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Deformation Theory of CR-Structures 
and Its Application to 

Deformations of Isolated Singularities I 

Takao Akahori 

Introduction 

Let (V, o) be a normal isolated singularity in cN of complex di­
mension n. We would like to study a deformation theory of complex 
structures of (V, o). This problem is studied in several ways. For exam­
ple, (1) Grauert's method (cf. [Grl]), (2) Douady's method (cf. [Dou]), 
(3) Kuranishi's approach (cf. [Kul], [Ku2]), etc. In this paper, we recall 
Kuranishi's approach and give a review of some contribution, done by 
T. Akahori and K. Miyajima (cf. [Kul], [Ku2], [Akl]-[Ak5], [Ak-Myl], 
[Myl]). 

Now we set the intersection of V with the real hypersphere centered 
at o of radius E, namely 

M=Vns;N-l_ 

This M is a non-singular real 2n - 1 dimensional C 00 manifold, and over 
this M, a CR structure is induced from V. Namely, 0T" = C 0 TM n 
T" N IM, where N = V - o. Conversely, this CR structure (M,0 T") 
determines the normal Stein space V, uniquely. Noting this result, in 
order to give a versal family of deformations of singularities, Kuranishi 
initiated his deformation theory of CR strucutres for a normal isolated 
singularity. To see Kuranishi's approach and to see our contribution, 
we recall Kodaira-Spencer's theory for deformation theory of complex 
structures of compact complex manifolds. 

Let X be a complex manifold, and let (X, T" X) denote the complex 
structure. Then, the deformation theory of complex structures proceeds 
as follows. 

1) Formulation. Any deformation of the given complex structure 
T" X, can be parametrized by an element ¢ of r(X, T' X 0 (T" X)*), 
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2 T. Akahori 

which satisfies the deformation equation 

Here 8T, x means the Cauchy-Riemann operator associated with the 
holomorphic vector bundle T' X. And we have the deformation complex 

0 --+ r(X, T' X) a~x r(X, T' X © (T" X)*) a~x ... 
8~x r(X, T' X © AP(T" X)*) a~x r(X, T' X © Ap+l (T" X)*) a~x · · · 

on X (note that this is an elliptic complex). 
Therefore our geometrical problem becomes a problem of a non­

linear partial differential equations. To solve this, that is to say, to 
construct our solutions for this non-linear partial differential equation, 
there are two methods, namely, Kuranishi's method (see [Ku4)) and 
Kodaira-Spencer's method (see [Kod]). Kuranishi's method is to give a 
particular solution space by adding a new equation (Kuranishi's inge-

nious method; it is a*¢ = b in the compact complex manifold case). This 
method is applicable in many fields (for example, recent work of Don­
aldson's (see [Don])). For deformation theory of CR structures, by his 
method (adding some new equations), Kuranishi gave a special solution 
space, which is parametrized by H 1(X,T'X) in [Kull, [Ku2]. Actually, 
in order to make this special solution space clear, I started my research. 
On the other hand, Kodaira-Spencer's method is "so-called" power se­
ries method and obviously quite elementary. This method is divided 
into two parts. 

2) Formal Construction. We construct the formal power series ¢(t) = 
L <Pµ(t)tl1, satisfying; 

q 

¢1 (t) = L /1>.t.\, 
,\ 

where /1>. is a base of H 1(X,T'X) and q = dim0 H 1 (X,T'X), and 

-(1) -(1) +2 
aT'X<Pµ+l + (8T,x<Pµ(t) + R2(<Pµ)) = 0 mod tµ . 

by using the Kodaira-Hodge decomposition theorem for the standard 
8T,x(this is elliptic). 

3) Convergence. By using the ellipticity of the standard 8T, x, we 
prove that our ¢(t) converges on {t: t E Cq, It I< E} where Eis chosen 
to be a sufficiently small positive number. 
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There are several similarities between our case ( the case of CR struc­
tures over the link M = V n S;N-l) and the above case (the complex 
structure case). For example, over the link, we have ab-operator and 

T' bundle ( correspond to the standard 8-operator and the holomorphic 
tangent bundle). Therefore it is quite natural to try to construct de­
formation theory of CR structures over the link just like the compact 
complex manifold case. If we adopt Kodaira-Spencer's method in the 
CR case, the deformation complex should be 

0 ~ r(M, T') ~ r(M, T' ® (0T")*) ~ ... 

~ r(M, T' ® AP(0T")*) ~ r(M, T' ® j\P+ 1 ( 0T")*) ~ ... 

(note that this complex is subellptic), where we denote 

T' = 0T 11 + C(, 

and ( is a supplementary vector field of 0T 11 + 0 T 11 (note that its choice 
is not canonical), and Br, is the tangential Cauchy-Riemann opera­
tor associated with the holomorphic vector bundle T'. For this Br,, 
if dimR M = 2n - 1 ?: 5, we have the Neumann operator N satisfying 
for µ E f(M, T' ® (0T 11 )*) 

µ = Dr,NT'µ + Hr,µ, 

just like the Green operator for a compact complex manifold. How­
ever, there is one major difference between them. Even in the strongly 
pseudo-convex case, only 1/2 estimate holds for the ab-Neumann prob­
lem. Hence the Neumann operator gains only 1 derivative in the strongly 
pseudo-convex CR manifolds case, in contrast to the compact complex 
manifolds case where the Green operator gains 2 derivatives. Therefore 
in proving the convergence of the formal solution, we encounter severe 
difficulty. 

To avoid this difficulty, Kuranishi [Ku4] proceeded as follows: He 

added a new equation (it resembled a*¢ = 0, but a complicated one) to 
the defamation equation, and fortunately this system of partial differen­
tial equations can be solved by using the Nash method (it is impossible to 
be solved by the Banach-inverse mapping theorem) (see [Kull, [Ku2])). 
By this method, he obtained a versal family of CR structures. However, 
because of using Nash-Moser's inverse mapping theorem, he could not 
put a complex structure over the parameter space of this versal family. 
In order to improve this point, we proposed a new technique. 
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Our approach is to follow Kodaira-Spencer's method. Of course, we 
have to overcome the above analytical difficulty. Here is our approach. 
Even though the Neumann operator gains only 1 derivative, it still gains 
2 derivatives in the direction °T" + 0T 11 • So noting this fact, we follow 
the following line. 

(Step 1) We establish the deformation theory of CR structures 
which vary in the direction °T" + 0T 11 • 

(Step 2) We obtain a new Neumann type operator which corre­
sponds to Step 1 (obviously, we have to show a new a priori estimate). 

This project was succesfully done in the case of dimRM 2: 7. Our 
result is that we find a suitable solution for the 8T,-equation and fortu­
nately it works well in the deformation theory of CR structures. 

This work leads us to a study of the relation between Hodge theory of 
isolated singularities and deformations of CR structures (cf. [Ak-My2]). 
This will be discussed in Part II in this book. And there, Miyajima 
will give an idea about the application of the deformation theory of CR 
structures to deformations of normal isolated singularities, in· the case 
of dimRM 2: 5. 

§1. Kuranishi's original approach 

We start with recalling Kuranishi's original approach to deformation 
theory of isolated singularities, and discuss several problems, which arose 
from his work. In the Introduction, we wrote that we improved his result, 
but from the beginning of our work, it seems that the point of view of 
Kuranishi is different from ours. Even though in his paper he wrote 
that he initiated his work in order to construct the versal family of CR 
structures, his main interest seems to be a geometry of real hypersurfaces 
(it reminds readers of Cartan's work). With this in mind, we briefly 
sketch his approach. 

1.1.Deformation equation 

Let N be a complex n-dimensional manifold. Let M be a real hy­
persurface of N. Then, a CR-structure 0T" on Mis induced from the 
complex structure of N. That is to say, 

0T" = C®TMnT"N IM. 

By using a local coordinate of N, this is explicitly written as follows. We 
assume that, for a reference point p of M, we take a coordinate neigh­
borhood U of pin N, and a system of complex coordinates (z1 , ... , zn). 
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Let r = 0 be a C 00 defining equation of M (we assume dr =/=- 0 on M). 
We use the notation 

(1.1.1) 
r3 =8r/8zi, 

ry =8r/oz3. · 

Then our 0T 11 is written as follows. 

n n 

(1.1.2) 0T" = { z:=al8/oz3 Z:airy = 0 }. 
j=l j=l 

We put a hermitian metric on N . . With respect to this metric, we con­
sider the dual vector field P' of 8r (resp. the dual vector field P" of Br). 
We set a real supplementary vector field P to 0T 11 + 0T 11 by 

(1.1.3) HP = P' - P". 

Now we set for j = 1, ... ,n, 
(1.1.4) z~ = a;· oz3 - ~P". 

J J 

Then our 0T'(bnM is generated by Zy, j = 1, ... , n. If we set 

P' = ~p3~, P" = ~rf ~, 
' ~ 8zJ ~ oz1 

j=l j=l 

then we have 

j j 

and there is one relation among the Zy's: 

n 

L7JZy=O. 
j=l 

Next let 
zk = i*azk - pki*d"h 

where i : Un M <--t U is the injection and d"h = E3 ~ 3 azk. Then 

Z1, ... 'zn generate (0T")junM and satisfy 

n 

L~Zk=O. 
j=l 
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We set 
T' = 0T 11 + P, 

and consider the natural isomorphism from T' to T' N \M, induced from 

the inclusion map T 1 <--t CTM and the projection map CTN \M---+ 
T' N \ M. We use the notation T for the inverse map of this isomorphism: 

T: T' N \M---+ T'. 

Then an element¢ E r(M,Hom(0T", (T1 N)1M)) defines a subbundle 
<l>T" of CT M by 

<l>T" = {X - To ¢(X) IX E0 T"}. 

<l>T" is an almost CR structure on M (cf. §2.1). The condition that <l>T" 
is a CR structure was described by Kuranishi as follows: 

Theorem 1.1.1. (see Theorem 3.1 in {Kul}) Let ¢ E r(M, 
(T' N) \M @(0T")*) be sufficiently small so that <l>T" is defined. Let 
z = (z1, ... , Zn) be a chart of N. Write 

k=n l=n 

¢ = L 4>ka/azk, c/>k = E#'zT, 
k=l !=1 

h '°'k=n l,i.k O Th w ere L..l=l p 'I'[ = . en 

P(cp) = ab¢ - L(8,,. </f /8zi)q) I\ Z\8/8zk) 
j,k,l 

+ Lhic/>i I\ 'E(abi - 'E(a,,.i;azi)c/))4f(8/8zk) 
i k,l j 

is independent of the choice of the chart z. <l>T" is integrable if and only 
if 

P(¢) = 0 

(cf. §2.1 for ab)-

1.2. Kuranishi's construction of the versal family of CR 
structures 

As mentioned in the Introduction, our contribution is that we can 
apply Kodaira-Spencer's method to the deformation theory of CR struc­
tures. For the local structure of the "moduli space of CR structures", 
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our contribution would be enough. However, in order to study a global 
"moduli", we surely have to adopt Kuranishi's line. But (1.2.1) below is 
not suitable. "A modified new construction" will be necessary, and this 
would lead to a kind of invariants as in Seiberg-Witten invariants ([Don)) 
for non-singular compact manifolds. If this is introduced, surely, this in­
variant must be an invariant of the isolated singularity (V, x). So in order 
to understand an isolated singularity, our CR geometrical method would 
give a very important device for isolated singularities. In any case, we 
recall the family which Kuranishi constructed. Note that an almost CR 
structure <PT" induces the operator 8¢T" : r(M, C) -+ r(M, (<PT")*). 
Kuranshi considered the operator EJ<f>b : r(M, C) -+ r(M, (0T")*) cor­
responding to EJ"'T" under the natural isomorphism ),.<P :0 T" -+¢, T". 
Then we consider the set of 'I/; E r(M, T' (8) ( 0T")*) satisfying 

(1.2.1) 
p'P'l/J = p'Pt 
N"'(a;"' P('l/J) + eta!"' '1/J) = o. 

Here p'P means the harm~nic projection operator with respect to the 
EJ"'b-harmonic theory. We do not explain the notation in detail. See 
[Kul] for the precise definitions. If 'I/; is so small, this set coincides with 
the set of 'I/; satisfying 

P('l/;) =0 

a!"' 'l/J =o, 

where a!<t> means the "modified " adjoint operator of 8¢, with respect to 
the Levi metric. 

Therefore the family constructed by Kuranishi seems to be a natural 
extension of Kuranishi's family in the compact complex manifolds case. 
We note that, in the compact complex manifold case, Kuranishi gave a 
complex analytic structure on the set of small <p E A ';j1 (T 1 M) satisfying 

P(</>) = 0 

a;<1> = o. 

And as mentioned in the Introduction, this method ( adding the new 

equation&;</>= 0) is not available in the CR case (because Kohn's Neu­
mann operator gains only 1 derivative, not like the Green operator). For 
this reason, even by the Nash-technique, we cannot solve the equation 

without modifying a;"'. Here, "to solve " means that there is a finite 
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dimensional Euclidean space Ji such that a small neighborhood of the 
origin parametrizes a neighborhood of the solution space of (1.2.1). 

1.3. C 00 parametrization of real hypersurfaces 

We have to explain that the above family of solutions of (1.2.1) has 
a special geometrical meaning. For this, we must describe the "mod­
uli space" of real hypersurfaces in a complex manifold, which are "very 
close" to the original real hypersurface M. If M and M' are both real 
hypersurfaces of the same complex manifold N and close in the C 00 

sense, then M' is called "very close" to M. Kuranishi showed that if a 
real hypersurface in N is close enough to M, then this real hypersurface 
corresponds to an element ( E r(M, T'), a T'-valued global vector field. 
We can obtain this real hypersurface by wiggling the original real hy­
persurface Min N under a diffeomorphism generated by ( E r(M, T'). 
In this way, we have a map from a small neighborhood of the origin of 
r(M, T 1

) into r(M, T' 0 (0T 11)*) such that its linearization is Br,. 

1.4. Versality (Equivalence problem) 

Now we see the geometrical aspect of (1.2.1). Kuranishi proved 
the following property ([Kull): For any given family of deformations of 
complex manifold N, denoted Nw, there is an embedding f of Minto Nw 
and an element t of Ji such that ,j.,(t)T" is "very close" to the structure 
induced by f. Namely, there is a complex manifold N with boundary 
such that there is a smooth map p from N to the interval [0,1] and the 
boundary= p-1 (0) U p- 1 (1), and 

p-1 (0) =(M,,;.,(t) T") 

p-1 (1) =(M, the CR structure induced from 

the complex structure Nw by f). 

There are several problems which should be considered in the spirit of 
the Kuranishi deformation theory of CR structures. 

Problem 1. To determine holomorphic convex hulls. 

For a subset M of N, in general, it is difficult to determine the - -holomorphic convex hull M of Min N. In fact, Mis defined by 

M = {p : p E N, I f(p) Is sup I f(q) I, 
qEM 

for any holomorphic function on N}. 
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Similarly, the local holomorphic convex hull is defined as follows. For a 
reference point p of M, and for a neighborhood U of pin N, 

MnU = {p : P E U, I f(p) I::; sup I f(q) I, 
qEUnM 

for any holomorphic function on U}. 

So M, M n U are defined by highly transcendental method. The problem 
~ ------

is to construct holomorphic convex hulls M, M n U by using deformation 
theory of M or Mn U (rather, it is better to say a replacement of 
M, Mn U in N respectively) and a geometry of 0T" on M. Obviously, 
this problem is closely related to Kuranishi's problem "to prove Rossi's 
filling holes theorem by a geometrical method". 

Problem 2. Equivalence problem. 

The standard equivalence problem of real hypersurfaces were solved 
by Cartan, Tanaka, Chern-Moser. However, this equivalence is very 
strong. Namely, let M be a real hypersurface in a complex manifold N, 
and let M' be a real hypersurface in a complex manifold N'. In Chern­
Moser's sense, in the real analytic category, the CR structure on M, 
induced from N is equivalent to the CR structure on M', induced from 
N' if and only if there is a biholomorphic map from a neighborhood of 
M in N to a neighborhood of M' in N'. Our equivalence differs from 
this. We assume that M, M' are both strongly pseudo-convex. Then, 
by Rossi's theorem with Stein factorization theorem, we have two Stein 
spaces, V, V'. The problem is that if V and V' are isomorphic to each 
other as germs of isolated singularities, is it possible to express this sit­
uation in the CR geometrical way? Furthermore, the Stein factorization 
procedure is highly transcendental. Is it possible to construct a Stein 
space V from CR geometry on M? So, Problem 2 is somewhat related 
to Problem 1. 

Problem 3. Seiberg-Witten type invariants for isolated singulari­
ties. 

The reason we posed this problem is that our approach is the so­
called coordinate-free approach, so in this sense, our approach seems to 
be accessible to the introduction of a kind of "Seiberg-Witten invariants" 
for CR-structures just as in the differential geometric and topological 
way (though the Levi metric works in the construction). However, what 
we really need is an invariant for isolated singularities, which character­
izes the "global moduli space of isolated singularities". At present, we 
cannot overcome this difficulty. 
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From the next section on, we recall our improvement. We hope that 
our setup could be of any help for the solution of the above mathematical 
problems. 

§2. CR structures and ab 

We begin with recalling the definition of ab. Sometimes, we use 
notation different from Kuranishi's one. 

2.1. ab-operator 

Let N be a complex manifold of complex dimension n. Let M be 
a smooth real hypersurface in N. This means that for every point p 
of M, there is a local defining function p of Mover a neighborhood of 
p, satisfying {dp)(p) -/- 0. Then as is well known, over this M, we can 
introduce the tangential Cauchy-Riemann structure 0T". Namely let 

(2.1.1) 0T" = C@TMnT"N IM. 

Then, this 0T" satisfies 

(2.1.2) 

(2.1.3) 

0T" n °T11 = O , dime C ® TM = 1 
OT"+ OT" 

[r(M,0 T"), r(M,0 T")] c r(M,0 T"). 

And we can define the tangential Cauchy-Riemann operator lh. Namely, 
for any c= function fin M, we set an element of r(M, (0T")*) by 

Bd(X) = Xf, X E 0T". 

And we have a differential complex 

0-+ r(M, C)-+ r(M, (0T")*) -+ r(M, A2 ( 0T")*) -+ · · · 

- r(M, 11P(0T")*)-+ r(M, 11P+1 ( 0 T")*)-+ .... 

The explicit form of ab is given by 

in terms of the notation in Sect. 1.1. 
This notion of 0T" is generalized to an intrinsic structure on M as 

follows. Let M be a c= manifold with real dimension 2n - 1. We 
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assume that M is orientable. Let E be a subbundle of the complexified 
tangent bundle C 0 TM satisfying 

(2.1.4) 

(2.1.5) 

C0TM 
EnE = 0, dime---= 1, 

E+E 
[r(M,E),r(M,E)] C r(M,E), 

where r(M, E) denotes the space consisting of £-valued C00 sections. 
E is called a CR structure on M and the pair (M, E) a CR manifold. 
For a CR manifold (M, E), we can introduce a natural ab-operator in 
the same manner as above: 

a<:) : r(M, APE*) ----+ r(M, AP+1 E*). 

- -(p) 
If there is no confusion, we abbreviate ab for ab . And we have a 
differential complex 

0----+ r(M, C)----+ r(M, E*)----+ r(M, A2 E*)----+ · · · 

----+ r(M, APE*)----+ r(M, Ap+l E*)----+ .... 

For an orientable CR manifold (M, 0T 11 ), we set a C00 vector bundle 
decomposition 

(2.1.6) C 0 TM = 0T" + 0T' + C 0 F, 

where 0T' = 0T 11 and F is a non-vanishing real C 00 vector field on M 
satisfying for every point p of M, 

F d OT'+ OT" p 'F- p p' 

and C 0 F means the line bundle generated by F. For each point p of 
M, we define a hermitian form Lp on °r;' by 

(2.1. 7) for X, YE 0T;' 
I I Q I I 

where X, Y are in r(M, T") such that XP = X and YP = Y hold, 

and [X', Y']c0 F denotes the projection of [X', Y'] to C 0 F according 
to the splitting (2.1.6). Lp is called the Levi-form at panda CR manifold 
(M, 0T") is called strongly pseudo- convex if Lp has definite sign at every 
point p of M. 

In the case that (M, 0T") is a CR manifold as in Sect.1.1, we can 
choose a local coordinate (z1, ... , Zn) of N such that 

r = 2Im Zn - h(z1, ... , Zn-1, Z1, ... , Zn-1, Re Zn) 
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where h is a real valued C 00 function satisfying grad h(p) = 0. Then 
(M, 0T") is strongly psudoconvex if and only if the complex Hessian 
(82h/8zi8z1 (p))i:'.oi,j:'.on-l is positive or negative definite. 

2.2. T'-bundle and Br,-operator 

Let (M, 0T") be an orientable CR manifold and fix the splitting 
(2.1.6). We set 

T' = 0T' + C ® F. 

Then, this T'-bundle admits a CR structure in the following sense. For 
u in r(M, T'), we set a first order differential operator 

Br, : r(M, T') - r(M, T' ® (0T")*) 

by 8r,u(X) = [X, u]r, for X E 0T". We have to explain this definition 
more precisely. For each point p of M, for X E 0r;, we take X' E 

r(M,0 T") satisfying 

x;=x. 
8T'u(X) is determined by 

8r,u(X) = [X',u]r,, 

where [X',u]r, means the T'-part of [X',u] according to the splitting 
(2.1.6). Obviously, this definition makes sense. Because for any C 00 

function, for any Z E r(M,0 T"), and for any u E r(M, T'), 

[f Z, u]r1 =(-u(f)Z + f [Z, u])r, 

=f[Z,u]r1 -

This means that our definition does not depend on the C 00 extension of 

X. As for scalar valued differential forms, we can define 8~) -operator. 
For example, for¢ E r(M, T' ® (0T")*), 

a¥) ¢(X, Y) = [X, ¢(Y)]r, - [Y, ¢(X)]r, - ¢([X, Y]) for X, Y Eo T" . 

Then it satisfies a¥)aT' = 0 (hence T 1 is a holomorphic vector bun­
dle over a CR manifold in N. Tanaka's sense ([Ta])). And we have a 
differential complex 

0 -t r(M, T') -t r(M, T' ® (0 T")*) -t r(M, T' ® /\2 ( 0T")*) -t .. . 

- r(M, T' ® /\P(0T")*) - r(M, T' ® /\P+i(0T")*) - ... . 
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We note that the T'-bundle is a generalization of the holomorphic tan­
gent bundle. In fact, if M is a real hypersurface in a complex manifold 
N, we consider 

T'NIM, 

the restriction of the holomorphic tangent bundle T' N to the real hyper­
surface M. Then the composite of the inclusion map ofT' to C@TM C 

C © TN and the projection of C ©TN to T", induces an isomorphism 
i from T' to T' N IM and preserves 

8r,Ni(u(X)) = i((8T'u)(X)), for XE 0T", 

if u satisfies some conditions (this will be discussed in §4.1), where 8r'N 
means the standard 8- operator on N, and for X E 0T", the left hand 
side makes sense. 

§3. Geometry on deformations of CR manifolds 

In this section, we briefly recall the deformation theory of strongly 
pseudo-convex CR-structures. Throughout this section, (M,0 T") is a 
strongly pseudo-convex compact CR manifold and we fix the splitting 
(2.1.6). For the detailed discussion, see [Akl], [Ak2], [Ak3]. 

3.1. Almost CR manifolds 

Let Ebe an almost CR structure on M. Then, by using the C 00 

vector bundle decomposition (2.1.6), we have a homomorphism from E 
to 0T", the composite of the inclusion of E to C@TM and the projection 
of C © TM to 0T". 

Definition 3.1.1. Let (M, 0 T") be a CR manifold. An almost CR 
structure E is of finite distance from (M,0 T") if the above homomor­
phism is an isomorphism. 

Proposition 3.1.2. Let (M, 0T") be a CR manifold and E an 
almost CR structure of finite distance from 0T". Then there exists a 
¢ E I'(M, T' © (0T")*) satisfying 

E ="'T" 

={X';X' = X + cp(X),X Eo T"}. 

Namely,¢ defines a bundle homomorphism 0T"--+ T' whose graph 
coincides with E. For the proof, see [Akl]. 

3.2. Deformation equation 
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By Proposition 3.1,2, we see that for a given CR manifold (M, 0 T"), 
an almost CR manifold of finite distance from (M,0 T") is parametrized 
by f(M, T' @(0T")*). Now, in this section, we see under what condition 
this <PT" is actually a CR structure. For this, we have to introduce nota­
tion. Let cp be an element of r(M, T'@ (0T")*). We set elements,R2 (¢) 
and R3(cp) of f(M, T'@ /\ 2 ( 0T")*) by 

(3.2.1) 
R2(c/J)(X, Y) =[cp(X),cp(Y)]T, - cp([X,cp(Y)]oT" + [cp(X), Y]oT") 

(3.2.2) 
R3(cp)(X, Y) =cp([cp(X), cp(Y)]oT") 

for X,Y in f(M,0 T"). 
We see that these R2 (cp),R3(cp) make sense as elements of r(M, T'@ 

/\2 ( 0 T")*). In fact, for any C00 functions f and g, and X', Y' E r(M, 
0T"), by a simple direct computation of brackets, we have 

(3.2.3) 
R2(¢)(f X', gY') 

=[cp(f X'), cp(gY')]T, - cp([f X', cp(gY')]oT" + [cp(f X'), gY']oT" 

=fg{[cp(X'), cp(Y')]T, - c/J([X', cp(Y')]oT") + [c/J(X'), Y']oT" )}. 

By (3.2.3), R 2 (cp)(x;, Y;) depends only on Xp and Yp. Hence R 2 (¢) is an 
element off(M, T 1@/\2 ( 0T")*). Obviously R 3 (cp) E r(M, T'@A2 ( 0 T")*) 
holds for the same reason. 

In this notation, we have 

Proposition 3.2.1. (see Theorem 2.1 in {Akl}) Let cp be an ele­
ment of f(M, T' @(0T")*). Then an almost CR structure (M,<P T") is a 
CR structure if and only if cp satisfies the following non-linear equation: 

(3.2.4) P(cp) =8~/ cp + R2(¢) + R3(cp) 

=0. 

3.3. Erstructures 

Now we recall the subbundles EJ, which played quite successful 
roles in deformation theory of CR-structures. We set a subspace ri 
of f(M, T'@ /\i(0T")*) by 

fi = { u; u E f(M, 0T' (8) /\i( 0T")*), (8~{u)c@F = 0}, 



Deformation Theory of CR-Structures I 15 

where (a~: u)ce,F denotes the projection of a~:u to C 0 F 0 /\ i+l (0T") 
according to (2.2.1). Then we have 

Theorem 3.3.1. (see Proposition 2.1 in {Ak3}} There is a sub­
bundle Ei of T' 0 /\i(0T")* satisfying 

ri = r(M, Ei)-

And there is a differential subcomplex 

0 - f(M, E)i) ~ I'(M, E2 ) ~ f(M, E3 ) ~ • • · 

~ f(M, Ei) ~ f(M, Ei+1) ~ · · · 
- -0) where Bi means the restriction of Br, to f(M, Ei). 

By Theorem 3.3.1 we have an injection i : Ker Bi '--+ Ker a~:. 
Theorem 3.3.2. (see Theorems 2.3 and 2.4 in {Ak3}} The injec­

tion induces an isomorphism 

. - - -(i) -(i-1) 
i: Ker Bi/Im 8i-l - Ker Br,/Im Br, , 

where 2 ::; i ::; n - l, and the surjective map 

. - -(1) -(0) 
i : Ker 81 - Ker aT' I Im Br, . 

3.4. Local expression for Ej. 

The explicit expression for the differential complex (I'(M, Ei), Bi) is 
as follows. We briefly recall only the results. For the proof see [Ak2], 
[Ak3]. 

Let {Uk, hk}kEK be a local coordinate covering of M such that K 
is a finite set and Uk is homeomorphic to R2n- 1 . And let {PkhEK 
be a partition of unity subordinate to the coordinate covering of M. 
Since (M, 0T") is strongly pseudo-convex, there exists a moving frame 
{et,.,, e~_1} of 0T" luk such that 

By using these frames, we have the following lemmas. For the proof, see 
Lemmas 3.1-3.4 in [Ak3] respectively. 
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Lemma 3.4.1. Let cf> be an element of f(M, 0T' 0 (0T")*). Then 
1> belongs to r(M, Ei) if and only if 

1>7,j - c/>J,; = 0 for 1 '5. i,j '5. n - 1, 

where by 1>t we denote the C00 -functions defined by 

As for the vector bundle E 2 , we have the following lemma. 

Lemma 3.4.2. Let cf> be an element of r(M, 0T' 0 /\2 ( 0T")*). 
Then 1> belongs to r(M, E2 ) if and only if 

1>7,(j,a) - cf>j,(i,a) + c/>~,(i,j) = 0 

for all i,j,a satisfying 1 '5_ i, j, a '5_ n - 1, where 1>~,(i,j) denotes the 

C 00 -function defined by 

a 

Lemma 3.4.3. For 1> E r(M, E 1 ), we have 

(81¢)~,(i,j) = e~cf>~,j - ejcf>~,i + the terms of order zero of 1> 

and forµ E (M, E 2), 

(82µ)k ( .. l) = ekµk (. I) - ekµk (. 1) + elkµk (. ") a, i,J, i a, J, J a, i, a, i,J 

+ the terms of order zero of µ. 

We put the inner product on r(M, Ei), induced by the Levi metric. 

Let 8~ denotes the adjoint operator of 81 . Then the following lemma 
follows from these lemmas. Here we remark that {et, et., e~_ 1 } are 
orthonormal with respect to this inner product. 

Lemma 3.4.4. For all cf> in f(M, E 1 ), 8~ can be expressed by 

+ the terms of order O of 1> . 
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3.5. An a priori estimate. 

First, we introduce new norms 11¢11(m) and 11¢11(~) on f(M, Ep)- Let 
{Uk, hk}kEK be a local coordinate covering of M, {PdkEK be a parti­
tion of unity subordinate to this coordinate covering, and {et, . , , e~_ 1 } 

the moving frame of 0T" luk as in §3.4. For ¢ E f(M, Ep) and I = 
(i1, ... , ip), a C 00-funciton ¢~,I on Uk is defined by 

¢(e~1' ... 'e~) = L <P~ie~. 
°' 

Then we define the norms 11¢11(m) and 11¢11c'm) respectively by 

\1¢\1(~) = L ll(pke~¢~,1)h;;1 lltm) 
kEK',i,a.,1 

kEK',i,a,I 

+1l¢11tml' 

11¢1\c'!) = L \\(pke~eJ¢~,1)h;; 1 \ltm) 
kEK' ,i,j,a,I 

+ 
kEK' ,i,j,a.,I 

+ 
kEK' ,i,j,a,I 

+ 
kEK' ,i,j,a.,l 

+11¢11fm+l)· 

By direct computation (using integration by parts ), we can prove 
the following theorem. For the notation, for example, 11 ll(m)-norms, and 

II 11(~)-norms, see [Ak3]. 

Theorem 3.5.1. (see Theorem 4.l(new estimate) in {Ak3}). Sup­
pose that (M, 0T") is strongly pseudo convex and dimR M = 2n-1?: 7. 
Then the following estimate holds. 

for all¢, E f(M, E2 ), where C is a positive constant. 
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Following the standard functional analysis method with Theorem 
3.5.1, we have Theorem 3.5.2. 

Theorem 3.5.2. (see Theorem 4.1 in {Ak3}). Under the assump­
tion of Theorem 3.5.1, we have a Neumann opemtor 

such that 

a) N is bounded, 
b) if c/> E r(M, E 2), Ne/> is also in r(M, E 2), 

c) if Ne/>= 0, c/> E r(M, E2), then 8c/> = O, and 8* c/> = 0, 

and 
d} if c/> E r(M, E 2), then c/> = 8f/ Ne/>+ 8*8Nc/>+ a, a EH where His 

the null space of N. 
Here we use the notation r 2 (M, E 2) for the Hilbert space obtained 

as the completion of r(M, E 2) with respect to the L 2-norm. 

3.6. Some estimates. 
In this section, we recall some a priori estimates for the Neumann 

operator obtained in §3.5. By the standard argument, we have the fol­
lowing estimate from Theorem 3.5.1. 

(3.6.1) 

for all c/> E r(M, E 2), and 

(3.6.2) llc/>llcm+l/2)::; c:n{IIDc/>ll(m-1/2) + llc/>ll(m-1/2)}, 

for all c/> E r(M,E2), where D = 818; + 8;82. 

More precisely, we have the following theorem. 

Theorem 3.6.1. (see Theorem 5.1 in {Ak3}). The following esti­
mate holds: 

llc/>llc~-1;2) ::; c::.{ll• c/>ll(m-1;2) + llc/>ll(m-1;2)} 

for all c/> E r(M, E2), where m is a non-negative integer. 

Thus we have 
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Corollary 3.6.2. (see Corollary 5.2 in {Ak3}). 

IIN µllcm-1/2) ::; c;,.IIµII cm-1;2) 

for allµ E r(M, E2), where m is a non-negative integer. 

Lemma 3.6.3. (see Lemma 5.3 in {Ak3}). The following estimate 
holds. 

IIR2( ¢) llcm-1/2) ::; Cm ll</>llc;.-1;2), 

for all <p E r(M, E2 ), where we assume m 2: n + 1. 

For the definition of R2(¢), see (3.2.1) in this paper. 

Proposition 3.6.4. (see Proposition 5.4 in {Ak3}). Suppose that 
R2(¢) is in r(M, E2), Then, 

ira;NR2(¢)11cm-1/2)::; Cmll</>llc;.-1/2) for all <p E r(M,E2) 

holds. 

3. 7. An application to the deformation theory of CR 
structures. 

Let (M, 0 T") be a compact strongly pseudo-convex CR manifold. By 
using the differential complex in Theorem 3.3.1, and a new Hogde type 
decomposition theorem in Theorem 3.5.2, we can discuss the deformation 
theory of CR structures. 

Then, we have 

Theorem 3. 7.1. (see Theorem 6.2 in {Ak3}). Under the assump­
tion dimR M = 2n - 1 2: 7 and H 2 (M, T') = 0, there is an E 1 -valued 
C 2 -class section ¢(t), parametrized complex analytically by a neighbor­
hood U of the origin in the Euclidean space 1-l, satisfying 

(1) ¢(0) = 0 

(2) P(¢(t)) = a¥} ¢(t) + R2(¢(t)) = O, and 
(3) the linear term of cp(t) is equal to :E1=1 /3>.h, where {/3>.h:::;>.~q 

is a basic system of 1-l, q = dime 1-l and { tih~i~q are local 
coordinates of U. 

Here 1-l is a subspace of r(M, E 1 ) such that 1-l ~ Ker a¥:/ Im a~: 
holds (cf. Theorem 3.3.2) and m is a sufficiently large integer such that 
m 2: n + 2 holds. (Note that R3 (¢) = 0 holds for <p E r(M, E 1 ).) 

This theorem is proved by the standard Kodaira-Spencer deforma­
tion theory using Lemma 3.7.3 and Proposition 3.7.4 below. Since its 
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argument is a prototype of the ones in Section 4 and in Part II, we will 
give a brief sketch of the proof. 

A sketch of the proof. Let cp(t) be a r(M, Ei)-valued holomorphic 
function and 

cp(t) = L ¢>k1k2 ... kqt~1 ... t~q 

be the power series expansion of cp(t) with ¢>(0) = 0. For simplicity, we 
abbreviate 

00 

c1>(t) = I: c1>»(t), 
>.=1 

where c/>»(t) is a homogeneous polynomial of degree>. in (t1 , .. , tq)- Let 

µ 

c1>µ(t) = I: c1>»(t). 
>-=1 

For any r(M, E 1)-valued holomorphic functions cp(t) and 'l/;(t), we indi­
cate by cp(t) =µ 'lj;(t) that the power series expansion of cp(t) - 'lj;(t) in 
( t 1 , .. , tq) contains no term of degree >. < µ. 

Clearly the conditions (1) and (2) are equivalent to the system of 
congruence 

(3.7.1)µ 
-(1) 
OT, cp(t) +R2(¢>(t)) =µ+1 0 (µ = 1,2, ... ). 

Since R2(¢>(t) is of second order with respect to cp(t), we obtain 

(3.7.2) 

Hence we can rewrite (3.7.1)µ as follows: 

(3.7.3)µ a~~ c/>µ(t) + R2(c1>µ- 1(t)) =µ+1 o (µ = 1, 2, ... ). 

Further, these are equivalent to the following: 

(3.7.4)µ a~: c/>µ(t) + P(c1>µ- 1 (t)) =µ+1 o (µ = 1, 2, ... ) 

because of c/>µ(t) = c/>µ(t) + ¢>µ-l(t) and P(c/>µ-l(t)) = a~)cpµ-l(t) + 
R2( ¢>µ-l (t) ). 

Now we shall construct cp(t) by induction onµ. We set ¢>0 = 0 and 
c/>1(t) = I:1=1 (ht». Then clearly (3.7.5)i holds. 

Suppose that ¢>µ-l(t) is already determined and satisfies (3.7.4)µ-l• 
Then we will study the differential equation (3.7.4)µ-

(3.7.5)µ a~~ c/>µ(t) + P(c1>µ- 1 (t)) =µ+1 o. 
We recall Theorem 4.10 in [Akl]. (We note that this lemma holds 

for any twice continuously differentiable ¢>.) 
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Lemma 3.7.2. (see Theorem 4.10 in {Akl}). For any element 
¢ E f(M, T'), 

From the assumption P(¢µ-l(t)) =µ 0 and Lemma 3.7.2, we obtain 

(3.7.5) 

Hence, under the assumption H 2 (M, T') = 0, the partial differential 
equation (3.7.4)µ has a solution in f(M, T'@ (0T 11)*). And the follow­
ing proposition enables us to choose the solution relying on the Hodge 
decomposition in Theorem 3.5.2, that assures </>µ(t) E r(M, E 1 ). 

Proposition 3. 7.3. Given a I'(M, Ei)-valued polynomial ¢µ- 1 (t) 
in (ti, .. , tq) satisfying P(¢µ-l(t)) =µ 0, the homogeneous part of degree 
µ in (t1 , ... , tq) of P(4>µ- 1 (t)) takes its value in I'(M, E2 ). 

Hence, if we set 

</>µ(t) = -t>*N{the µ-th homogeous polynomial term of P(¢µ- 1(t))}, 

¢µ-l(t) + </>µ(t) satisfies (3.7.1)µ, where N denotes the new Neumann 
operator obtained in Theorem 3.5.2. 

The convergence of 

¢(t) = ¢1(t) + ¢2(t) + ... 

is proved by the standard Kodaira-Spencer argument: For two pow­
erseries 

A(t) = t Vl tVq 
av 1 · · · q 

v=(v1, ... ,vq) 

and 
B(t) = 

v=(v1,••·,vq) 

we denote 
A(t) << B(t) 

if lavl ::; lbvl holds for all v. Let 
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be a convergent power series where b and c are positive constants. Then 
we have 

by Proposition 3.6.4. Hence 

llc/>µ(t)ll~m-½) << A(t) follows from 11¢(µ-l)(t)ll~m-½) << A(t) 

if we choose b and c sufficiently large at the beginning, because 

llc/>µ(t)ll~m-½) << Cll¢(µ-l)(t)II~~-½) << CA(t)2 << ~CA(t) 

holds (remark that A(t) 2 << ~A(t) holds (cf. (5.116) in [Kol)). 

We note that the assumption H 2 (M, T') = 0 is not essential. We 
will discuss in Part II the case of H 2 (M, T') =/=- 0 and the completeness 
of cp(t) (which is called the Kuranishi versality). In any case, we have 

Corollary 3. 7.4. The deformation cp( t) constructed in Theorem 
3. 7.1 is versal. 

§4. Geometry of the deformations of strongly pseudo-convex 
domains 

4.1. T'N-valued complex. 

Let N be a complex manifold and n be a relatively compact strongly 
pseudo-convex subdomain of N. We assume dimcN ~ 4 .. Let T' N 
be the holomorphic tangent bundle on N. Then, there is a first order 
differential operator 8r, N from r(IT, T' N) to r(IT, T' N ®(T" N)*), where 
r(IT, T' N) denotes the space of T' N-valued sections smooth up to the 
boundary bO. Namely, for u in r(IT, T' N), 

8r1Nu(X) = [X,u]r1N, 

where X E r(IT,T"N), and [X,u]r'N denotes the projection to T'N 
according to the decomposition of the vector bundle C ® TN = T' N + 
T" N. Then,· as is well known, we can define a first order differential 

operator a<:J,lN from r(IT, T' N ®N(T" N)*) to r(IT, T' N®/\P+l(T" N)*) 
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in the same way as for scalar valued forms, and we have a differential 
complex. 

0-+ r(o, T' N)-+ r(o, T' N 0 (T" N)*)-+ r(fi, T' N 0 t?(T" N)*) -+ 

-+ r(fi, T' N 0 /\.P(T" N)*) -+ r(fi, T' N 0 /\p+l(T" N)*) -, 

while we have the restriction map Tp 

Tp : r(fi, T' N 0 AP(T" N)*) - r(bn, T' 0 AP(0T")*), 

given by 

for X· Eo T" 
J ' 

where i : T' -+ T' NIM denotes the isomorphism in §3.2. Henceforth, we 
abbreviate T for Tp. Then, we have 

Lemma 4.1.1. (see Lemma 1.1 in {Ak4}) Let¢ be an element of 
f(fi, T' N 0 N(T" N)*) satisfying 

TqJ E f(b0, 0 T' 0 AP(0T")*) and a~! TqJ E f(b0,0 T' 0 /\v+1 ( 0 T")*). 

Then, 

Similarly, we have the following lemma. 

Lemma 4.1.2. (see Lemma 1.2 in {Ak4}) Let¢ be an element of 
f(fi, T' N 0 N(T" N)*) satisfying TqJ E f(b0,0 T' 0 N( 0T")*) and 

T(aC:,lN¢) E f(b0, 0 T' 0 AP+1(0T")*). Then, 

-(p) -(p) 
T(8r,N¢) = or, (Trp). 

4.2. Almost complex manifolds and deformation equation 

In this section, we recall the deformation theory of complex struc­
tures and the deformation equation. 

Let N be a C 00 differentiable manifold of real dimension 2n. Let E 
be a C 00 subvector bundle of the complexified tangent bundle C 0 TN 
satisfying 
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Eis called an almost complex structure and the pair (N,E) an almost 
complex manifold. Now let (N, T" N) be a complex manifold. Then, by 
using the canonical decomposition 

C ©TN = T' N + T" N, 

we have a homomorphism from E to T" N, the composite of the inclusion 
of E to C © TN and the projection of C © TN to T" N. 

Definition 4.2.1.. Let (N, T" N) be a complex manifold and E an 
almost complex structure. E is of finite distance from T" N if the above 
homomorhism is an isomorphism. 

Then, we have 

Proposition 4.2.2. If E is an almost complex manifold of finite 
distance from T" N, then there is a <fa E I'(N, T' N © (T" N)*) satisfying 

E =<PT"N 

={X';X' = X + <fa(X),X E T"N}. 

By Proposition 4.2.2, we see that for a given CR manifold (M,0 T"), 
almost CR manifolds of finite distance from (M,0 T") are parametrized 
by r(N, T' N © (0T 11 N)*). Now, in this section, we see when this <PT" N 
is actually a complex manifold. For this, we must introduce notation. 
Let ¢ be an element of I'(N, T' N © (T" N)*). For this ¢, we set an 
element R2 (¢) of I'(N, TN'© /\2 (T" N)*) by 

(4.2.1) R2(¢)(X, Y) = 
[</J(X), </J(Y)]T, N - </J([X, </J(Y)]T" N + [</J(X), Y]T" N) 

for X, Y in I'(N, T" N). 

We remark that R 2 (¢) makes sense as an element of I'(N, T' N © 
/\ 2 (T" N)*) for the same reason as in §3.2. In this notation, we have 

Proposition 4.2.3. Let <fa be an element of I'(N, T' N © (T" N)*). 
Then an almost complex structure (N,<I> T" N) is a complex structure if 
and only if <fa satisfies the following non-linear equation. 

(4.2.2) P(</J) =8~/ <P + R2(<P) 
=0. 
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4.3. Erstructures 

As in the CR structure case, we introduce a subcomplex which sat­
isfies a certain boundary condition. 

We introduce a subspace Ep of (I'(O, T' N 0 N(T" N)*) by 

For Ep, we show the following theorems. 

Theorem 4.3.1. (see Theorem 3.3 in {Ak4}). There is a differen­

tial subcomplex of (I'(O, T' N 0 N(T" N)*), EJ~)N ). 

- -(p) 
where 8p means the restriction of 8T' N to Ep. 

For the proof, it is enough to show 

For cjJ in Ep, 
-(p) -(p) 

T8T'N¢ = 8T' (TcjJ) (by Lemma 4.1.1). 

By Theorem 3.3.1, we have 

So this completes the proof of Theorem 4.3.1. 

Henceforth we write this complex by 

For this complex, we have the following theorem. 

Theorem 4.3.2. (see Theorem 3.4 in {Ak4}). The injection 

K -8 K -8(p) . d . h' er (p) ~ er T' N in uces an isomorp ism 

. - - -(p) -(p-1) . 
i: Ker8p/Im8p-l-+ Ker8T'N/ Im8T'N if p 2: 2 

and in the case of p = l, the injection induces a surjective map 
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4.4. Estimates 

In this section, we recall the new a priori estimate in [Ak4], [Ak5] 
for the subcomplex (Ep, 8p)- For this purpose, we make preparations. 

Let {Uk, hk}kEK be a coordinate covering of N such that 

and K is finite. 

Let K' be a subset of K satisfying, for k E K', 

Let {PkhEK be a partition of unity subordinate to the above covering. 
In this paper, we use the Levi metric defined by Greiner and Stein (cf. 
Chapter 4 in [Gr-St]). Then, for a point p E M, there are a coordi­
nate open set Uk and an orthonormal basis (e}, .. ,e~_ 1 ,e~) ofT"N luk 
satisfying 

(ek) Eo T" 
J q q' 

where q E brl n Uk and j = 1, ... ,n -1, 

[e~, eJ] = v'-1((\,j + O(p))(e~ - e~) 
n-1 n-1 

+ '"' k,r k + '"' bk,r-k ~ ai,j er ~ i,j er, 
r=l r=l 

on Uk, and e~ is globally defined in a neighborhood of the brl, where 

a7J and b7,']' are 0 00-functions on Uk, p is the defining function of brl 
and O(p) stands for a 0 00 -function which vanishes on brl (therefore by 
using integration by parts, we can neglect the O(p)-term). 

Now we put an L2-norm and the 1111'-norm on r(n, T' N@f\P(T")*). 
JP denotes the family of all ordered set (i1 , .. , ip) of integers with 1 ::::; 

i1 < i2 < ... < ip :::; n. For any ¢ in r(IT, T' N 0 N(T")*), J E JP and 
l(l ::::; l:::; n), we define 0 00-functions ¢t1 on Uk by 

¢(efi, ··,et)= L ¢t1ef, 
l 

where J = (i1 , .. , ip)- Using these functions (Pk¢f,1 )h,; 1 in C';° (R2n), we 

define the L 2 -norm on r(IT, T' N 0 t,.P(T" N)*) by 

11¢11 2 = L II (Pk¢t1 )h,; 1 11 2 

l,I,k 
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where II 11 2 means the L2-norm on C';;°(R2n) and C';;°(R2n) means the 
space of C 00-functions on R 2n with compact support. Next we introduce 
a II 11'-norm on r(n, T' N 0 N(T" N)*) by 

11¢11'2 = LkEK',i#n,lJll(pke7¢t1)h,; 1 ll 2 

+ L II (pke7 ¢t1 )h,;1 11 2 

kEK' ,i#n,l,I 

+ L ll(Pke~¢t1)h,;1 ll 2 

kEK',nEI,l 

+ L ll(pke~¢t1 )h,; 1 11 2 

kEK',nrf.I,l 

+ L 11 (Pk¢t1 )h;;111c1) 
k#K',I,l 

where 11 ll(i) means the Sobolev 1-norm on C';;°(R2n). 

Henceforth we omit h,;1,pk and the index k for brevity. 

We set a vector field ~ on b[l by 

and fix the decomposition of the vector bundle C@T(brl) = 0T" +0T' + 
C 0 F, where F = f 

With these preparations, we consider the following space B 2 of £2 . 

B 2 = { ¢; ¢ E I'(D, T' N 0 t?(T" N)*), (er('!?, dp)¢, y) = 0 

on brl for any y in E 1 and T(,D E I'(brl, E 2)}, 

where (,) denotes the inner product defined by the Levi-metric, and '!9 

denotes the formal adjoint operator of 8~!. 
On B 2 , we have the following a priori estimate ( the key estimate). 

Theorem 4.4.1. (see Theorem 4.3 in {Ak4} and Corollary 6.2 in 
{Ak5}). Assume that [l is strongly pseudo-convex and dime n 2:: 4. Then 
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the following estimate holds. 

n-1 n-1 n-1 

~c{L L {L llez<l>a,(i,j) 11 2 + L lle1</>a,(i,j) 11 2 }}} 

i<j a=l l=l l=l 

i<j l,fi,j 

=cll</>11'2 

for all </> in B 2 , where c is a positive constant independent of </> and for 
- -(1) 

brevity, we write a for aT'N· 
This was first proved by direct computation (see [Ak4]). Later, 

it was proved in a fairly wide framework in [Ak5]. The proof of this 
theorem in [Ak5] relied on estimates established in Theorem 3.5.1 and 
the following Proposition 4.4.2. In order to see Proposition 4.4.2, we 
have to recall some notation. We recall T'-bundle on M, and BT, -
operator. Let ,,JT, be the formal adjoint operator of aT' with respect 
to the Levi-metric. And we set a c= vector bundle decomposition of 
T' © f\P( 0T")*' 

(4.4.1) T' © /\P(0T")* = Ep + Ej;. 

Here E-j; is the complement of Ep with respect to the Levi metric. Then, 
our proposition is stated as follows. 

Proposition 4.4.2. {see Theorem 6.1 in {Ak5}). Suppose that 
dimR M = 2n - l ~ 7. Then we have 

for '1/J E r( M, E:f-), where c is a positive constant, and (8T,'l/J) E-1.. means 
2 

the projection of aT,'1/J to E;j- according to (4.4.1). 

4.5. The new Hodge decomposition theorem 

Based on our estimate (Theorem 4.4.1), we discuss a new Hodge de­
composition theorem, which differs from the standard one (see [Kohn]); 
and apply it in solving the Cauchy-Riemann equation in the subcomplex 
(ep, Bp). We note that our new Neumann operator preserves the bound­
ary condition. Let G be a holomorphic vector bundle on N. Let DP be 
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the Cauchy-Riemann operator for G-valued p forms and Df; the induced 
operator over the boundary bfl. Let Fp be a subbundle of G 18) f\P( 0T")* 
over the boundary bfl. We set 

FP = { ¢; ¢ E r(n, c 0 /\P(T" N)*), T</J E r(bfl, Fp)}, 

where T means the restriction map ¢ to the element of f(bfl, G 18) 

f\P(0 T")*). In the same way as in §4.4, we put the L2-norm, the in­
ner product and also II 11'-norm on r(fi, G 18) N(T" N)*). We set 

BP = { ¢; ¢ E r(fi, c 0 /\P(T" N)*), T</J E r(bfl, Fp) 

and (O'(D*P- 1 , dp)¢, y) = 0 for any y E Fp-l on bfl}, 

where D*P- l denotes the formal adjoint operator of DP-l, d D*P- l, dp) 
means the symbol at dp, and pis the defining function for b[l in N. For 
brevity, we write D* for D*P and D for DP. 

In this notation, our theorem is stated as follows. 

Theorem 4.5.1. (see Theorem 5.1 in {Ak4}) Suppose that 

(A.I) 

and 

(A.2) IID*¢11 2 + IID¢11 2 + 11¢11 2 :2'. cll¢ll'2 

for all ¢ in BP, where c is a positive constant independent of¢. Then, 
there are the new Neumann operator N; .C~ ----, .C~ and the new harmonic 
operator H; .C~ ----, H satisfying 

(1) H and N are bounded, 
(2) if¢ is in r(fi, G 18) N(T")*), then H¢ and N¢ are in r(fi, G 18) 

f\P(T")*), 
(3) if¢ is in r(fi l8l N(T")*), then¢= (DD*+ D* D)N¢ + H¢ 
(4) HN=NH 
(5) if¢ is in r(fi,G 18) f\P(T")*), then D*N¢ is in p-1 , and in 

addition, if¢ is in FP, D¢ = 0 and H¢ = 0, then DD* N¢ = ¢ 
where L~ denotes the L2 -completion of r(fi, G 18) N(T")*) and 
H = {¢; ¢ E BP, D,phi = 0 and D*¢ = O}. 

[Brief sketch of the proof]. We note that Kohn's standard Neu­
mann operator relies on Morrey's estimate (in Kohn's case, the (A.I) 
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part is trivial). We briefly recall the proof, which is carried out in the 
standard functional analysis. First, we set a map T from BP to 

by T<f> = (D*</>, D<f>). We complete T and use the same notation T for 
this. D(T) denotes the domain on which this operator is defined. For 
D(T), just by the standard argument, we have 

Lemma 4.5.2. D(T) is dense in .C~ and 

D(T) n r(TI, G Q9 /'l(T")*) = BP. 

And also we have the following lemma and proposition. 

Lemma 4.5.3. Letµ be in r(TI,G@ /\P+1 (T")*), and suppose 
that 

(</>, cr(D*, dp)µ) = 0 for all </> in BP on Ml. 

Then T'lf in f(bO, Fp-1)­

Proposition. 4.5.4. 

D(T*) n {r(TI, a@ AP- 1 (" N)*) x r(TI, a@ I\P+i(T" N)*)} 

={ ( 'l/J, µ) : 'l/J E r(TI, a@ (\P- 1(T" N)*), T'lf E r(bO, Fp_i), 

µEf(TI,G@/\P+ 1 (T"N)*) and (cr(D*,dp)µ,y) =0 

for any y in Fp on bfl}, 

where D(T*) means the domain ofT*. 

So, we obtain that for </> in BP satisfying T<f> in D(T*), 

(4.5.1) T*T</>= • </>. 

With these preparations, we prove Theorem 4.5.1. We follow Kohn­
Nirenberg's approach in [K-N]. Namely, we first set 

H = {</>: </> E D(T), T</> = O}. 

Obviously, H is finite dimensional and so closed in .C~. Next we study 
BP n H', where H' is the complement of H in .Cf. We consider the 
problem of finding a solution 'ljJ E BP n H' 

(T'l/J, T<f>) = (a, <I>) for <I> E BP n H', 
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where a is in r(D, G ® f\P(T" N)*). 
By the assumption (A.2), there is a unique element 't/J in BP n H' 

(Theorem 4.1 in [Ak4]), And 't/J satisfies the boundary condition 

( 4.5.2) T't/J E D(T*). 

That is to say, for any a in r(n, G ® f\P(T" N)*), there is a 'lp in BP 
satisfying 

T*T't/)=a-Ha, 

where H is the projection of .C~ to H. 
We set 

Na= 't/J 

and call N the new Neumann operator. We see that our new Neumann 
operator N satisfies the relation (5). We recall (4.5.2). Namely, for a in 
r(n, G ® f\P(T" N)*), 

TNa E D(T*). 

By the definition of T, TN a = (D* Na, DNa). And by Proposition 
4.5.4, we get 

D*Na E p-1 

and 
(a(D*,dp)DNa,y) = 0 for all y E Fp on bO. 

It remains to prove that under the assumptions h</> = 0, D</> = 0 and </>" 
E :FP, we obtain 

DD*N</>=0. 

For this, we set 
µ = DD*N</>-</>. 

Then, form D</> = 0, Dµ = 0 follows. In addition, we have 

D* =D*DD*N</>-D*</> 

=D*(</>- H</>- D* DN</>) - D*</> 

=D*</>- D*</> 

=0. 

Next we see that µ is in BP, i.e., in D(T). For this, we compute the 
following by integration by parts. For 't/J in :FP-1, 

(µ,D't/J) =(DD*N</>-</>,D't/J) 

=(DD*N</>,D't/J)- (</>,D't/J) 

=(</>- H</>- D*DN</>,D't/J) - (</>,D't/J) 

= - (H</>,D't/J)- (D*DN</>,D't/J). 
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We note that the boundary term vanishes, so we have 

Similarly, 

Because 

we have 

Thus, 

(H<f;,D'I/J) = (D*H<f;,'1/J) =0. 

(D*DN<f;,D'I/J) = 0. 

(a(D*,dp)DN<f;,D'I/J) = 0 on bO.. 

(µ,D'I/J) = -(DN<f;,DD'I/J) = 0. 

On the other hand, 

Hence 

(µ,D'I/J) =(D*µ,'1/J)- f (a(D*,dp)µ,'1/J)d(bO.) Jbn 
= - f (a(D*,dp)µ,'1/J)d(bO.). 

Jbn 

(a(D*,dp)µ,'1/J) = 0 on bO. for '1/J E p-1 . 

By the definition of BP and Lemma 4.5.2, we obtain 

µ E D(T). 

Combined with Dµ = 0 and D*µ = O, we have 

Tµ=0. 

Therefore 
µEH. 

Furthermore, for any a E H, 

(µ,a)=(DD*N<f;-¢,a)=(DD*N<f;,a) (by H<f;=0). 

The boundary term vanishes, so we have 

(DD*N<f;,a) = (D*N<f;,D*a) = 0 (by a EH). 

So µ = 0. This is the outline of the proof. 

From this theorem with Theorem 4.4.1, we immediately obtain 
Corollary 4.5.5. 
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Corollary 4.5.5. In the case of G = T' N, Fp = Ep, and p = 2, 
the new Neumann operator exists. 

4.6. Some estimates 

In order to try to construct a versal family, we will review some 
estimates for the Neumann operator N obtained in §4.5. 

First, we put the tangential Sobolev (0,m)-norm and II 11'-norm 
on r(O, T' N 0 f\P(T" N)*). JP denotes the family of all ordered sets 
(i1, .. , ip) of integers with 1 s i1 < i2 < ... < ip s n. For</> in r(n, T' N@ 
f\P(T" N)*), IE JP and l(l S l Sn), we define C 00 functions <t>b on Uk 
by 

</>(et, .. , e7v) = L <1>t1e7, where I= (i1, .. , ip)­
z 

Using these functions, we define the tangential Sobolev (0, m)-norm on 
r(n, T' N 0 f\P(T" N)*) by 

11</>ll(o,m) = L ll(Pk<Pt1)h;; 1 ll(o,m) 
l,I,k 

where fork EK', 11 ll(o,m) means the tangential Sobolev (0, m)-norm on 

C0 (Rtn) (here C0 (Rtn) means the space of C 00-functions on the upper 
half plane Rtn with compact support), and fork r/. K', 11 ll(o,m) means 

the tangential Sobolev (0, m)-norm on C0 (R2n) with compact support 
(for the definition of the tangential Sobolev norm, see Definition 2.5.1 in 

[Ho]). Next we introduce II ll(o,mfnorm on r(n, T' N 0 f\P(T" N)*) by 

ll</>11(1,m) = I: II (pke74>tr )h,;1 ll(o,m) 
kEK' ,if.,l,I 

+ I: II (pke7 <1>t1 )h,;1 ll(o,m) 
kEK' ,i#-,l,I 

+ I: II (pke~<t>t )h,;1 ll(o,m) 
kEK',nEI,l 

+ I: II (pke~</>t1 )h,;1 ll(o,m) 
kEK' ,n(/J,l 

+ I: II (Pk<Pt1 )h,;111(1,m) · 
k(/4K',l,I 
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From now on, we assume m > 2n unless we note otherwise. With these 
preparations, we show the following more precise estimate ( cf. Theorem 
4.4.1 in this paper). 

Proposition 4.6.1. (see Theorem 6.1 in {Ak4}} Assume that n 
is strongly pseudo-convex and dime n 2: 4. Then the following estimate 
holds. 

11.ict>llco,rn) + ll8¢llco,rn) + llct>llco,rn) 2 cllct>ll(ii,rn) 
for all cp in B 2 , where c is a positive constant independent of cp and m 
is a non-negative integer. 

For • = 8.i + .i8, we show some estimates by using this proposi­
tion. To do so, we must introduce a new norm. For µ in r(n, T' N © 
AP(T" N)*), we set 

llµll(irnl = L II (pke: ej µtl )h,;1 lie O,rn) 
kEK' ,i<j<n,l,I 

+ L II (pke:ej µt1 )h,;1 llco,rn) 
kEK' ,i<j<n,l,I 

+ L II (pke:ej µtl )h,;1 llco,rn) 
kEK' ,i<j<n,l,I 

+ L II( -k-k k )h-1112 Pkei ej µl,I k (O,rn) 
kEK' ,i<j<n,l,I 

+ L II( -k-k k )h-1112 Pkenei µl,I k (O,rn) 
kEK' ,i<n,l,nEI 

+ L II (pke~e: µtl )h,;1 llco,rn) 
kEK' ,i<n,l,nEI 

+ 
kEK' ,i<n,l,n¢I 

+ 
kEK' ,i<n,l,n¢I 

+ L II (pke~e~µtl )h,;1 llco,rn) 
kEK',l,I 

+ L II (pke~e~µt1h,; 1 llco,rn) + llµll(1,rn) · 
kEK',l,I 

After this, we omit the suffix k and the functions Pk, hk. In this notation, 
our theorem is stated as follows. 
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Theorem 4.6.2. {see Theorem 6.2 in {Ak4}) For µ in B 2 , 

From this proposition, we immediately have 

Proposition 4.6.3. {see Theorem 6.3 in {Ak4}) For µ in r(IT, 
T' N 0 /\2 (T" N)*), we have 

where Cm is a positive constant. 

Using this proposition, we can discuss an a priori estimate for R2 ( ¢). 
Combining this with the standard argument of functional analysis, 

we obtain the following main theorem. 

Theorem 4.6.4. (see Theorem 6.6 in {Ak4}) For cp in £1 satisfying 
c/Jn,n = 0 on brl, 

4. 7.Construction 

We construct a versal family of deformations of rl, consisting of 
T' N ® (T" N)* -valued Am-class elements. For this purpose, we must 
introduce a new subspace£{ of £1 . 

First we set a linear map t from r(fi, T' N 0 f\P(T" N*) to 
r(bn, T' 0 N- 1 ( 0TP")*) by 

t¢(X1, .. , Xp-1) = T(cp(en, X1, .. , Xp-1)), 

where Xj is an element of 0T" and en is as introduced in §3.4. By using 
this t, we introduce 

Then for e;, the following theorem holds. 

Theorem 4.7.1. {see Theorem 7.1 in {Ak4}). The injection e; n 
Ker 8v '---4 Ker 8v induces an isomorphism 
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and a surjective map 

I - -(1) -
£1 n Ker81 ---+ Ker8T'N/Im8T'N---+ 0. 

Then from Theorem 4.7.1, we immediately have the following corol­
lary. 

Corollary 4. 7.2. (see Corollary 7.2 in {Ak4}}. There is a finite 
dimensional sub-vector space 1i of t:f such that the map in Theorem 
4.3.2 induces an isomorphism 

-(1) -
1i c::'. Ker8T'N/Im8T'N· 

With this corollary in mind, we will construct a versal family of Am 
class. Our main theorem in this section is as follows. 

Theorem 4. 7.3. (see Theorem 7.4 in {Ak4}). Under the assump­
tions dime n = n 2:: 4 and H 2 (0, T' N) = 0, there is an t:f valued Am 
class element cp(t), parametrized complex analytically by a neighborhood 
U of the origin in the Euclidean space 1i satisfying 

(1) ¢(0) = o, 
(2) a¥:N¢(t) + R2(¢(t)) = 0, and 
(3) the linear term of cp(t) is equal to I::1 /3>.t>.., where {/3>..h:::;>..~q is 

a system of bases of 'Ji and { tih~i~q are local coordinates of U. 
Here m is a sufficiently large integer satisfying m 2:: n + 2. 

The construciton of ¢(t) is the same as in the CR case (cf.Sect.3.7). 
However, in order to assumre the convergence, we need to construct 
¢(t) so that it is £f-valued (cf. Theorem 4.6.4). Hence we introduce an 
operator A : £P ---+ t:; having the following properties: 

-(p) -(p) 
aT'NA = aT'N, 

IIA¢11(o,m) ~ emll¢11(o,m)· 

See [Ak4] for the construction of A. 
By an argument parallel to that in the proof of Theorem 3.7.1, 

replacing r(M, E 1 ) and the Hodge decomposition in Theorem 3.5.2 by 
£f and the Hodge decomposition in Theorem 4.5.1, we can trace the 
construciton in §3. 7. The following lemma and proposition correspond 
to Lemma 3.7.2 and Proposition 3.7.3 in §3.7 respectively. 
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Lemma 4.7.4. For any element</> in r(n, T' N ® (T" N)*), 

-cf, 
aT'NP(</>) = o. 

Proposition 4. 7 .5. Given £f valued holomorhic function <pµ,- l ( t) 
in (t1 , .. , tq) satisfying P(</>µ,-l(t)) =-µ, 0, the homogeneous part of degree 
µ in (t1 , .. , tq) of P(</>µ,-l(t)) takes its value in £2 . 

Only difference is that </>µ,(t) is given by 

</>µ,(t) = A{-'!?N{the µ th homogeous polynomial term of 

P(</Jµ,-l(t))} }, 

not by 

</>µ,(t) = -'!?N{the µ th homogeous polynomial term of 

P(</>µ,-l(t))}. 

This is required because '!? N { the µ th homogeous polynomial term of 
P(</>µ,-l(t))} is not necessarily £f-valued though it is certainly £1-valued. 
This adjustment is necessary for the convergence procedure. In order to 
carry out the convergence process in §3.2, using Theorem 4.6.4 instead 
of Proposition 3.6.4, we need the property that cp(t) is £f-valued. Thus 
Theorem 4.7.4 is proved. 

We note that the assumption H 2(0, T' N) = 0 is not essential either 
in this case. The same modification as in the CR case is possible. And 
the proof of the Kuranishi versality is also the same as in the CR case. 
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