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On Spectral Theory for Schrodinger 
Operators with Magnetic Potentials 

Bernard Helffer 

Abstract. 

In this survey, we want to analyze the effect of the presence of a 
magnetic potential on the spectrum of the Schroclinger operator with 
magnetic field. We consider three connected problems: 
- study of the bottom of the spectrum 
- study of the bottom of the essential spectrum 
- study of the decay of the eigenfunctions. 
We think this survey is complementary to other presentations of the 
subject in [12], [20] and [49]. 

§1. Qualitative Theory 

Let V E C00 (Rn) be an electrical potential s.t. 

(1.1) V 2='. C for some constant C, 

and let A= (A1, ... , An) be a magnetic potential in C 00 (Rn, Rn). We 
denote by 

(1.2) 

the corresponding 1-form and by 

(1.3) as= daA = Lbjk dxj I\ dxk 
j<k 

the corresponding magnetic 2-form. 
The Schrodinger operator with magnetic field is usually defined by 

(1.4) PA,v(h) = L (hDx; -Aj)2 + V 
1::,;j::,;n 
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114 B. Helffer 

and we shall denote by Pf, v the Dirichlet realization in a connected 
open set n with bounded regular boundary (cf. [57]). If the operator is 
with compact resolvent, for example (see also the results in Section 2) if 

(1.5) V tends to oo, as lxl - oo 

we know by the Kato's inequality that ( cf. [12]) 

(1.6) >.~A,v(h) 2: >-~0 ,v(h) 

where >.~A,v(h) is the first eigenvalue of PSl.,v-

In the case when P;l_, v is not with compact resolvent, one easily get 

(1.7) inf Sp P;l., V 2: inf Sp pr V 

observing that it is true (cf. (1.6)) when Vis replaced by Ve= V +clxl 2 

and that 

(1.8) inf Sp P;l_ v, - inf Sp P;/_ v , " , asc-0 (c>0). 

Finally let us observe that due to the characterization of the essential 
spectrum by Persson [54] (see also Agmon [1]) we have also for the 
essential spectrum 

(1.9) infEssSpP:/.,v 2: infEssSpPrv-

We are now interested to the cases where we have equality. Let us 
first recall the following result due essentially to Lavine-O'Caroll [41], 
(see also [21]). 

Proposition 1.1. Leth > 0 be fixed and n as above; let us assume 
that we have the assumptions (1.1)-(1.5); then the following properties 
are equivalent: 

(i) >.~A,v(h) = >-~,o,v(h) 
(ii) P;l_,v and P0~v are unitary equivalent. 

(iii) (a) fJB = 0 in CT and 
(b) for all closed path inn, (21rh)- 1 f, WA E-Z. 

Sketch of the proof. If uo is the first eigenfunction of Pf?v(h) at-, 
tached to the eigenvalue >.~ ( h), ( we know that u0 does not vanish in f2 
and we can then assume that u0 > 0 in n and lluoll = 1) we have the 
following identity 

(1.10) ll(h'v - iA- h('vuo/uo))</>11 2 

= ((P;/.(h) - >.~)</>I</>) V<f> E Cg"(O) 
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The first consequence is of course that we get another proof of (1.6). 
Let us briefly sketch the proof of (i) • (iii) (which is the non trivial 
part of the statements). From (1.10) we deduce, using a minimizing 
sequence tending in L2 to a normalized eigenfunction of P;f,v(h) uA 

corresponding to AA = Ao 

(1.11) (h'\l - iA - h('\luo/uo))uA = 0 in V'(O). 

We rewrite (1.11) on the form 

(1.12) (h'\l - iA)cpA = 0 in V'(n), with 'PA= UA/uo. 

It is easy to prove that 

(1.13) inn. 

By differentiation we get 'PAdWA = 0 and finally dwA = 0. In the case 
when n is simply connected we get the existence of 0 such that WA = d0 
and we have immediately 

!, WA = !, d0 = 0. 

In the general case, we use (1.12) which can be written locally 

(1.14) 

Hence l'P A I is locally constant ( and then constant by connectedness) and 
because 'PA is univalued, we get (iii)b- (iii) • (ii) and (ii) • (i) are much 
easier. 

Remark 1.2. The same result can be obtained under the weaker 
assumption (replacing (1.5)). 

(1.15) 
The bottom of the spectrum of Pf v is an isolated eigenvalue A~ 0 v, , , , 

with (i) replaced by the apparently different 

(i)' inf Sp P;{, v = A~,o, v · 

We observe indeed that (1.15) implies 

(1.16) infEssSpPJ:v > A~,o,v· 

Using (1.16) and (1.9), we get that if (i)' is satisfied then there is at least 
one eigenvalue A~A,V and the proof goes after in the same way. 
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§2. More on the essential spectrum 

In this section, we present essentially the results of Helffer-Mohamed 
([22], [23]) with more recent improvements due to Iwatsuka [34], 
Mohamed-Nourrigat [47], Meftah [44] .... We consider an electric po­
tential of the form 

p 

(2.1) V(x) = L V"j(x) 2 + V0 (x) 
j=l 

and a C 00 magnetic potential WA = Lj Aj dxj. Because V is semi­
bounded we know that PA, v admits a unique selfadjoint realization on 
L2 (1Rn) (cf. Schechter [58], Avron-Herbst-Simon [3] or Reed-Simon [57]). 
Moreover C0 (1Rn) is dense in D(PA,V ). In Avron-Herbst-Simon [3], 
Dufresnoy [13], Helffer-Mohamed [22], sufficient conditions were given 
which imply compact resolvent. These sufficient conditions are not far 
to be necessary (cf. Dufresnoy [13] and Iwatsuka [34], and also Remark 5 
in Mohamed [45]). We shall give here two extensions of the basic result 
given in [22]. It is probably possible to establish a unique statement 
containing the two results. For the sufficient conditions we recall that it 
is sufficient to prove (cf. Avron-Herbst-Simon [3] or Iwatsuka [34]) the 
following inequality 

(2.2) 

where¢ is a continuous function tending to +oo as lxl tends to oo. For 
all r E Z, we introduce 

p r n r-1 
(2.3) mr(x) = 1 + IVo(x)I + L L l8~V"j(x)I + L L l8~bijl-

j=l lal=O i,j=l lal=O 

The following theorem is due to Meftah [44] and is an improvement 
of [22] (see also Mohamed-Raikov [49] or Simon [61]): 

Theorem 2.1. Let us assume that (2.1) is satisfied and that there 
exists r EN, 0 ::; 15 < 1 and c1 > 0 such that 

P n 

(2.4) I grad Vol+ L L l8~V"j(x)I+ L L l8~bijl::; c1mr(x)1H, 
j=l lal=r+l i,j=l lal=r 

then there exists a constant c2 s.t. 

(2.5) 
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where k = (1- 8(2r+1 - 3))/2r. 

Corollary 2.2. If we assume in addition that 

(2.6) mr(x) -t +oo as lxl -too 

and 

(2.7) 8 < l/(2rH - 3) 

then PA, v is with compact resolvent. 

Remark 2.3. The case 8 = 0 corresponds to the result given in [22]. 
As r = 1, llj = O, n = 2, Corollary 2.2 says that, if lb12(x)I -t oo as 
lxl -too and if there exists C > 0 and 8 < 1 s.t. lv'b12I :S C(lb12l1+o+1), 
then PA,V is with compact resolvent. The counterexamples given by 
lwatsuka [34] and Dufresnoy [13] correspond to the case where lv'b12I is 
of the order of lb12l2. 

The proof is an adaptation of the proof given in [22] ( cf. also Helffer 
(20] or Mohamed-Raikov [49] for a presentation) and is based on ideas 
coming from a proof given by J.J. Kohn [37] for the hypoellipticity of 
Hormander's operators. 

Remark 2.4. As observed in Mohamed-Nourrigat [47], the choice 
of V of the form (2.1) is not necessary. We refer also to Guibourg [16] 
for other proofs in this direction or to the surveys of Mohamed-Raikov 
(49] and Nourrigat (51]. Other generalizations are given in Iftimie (32]. 

Remark 2.5. Necessity. Under the assumption (2.4), Corollary 2.2 
gives in fact a necessary and sufficient condition for compactness of the 
resolvent. Indeed if there exists a sequence of points in IRnyk such that 
IYkl tends to oo and s.t. mr(Yk) is bounded, then (taking possibly a sub-

. sequence) mr(x) remains bounded in a union of disjoints balls B(yk, C) 
and using the proof (see p.102-103 in Helffer-Mohamed [22]) charac­
terizing the essential spectrum we get the existence of some essential 
spectrum. Let us also observe that an assumption like (2.4) permits the 
control of the variation of mr(x) in suitable balls and the comparison of 
the above statements with the statements oflwatsuka [34]. 

In order to characterize the essential spectrum of PA, v in the case 
when mr(x) does not tend to oo we introduce stronger assumptions in 
place of (2.4). Let us first consider a slowly varying function <p on !Rn 
that satisfies for some -r, c > 0 the conditions 

(2.8a) <f>(x) ~ 1 
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(2.8) Ix - YI < rcp(x) ==> c-1¢(y) ~ ¢(x) ~ ccp(y) 

and 

(2.9) ¢(x) -+ +oo as lxl-+ oo 

and let us assume now that our potentials have a polynomial behavior 
in the following sense 

p 

(2.10) I grad Vol + L L l8~Vj(x)I 
j=l lal=r+l 

i,j=l r:51al:5(r+2) 

We then introduce the following "limit set" at oo. 

Definition 2.6. B00 is described as the set of the 

z = (vo, (vf)1al:5r,j=l, ... ,p, (Bm1al:5(r-1),19:5j:5n) 

s.t. there exists a sequence y,, (v EN) with the following properties: 

(2.lla) 

(2.llb) 

(2.llc) 

(a) 

(b) 

(c) 

IYvl-+oo 

8~Vj(y,,)-+ (vf) 

8~bii(y,,)-+ (Bt) 

as lvl-+ oo 

as lvl-+ oo 

as lvl-+ oo 

We now associate to each z E B00 

- an electric potential: 

(2.12a) Vz(x) =vo+ L ( L xavf/a!)2, 
1:5j:5p lal:5r 

- a magnetic potential: 

(2.12b) (Az(x))i = L ( L xa B&xi/(a! · (2 + lal)), 
1:5j:5n lal:5(r-1) 

and the corresponding Schrodinger operator p Az 'Vz. 
We then introduce the following subset of R 

(2.13) Boo= U Sp(PAz,vJ. 
zEB00 
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The theorem of [22] gives the link between the union of the spectra 
of these "limit Schrodinger operators" and the essential spectrum of 
PA,V• This is quite natural if you remember the statement of Persson's 
Theorem (see [54] or Agmon [1]) 

(2.14) infEssSp(PA,v) = sup infSp(P!iK) 
KETC ' 

where K, is the family of the compacts in ~n or the second version 

infEssSp(PA,V) = limR-++oo infSp(Pri>B(O,R)) 

Theorem 2.7 (cf. Helffer-Mohamed [22]). Under assumption 
(2.10), we have 

(2.15) EssSp(PA,V) = Boo-

Actually we shall give in Section 6 a sketch of the unpublished result 
of Helffer-Mohamed [23] saying that 

Theorem 2.8. 

(2.16) S00 is closed in R 

With this theorem we can effectively give a reasonable answer to the 
question of the equality 

inf EssSp( PA, v) = inf EssSp( Po, v). 

But first we can understand from a new point of view the inequality 
(1.9). For this, we compare B00 (A, V) and B00 (0, V). We observe first 
of all that 

(2.17) 

If we use what we know for the spectrum (cf. (1.7)), we get from (2.16) 
the existence of z E B00 (A, V) s.t. 

inf S00 ( A, V) = inf Sp PA. ,v. 2: inf Sp Po, v. 

Then (2.17) implies 

(2.18) inf S00 (0, V) :S infSpPo,v. :S inf S00 (A, V). 

because z E B00 (A, V) C B00 (0, V). In order to simplify we just discuss 
the case where V = 0 and we get 
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Proposition 2.9. Under assumptions (2.1), (2.10) with V = 0. 
Then inf EssSp P A,o = inf EssSp Po,o if and only if there exists a se­
quence Yv s.t. IYvl tends to oo and l8~bii(Yv)I -+ 0 as lvl -+ oo for 
lal ::; (r - 1) and 1 ::; i < j ::; n. 

§3. Semi-classical results 

3.1. The Schrodinger case 

In [21], we gave an estimate ash tends to O of ,\~A,v(h) - ,\~0 ,v(h) 
when condition (iii) is not satisfied. Under suitable assumptions on V 
(V has a unique non degenerate minimum in 0 1 at a point x0 , V(xo) = 0 
and V creates a sufficiently strong barrier around 8 0), we prove that a 
magnetic potential (with O corresponding <rB inn) creates a splitting of 
the type 

(3.1) ,\~ A v(h) - A~o v(h) 
' ' '' 

= h112 exp(-Si/h)(a(h)(l - cos(i wA/h)) + O(exp(-c)/h))) 

where 

• a(h) is a symbol (independent of A) which is (under suitable 
generic assumptions) elliptic, 

• c is strictly positive, 
• 81 is the minimal length of a closed path starting of Xo and not 

homotop to the trivial path in n. 

Here the length is measured according to the Agmon metric V • dx2 • The 
sentence "creates a sufficiently strong barrier" means mathematically 
that 

81 < 2So 

where So is the Agmon distance of x 0 to IR.2 \ n. 
The proof is based on a comparison of ,\A(h) with a problem (in­

dependent of A) on the covering of n. Another important fact in the 
proof is the decay of the eigenfunctions which is controlled by Agmon 
estimates (cf. Agmon [1], Helffer-Sjostrand [28] and Section 5). As a 
consequence of these estimates we get also by perturbation 

(3.2) Ao,A,v(h) - Ao,o,v(h) 

= h112 exp(-Si/h)a(h)((l - cos(i wA/h)) + O(exp(-c)/h))) 

1 We have assumed to simplify that n was the complementary of a disc in R2 
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where Ao,A, v is now attached to the problem in Rn. 

3.2. The direct effect 

121 

When 2S0 < S1 , it is explained in Helffer [21] how to produce under 
suitable assumptions a direct effect of the magnetic field whose order is 
effectively exp(-2So/h). 

3.3. The paramagnetic inequality 

As a first application we obtain (following [21]) a new version of 
the counterexample (given by A vron-Simon [7]) to a conjecture on the 
existence of a paramagnetic inequality due to Hogreve-Schrader-Seiler 
[30] and we think that this gives also some interesting information in 
the discussion around the existence of the Bohm-Aharonov effect (cf. [2], 
[54], [8], and the references in this paper). We treat the case of dimension 
2 but · the arguments are more general in nature. Let us consider the 
Dirac operator in R2 with a magnetic field 

(3.3) 
2 

D(A)(h) = L ai(hDx; - Aj), 
j=l 

where the ai are the Pauli matrices 

which is a selfadjoint operator on £ 2 (R2 ) ® (C2 • 

Then the Pauli operator is classically defined as the square of the 
Dirac operator 

(3.4) P(A)(h) = (D(A)(h)) 2 = t,_(hDx; - Ai)2 • Id+ h ( ! -~) 
with B(x) = (8,,,2 A1 - 8,,, 1 A2 ). If V satisfies (1.1), we are interested in 
the validity of the paramagnetic inequality 

(3.5) infSp((D(A)(h))2 + V •I)~ inf Sp(-h2a + V). 

If ,\0 ,0 , v ( h) denotes the first eigenvalue of ( -h2 a + V) and if we denote 
by ,\! v the first eigenvalues of ((D(A)(h)) 2 + V • I), the question is to 

' 
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know if the following inequality is true: 

(3.6) iif .Xlv(h) ~ .Xo,o,v(h) 

Let us recall that in Section 1 we have mentioned the opposite inequality: 

(3.7) .Xo,A,v(h) 2: .Xo,o,v(h) 

It is then an easy corollary of (3.2) that, under the same assumptions, 
(3.6) is false for a convenient choice of A and h small enough. We ob­
serve indeed that according to the decay properties of the corresponding 
eigenfunctions, we have 

.Xlv(h)- .X~,v(h) = O(exp(-2(So - c)/h)), Ve> 0 

which is a smaller effect that the effect due to the flux (this was the 
argument we use to go from (3.1) to (3.2)). 

3.4. The Dirac operator in dimension 3 

We consider the Dirac operator with magnetic potential A 

3 

(3.8) (L O!j(hD:Z:j -Aj) + ,B + V) 
j=l 

in L2 (1R3 ; C4 ), where (aj)j=l,2,3 and ,B = a 4 are the Dirac matrices, 
(Aj)j=l,2,3 is a magnetic vector potential and Va scalar potential. Let 
us assume that: 

limsup V(x) < 1 
l:z:1--+<X> 

which implies that the spectrum is discrete in the neighborhood of 0. 
We assume also that n is the complementary of an infinite cylinder C 
in the X3 direction and that B = 0 in n. We assume that V creates 
a sufficiently strong barrier around C and that V has a unique non­
degenerate extremum in n at some point say xo = (0, 1, 0) and that 
V(x0 ) = 1. Finally we assume generical assumptions onV (unique "non 
degenerate" minimal path around C starting from x 0 ). In the case where 
A is zero we know from X.P. Wang [64] that due to the Kramers theorem 
all the eigenspaces appear with even dimension (see also [53]). Near O the 
"first" eigenvalue .Xo(h) is determined modulo O(h2 ) by some quadratic 
approximation and separated from the rest of the spectrum by (h/C) 
(cf. [64]). Moreover the multiplicity is exactly 2. The argument fails as 
the magnetic field is introduced and the purpose of the work of B. Parisse 
[53] was to study the effect of the magnetic field on the splitting which 
by perturbation arguments will in this context be "exponentially small". 
B. Parisse proves the following theorem: 
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Theorem 3.1. If >-.0 (h) is the double eigenvalue of D0 (h), then 
for h small enough, the operator DA ( h) admits two eigenvalues >-. ! ( h) 
satisfying to 

(3.9) >-.!(h) = )..0 (h) + h112 exp(-Si/h)(SR(c(h). [exp(±i<fa/h) - 1]) 

+ O(exp(-c)/h))) 

where c > 0, c(h) = a(h) +i b(h) is a complex elliptic symbol, <fa= f, WA, 

c > 0 and S1 is the minimal length of a closed path starting of x 0 and not 
homotop to the trivial path inn. Here the length is measured according 
to the Agmon metric (1 - V 2 )+dx2 • 

Modulo some technicalities due to the fact that we now deal with 
systems, the scheme of the proof is the same as for Schrodinger. It is 
more delicate to prove that c( h) -/- 0 and this a consequence of the WKB 
constructions. 

Let us remark that as a consequence of (3.9) we get the following 
formula for the splitting 

(3.10) >-.!(h) - \ 4(h) 

= -2h112 exp(-Si/h) · (b(h) sin(<fa/h) + O(exp(-c)/h))) 

It would be very interesting to prove that generically b(h) is elliptic 
or that under additional symmetries b(h) is exponentially small. As 
suggested by B. Parisse it would also be interesting to look to the non 
relativistic limit where we will find a problem similar to the case treated 
in Subsection 3.3. 

§4. The case of systems 

(after Hebbar, Kuwahara, Manabe, Shigekawa ... ) 

4.1. Introduction 

The idea to look at systems is very natural and physically motivated 
(see for example T.T. Wu and C.N. Yang [65]). But 0. Hebbar found 
more recently that R. Kuwahara treats the case with V = 0 in 1982 [40]. 
As we shall see, the case V -/- 0 is not essentially more difficult. Anyway 
the result of Hebbar [18] is a little more general that the result of [40] 
also in the case V = 0. 

4.2. The results of Kuwahara revisited 

Let (M, g) be a compact n-dimensional C 00 manifold without bound­
ary and E a be a complex vector bundle over M with rank r. We 
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assume that E has a C 00 Hermitian structure ( •). Let us denote by 
A 0 (M, E) = C 00 (E) the set of the C 00 sections of E. More generally we 
denote by AP(M) the set of the C 00 p-forms on M and by AP(M, E) the 

set of E-valued C00 p-forms on M. Let d: A 0 (M,E) -t A 1(M,E) be a 
linear connection on E compatible with the Hermitian structure. There 
is also a natural extension of d = do on the p-forms given by 

(4.1) 

for alls E A 0 (M, E) and t E AP(M). There is a natural inner product on 
AP(M, E) and we can then define the L 2 p-forms with a natural Hilber­
tian structure. The Laplace operator on the p-forms is then defined 
by: 

(4.2) 

We shall concentrate on: L = L0 and will write sometimes L(E, d) 
to mention the dependence with respect to the fiber bundle and the 
connection. Of course Lis an elliptic operator (of order 2) with compact 
resolvent and admits as spectrum an increasing sequen~e of eigenvalues 
Aj ( E, d) tending to +oo and because the Laplacian is positive, we have of 

course >.o(E, d) ~ 0. If E = M x C, and if we take the trivial connection 
d, we get the usual spectrum of the Laplace-Beltrami operator >.j(M) 
with >..o(M) = 0. The problem we want to address is now: Under which 

conditions on E and d do we have >.0 ( M) = >.0 ( E, d), or more generally 

>.o(M) = Aj(E, d) for j = 0, ... , k - 1 for some k. Let us remark that 
if a section s satisfies Ls = 0 (we shall say that s is harmonic) then it 
satisfies ds = 0 (that is s is a parallel section). Kuwahara proves the 
following proposition (Proposition 3.1 in [40]): 

Proposition 4.1. (i) If L has a zero eigenvalue with multiplicity 
k (k Sr) then 

(4.3) ( Whitney sum), 

where Tk is a trivial bundle of rank k. 
(ii) If L has zero eigenvalue with multiplicity r, then E is a trivial bundle 
and the curvature n of the connection vanishes. 

The proof is a direct consequence of the fact that an orthonormal 
system of k independent eigenfunctions Uk gives actually a system of 
k independent sections giving a natural orthogonal basis for a trivial 
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subbundle of E. The second point is as in the study of the scalar Bohm­
Aharonov effect. 

The second result given in [40] is the following: 

Proposition 4.2. If L has zero eigenvalue, then Sp(M,g) C 

Sp(M,g,E,d). Moreover, if L has zero eigenvalue with multiplicity r, 
then Sp(M,g, E,d) = r · Sp(M,g) where r · Sp(M,g) = Sp(M,g) u · · · u 
Sp(M,g) (r times). 

Proof. Since OE Sp(M,g,E,d), there is a non zero fin C 00 (E) 
s.t. 

(4.4) df =0. 

We have already seen that it does not vanish anywhere. Suppose .X E 
Sp(M,g) and let</> be a non zero eigenvector 

(4.5) 

Then, using elementary computations, (4.4) and (4.5), we get that s = 
</>f is an eigenvector for L. The other part is also easy. 

Actually, 0. Hebbar will deduce these results from the following: 

Lemina 4.3 (see [18]). If Lhasa zero eigenvalue with multiplicity 
k (k :Sr) then the connection split according to the decomposition: 

E = rt (f)rk 

J = d1 (f) J2 
( orthogonal decomposition) 

As a consequence we have a direct decomposition of the Laplacian 

- .L - -L(M, g, E, d) = L(M, g, rk , d1) (f) L(M, g, rk, d2) 

with 
Sp(M, g, E, d) = Sp(M, g, E, d1) U Sp(M, g, E, d2) 

and moreover L(M, g, rk, d2 ) has zero eigenvalue with multiplicity k. 
Then we get the following improvement of Proposition: 

Proposition 4.4. If L has a zero eigenvalue with multiplicity k 
(k :Sr) then 

(i) E = rt (f) rk ( Whitney sum), d = d1 (f) d2 
(ii) L(M, g, rk, d2) has zero eigenvalue with multiplicity k 
(iii) rk is a trivial bundle and the curvature of d2 vanishes 
(iv) Sp(L(M,g,E,d) ::> SpL(M,g,rk,d2) = kSp(M,g). 
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To go further, we have to analyze more precisely and introduce the 
notion of gauge transformations. Recall that a gauge transformation 
on a vector bundle E with the Hermitian structure is a diffeomorphism 
cl>: E -t E which maps each fiber Ex isometrically and linearly onto 
itself. For a linear connection don E, we get a new connection cl>*d = 
cp- 1J.cI>. Two connections d and d' on E are called gauge equivalent to 
each other ( and we write d ~ d') if there exists a gauge transformation 
such that: d' = cl>*d. Of course, we have in this case 

Sp(L(M,g,E,d) = Sp(L(M,g,E,d'). 

The problem we are looking at is to give now a good characterization 
of two gauge equivalent connections. Kuwahara [40] gives the following 
criterion: 

Proposition 4.5. Let E be a line-bundle on M then d ~ d' if 
and only if the corresponding connection 1-forms w and w' satisfy (w -
w')/21r 2 is an integral 1-form. 

This was already observed in Section 1. For a general fiber bundle, 
there is a similar criterion using the notion of matrix of holonomy at­
tached to a connection and a closed path 'Y· Using the theorem that a 
connection with O curvature is locally gauge-equivalent to 0, it is natural 
to attach to each curve 'Y a class of equivalence of unitary matrices in 
U(Cr): Uy = I. We have then the following criterion (cf. for example 
[18] but it is probably well known in Topology): 

Proposition 4.6. Let E be a trivial hermitian fiber bundle on M 
and let d0 be the connection associated to the 1-form O; then d ~ d0 if 
and only if the corresponding connection 1-form w 

(a) w has 0-curvature 

and 

(b) Uy = I for any closed path 'Y. 

As a conclusion of this subsection, we get following Hebbar [18] the 
following extension of the results in [40]: 

2 which is a global 1-form on M 
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Theorem 4.7. Let Ebe a Hermitian bundle over (M,g), and J a 
linear connection on E which is compatible with the Hermitian structure. 
Then the following properties are equivalent: 

(i) L has a zero eigenvalue with at least multiplicity k (k :S r) 

(ii) E = T,;-E9Tk ( Whitney sum), J = d1 ffid,2 with3 d2 ~ do where do 
denotes the canonical connection on the trivial bundle Tk whose 
I-form is 0. 

(iii) Sp(L(M,g,E,J) ::i kSp(M,g) 

4.3. Extension to the Bochner-Laplace-Schrodinger 
equation 

Here we explain the results of [18]. More precisely we shall explain 
how to deduce the results with non zero V from the corresponding results 
with V = 0. But note that it is possible because we are on a compact 
manifold. For other cases (boundary problems) we must of course take 
the problem directly (as Hebbar did). The theorem obtained by Hebbar 
[18], generalizing results of ([21], [40], [59], [43]), is the following (we 
limit ourselves to the case when Mis compact): 

Theorem 4.8. Let Ebe a Hermitian bundle over (M,g), and J a 
linear connection on E which is compatible with the Hermitian structure. 
Let V be a c= potential on M. Let >..0 ( M, g, V) be the first eigenvalue 
of the Laplace-Beltrami-Schrodinger operator on M: - ~ + V. Then 
the fallowing properties are equivalent: 

(i) L + V has >..0 (M,g, V) with at least multiplicity k (k :Sr). 
(ii) E = T;; E9 Tk ( Whitney sum), J = J1 E9 J2 with ( cf. preceding 

Footnote) d,2 ~ do where do denotes the canonical connection on 
the trivial bundle Tk whose I-form is 0. 

(iii) Sp(L(M,g, V,E,d)) ::i kSp(M, V,g) 

Remark 4.9. In particular, if k = r, we get the equivalent of the 
theorem given in Section 1. 

Corollary 4.10. Let Ebe a Hermitian bundle over (M,g) with 
rank r; then the following properties are equivalent: 

(i) L + V has >..0 (M,g, V) as an eigenvalue with multiplicity r. 

(ii) E is a trivial bundle and J ~ do where do denotes the canonical 
connection on E whose I-form is 0. 

3 and Proposition 4.6 gives a good criterion to verify the property 
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(iii) L(M, g, V, E, d) is gauge equivalent to (-~ + V). Id defined on 
the trivial fiber bundle M x (7. 

The equivalence of (i) and (iii) was proved in [43]. 

Sketch of the proof (following partially [18]). We extend the Lavine­
O'Caroll formula to this case. Fors E C00 (E), we have the identity 

(4.6) lids - (duo/uo) Q9 sll 2 = (L(M,g, V,E,d)s Is) - >.o(M,g, V)llsl\ 2 

where we take the £ 2-canonical scalar products. From this, we get that 
an eigenfunction Sj of L(M,g, V,E,d) with eigenvalue >.o(M,g, V) has 

the property that ( s j / u0 ) is parallel for d. This was the essential point 
to get all the statements in Subsection 4.2. 

Remark 4.11. It is possible to quantify this result by semi-classical 
methods in the spirit of the results of Section 3. The problem is studied 
by Hebbar in [18]. 

§5. Some decay results for the eigenfunctions 

5.1. Decay at oo 

We want to present in this subsection some results on the decay at 
oo (or locally as the Planck constant tends to 0) of the eigenfunctions 
of PA,V· For the first result, we consider the simpler case where A and 
V are polynomials with 

(5.1) V 2: 0. 

As in Helffer-Nourrigat [24] and also Feffermann [12] we introduce 

(5.2) M(x) = L 1aav(x)\1/(lal+2) + L \8abj,k(x)\1/(lal+2)_ 
a a,j,k 

In this simpler case, the compactness criterion given in Corollary 2.2 
was obtained in [24], where it is also proved that, if M(x) tends to oo, 
every solution in S'(JR.n) of H'lj; = >.'lj;, >. > 0 is actually in S(JR.n). In 
the case when V(x) itself tends to oo, the decay of the eigenfunction 
'ljJ is associated with the Agmon metric (V - >.)+dx2 • Of course it is 
not necessary to assume that we have compact resolvent and it is for 
example sufficient to assume that >. satisfies 

(5.3) >. < infEssSpPA,V 
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in order to get some decay like exp((>. -inf EssSp PA,V )lxl). We refer to 
[1] and references therein for a discussion. But let us come back to the 
case when M(x) tends to oo. The heuristic idea is that the role played 
by Vis replaced by M(x) 2 • We shall loose a little in precision because 
one has to remember that M(x) is only defined up to some multiplicative 
constant. For all >, we introduce the "well" 

(5.4) U(>.) = {x E IR.n,M(x)2 :::; >.} 

and denote by d>-.(x) = d(x, U(>.)) the distance of x to U(>.) for the mod­
ified Agmon's metric ds2 = M(x) 2dx2. The principal result obtained in 
[25] is the following: 

Theorem 5.1. There eX'ist constants C > 0 and E: > 0, depending 
only on the dimension n of the space and on the largest degree r of the 
polynoms Aj and V ?: 0, s.t. for any solution 'I/; E S(IR.n) of PA,v'I/J = 
>.'ljJ, >, > 0, the following inequality is satisfied 

(5.5) for all x E IR.n. 

Remark 5.2. As we have implicitly seen in Section 3 (and as it 
appears clearly in [26] or in [60], [62]), the Agmon's type estimates have 
a natural transcription in the semi-classsical context and play a basic 
role in the estimate of the tunneling effect. The estimates are then 
local but asymptotic for h tending to 0. A semi-classical version of this 
theorem was obtained by Brummelhuis [10] (see also [25] Section 6). 

Example 5.3. n = 2; A1(x1,x2) = xix2, A2(x1,x2) = -x~x1; 
V = 0. We have in this case: b1,2(x1, x2) = Xi + x~ and M(x1, x2)2 ~ 
(1 +Xi+ X~). 

Remark 5.4. The polynomial character is only assumed for simpli­
fication. One can certainly extend the results under assumptions of the 
type given in (2.11) (see Guibourg [16] for results in this direction). 

Some words on the proof. The £ 2 estimates in (5.4) follows closely 
the Agmon's proof replacing V by M 2 . In order to get the £ 00 estimates, 
a global Sobolev's theorem is used in [25] whose proof is based on the 
proof of maximal estimates in adapted Sobolev spaces appearing in [24]. 
The proof is then a consequence of the nilpotent Lie groups techniques 
which will be presented very shortly in Section 6 (See the book [24] or 
the surveys of Helffer [19] or Nourrigat [51]). 
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5.2. Semiclassical aspects for the decay 

As it was already mentioned in the context of the study of the decay 
of the eigenfunctions at oo, we can also study the decay in the semi­
classical context and the first result proved in Helffer-Sjostrand [28] is 
that if 

(5.5) 

with .>..(h)--+ E and lluhllL2 = 1 then we have on every compact Kand 
for every c > 0 

where UE is the well: V ~ E and d(V-E)+(x,y) is the Agmon distance 
attached to the potential (V - E)+- As .we observed in Subsection 5.1 
and as one can easily compute for examples of the type 

- ~)h8x; - i L)ikxk)2 + lxl2 , 

j k 

this estimate is not at all optimal. It can be useful ( at least to understand 
heuristically the problem) to look for WKB constructions in the case 
where V has a unique non-degenerate minimum at 0 and is analytic in 
a neighborhood of 0. We assume here that 

infV = 0. 

It is proved in [28] that for t small enough it is possible to construct a 
WKB solution for PtA,v(h) of the form 

(5.7) h-nf4a(t, x, h) exp(-¢(t, x, h)/h) 

where ¢(t, x, h) is a solution in a neighborhood of 0 of the eikonal equa­
tion 

(5.8) (V x<P - itA)2 = V 

Admitting that this WKB approximation gives effectively an approx­
imation of one eigenfunction ( and this is proved for t small enough in 
[28]), then ~ ¢ gives the control of the decay with respect to t. We admit 
the existence of ¢( t, x) ( also proved in [28]) and taking the real part and 
the imaginary part of (5.8) we get 

(5.9) 
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and 

(5.10) v'(lR</>t) · (v'(~</>t) - tA) = 0 

and we can take 

(5.11) 

Equations (5.9) and (5.11) permit to say that in a neighborhood of 0, 
lR</>t is the Agmon distance to 0 for the potential: (V + iv'~</>t - tAl 2 ). 

This gives the general inequality 

(5.12) in a neighborhood of 0. 

Then we observe that 

(5.13) v'(lR <!>t + </>o)v'(lR <!>t - </>o) = iv'~ <!>t - tAl 2 

and 

(5.14) (lR</>t - </>o)(0) = 0. 

Then we get in a suitable (but independent oft with itl ~ t0 ) neighbor­
hood of 0 that (lR</>t - </>o)(x) = 0 implies that: v'(~</>t) - tA = 0 along 
the integral curve of the vector field v'(lR</>t + ¢0 ) joining x and 0. In 
particular if (lR <!>t - ¢0 ) ( Xj) = 0 in an open set on some sphere around 
0 then we get by analyticity that v'(~</>t) - tA = 0 in a neighborhood 
of 0 which gives that A is locally exact. 

§6. Nilpotent Lie group techniques 

In this section we shall give the proof of Theorem 2.8. We assume 
that the reader is somewhat familiar with the theory of nilpotent Lie 
groups (see [15]) and we emphasize that all these techniques were de­
velopped first for the study of hypoellipticity. For n, p, s E N, let us 
introduce the "maximal" universal Lie Algebra 9(n,p,s) with the follow­
ing properties 

(6.1) 9(n,p,s) is graded of rank of nilpotency s, 

i.e. 

9(n,p,s) = 91 EB 92 EB•.• EB 9s 
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and 

[Qi, Qi] C Qi+j, 

[Qi,Qj] = o, 
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if(i+j):s;s, 

if(i+j) ~ (s+l) 

(6.2) 91 = Q~ EB Qr, with dimQ~ = n, dimQ~' = p 

(6.3) Q1 generates Q. 

(6.4) [Qr EB Q2 , gr EB Q2J = o 

where 

(6.5) 

and 

g(n,p,s) is of maximal dimension with the above properties. 

The algebra g(n,p,s) has the following universal property: Let (YJ)i be 

a basis of QL (Y,:')k a basis of Qf; then there exists a partial homomor­
phism of ranks,>., s.t.: 

(6.6) >.(Yj) = X.i >.(Yt) = Xf, 

where 

for j = 1, ... ,n; Xf = iVk(x) 

fork= 1, ... ,P (withs= r + 1). We refer to R. Goodman [15] for this 
property or to [24] where this type of Lie Algebras is studied in Chapter 
XL We observe ( cf. Chapter XI of [24]) 

(6.7) 

where 

(6.8) 

fz is the element of Q* (dual of Q = g(n,p,s)) associated to z E B00 by 
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the relations 

(6.9) Rz/9i = 0, 

(6.10) Rz((adY') 0 Yt} = v,:, for lal ~ s -1, 

(6.11) Rz((adY't'[~', Yj]) = Bij, for lal ~ (s - 2), 

(6.12) ~ := LYJ2 + LYt2 

j k 

and Ilt,7-t is the induced representation associated to £ and to a subal­
gebra 1i satisfying 

R([rl, rl]) = 0. 

Let us introduce 

A(R, rl) = G · (R + 1i1-) in Q*. 

In a first step we use the techniques of [24] in order to prove: 

Proposition 6.1. 

(6.13) a(PA.,v.) = LJ a(Ilp(-~)) 
pEA 

The map p---+ ITp is the classical Kirillov's map from Q* onto G (the 
set of equivalence classes of irreducible representations of the simply 
connected Lie group associated to Q, G := exp Q) and G acts on Q* by 
the coadjoint map. 

Proof of Proposition 6.1. Let us first observe that the different 
operators appearing in formula (6.13) PA.,v. and Ilp(-~) are essentially 
selfadjoint starting from respectively S(lin) and Srrp, the space of 0 00-

vectors of the representation. Proposition 2.21 of Chapter II in [24] gives 
immediately the following equivalences for >. E JR and C > 0 

(6.14) 

(6.15) 

where HR is the space of the representation ITp. 
p 

We shall write (6.14)>.,c (resp. (6.15).x,c) in order to say that the 
inequality (6.14) (resp. (6.15)) is satisfied for specific constants (>., C). 
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This equivalence between (6.14) and (6.15) implies immediately the 
property 

(6.16) 

with 

C = ( ld__ a(ITp(-~))) , 
pE(A(£.,'H.) 

and the way to go from (6.16) to the stronger (6.13) is of the same type 
as the object of Theorem 2.8. 

Proof of (6.13). Let us assume that for some >. E IR, we have the 
following property 

Vp Erz= A(fz, 1i), :3Gp > 0 

s.t. (6.15).x,c is satisfied with G = Gp. 

We wish to show (6.15).x,c with G independent of p E r z· This 
problem is quite analogous to the problems solved in [24]. The only new 
point is that r z is closed and invariant by G but not stable by dilation. 
We refer to (19] which is more adapted to our problem. A first important 
remark coming from the hypoellipticity of ~ in G is the existence of a 
constant D > 0 s.t. 

(6.17) 

and (cf. Proposition 2.2.1, Chapter II in (24]), 

(6.18) 

where H;' (form E N and 7r a representation) is the space of the u E H~ 
s.t. 7r(Y)"u E H~, for lal ~ m, with the natural Hilbertian norm. (6.18) 
shows that the problem to prove (6.15).x,c with G independent of pis 
equivalent to the apparently stronger result (but more stable): 

Property P1. Let us assume that, for all p E rz, there exists 
Gp> 0 s.t. 

VJ E Srrp with G = Gp, 
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then there exists C > 0 s.t. (6.19)o is satisfied for all p E r z· 

On the same way, Proposition 6.1 results of the following stronger 
property: 

Property P2. Let us assume that, for all z E B00 and for all 
p Erz there exists Cp,z > 0 s.t. (6.19)o is satisfied with C = Cp,z, then 
there exists C > 0 s.t. (6.19)o is satisfied for all z E B00 and p E r z· 

Here we introduce as a new subset of 9* 

(6.20) 

whose properties are given in the following: 

Proposition 6.2. £ E r if and only if there exists z E B00 s.t.: 
£/(92 EB9r) = lz/(92 EB9r) where lz is defined in (6.9-6.11). Moreover 
r is closed in 9* and stable by the action of G. 

Proof of Proposition 6.2. We can define r on the following way 
which is quite similar to Definition 2.4 in chapter I of [24] 

£Er~ :3((xq,eq)qEN 

s.t. \xq\ + \eq\ --too as q --too and£= lim .x; eq 
q-+oo q 

where .X is the partial homomorphism of rank s introduced in (6.6): 
(.x;,e)(Z) := i-1a(.X(Z) )(x, ~), 

VZE9 

(If X is a vector field, a(X) is by definition the symbol of the corre­
sponding differential operator). The proof that r is closed is the same 
as in [24] (Corollary 2.4, Section 2, Chapter IV). We observe that if 

then, for (y, r,) E !R2n, 

is well defined in r and that we have 
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As (y, 'f/) varies in R2n, we verify that i(y,r,) describes the orbit of i, 
which proves the stability of r by the action of G. 

Proof of P2 (the proof of P 1 is similar). Let us assume that for 
each p E r, we have (6.19)oP with Gp > 0. In order to come back to a 

more homogeneous situation, we introduce a new Lie algebra 9 
(6.21) 9 = QEBR· Z, 

where the law (and the graduation) for 9 is deduced from Q's law by 
imposing 

(6.22) 

and 

(6.23) [Q,Z] = {O}. 

Let us now introduce A. E U2(9) (U(Q) is the enveloping algebra of 9 
and U2 (9) is the subspace of the 2-homogeneous elements for the natural 
dilation) 

(6.24) A .. = -~ + .x · z2 • 

We associate to r the set I' defined by 

(6.25) t = {p E 9*; p = (p, (), p Er and ( = 1}. 

It is clear that I' is closed in 9*, • G-stable and that there is a natural 
identification 

(6.26) 

Consequently, we have 

V p E I', :JC P = Gp > 0 

s.t. 

(6.27) VJ E Snp 

with 
C=Cp. 

Unfortunately, we can not directly apply the statements of [24] but 
the proof of Theorem 4.7 as sketched in [19] can be adapted in our 
context by modifying the assumptions on the following way: 
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Theorem 6.3. Let 9 be a graded Lie algebra of rank s and f a 
closed G-stable subset in 9*. Let us assume moreover that: [92 , 92] = 0 
and that 91 generates 9. Let PE Um(9) and let us assume that 

(Hl) 

(H2) 

:JC> Os.t Vp Er, llfllJI= :::; C[IIIIp(P)JIIJio + llfllJio ], VJ E Srrp 
~p ~p ~p 

(H3) inf lg· Pl ~ (1/2). 
(g,p)EGxr 

Then there exists C > 0 s.t. for all p E f we have: 

(6.28) 

It is easy to see, using (6.18) and (6.19), Proposition 6.2 and the 
property lg· ,ol ~ 1(1 = 1, that all the assumptions of Theorem 6.3 are 

satisfied with 9 = 0, r = :r and P = 'P>. E U2 (0). (6.28) will give 
Property (P 2). 

Indications on the proof of Theorem 6.3. We follow closely the 
sketch given in [19] p.228 (proof of Theorem 4.7). Let us mention that 
J. Nourrigat [50] has improved this theorem, but it is sufficient to use 
the above theorem in our context. If we compare with Theorem 4. 7 in 
[19], we do not make a proof by induction nor a restriction to 1£sl = 1. 
Assumption (H2) replaces (4.21) and (H3) replaces (4.22) in [19]. Mod­
ulo these modifications the proof is the same (in this article s = r ). We 
introduce for j = 1, ... , sand (£1 , ... ,£8 ) the set 

where QJ = Qj E9 · • · E9 98 • Note that (fs+l = f) and that fJ (£j, ... , £3 ) 

is just the orbit of £ E f if £ E f and 0 if £ (/:. f. 

Lemma 6.4. Let us assume (H2), (H3) and the following prop­

erty: For all (£j, ... ,£8 ) E 9J x · · · x 9;, :3C(£j, ... ,fs) s.t. Vi E 

fJ(fj, ... ,fs), 
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then we have Property (Q(j+1))-

Note now that (Q1 ) = (Hl) and that (Q(s+i)) is the conclusion of 
the theorem. According to the remarks before the lemma, the proof 
of Lemma 6.4 is almost identical to the proof of Lemma 4.10 in [19] 
by observing that the assumptions of Theorem 4.9 in [19] are satisfied 
(llsl = 1 is no more true but (H3) replaces this assumption). This ends 
the proof of Theorem 6.3. 
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