must prove that $g_t \in (I_{k+l}^{k+l+1})_{+1}$, for every $1 \le t \le s$. If $Z_{k+l+2} \in (\rho_k^{k+l+2})^{-1}(R_k)$, then

(3.1)
$$0 = dg_t \mid_{Q_{Z_{k+l+2}}} = \sum_{i,j,t} a_{i,j,t}^{\alpha,p} d(\partial_i \partial_j \partial_\alpha f_p) \mid_{Q_{Z_{k+l+2}}}$$

by $f_p(Z_{k+l+2}) = 0, \ 1 \le p \le r$. Put

$$(w_{p,\alpha})_{Z_{k+l}} = d(\partial_{\alpha}f_p) \mid_{Q_{Z_{k+l}}},$$

$$(w_{p,\alpha,j})_{Z_{k+l+1}} = d(\partial_j \partial_\alpha f_p) \mid_{Q_{Z_{k+l+1}}}$$

and

$$(w_{p,\alpha,j,i})_{Z_{k+l+2}} = d(\partial_i \partial_j \partial_\alpha f_p) \mid_{Q_{Z_{k+l+2}}}$$

Then (3.1) can be written as $\sum a_{i,j,t}^{\alpha,p} w_{p,\alpha,j,i} = 0$ on $(\rho_k^{k+l+2})^{-1}(R_k)$, which is equivalent to

$$d_K(\sum a_{i,j,t}^{\alpha,p} \frac{\partial}{\partial x^i} \otimes w_{p,\alpha,j}) = 0.$$

From (i) there exist functions $B_{i,j,t}^{\alpha,p}$ on R_k , with $B_{i,j,t}^{\alpha,p} = -B_{j,i,t}^{\alpha,p}$, such that

$$d_K(\frac{1}{2}\sum B_{i,j,t}^{\alpha,p}\frac{\partial}{\partial x^j}\wedge \frac{\partial}{\partial x^i}\otimes w_{p,\alpha})=\sum \frac{\partial}{\partial x^i}\otimes a_{i,j,t}^{\alpha,p}w_{p,\alpha,j}.$$

Then $\sum \frac{\partial}{\partial x^i} \otimes (B_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) w_{p,\alpha,j} = 0$, so $\sum (B_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) w_{p,\alpha,j} = 0$. Let be $b_{i,j,t}^{\alpha,p}$ extensions of $B_{i,j,t}^{\alpha,p}$ to U_k so that

(3.2)
$$b_{i,j,t}^{\alpha,p} = -b_{j,i,t}^{\alpha,p}.$$

Then

$$\sum_{j,\alpha,p} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) d(\partial_j \partial_\alpha f_p) \mid_{Q_{k+l+1}} = 0$$

on $(\rho_k^{k+l+1})^{-1}(R^k)$. This means $\sum_{j,\alpha,p} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) \partial_j \partial_\alpha f_p$ is constant on the fibers of $(\rho_{k+l}^{k+l+1})^{-1}(R_k)$ over $(\rho_k^{k+l})^{-1}(R_k)$, so there exist functions $H_{i,t} \in F_{k+l}$ such that

$$\sum_{j,\alpha,p} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) \partial_j \partial_\alpha f_p - H_{i,t} = 0$$

on $(\rho_k^{k+l+1})^{-1}(R_k)$. This set is the null set of f_1, \dots, f_r , then there exist functions $c_{i,t}^p \in F_{k+l+1}$ which satisfies

$$\sum_{j,\alpha,p} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) \partial_j \partial_\alpha f_p - H_{i,t} = \sum_p c_{i,t}^p f_p.$$

It follows that $H_{i,t} \in I_{k+l}^{k+l+1}$ and

$$\begin{split} \sum_{i} \partial_{i} H_{i,t} &= \sum_{i,j,\alpha,p} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) \partial_{i} \partial_{j} \partial_{\alpha} f_{p} \\ &+ \sum_{i,j,\alpha,p} \partial_{i} (b_{i,j,t}^{\alpha,p} - a_{i,j,t}^{\alpha,p}) \partial_{j} \partial_{\alpha} f_{p} - \sum_{i,p} (c_{i,t}^{p} \partial_{i} f_{p} - \partial_{i} (c_{i,t}^{p}) f_{p}). \end{split}$$

From (3.2), $\sum_{i,j} b_{i,j,t}^{\alpha,p} \partial_i \partial_j \partial_\alpha f_p = 0$, so

$$\sum_{i} \partial_i H_{i,t} + g_t = 0, \operatorname{mod} I_{k+l+1}.F_{k+l+2}.$$

But the left side is in F_{k+l+1} so $\sum_i \partial_i H_{i,t} + g_t \in I_{k+l+1}$, and consequently $g_t \in (I_{k+l}^{k+l+1})_{+1}, 1 \le t \le s$, which completes the proof.

Corollary 3.1. Under the hypothesis of the preceding Theorem and $I_k^{k+1} = I_k$ we have $I_{k+l}^{k+l+1} = I_{k+l}$, for all $l \ge 0$.

Proof of Theorem1.2: From Theorem 1.1(i) we have $I_k = \{f \in F_k : f(R_k) = 0\}$ is regular, from (ii) $h_k = g_k^{\perp}$ is 1-acyclic [9], from (iii) h_{k+1} is a vector bundle and $I_k^{k+1} = I_k$. Applying Corollary3.1, $R_{k+l}^{k+l+1} = R_{k+l}, l \ge 0$, and from Proposition 3.1 we get $\rho_{k+l}^{k+l+1} : R_{k+l+1} \to R_{k+l}$ is onto, for every $l \ge 0$. The g_{k+l+1} are vector bundles, so these projections are submersions.

§4. Contact of hypersurfaces of C^2

A three dimensional manifold M with a codimension one distribution $\Delta \subset TM$, an operator J on Δ such that $J^2 = -I$, and an one form θ such that $\theta^{\perp} = \Delta$ and $\theta \wedge d\theta \neq 0$ is a *Cauchy-Riemann mani*fold. A real hypersurface of \mathbb{C}^2 has a natural structure of CR-manifold with $\Delta = TM \cap J(TM)$. From now on, M and M' will denote CRmanifolds. A diffeomorphism $f : M \to M'$ is a *CR-diffeomorphism* if $f_*(\Delta) = \Delta'$, and $f_*(J) = J'$. If $\Delta_{\mathbb{C}}$ is the complexification of Δ , then $\Delta_{\mathbb{C}} = \Delta^{1,0} \oplus \Delta^{0,1}$, and f is a CR-diffeomorphism if and only if

(4.3)
$$f_*(\Delta^{1,0}) = (\Delta')^{1,0}.$$

Let U be an open set of M, Z_1 a no null section of $\Delta^{1,0}|_U$, $Z_{\overline{1}} = \overline{Z_1}$, and

(4.4)
$$Z_0 = -i[Z_1, Z_{\bar{1}}].$$

Then $Z_0, Z_1, Z_{\bar{1}}$ is a basis of $T_{\mathbf{C}}M \mid_U$. If h is a complex valued function on U, we will write $h_i = Z_i(h), i = 0, 1, \bar{1}$. Let a, b, c be the complex valued functions defined by

(4.5)
$$[Z_1, Z_0] = aZ_1 + \bar{b}Z_{\bar{1}} + cZ_0,$$

which satisfy, as a consequence of Jacobi's identity

$$b_1 - a_{\bar{1}} + a\bar{c} - bc = 0$$

$$\bar{c}_1 - c_{\bar{1}} + i(a + \bar{a}) = 0.$$

Let U' be an open set of M', Z'_i , $i = 0, 1, \overline{1}$ as above with the corresponding functions a', b', c'. We denote by D_k the open set of $J_k = J_k(M \times M', M, \pi_1)$ corresponding to k-jets of local diffeomorphisms of M in M', where π_1 is the canonical projection of $M \times M'$ on M. Put $D_k(U, U') = (\beta_k)^{-1}(U \times U') \subset D_k$. On $D_1(U, U')$ we introduce the coordinates system

$$p_j^i: D_1(U, U') \to \mathbf{C}, i, j = 0, 1, \overline{1},$$

defined by

$$f_*(Z_j(x)) = \sum_{i=0,1,\bar{1}} p_j^i(j_x^1 f) Z_i'(f(x)).$$

These coordinates are not independent, and satisfy the relations

$$\overline{p_j^i} = p_{\bar{j}}^{\bar{i}}, i, j = 0, 1, \bar{1},$$

where $\overline{0} = 0, \overline{\overline{1}} = 1$ by convention. The coordinates on $D_2(U, U')$ are defined by

$$p_{jk}^i(j_x^2 f) = Z_j(p_k^i(j^1 f))(x), i, j, k = 0, 1, \overline{1}.$$

Again $\overline{p_{jk}^i} = p_{\overline{jk}}^{\overline{i}}$. If $[Z_i, Z_j] = \sum a_{ij}^k Z_k$, it follows from $f_*[Z_i, Z_j] = [f_*Z_i, f_*Z_j]$ that

$$\sum_{k} a_{ij}^{k}(x) p_{k}^{m}(j_{x}^{1}f) = p_{ij}^{m}(j_{x}^{2}f) - p_{ji}^{m}(j_{x}^{2}f) + \sum_{r,s} p_{i}^{r}(j_{x}^{1}f) p_{j}^{s}(j_{x}^{1}f) a'_{rs}^{m}(f(x)).$$

For instance

(4.6)

$$p_{1\bar{1}}^{0} - p_{\bar{1}1}^{0} = i(p_{0}^{0} - p_{1}^{1}p_{\bar{1}}^{\bar{1}} + p_{\bar{1}}^{1}p_{\bar{1}}^{\bar{1}}) + c'(p_{1}^{1}p_{\bar{1}}^{0} - p_{1}^{0}p_{\bar{1}}^{1}) + \bar{c}'(p_{\bar{1}}^{\bar{1}}p_{\bar{1}}^{0} - p_{\bar{1}}^{\bar{1}}p_{1}^{0}).$$

Coordinates in $D_3(U, U')$ are defined by

$$p_{mjk}^{i}(j_{x}^{3}f) = Z_{m}(p_{jk}^{i}(j^{2}f))(x), i, j, k = 0, 1, \bar{1},$$

and successively.

Equation (4.3) in coordinates is

$$f_*Z_1 = p_1^1(j^1f)Z_1'$$

or

$$p_1^{\bar{1}}(j^1f) = p_1^0(j^1f) = 0.$$

Let I_1 be the SPDE generated on $D_1(U, U')$ by

 $I_1: \{p_1^{\overline{1}} = p_1^0 = 0 \text{ and conjugated equations.} \}$

The solutions of I_1 are (local) CR-diffeomorphisms from M to M'. The prolongation I_2 of I_1 is generated by

(4.7)
$$I_2: \begin{cases} p_1^{\bar{1}} = p_1^0 = 0\\ p_{\bar{1}1}^{\bar{1}} = p_{\bar{1}1}^{\bar{1}} = p_{\bar{0}1}^{\bar{1}} = p_{11}^0 = p_{01}^0 = 0\\ \text{and conjugated equations.} \end{cases}$$

It follows from (4.6) and (4.7) that

(4.8)
$$p_0^0 - p_1^1 p_{\bar{1}}^{\bar{1}} = 0.$$

If $I_1^2 = \tilde{I}_1$, then \tilde{I}_1 is generated as

$$\tilde{I}_1: \left\{ \begin{array}{l} p_1^{\bar{1}} = p_1^0 = p_0^0 - p_1^1 p_{\bar{1}}^{\bar{1}} = 0\\ \text{and conjugated equations.} \end{array} \right.$$

Proposition 4.1. h_1 is 1-acyclic.

Proof: Put $\alpha = (\alpha_0, \alpha_1, \alpha_{\bar{1}}) \in \mathbf{N}^3$, and write $p_{\alpha}^j = p_{0\cdots 01\cdots 1\bar{1}\cdots \bar{1}}^j$, where the index *i* appears α_i -times. Then h_k is generated by

$$h_{k} = \left[dp_{\alpha}^{1}, dp_{\bar{\alpha}}^{\bar{1}}, \alpha_{\bar{1}} \neq 0; dp_{\alpha}^{0}, \alpha_{1} + \alpha_{\bar{1}} \neq 0; \mid \alpha \mid = k \right]$$

 and

$$n_k = \dim h_k = 2\left\{\frac{(k+2)!}{k!2!} - \frac{(k+1)!}{k!1!}\right\} + \left\{\frac{(k+2)!}{k!2!} - 1\right\} = \frac{3k^2 + 5k}{2}$$

We will show that the sequence

(4.9)
$$0 \to \Lambda^3 T \otimes h_{k-2} \xrightarrow{d_K} \Lambda^2 \otimes h_{k-1} \xrightarrow{d_K} T \otimes h_k \xrightarrow{d_K} h_{k+1} \to 0$$

is exact in $T \otimes h_k$, for $k \geq 2$. As we know $d_K(T \otimes h_k) = h_{k+1}$, it is enough to show that dim $d_K(\Lambda^2 T \otimes h_{k-1}) = 3n_k - n_{k+1}$, for $k \geq 2$. But

$$0 \to \Lambda^3 T \otimes Q_{k-2} \xrightarrow{d_K} \Lambda^2 T \otimes Q_{k-1} \xrightarrow{d_K} T \otimes Q_k \xrightarrow{d_K} Q_{k+1} \to 0$$

is exact, so if $\omega \in \Lambda^2 T \otimes h_{k-1}$ is such that $d_K \omega = 0$, then there exists $\eta \in \Lambda^3 T \otimes Q_{k-2}$ such that $d_K \eta = \omega$. If $\eta = Z_0 \wedge Z_1 \wedge Z_{\bar{1}} \otimes \theta$, with

 $\theta \in Q_{k-2}$, then $d_K \eta = Z_1 \wedge Z_{\bar{1}} \otimes \partial_0 \theta - Z_0 \wedge Z_{\bar{1}} \otimes \partial_1 \theta + Z_0 \wedge Z_1 \otimes \partial_{\bar{1}} \theta$, where $\partial_i \theta = d_K(Z_i \otimes \theta)$. Consequently, $\partial_i \theta \in h_{k-1}$, for $i = 0, 1, \bar{1}$, so $\theta \in h_{k-2}$. Then $\eta \in \Lambda^3 T \otimes h_{k-2}$, and this shows (4.9) is exact at $\Lambda^2 T \otimes h_{k-1}$, so

$$\dim d_K(\Lambda^2 T \otimes h_{k-1})$$

= $\dim \Lambda^2 T \otimes h_{k-1} - \dim \Lambda^3 T \otimes h_{k-2} = 3n_{k-1} - n_{k-2}.$

The equality $3n_k - n_{k+1} = 3n_{k-1} - n_{k-2}$ is a simple verification, which shows (4.9) is exact.

Proposition 4.2. For every $k \geq 1$,

$$I_k^{k+1} = \tilde{I}_k$$

Proof: This follows from Theorem3.1 and Proposition4.1 The same way as above, we verify \tilde{I}_2 is generated by

Then

 $\tilde{I}_1^2 = \tilde{I}_1$

and if we define

$$\check{I}_2 = \tilde{I}_2^3$$

then \check{I}_2 is generated [10] by

$$(4.11) \qquad \breve{I}_{2}: \begin{cases} \text{equations}(4.10) \\ \frac{p_{0\bar{1}}^{\bar{1}}}{p_{\bar{1}}^{\bar{1}}} - \frac{p_{00}^{0} + 3ip_{0}^{1}p_{0}^{\bar{1}}}{2p_{00}^{0}} + \frac{i}{2}(d - d'p_{0}^{0}) - \frac{1}{2}(cp_{0}^{1} - c'p_{0}^{\bar{1}}) = 0 \\ \text{and conjugated equations} \end{cases}$$

where

(4.12)
$$d = \frac{1}{2}(c_{\bar{1}} + i(a - 2\bar{a})).$$

It follows from (4.11) that

 $\breve{I}_1^2 = \tilde{I}_1.$

Proposition 4.3. \tilde{h}_2 is 1-acyclic.

Proof: It is easy to see that \tilde{h}_k is generated by

$$\begin{split} \tilde{h}_k &= \left[dp^1_{\alpha}, dp^{\bar{1}}_{\bar{\alpha}}, \alpha \neq (k-1,1,0), (k,0,0); dp^0_{\alpha}, \alpha \neq (k,0,0); \\ dp^0_{(k,0,0)} - p^{\bar{1}}_{\bar{1}} dp^1_{(k-1,1,0)} - dp^{\bar{1}}_{(1,k-1,0)} \right] \end{split}$$

and $\tilde{n}_k = \dim \tilde{h}_k = 3\frac{(k+2)!}{k!2!} - 4$. As in the proof of Proposition4.1, $3\tilde{n}_k - \tilde{n}_{k+1} = 3\tilde{n}_{k-1} - \tilde{n}_{k-2}$ for $k \ge 3$. Observe that equality doesn't hold for k = 2, so \tilde{h}_1 is not 2-acyclic.

Proposition 4.4. For every $k \geq 2$,

 $\tilde{I}_k^{k+1} = \breve{I}_k.$

Proof: The same as Proposition 4.2. Let be now

$$\hat{I}_2 = \breve{I}_2^3.$$

Then (cf. [10]) \hat{I}_2 is generated by

$$(4.13) \qquad \hat{I}_{2}: \begin{cases} \text{ equations } (4.11) \\ \frac{p_{00}^{\bar{1}}}{p_{1}^{\bar{1}}} - \frac{p_{0}^{\bar{1}}p_{00}^{p_{0}}}{p_{1}^{\bar{1}}p_{0}^{0}} + (\kappa - \kappa'p_{1}^{1}p_{0}^{0}) - \frac{ip_{0}^{1}(p_{0}^{\bar{1}})^{2}}{p_{1}^{\bar{1}}p_{0}^{0}} \\ -c'\frac{p_{0}p_{0}^{\bar{1}}}{p_{1}^{\bar{1}}} - b'p_{1}^{1}p_{0}^{1} + (id' - \overline{a}')p_{1}^{1}p_{0}^{\bar{1}} = 0 \\ \text{and conjugated equations} \end{cases}$$

 with

(4.14)
$$\kappa = -\frac{i}{3}(c_0 - id_1 + icd + ac - \overline{b}\overline{c}).$$

Proposition 4.5. \breve{h}_2 is 1-acyclic.

Proof: The fiber bundle $\check{h}_k, k \geq 2$ is generated by

$$egin{array}{rcl} \check{h}_k &=& \left[dp^1_lpha, dp^{ar{1}}_lpha, lpha
eq (k-1,1,0), (k,0,0); dp^0_lpha, lpha
eq (k,0,0); \ 2p^1_{ar{1}} dp^1_{(k-1,1,0)} - dp^0_{(k,0,0)}; 2p^1_{ar{1}} dp^{ar{1}}_{(k-1,0,1)} - dp^0_{(k,0,0)}
ight]. \end{array}$$

Define \check{h}_1 , doing k = 1 above. If $\check{n}_k = \dim \check{h}_k = \frac{3(k+2)!}{k!2!} - 3$, then $3\check{n}_k - \check{n}_{k+1} = 3\check{n}_{k-1} - \check{n}_{k-2}$ for $k \ge 3$, and the proof are in the same lines of Proposition 4.1.

Proposition 4.6. For every $k \geq 2$

$$\breve{I}_k^{k+1} = \hat{I}_k.$$

Proof: As in Proposition4.2.

Proposition 4.7. \hat{h}_2 is 1-acyclic.

Proof:We have

$$\hat{h}_2 = \left[dp_{ij}^0, (i,j) \neq (0,0); dp_{ij}^1, (i,j) \neq (0,0), (1,0); dp_{00}^1 - \frac{p_0^1}{p_0^0} dp_{00}^0; \\ dp_{01}^1 - \frac{1}{2p_{\bar{1}}^{\bar{1}}} dp_{00}^0; \text{ and conjugated elements} \right]$$

and $\hat{h}_k = Q_k^*$, for $k \geq 3$. It is enough to show $d_K(\Lambda^2 T \otimes \hat{h}_2) = d_K(\Lambda^2 T \otimes Q_2^*)$, or, $d_K(\Lambda^2 T \otimes [dp_{00}^0]) \subset d_K(\Lambda^2 T \otimes \hat{h}_2)$, and this is consequence of

$$d_K(e_1 \wedge e_{\bar{1}} \otimes dp_{00}^0) = d_K(e_0 \wedge e_{\bar{1}} \otimes dp_{01}^0 - e_0 \wedge e_1 \otimes dp_{0\bar{1}}^0)$$

and

$$egin{aligned} d_K(e_0 \wedge e_1 \otimes dp_{00}^0) &= & rac{2}{p_1^1} d_K \left[e_0 \wedge e_{ar{1}} \otimes \left(dp_{01}^{ar{1}} - rac{p_0^{ar{1}}}{p_0^0} dp_{01}^0
ight)
ight. \ &+ e_1 \wedge e_0 \left(dp_{0ar{1}}^{ar{1}} - rac{1}{2} p_1^1 dp_{00}^0 - rac{p_0^{ar{1}}}{p_0^0} dp_{0ar{1}}^0
ight) \ &- e_1 \wedge e_{ar{1}} \left(dp_{00}^{ar{1}} - rac{p_0^{ar{1}}}{p_0^0} dp_{00}^0
ight)
ight]. \end{aligned}$$

The SPDE \hat{I}_2^3 is generated by (cf[10])

(4.15)
$$\hat{I}_{2}^{3}: \begin{cases} \text{equations (4.13)} \\ p_{\bar{1}}^{\bar{1}}r - p_{1}^{1}(p_{0}^{0})^{2}r' = 0 \\ \text{and conjugated equations} \end{cases}$$

where

(4.16)
$$r = \kappa_1 - \bar{b}_0 - 2c\kappa - \bar{b}(a + \bar{a} - id);$$

If we define

$$R\mid_{U}=rZ_{1}^{*}\wedge Z_{0}^{*}\otimes Z_{0}^{*}\otimes Z_{\bar{1}}+\bar{r}Z_{\bar{1}}^{*}\wedge Z_{0}^{*}\otimes Z_{0}^{*}\otimes Z_{1}$$

then R is a tensor on M, i.e., $R \in \Gamma(\Lambda^2 T^* \otimes T^* \otimes T)$.

J. M. Veloso

Definition 4.1. The tensor R is the curvature tensor of the CRmanifold M. We say M is umbilic at $x \in M$ if R(x) = 0, otherwise Mis said non-umbilic at $x \in M$; M is said umbilic(non-umbilic) if M is umbilic (non-umbilic) at every $x \in M$

Example: The quadric Q is defined by $Q = \{(z, w) \in \mathbb{C}^2 : w - \overline{w} = 2iz\overline{z}\}$. If $Z_1 = \frac{i}{2}\frac{\partial}{\partial z} - \overline{z}\frac{\partial}{\partial w}$ then $Z_0 = -\frac{1}{2}(\frac{\partial}{\partial w} + \frac{\partial}{\partial \overline{w}})$. Then a = b = c = 0 and R = 0, so Q is umbilic.

Proposition 4.8. The diagram

is commutative, with horizontal arrows surjective and the arrows representing the projection of projectable functions.

Proof: It is a consequence of the above propositions.

Theorem 4.1. Given CR-manifolds M and M' and points $x \in M$ and $x' \in M'$ there exist a fifth order jet of CR-diffeomorphism doing a fifth order contact between M and M' at points x and x'.

Proof: Proposition 4.8 says that $\beta_5 : I_5 \to M \times M'$ is surjective, then there exists $X \in I_5$ such that $\beta_5(X) = (x, x')$.

Theorem 4.2. If M' is umbilic, then it is locally CR-diffeomorphic to the hyperquadric Q.

Proof:Let be M = Q; then r and r' are 0, and from (4.15) we get \hat{I}_3 is onto \hat{I}_2 . As \hat{h}_2 is 1-acyclic, Corollary3.1 says \hat{I}_2 is formally integrable. But $\hat{h}_3 = Q_3^*$, then \hat{I}_2 is completely integrable (cf[5]), so there exists a neighborhood U of $x \in Q$ and a CR-diffeomorphism $f: U \to f(U) \subset M'$ solution of \hat{I}_2 . **Corollary 4.1.** If M'=Q, then $\hat{I}_2 \cap \beta_2^{-1}(M,0)$ is a G-structure associated to M, where the group G is the group of CR-automorphisms of Q.

Suppose now that M and M' are non-umbilic. Then \hat{I}_2^3 is a regular SEDP, and in (4.15) we can replace the new equation by

$$p_1^1 = \epsilon \frac{\lambda}{\lambda'}, \epsilon = \pm 1$$

where

(4.18)
$$\lambda = \frac{\sqrt{r}}{\sqrt[8]{r\bar{r}}}$$

 $(\sqrt[8]{r\bar{r}}$ taken as positive root) and λ' defined similarly. Then

(4.19)
$$\hat{I}_{2}^{3}: \begin{cases} \text{equations (4.13)} \\ p_{1}^{1} = \epsilon \lambda / \lambda', \epsilon = \pm 1 \\ \text{and conjugated equations} \end{cases}$$

Defining

$$\bar{I}_2 = \hat{I}_2^3$$

we can verify

(4.20)
$$\bar{I}_{2}^{3}: \begin{cases} \text{equations (4.19)} \\ \alpha = \alpha' \\ \beta = \beta' \\ \text{and conjugated equations} \end{cases}$$

where

(4.21)
$$\alpha = \frac{\lambda_1}{\bar{\lambda}} + \frac{\lambda_1}{2\lambda} - \frac{c}{2}$$

and

(4.22)
$$\beta = 2\left(\alpha - \frac{\bar{\lambda}_1}{\bar{\lambda}}\right)\left(\bar{\alpha} - \frac{\lambda_{\bar{1}}}{\bar{\lambda}}\right) + \frac{\lambda_{\bar{1}}\bar{\lambda}_1}{\bar{\lambda}\bar{\lambda}} - i\left(\frac{\lambda_0}{\bar{\lambda}} - \frac{\bar{\lambda}_0}{\bar{\lambda}}\right) - d.$$

As $\bar{h}_2 = \hat{h}_2$, we obtain in non-umbilic case an extension of (4.17):

where all horizontal arrows are onto.

Proposition 4.9. There exists a sixth order contact between two CR-manifolds at two non-umbilic points.

Proof: It follows from $\rho_2^6(I_6) = \overline{I}_2$ The following theorem is in [2]:

Theorem 4.3. There exists a seventh order contact between a real hypersurface of \mathbf{C}^2 at a non-umbilic point and the hypersurface defined by

$$v = z\bar{z} + 2Re\left\{z^4\bar{z}^2\left[1 + \frac{16}{5}\alpha(0)z + i\left(\frac{275}{128}\alpha(0)\bar{\alpha}(0) - \beta(0)\right)u\right]\right\}$$

where α, β are the functions defined in (4.21),(4.22)

Proof:Let be $M = \{(z, w) \in \mathbb{C}^2 : v = F(z, \overline{z}, u), \text{with } w = u + iv\}.$ Choosing coordinates (z, u) on M, take

(4.24)
$$Z_1 = \frac{\partial}{\partial z} - A \frac{\partial}{\partial u};$$

then from (4.4)

(4.25)
$$Z_0 = \frac{2B}{(1+f_u^2)} \frac{\partial}{\partial u}$$

where $A = f_z/(f_u+i)$ and $B = -f_{z\bar{z}} + \bar{A}f_{uz} + Af_{u\bar{z}} - A\bar{A}f_{uu}$. It follows from (4.5)

(4.26)
$$a = b = 0, c = A_u - 2\frac{f_u f_{uz} - A f_u f_{uu}}{1 + f_u^2} + \frac{B_z - A B_u}{B}$$

(4.27)
$$f(z,\bar{z},u) = \sum a_{jkl} z^j \bar{z}^k u^l$$

with $a_{jkl} = 0, j + k + l \leq 5, (j, k, l) \neq (1, 1, 0); a_{1,1,0} = 1; a_{kjl} = \overline{a_{jkl}}$. From (4.12),(4.14),(4.16),(4.24),(4.26)

(4.28)
$$r = -\frac{1}{6}c_{11\bar{1}} - \frac{i}{3}c_{10} + c\left(\frac{2}{3}ic_0 + \frac{i}{2}c_{1\bar{1}} - \frac{1}{3}cc_{\bar{1}}\right) + \frac{1}{6}c_1c_{\bar{1}}.$$

From (4.24), (4.25), (4.27), (4.28)

c(0)

$$Z_1(0) = \frac{\partial}{\partial z}; Z_0(0) = -2\frac{\partial}{\partial u}$$
$$= c_1(0) = c_{\bar{1}}(0) = c_0(0) = c_{1\bar{1}}(0) = c_{10}(0) = 0$$

$$c_{11\bar{1}}(0) = 4!2!a_{420}$$

$$r(0) = a_{420}.$$

As $r(0) \neq 0$, by Proposition 4.9, we can choose $a_{420} = a_{240} = 1$, and all others coefficients of sixtieth-order nulls, so r(0) = 1, and

(4.29)
$$v = z\bar{z} + 2Re(z^4\bar{z}^2) + o(7)$$

Again from (4.24),(4.25),(4.28),(4.29)

$$(4.30) \quad c_{111\bar{1}}(0) = 5! 2! a_{520}; c_{\bar{1}11\bar{1}}(0) = 4! 3! a_{430}; c_{011\bar{1}}(0) = -4! 2! 2a_{421}$$

and from (4.28);(4.30)

$$(4.31) r_1(0) = 5a_{520}; r_{\bar{1}}(0) = 3a_{430}; r_0(0) = -2a_{421}.$$

From (4.17)

(4.32)
$$\lambda_j = \frac{\lambda}{8} \left(3\frac{r_j}{r} - \frac{\bar{r}_j}{\bar{r}} \right), j = 0, 1, \bar{1}$$

and from (4.18),(4.31)

$$\lambda(0) = 1; \lambda_1(0) = \frac{1}{8}(15a_{520} - 3a_{430});$$

$$\lambda_{\bar{1}}(0) = \frac{1}{8}(9a_{430} - 5a_{520}); \lambda_0(0) = \frac{1}{4}(a_{241} - a_{421}).$$

From (4.20), (4.21), (4.32)

$$\alpha(0) = \frac{5}{16}(3a_{340} + a_{520})$$

$$\beta(0) = \frac{9}{128} (5\alpha(0) - 16a_{340}) (5\bar{\alpha}(0) - 16a_{430}) + \frac{1}{64} (5\alpha(0) - 24a_{340}) (5\bar{\alpha}(0) - 24a_{430} + \text{Im}(a_{241}).$$

Therefore we can choose

$$a_{520} = \frac{16}{5}\alpha(0); a_{421} = -i(\beta(0) - \frac{275}{128}\alpha(0)\bar{\alpha}(0))$$

$$a_{250} = \overline{a_{520}}; a_{241} = \overline{a_{421}}$$

all the others coefficients nulls, and the theorem follows.

References

- [1] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Oeuvres Complètes, partieII, Éditions du CNRS, 1984, 1231-1304
- [2] S.S.Chern; J.Moser, Real hypersurfaces in complex manifolds, Acta Math.-133(1974)219-271
- [3] H.Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. 86(1967)246-270
- [4] H.Goldschmidt, Integrability criteria for systems of non-linear partial differential equations, J.Differential Geometry 1(1967)269-307
- [5] M.Kuranishi, Lectures on Involutive Systems of Partial Differential Equations, Publ. Soc. Matemática São Paulo, 1967
- [6] D.G.Quillen, Formal properties of over-determined systems of linear partial differential equations ,Ph.D.Thesis, Harvard University, 1964
- [7] C.Ruiz, Prolongement formel des systèmes différentiels extérieur d'ordre supérieur, C.R.Acad.Sc.Paris 285(1977)1077-1080

- [8] C.Ruiz, Complexe de Koszul du symbole d'un système différentiel extérieur, C.R.Acad.Sc.Paris286(1978)55-58
- [9] C.Ruiz, Propriétètes de dualité du prolongement formel des systèmes différentiels extérieurs286 (1978)99-101
- [10] J.M.Veloso; J.Verderesi, Three- dimensional Cauchy-Riemann manifolds, Dinamical Systems and Partial Differential Equations: Proceedings VII ELAM, Equinoccio, 1986

Departamento de Matemática Universidade Federal do Pará CEP 66075-110 Belém-PA Brasil veloso@marajo.ufpa.br