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§ 1. Introduction 

The study of the geometry of matrices was initiated by L. K. Hua 
in the mid forties [5-10]. At first, relating to his study of the theory of 
functions of several complex variables, he began studying four types of 
geometry of matrices over the complex field, i.e., geometries of rectan
gular matrices, symmetric matrices, skew-symmetric matrices, and her
mitian matrices. In 1949, he [11] extended his result on the geometry of 
symmetric matrices over the complex field to any field of characteristic 
not 2, and in 1951 he [12] extended his result on the geometry of rect
angular matrices to any division ring distinct from lF2 and applied it to 
problems in algebra and geometry. Then the study of the geometry of 
matrices was succeeded by many mathematicians. In recent years it has 
also been applied to graph theory. 

To explain the problems of the geometry of matrices we are inter
ested in, it is better to start with the Erlangen Program which was 
formulated by F. Klein in 1872. It says: "A geometry is the set of 
properties of figures which are invariant under the nonsingular linear 
transformations of some group". There F. Klein pointed out the in
timate relationship between geometry, group, and invariants. Then a 
fundamental problem in a geometry in the sense of Erlangen Program 
is to characterize the transformation group of the geometry by as few 
geometric invariants as possible. The answer to this problem is often 
called the fundamental theorem of the geometry. 

In a geometry of matrices, the points of the associated space are a 
certain kind of matrices of the same size, and there is a transformation 
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group acting on this space. Take the geometry of rectangular matrices 
as an example. Let D be a division ring, and m and n be integers 2 2. 
The space of the geometry of rectangular matrices over D consists of 
all m x n matrices over D and is denoted by Mmxn(D). The elements 
of Mmxn(D) are called the points of the space. Mmxn(D) admits 
transformations of the following form 

(1) 
Mmxn(D) ---, Mmxn(D) 

X t-t PXQ+R, 

where P E GLm(D), Q E GLn(D), and R E Mmxn(D). All these 
transformations form a transformation group of Mmxn(D), which is 
denoted by Gmxn(D). Then the geometry of rectangular matrices aims 
at the study of the invariants of its geometric figures (or subsets) under 
Gmxn(D). For instance, for the figure formed by two m x n matrices X1 
and X2 over D, rank (X1 - X2) is an invariant under Gmxn(D). If rank 
(X1 - X2) = 1, X1 and X2 are called adjacent. L. K. Hua proved that 
the invariant "adjacency" alone is "almost" sufficient to characterize the 
transformation group Gmxn(D) of Mmxn(D), which will be explained 
in detail in the next section. 

§2. Geometry of rectangular matrices 

Fundamental Theorem of the Geometry of Rectangular Ma
trices. Let D be a division ring, m and n integers 2 2, A a bijective 
map from Mmxn(D) to itself. Assume that both A and A-1 preserve 
the adjacency, i.e., for any two points X1 and X2 of Mmxn(D), X1 and 
X2 are adjacent if and only if A(X1) and A(X2) are adjacent. Then, 
when m =I- n, A is of the form 

(2) A(X) = PXuQ + R for all XE Mmxn(D), 

where P E GLm(D), Q E GLn(D), R E Mmxn(D), a is an automor
phism of D, and xu is the matrix obtained from X by applying a to all 
its entries. When m = n, besides (1) A can also be of the form 

(3) A(X) = P t(X7 ) Q + R for all X E Mmxn(D), 

where P, Q, and R have the same meaning as above, and Tis an anti
automorphism of D. Conversely, both maps (2) and (3) are bijections, 
and they and their inverses preserve the adjacency. Q.E.D. 

When D =I- lF2 , the theorem was proved by L. K. Hua [12] in 1951. 
The proof for the case D = lF2 was supplemented by Z. Wan and Y. 
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Wang [24] in 1962. The key tool to prove this theorem is the maximal 
set introduced by L. K. Hua. A maximal set in Mmxn(D) is a maximal 
set of points such that any two of them are adjacent. Thus the concept 
of a maximal set is actually the concept of a maximal clique appeared 
in graph theory twenty years later. Clearly a bijective map A for which 
both A and A- 1 preserve the adjacency carries maximal sets into max
imal sets. The main steps Hua used to prove the above theorem is as 
follows: First he determined the normal forms of maximal sets under 
Gmxn(D). They are 

(4) 
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Then by defining the intersection of two maximal sets which contain two 
adjacent points in common to be a line in any one of them, he proved 
that A induces bijective maps on maximal sets, which carries lines into 
lines and that a line in the maximal set (4) is of the form 

{ ( 

tau 6 bu 

(6) . 

0 0 

ta1n 6 bin ) } 

. t ED , 

0 

where au, a12, ... , a1n, bn, b12, ... , bin E D. When D -f- IF2, by the 
fundamental theorem of affine geometry, after subjecting A to a bijective 
map of the form (2) or (3) (which will be needed only when m = n), 
it can be assumed that A leaves both the maximal sets ( 4) and (5) 
pointwise fixed. Finally it can be proved that A leaves every point of 
Mmxn(D) fixed. 

In [12], from the above theorem L. K. Hua deduced the explicit 
forms of automorphisms, semi-automorphisms, Jordan automorphisms, 
and Lie automorphisms of the total matrix ring Mn(D)(n 2 2) over D. 
For Jordan automorphisms it is assumed that the characteristic of D is 
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not 2, and for Lie automorphisms it is assumed that the characteristic 
of D is not 2 and 3. He also deduced the fundamental theorem of the 
projective geometry of rectangular matrices over D (for detailed proof, 
cf. [17]). When Dis a field, the latter was proved by W. L. Chow [2] in 
1949. In 1965, S. Deng and Q. Li [3] deduced the fundamental theorem 
of the geometry of rectangular matrices over a field from Chow's result. 

Call the points of Mmxn(D) the vertices and define two vertices 
adjacent if they are adjacent points. Then a graph is obtained. Denote 
this graph by r(Mmxn(D)). Naturally, the fundamental theorem of the 
geometry of rectangular matrices can be interpreted as a theorem on 
graph automorphisms of r(Mmxn(D)) [l]. 

§3. Geometry of alternate matrices 

In this section we assume that F is a field and n is an integer 2: 2. 
Let A be an n x n matrix over F. If tA = -A and all entries along the 
main diagonal of A are O's, then A is called an n x n alternate matrix 
over F. Denote by K,n(F) the set of all n x n alternate matrices over F, 
and call it the space of the geometry of n x n alternate matrices and its 
elements the points. Transformations of K,n(F) to itself of the following 
form 

K,n(F) --+ K,n(F) 

(7) X t-t tpxp + K, 

where P E GLn(F) and K E K,n(F), form a transformation group of 
K,n(F), denoted by GKn(F). Let X1 and X2 E K,n(F). If rank (X1 -
X 2) = 2, then X 1 and X 2 are said to be adjacent. Clearly, the adjacency 
is an invariant under GKn(F). Conversely, we have 

Fundamental Theorem of the Geometry of Alternate Ma
trices. Let F be a field of any characteristic, n an integer 2: 4, and 
A a bijective map from K,n(F) to itself. Assume that both A and A- 1 

preserve the adjacency. Then, when n > 4, A is of the form 

where a E F*, PE GLn(F), KE K,n(F), and u is an automorphism of 
F. When n = 4, A is of the form 

(9) A(X) = a tP(X*)u P + K for all X E K,4 (F), 
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where a, P, K, and <7 have the same meaning as above, and X _____, X* is 
either the identity map of JC,4(F) or the following map 

(-:,, X12 X13 Xu) ( 0 
X12 X13 X,s) 

(10) 
0 X23 X24 f-t -X12 0 X14 X24 

-X13 -X23 0 X34 -X13 -X14 0 X34 

-X14 -X24 -X34 0 -X23 -X24 -X34 0 

Conversely, both maps (8) and (9) are bijective, and they and their 
inverses preserve the adjacency. Q.E.D. 

The above theorem was proved by M. Liu [16] in 1966, the proof 
relies also on the concept of maximal sets. When F = (['. and A satisfies 
further conditions, it was proved by L. K. Hua [5] in 1945. The map 
(10) was also discovered by L. K. Hua [5] in 1945. 

This theorem has also applications to algebra and geometry [16], 
and can also be interpreted as a theorem on graph automorphisms [1]. 

§4. Geometry of symmetric matrices 

In this section we assume again that F is a field and n is an integer 
:;:=: 2. Ann x n matrix S over F is called symmetric if ts= S. Denote 
by Sn(F) the set of all n x n symmetric matrices over F, and call it the 
space of the geometry of n x n symmetric matrices and its elements the 
points. The set of all transformations of Sn(F) to itself of the form 

Sn(F) ------, Sn(F) 

(11) X f-t tpxp + S, 

where P E GLn(F) and S E Sn(F), forms a transformation group of 
Sn(F), denoted by GSn(F). Let X1,X2 E Sn(F). When rank (X1 -

X 2 ) = 1, then X 1 and X 2 are said to be adjacent. Clearly, the adjacency 
of two points in Sn(F) is an invariant under GSn(F). Conversely, we 
have ' 

Fundamental Theorem of the Geometry of Symmetric Ma
trices. Let F be a field of any characteristic and n be an integer :;:=: 2; 
when F is of characteristic two and F =/= JF2 we assume further that 
n :;:=: 3. Let A be a bijective map from Sn(F) to itself and assume that 
both A and A-1 preserve the adjacency. Then unless n = 3 and F = JF2 , 

A is of the form 

(12) A(X) = a tpxa P + S for all XE Sn(F), 
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where a E F*, PE GLn(F), SE Sn(F), and er is an automorphism of 
F. When n = 3 and F = IF2 , the bijective map 

( Xn X12 X13 ) ( Xn X12 

'J' ) X12 X22 0 I-+ X12 Xzz 

X13 0 X33 X13 0 X33 

(13) 

( ) ( Xn X12 X13 xu+l X12+l X,s,+l ) 
X1z x22 1 I-+ X12+l x22 

X13 1 X33 x13+l 1 X33 

from S3 (IF2 ) to itself preserves also the adjacency and A is a product of 
maps of the form (12) or (13). Q.E.D. 

When F = <C and A satisfies further conditions, the above theorem 
was first proved by L. K. Hua [5] in 1945. In 1949 he [11] proved the 
theorem for any field of characteristic not two by the method of con
structing involutions. But there are some gaps in his paper [11] which 
the author could not fill in. Without any restriction on the characteristic 
of F the author [18,19] proved the above theorem. In the proof, besides 
the maximal sets which were defined in the same way as in the geometry 
of rectangular matrices and were called the maximal sets of rank 1 by 
the author, the maximal sets of rank 2 were also introduced. At first, 
the distance d(X, Y) between two points X and Y of Sn(F) is defined 
to be the least integer d such that there is a sequence of d + 1 points 

of Sn(F) for which any pair of consecutive points Xi and Xi+l (i = 
0, 1, 2, ... , d - 1) are adjacent. Assume that F is of characteristic not 
two. Then a subset£ of Sn(F) is called a maximal set of rank 2 if (i) £ 
contains a maximal set of rank 1, denoted by M, (ii) for any S E £ \ M 
and M EM, d(S, M) = 2, and (iii) for any TE Sn(F), d(T, M) = 2 
for all M E M implies T E £. When F is characteristic two, the 
definition of maximal sets of rank 2 should be modified [19]. Clearly, if 
A is a bijective map of Sn(F) for ~hich both A and A- 1 preserve the 
adjacency, then A carries maximal sets of rank 1 into maximal sets of 
rank 1 and maximal sets of rank 2 into maximal sets of rank 2. The 
normal form of maximal sets of rank 1 under GSn(F) is 

(14) 
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and the normal form of maximal sets of rank 2 under GSn(F) is 

(15) 

0 

X1n ) } I xn,x,,, ... ,x,n E F . 

Then maximal sets of rank 2 are used in the proof of the above theorem 
instead of the maximal sets used in the proof of the fundamental theorem 
of the geometry of rectangular matrices. The case when n = 2, Fis of 
characteristic two, and F -/- lF2 still remains open. 

When F is of characteristic not two, from the above theorem we 
can deduce the explicit form of the automorphisms of the Jordan ring 
of n x n symmetric matrices over F [18] and the fundamental theorem 
of the dual polar space of type Cn due to W. L. Chow [2] ( cf. [15], [23]). 

Call the points of Sn ( F) vertices. Two vertices are said to be ad
jacent if they are adjacent as points. Then we obtain a graph, denoted 
by I'(Sn(F)). The fundamental theorem of the geometry of symmetric 
matrices can naturally be interpreted as a theorem on graph automor
phisms of the graph I'(Sn(F))[18, 19]. 

It is interesting that when F is a finite field of characteristic not two 
and n 2 2, and when F is a finite field of characteristic two and n 2 3, 
besides I'(S3(lF2 )), all I'(Sn(F)) are not distance-transitive. But the 
author [20] proved that r(S3(JF2 )) is distance-transitive, hence, distance
regular, and isomorphic to the graph of the folded 7-cube. 

Now assume that Fis of characteristic not two. Let X 1 , X 2 E Sn(F). 
When rank (X1 - X2) = 1 or 2, we say that X1 and X2 are adjacent. 
Then we obtain also a graph, denoted by I'*(Sn(F)). From the fun
damental theorem of the geometry of symmetric matrices we can de
duce that the graph automorphisms of I'*(Sn(F)) are of the form (12) 
(cf. [18]). When F = lFq, the graph I'*(Sn(lFq)) was defined by Y. Egawa 
[4], who proved that it is distance-regular and computed its parameters. 

§5. Geometry of Hermitian matrices 

Let D be a division ring which possesses an involution. Denote the 
involution of D by -, i.e., 

-:D -+ D 

(16) a f---+ a, 
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is a bijective map which has the following properties: for any a, b E D 
we have 

(17) 

(18) 

and 

(19) 

Let 

(20) 

a 

a+b, 
ba, 

a. 

F={aEDla=a}. 

Define the trace map 

Tr:D----. F 

(21) a f--+ a+a 

and the norm map 

N:D ----. F 

(22) a f--+ aa. 

We make the following assumptions: 
Assumption I F is a proper subfield of D and is contained in 

the center of D. 
Assumption II The map Tr is surjective. 

\Ve remark that Assumption I excludes the case when D is a field 
and - is the identity map. 

Let n be an integer 2: 2. An n x n matrix H over D is called 
hermitian if t H = H. The space of the geometry of hermitian matrices 
over D, denoted by 1in(D), is the set of all n x n hermitian matrices 
over D, whose elements are called the points. The set of transformations 
of 1in(D) to itself of the form 

1in(D) ----, 1in(D) 

(23) X f--+ tPXP+H, 

where P E GLn(D) and H E 1in(D), forms a transformation group of 
the space 1in(D), which is denoted by GHn(D). Let X1, X2 E 1in(D). 
When rank (X1 - X 2) = 1 then X 1 and X 2 are said to be adjacent. 
Clearly, the adjacency of two points is an invariant under GH;,(D). 
Conversely, we have 
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Fundamental Theorem of the Geometry of Hermitian Ma
trices. Let D be a division ring which possesses an involution and 
assume that Assumptions I and II hold. Let n be an integer ~ 2 and 
when n = 2 we assume that D is a field. Let A be a bijective map 
from 1in(D) to itself and assume that both A and A-1 preserve the 
adjacency. Then A is of the form 

(24) A(X) = ci P xu P + H for all X E 1in (D), 

where a E F*, PE GLn(D), H E 1in(D), and a is an automorphism of 
D which commutes with the involution - of D. Ifwe assume further that 
the norm map N is bijective, then we can assume that a= 1. Q.E.D. 

The above theorem was proved by the author [21,22] recently. In 
the proof, besides the maximal sets of rank 1 and rank 2, which were 
defined in a similar way as those in the geometry of symmetric matrices, 
the reduced maximal sets of rank 2 are also introduced. The normal 
form of maximal sets of rank 1 under GHn(D) is 

(25) 

and the normal form of maximal sets of rank 2 under GHn(D) is 

{ ( 

X11 

X12 

(26) ~ 

X1n 0 

X1n) } r xnEF,xu, ... ,x,.ED. 

If M is a maximal set of rank 1, then there is a unique maximal set 
,C of rank 2 containing M. For any M containing the zero matrix 0, 
,C has an additive group structure with respect to matrix addition, M 
is its subgroup, and the set of cosets of ,C relative to M is called a 
reduced maximal set of mnk 2. Clearly, the reduced maximal set of rank 
2 from ,C are all the maximal sets of rank 1 contained in £. Hence, 
if we assume that A(O) = 0, then A carries reduced maximal sets of 
rank 2 to reduced maximal sets of rank 2. The reduced maximal sets of 
rank 2 are used in the proof of the above theorem when n ~ 3 as the 
maximal sets in the proof of the fundamental theorem of the geometry of 
rectangular matrices. When n = 2 and D is a field, the theorem can be 
proved by studying three maximal sets of rank 1 which have a nonempty 
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intersection [22]. The case when n = 2 and D is not a field still remains 
open. 

When D = (C and A satisfies some other conditions, the above 
theorem was proved by L. K. Hua [5] in 1945. When D = 1Fq, it was 
proved by A. A. Ivanov and S. V. Shpectorov [14] in 1991. 

The above theorem has also applications to algebra [22] and geom
etry [23], and can also be interpreted as a theorem on graph automor
phisms [22]. 
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