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Dedicated to Professor M. K uranishi on his 70th birthday 

§1. Introduction. 

Vector-valued forms arise in the study of various higher codimen­
sional geometries. This note gives an overview of how the invariant the­
ory of the Levi form (a vector-valued form) can be used to understand 
higher codimensional CR- structures. 

Roughly speaking, the Levi form of a CR- structure of codimension 
c on a manifold M of dimension 2n + c can be interpreted as a map from 
M to the vector space consisting of c-tuples of n x n hermitian matrices 
(a vector space that we denote as Herm). However, this interpretation 
depends on a prior choice of moving coframesthat is, local sections of 
the cotangent bundle of M. Fortunately, there is a natural action of the 
group G = GL(n, C) x GL(c, R) on Herm that accounts for the effects 
of these choices. More precisely, there is a natural map from M to the 
quotient space Herm/G. Knowledge about the structure of this quotient 
space can be used to define canonical objects in higher codimensional 
CR- geometry. At present, the best developed example (discussed in 
§5) is a canonical connection for suitably generic CR- structures. The 
simplest examples, though, are functions defined on Herm/G, or equiva­
lently, G-invariant functions defined on Herm : these lead one to explore 
the invariant theory of vector-valued forms as a tool in the study of CR­
geometry. The history of invariant theory suggests two lines of approach. 
The first, discussed in §3, is to use methods of classical invariant the­
ory to find explicit polynomial functions of vector-valued forms that are 
(relatively) invariant under the group action. While these techniques are 
quite old, the ensuing results for vector-valued forms are recent. The 
second, discussed in §4, is to use modern geometric invariant theory 
to study the quotient space directly. While the set Herm/G has a stan­
dard quotient topology, it does not carry a globally defined differentiable 
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structure: to obtain a differentiable structure one must first eliminate 
certain non-generic points ( the "unstable" ones). The conditions defin­
ing these points are essentially geometric in concept, but involve a fair 
amount of technical intricacy in practice intricacies that are rooted in 
the aforementioned classical techniques! 

As we shall note in §4, the invariant theory of vector-valued forms 
has three technically distinct cases: codimension 1, codimension 2, and 
higher codimension. Essentially, the codimension 1 case can be under­
stood using nothing more than the standard notions of rank and signa­
ture of a hermitian matrix, and is therefore quite easy. The codimension 
2 case is considerably more involved, but still fairly elementary: it rests 
on the analysis of roots of polynomials in one unknown. However, the 
higher codimensional case involves the zero-locus of polynomials in many 
unknowns, and consequently shares much of the richness of classical al­
gebraic geometry. In CR-geometry to date, the codimension 1 case is 
the only one to have received a great deal of attention (see [Bo] and [J] 
for introductions and bibliographies), so the invariant theory of forms 
has not been featured in the CR literature. The approach we describe 
here is carried out in detail in three papers: [M] treats both the invariant 
theory and the differential geometry for codimension 2, [GMl] develops 
the invariant theory for higher codimension, and [GM2] treats the corre­
sponding differential geometry. An introduction to higher-codimensional 
CR-geometry, including the equivalence problem, is contained in [Tu]. 
Selected references to other approaches to CR- geometry of codimension 
greater than 1 include [Be], [Tal] and [Ta2]. 

Both of the authors are honored to participate in this tribute to 
Professor Kuranishi, and acknowledge with gratitude the fundamental 
influence his ideas have had on their work. One of the authors (Mizner) 
would also like to take this opportunity to express his appreciation for 
the care and graciousness with which Professor Kuranishi supervised his 
doctoral work: as time passes, he realizes ever more fully how fortunate 
he was to have been a student of Kuranishi. 

§2. Definitions. 

CR- structures arise concretely in connection with real submanifolds 
of a complex space. For example, let M be the zero locus of c real valued 
functions g°' : c2n+c '---> R If the real differentials dg°' are linearly inde­
pendent, then Mis a real submanifold of codimension c and dimension 
2n + c. If the holomorphic differentials /Jg°' are linearly independent as 
well, then the complex structure of <C2n+c determines a complex rank n 
subbundle 1i of the complexified tangent bundle <Crg;TM. This subbun-
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dle is an instance of a CR- structure of codimension c and dimension 
n. Each function ga determines a (2n + c) x (2n + c) hermitian matrix 

82 a 
with entries {)ziZzi< ; together these matrices constitute a vector-valued 
hermitian form (i.e., a c-tuple of scalar hermitian forms) on the com­
plexified tangent bundle C @TM. Note that this c-tuple is defined only 
up to a choice of the defining functions ga and coordinates on e,zn+c. 
The restriction of this form to the subbundle 1-i is called the Levi form 
of the CR- structure. 

The abstract notion of a CR- structure and its accompanying Levi 
form generalize this example. 

2.1. Definition. Let M be a smooth (i.e. C 00 ) manifold. A CR­
structure of dimension n and codimension c is a rank n complex sub­
bundle 1-i C C @ TM with the following properties: 

(1) 1-i n 'R is the zero subbundle; 
(2) [H, 7-i] C 1-i. (This condition, called the integrability condition, 

is an important technicality that is automatically satisfied by 
CR-structures arising on real submanifolds.) 

2.2. Definition. The Levi form of 1-i is the bundle map 

L: 1-i x 1-i----+ C@TM/(1-i EB 'H), 

defined by 
L(X, Y) = in[X, Y], 

for all sections X and Y of 1-i, where 7r: C@TM----+ C @TM/(1-i EB 'H) 
is the natural projection. It is easy to verify that L is well-defined, and 
that L is hermitian: i.e., L(Y, X) and L(X, Y) are conjugate. 

As indicated in the introduction, by choosing suitably adapted mov­
ing coframes (local sections of the complex cotangent bundle C@ TM), 
one can express the Levi form as a locally defined map from M to the 
real vector space whose points are c-tuples of n x n hermitian matrices 
(denoted Herm(n, c), or Herm for short). However, this expression of 
L as a vector-valued hermitian form depends on the choice of sections. 
In order to escape this dependency, one defines a natural action of the 
group G = GL(n, q x GL(c, JR) on Herm , and verifies that the result 
of composing the locally defined Herm -valued map with the quotient 
projection Herm----+ Herm/G is independent of choice of sections. Conse­
quently, the locally defined Herm/G-valued maps piece together to yield 
a globally defined map£,: M----+ Herm/G. 

2.3. Definition. The map£,: M----+ Herm/G is called the Levi map . 
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Again as mentioned in the introduction, since every CR-manifold of 
dimension n and codimension c is mapped into the same quotient space 
Herm/G, information about Herm/G can be used to define canonical 
objects in CR- geometry. In §5 we provide examples, but in order to do 
this, we must first examine Herm/G in some detail. 

§3. Classical invariant theory of vector-valued forms. 

An absolute invariant of a vector-valued hermitian form is a func­
tion f : Herm -+ (C that is constant on each orbit of the action of the 
group G = GL(n, q x GL(c, JR.), and hence equivalent to a function 
on the quotient space Herm/G: in symbols, f(gB) = f(B). A relative 
invariant ( of weight x) is a function that satisfies the weaker condition 
f(gB) = x(g)f(B), where x: G-+ (C* is a homomorphism. (Of course, 
if x is the trivial homomorphism, the relative invariant is in fact ab­
solute.) From here on we use the word invariant to cover both cases. 
Although a relative invariant is not constant on each orbit, it does have 
the property that if it vanishes at any one point in an orbit then it 
vanishes at all points in that orbit. Therefore, although a relative in­
variant does not determine a function on the quotient space, it does 
nonetheless determine a zero-locus-a fact that has significant geometric 
repercussions. 

The basic procedure of classical invariant theory in situations such as 
ours is to consider only homogeneous polynomial invariants, to note that 
these invariants constitute a ring, and to list the generators of this ring 
in a so-called First Fundamental Theorem. Next, the relations among 
the generators is given in a Second Fundamental Theorem. Continuing, 
one then seeks the relations among the relations, the relations among 
these new relations, etc., which is called computing the syzygies of the 
ring of invariants. 

In [GMl], a first fundamental theorem for vector-valued hermi­
tian forms is obtained by specializing a first fundamental theorem for 
sesquilinear forms, which in turn is obtained by adapting the proof of 
a first fundamental theorem for bilinear forms. The basic ideas of the 
proof stand out most clearly in the bilinear case, which we now describe. 

A vector-valued bilinear form is a bilinear map V x V -+ W. For 
concreteness, we take V and W to be en and cc respectively, and denote 
the vector space of all such forms as Bil(n, c), or simply Bil. We view 
a point in Bil either as a map or as a c-tuple of n x n matrices as 
convenience dictates. The group GL(n, q x GL(c, q acts on Bil, with 
the group element g = (A, P) transforming the form B = (B1 , • • •, Bc) 
in stages: the matrix A acts on each component matrix of B, yielding 
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an intermediate c-tuple 

the components of the final c-tuple are linear combinations of these 
intermediate components, with coefficients drawn from P. In short, the 
a-th component of (A, P)B is 

This action is natural in that the following diagram commutes: 

VxV----+W. 
gB 

For technical purposes, it is more convenient to use a compact indi­
cial notation, in which each component matrix Ba. is represented by its 
entries B'fk, and the new form (A, P)B is represented by matrices na., 
where 

Here the usual summation convention is in force: whenever an index 
appears in both a subscript and a superscript a summation is implied. 

We note in passing that for both the sesquilinear and hermitian 
cases, all of these formulas are modified by conjugating each left-hand A. 
A precise statement of the first fundamental theorem for vector-valued 
bilinear forms (as given in [GMI]) involves some technical notation that 
while standard in invariant theory is not immediately transparent to 
the uninitiated. However, the basic idea can be paraphrased in familiar 
terms, at the price of succinctness. 

3.1. Theorem (First Fundamental Theorem for vector-valued bilinear 
forms). 
Part 1. If r is divisible by c and 2r is divisible by n, then the following 
construction will yield either an invariant homogeneous polynomial of 
degree r and weight 

x(A,P) = (detA)-4rfn(detPtfc 

or the zero polynomial. 
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a) Consider a monomial of degree r in the components of B: 

b) Select n of the subscript positions, and take an alternating sum, 
as in the computation of a determinant. That is, consider then! mono­
mials obtained by successively replacing these n subscripts by each of 
then! permutations of the numbers (1, 2, • · ·, n), attach a coefficient of 
+ 1 if the permutation is even or -1 if the permutation is odd, and sum 
the terms. 

c) Select an additional n subscript positions, and compute a similar 
alternating sum, thereby obtaining a polynomial with (n!) 2 terms. 

d) Continue in this way until each literal subscript has been re­
placed by one of the numbers 1, • • •, n. (This is possible because 2r is 
divisible by n.) 

e) In an analogous sequence of steps, replace each literal super­
script by one of the numbers 1, • • •, c. (This is possible because r is 
divisible by c.) 

Part 2. The preceding construction depends on a partition of the 2r 
subscript positions into n-fold blocks and the r superscript positions 
into c-fold blocks. Each such partition determines either an invariant 
homogeneous polynomial of weight x or the zero polynomial. Every 
non-zero linear combination of these polynomials is also an invariant 
homogeneous polynomial of weight X· 

Part 3. No other invariant homogeneous polynomials exist. 

Note that by taking a ratio of two of these relatively invariant poly­
nomials of equal weight we obtain absolutely invariant rational functions. 
Also note that the first fundamental theorem for sesquilinear and her­
mitian forms (given in [GMl]) is similar, except that r must be divisible 
by both n and c, only certain partitions of the subscripts are allowed, 
and the weight x is replaced by the weight 

Appearances notwithstanding, this theorem has a straightforward 
proof. It is based on a translation into the language of representation 
theory, a trick, an invocation of a basic theorem about representations 
of the general linear group, and translation back into the language of 
bilinear forms. 
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The first translation proceeds as follows. The space Bil is isomor­
phic to the space V* ® V* ® W; a homogeneous polynomial of degree 
r defined on this space is equivalent to a linear function defined on the 
space (V* ® V* ® W)®r = (V*)®2r ® (W)®r; such a linear function 
is an element of the dual space V®2r ® (W*)®r. The group GL(n,<C) 
acts on V = en by matrix multiplication; similarly, GL(c, <C) acts on 
W = cc. These actions determine a standard representation of the 
group GL(n,<C) x GL(c,<C) on the space V®2r ® (W*)®r. Routine un­
winding of the definitions shows that the element of V®2r ® (W*)®r 
corresponding to an invariant homogeneous polynomial of degree r is 
the basis of a 1-dimensional invariant subspace. Therefore the prob­
lem shifts to the description of all 1-dimensional invariant subspaces of 
V®2r ® (W*)®r. 

The trick is to show that each such space is isomorphic to the tensor 
product of a 1-dimensional GL(n, <C)-invariant subspace of V®2r with a 
1-dimensional GL(c, <C)-invariant subspace of (W*)®r. The fact that 
these groups are reductive is essential. 

The invocation refers to the classical description of the irreducible 
representations of the general linear groupa staple of both invariant the­
ory and representation theory described repeatedly throughout the lit­
erature. It is at this point that all of the alternating sums described in 
the theorem make their entrance. 

The retranslation basically reverses the first step. 

§4. Quotient spaces. 

From an algebraic-geometric perspective, the space Herm/ G can be 
understood in terms of the spectrum of the ring of invariant polynomials. 
Unfortunately, current knowledge of this ring is exhausted by the first 
fundamental theorem, which is by no means adequate to explicate the 
structure of its spectrum. 

From a differential-geometric perspective, one would like to have a 
smooth structure on Herm/G with respect to which the Levi map is 
smooth. Unfortunately, as is typical with such quotient space or moduli 
problems, certain "unstable" points in Herm get in the way. However, 
we do have the following theorem (Theorem 2.4 of [GM2)). 

4.1. Theorem.Let G = GL(n, <C) x GL(c, JR), let K c G be the 
subgroup consisting of all pairs (zln, lzl2 le) for z in the complex multi­
plicative group C*, and suppose that c > 2 and n > c2. There exists a 
non-empty G-invariant open subset Z C Herm whose image Z/G by the 
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projection p : Herra ---+ Herra / G can be given a smooth structure in such 
a way that Z ---+ Z / G is a principal bundle with structure group G / K. 

The proof of this theorem is much too long and technical to be 
satisfactorily summarized, but it is not difficult to develop the definition 
of the open set Z. First we note that every element of K fixes each 
point in Herra ; in order to be in Z, a form B must be fixed by no 
other elements of G. Moreover, B must have no non-zero null vectors 
x E en that is, in order to be in Z, B must have the property that 

(txB 1x,. • • ,t xBcx) = (0, • • •, 0) implies x = 0. 

The statement of the one remaining condition in the definition of Z, 
which is the most interesting, requires a few preliminaries. 

Each hermitian form B determines a polynomial, namely 

For some forms this polynomial vanishes identically, but for generic 
forms it is homogeneous of degree n and therefore has a zero-locus in the 
projective space JP>c- 1 , which we call the associated hypersurface. Thus, 
there is a map 

(4.1) Herra - -- > (degree n hypersurfaces in IP'c-1 ), 

where the dotted arrow signifies that the map is densely, but not glob­
ally, defined. Let Y denote the set of those hypersurfaces that satisfy 
the natural geometric condition of having no non-trivial projective auto­
morphism and no points of multiplicity greater than cthat is, no points 
at which the defining polynomial vanishes along with all of its partial 
derivatives of order c or less. The final condition defining Z is that B is 
in Z only if its associated hypersurface is in Y. 

Given an element (A, P) of G, one can use the matrix P to change 
coordinates in!P'c-1; that is, one can view Pas an element of the projec­
tive linear group PGL and let it act on IP'c-l accordingly. It is easy to 
show that the hypersurface associated to the form (A, P)B differs from 
the hypersurface associated to B only by the action of the change of 
coordinates determined by P. Therefore, the map (4.1) determines a 
densely defined map of quotient spaces 

Herm/G - -- > (degree n hypersurfaces in pc-1 )/PGL 

which restricts to a globally defined map 

Z/G---+Y/PGL. 
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A major step in proving Theorem 4.1 is to show that Y / PG L can be 
given a smooth structure in such a way that Y -+ Y / PG L is a principal 
bundle with structure group PGL (see Theorem 5.1 of [GM2]). Basically, 
in studying Z / G by way of Y / PG L we are studying the action of the 
product group GL(n, q x GL(c, IR) one factor at a time, which, in light 
of the two-step definition of the group action, is a natural approach. 

Before going on to apply Theorem 4.1 to CR-geometry, we note 
that the polynomial det(x1B 1 + · · · + xcBc) explains the trichotomy 
mentioned in §2. If c = 1, it simply distinguishes the singular hermitian 
matrices from the non-singular; if c = 2, it is a homogeneous polynomial 
in two unknowns, which is essentially equivalent to an inhomogeneous 
polynomial in one unknown; if c > 2, algebraic geometry is clearly in­
volved. 

§5. CR geometry. 

Recall that a CR-structure 1{ of dimension n and codimension c on 
the smooth 2n + c dimensional manifold M determines the Levi map 
£, : M -+ Herm/G, where Herm is the vector space whose points are 
c-tuples of n x n matrices, G = GL(n, C) x GL(c, IR), and the action of 
G on Herm is defined so that the a-th component matrix of the c-tuple 
(A, P)B is 

As noted earlier, the Levi map furnishes a fundamental link between CR­
geometry and the invariant theory of vector-valued forms, since it can 
be used to pull back any specified "structure" on Herm/G to produce 
a canonical CR- geometric object on M. For instance, we have already 
seen that each invariant function on Herm determines a zero-locus in 
Herm/G. The Levi map pulls this back to a subset of M, canonical in 
the sense that if F : M -+ M' is an isomorphism of CR manifolds, then 
F maps the specified subset of M bijectively to the specified subset of 
M'. In order to construct richer geometric objects, it seems necessary 
to restrict attention to those CR-structures that enjoy some type of 
homogeneity. As part of his general treatment of differential systems 
Tanaka [Tal,Ta2] develops a full theory of CR-structures whose Levi 
maps are constant. Here we take a different approach and consider CR­
structures whose Levi maps are valued in a specified open subset U of 
Herm/G. If the Levi map is constant, only one orbit of forms in Herm 
is connected with the CR-structure, and this orbit can be represented 
by a chosen canonical form. We would like to proceed similarly and 
choose a canonical form from each of the orbits corresponding to points 
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in U. Of course, in order to be useful for differential-geometric purposes, 
these choices must be smooth. Thus we need a smooth local section of 
Herm---+ Herm/G defined on the open set U. 

In particular, we need U to have a smooth structure, so the set 
Z/G described in §4 is an obvious candidate. Moreover, Z has a sort of 
homogeneity since each of its points is fixed by the elements of K alone. 
Regretably, we do not know if Z ---+ Z / G admits a smooth section. 
However, since Z---+ Z/G is a principal bundle, every point of Z/G has 
a neighborhood admitting a smooth section. Therefore, we take U to be 
such a neighborhood, and fix some section a. 

5.1. Definition. A CR-structure is tractable of type U if its Levi 
map .C : M---+ Herm/G is valued in U. 

In standard differential-geometric fashion, every CR-structure, trac­
table or not, determines a sub bundle of the coframe bundle of M, con­
sisting of suitably "adapted" coframes. The structure group of this 
subbundle is unwieldy, but in the tractable case the subbundle can be 
reduced dramatically (Theorem 3.1 of [GM2]), yielding a subbundle of 
"better adapted" coframes with structure group K (which, we recall, is 
isomorphic to (['.*). The proof of this theorem uses a detailed analysis 
of the structure equations of moving coframes, but the core idea is sim­
ple. From the coefficients of these structure equations one can extract 
a c-tuple of hermitian matrices that represents the Levi form; the as­
sumption of tractability allows one to single out those coframes whose 
structure equations give rise to canonical c-tuplesthat is, c-tuples in the 
image of the section a. 

Analysis of the structure equations of the reduced principal bun­
dle associated to a tractable CR-structure leads to the construction of a 
canonical connection on this bundle (Theorem 4.1 of [GM2]). One imme­
diate corollary (4.2 of [GM2]) is that the automorphisms of a tractable 
CR-structure constitute a Lie group. Another (4.3 of [GM2]) is that this 
connection can be canonically extended to an affine connection, thereby 
introducing an operation of covariant differentiation into the study of 
CR geometry. A third corollary (4.4 of [GM2]) is a canonical decom­
position of the complexified tangent bundle of a tractable CR manifold 
as a direct sum of 2n + c complex line bundles, and a corresponding 
decomposition of the real tangent bundle as the direct sum of c real line 
bundle and n real plane bundles with complex structure. 

§6. Conclusion. 

The study of higher-codimensional CR-structures by way of the in-
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variant theory of vector-valued hermitian forms has barely begun, and 
open questions abound. 

As already noted in §3, the first fundamental theorem is just the first 
step in the classical approach to describing the ring of invariant polyno­
mials. A second stepthe development of a second fundamental theorem 
and a description of the syzygiesis in progress ([G]). There remain nu­
merous commutative-algebraic questions, along with the ultimate goal 
of a thorough understanding of the spectrum, and hence an algebraic­
geometric understanding of the quotient space Herm/G. From a more 
practical point of view, there is the problem of computing invariants. 
The procedure described in Theorem 3.1 is constructive in principle, 
but hardly efficient, and significant improvements should be possible. 

The invariant theory of vector-valued forms can be applied to bran­
ches of differential geometry apart from CR geometry. The second fun­
damental form of a Riemannian submanifold and the holomorphic second 
fundamental form of a complex submanifold are geometrically impor­
tant vector-valued forms that are algebraically similar to the Levi form. 
Additionally, the geometry of a manifold with distribution involves a 
skew-symmetric bilinear form. Theorem 3.1 applies directly to the lat­
ter two cases. For Riemannian geometry, where one needs to consider 
the action of a product of orthogonal groups rather than general linear 
groups, the same methods apply, but the resulting formulas are more 
complex. 

In CR geometry, there is the central issue of tractability. Is Z / G 
itself tractable? Are there tractable subsets with sections that can be 
explicitly described? Such a description would amount to a procedure for 
converting a given c-tuple of hermitian matrices to a specified canonical 
forma sort of "super Gram-Schmidt" process. The decomposition of the 
tangent bundle of a tractable CR manifold described in §5 shows that 
there are global obstructions to tractability. Can the invariant theory of 
forms elucidate any other aspects of global CR geometry? 

Finally, to conclude on a note of sheer wishful thinking, might it 
be possible to use the approach described here, rooted in the teaching 
of Professor Kuranishi, to illuminate ( or indeed, since this is wishful 
thinking, to solve) the embedding problem for higher codimensional CR 
structures? 
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