Stationary Phase Method with Estimate of Remainder Term over a Space of Large Dimension

Daisuke Fujiwara

Abstract

. Let $r_{d}(\nu)$ denote the remainder term of the stationary phase method over R^{d}. Then an estimate of $\nu^{d / 2+1} r_{d}(\nu)$, as $d \rightarrow \infty$, is given under certain assumptions, which are tolerable for application to Feynman path integrals.

§1. Stationary phase method

Stationary phase method is a method to evaluate asymptotically, as $\nu \rightarrow \infty$, oscillatory integrals over R^{d} of the following form:

$$
I(S, a, \nu)=\int_{R^{d}} e^{-i \nu S(x)} a(x) d x
$$

where $S(x)$ is a real valued C^{∞} function called the phase function, $a(x)$ is a C^{∞} function called the amplitude and ν is a large positive parameter. In the simplest case that $a(x) \in C_{0}^{\infty}\left(R^{d}\right)$ and that $S(x)$ has only one critical point x^{*}, where Hess $S\left(x^{*}\right)$ is non-degenerate, it gives

$$
I(S, a, \nu)=\left(\frac{2 \pi}{i \nu}\right)^{d / 2}\left[\operatorname{det}\left\{\operatorname{Hess} S\left(x^{*}\right)\right\}\right]^{-1 / 2}\left(e^{-i \nu S\left(x^{*}\right)} a\left(x^{*}\right)+r_{d}(\nu)\right)
$$

and an estimate of the remainder term

$$
r_{d}(\nu)=O\left(\nu^{-d / 2-1}\right)
$$

If support of $a(x)$ is not compact, we have to require some additional assumption that control the behaviour of $a(x)$ at the infinity. For instance (cf. [1]), the same conclusion holds if we assume the following

Hypothesis (H.0). (i) $\sup _{x}\left|\partial_{x}^{\alpha} S(x)\right|<\infty$ for any multi-index α with $|\alpha| \geq 2$. (ii) There exists a constant $\delta>0$ such that $|\operatorname{det} \operatorname{Hess} S(x)|$ $\geq \delta$. (iii) For any multi-index α, $\sup _{x}\left|\partial_{x}^{\alpha} a(x)\right|<\infty$.

Since the stationary phase method is closely related to the mathematical theory of Feynman path integrals (cf. [3], [4], [5] and [6]), we wish to investigate the following

Question. Can one control $\quad \nu^{d / 2+1} r_{d}(\nu)$ as $d \rightarrow \infty$?
We give a positive answer to this question. Detailed discussions can be found in [2]. Applications are discussed in [4], [5] and [6].

§2. Statement of results

We shall treat the following oscillatory integral over $L-1$ dimensional space:

$$
\begin{aligned}
& I\left(\left\{t_{j}\right\}, S, a, \nu\right)\left(x_{L}, x_{0}\right) \\
& \quad=\prod_{j=1}^{L}\left(\frac{\nu i}{2 \pi t_{j}}\right)^{1 / 2} \int_{R^{L-1}} e^{-i \nu S\left(x_{L}, \ldots, x_{0}\right)} a\left(x_{L}, \ldots, x_{0}\right) \prod_{j=1}^{L-1} d x_{j}
\end{aligned}
$$

with large positive parameter ν and small positive parameters $\left\{t_{j}\right\}$. Our hypothesis for the phase function is

Hypothesis (H.1). $\quad S\left(x_{L}, \ldots, x_{0}\right)$ is of the form

$$
S\left(x_{L}, \ldots, x_{0}\right)=\sum_{j=1}^{L} S_{j}\left(t_{j}, x_{j}, x_{j-1}\right)
$$

where

$$
S_{j}\left(t_{j}, x_{j}, x_{j-1}\right)=\frac{\left|x_{j}-x_{j-1}\right|^{2}}{2 t_{j}}+t_{j} \omega_{j}\left(t_{j}, x_{j}, x_{j-1}\right)
$$

For any $m \geq 2$ there exists a positive constant κ_{m} such that

$$
\sup _{x_{j}, x_{j-1}}\left|\partial_{x_{j}}^{\alpha} \partial_{x_{j-1}}^{\beta} \omega_{j}\left(t_{j}, x_{j}, x_{j-1}\right)\right| \leq \kappa_{m}
$$

if $2 \leq \alpha+\beta \leq m$.
We will give two examples of phase functions satisfying hypothesis (H.1).

Example 1. Let $L(\xi, x)=\frac{1}{2} \xi^{2}-V(x),(\xi, x) \in R^{2}$, be a Lagrangian with a potential $V(x)$. Assume that the potential $V(x)$ is a real-valued C^{∞}-function satisfying estimates:

$$
\sup _{x}\left|V^{(k)}(x)\right|<\infty \quad \text { for any } k \geq 2
$$

Then for a small $T>0$, there exists a unique classical orbit $\gamma^{c l}(t)$ such that $\gamma^{c l}(0)=y, \gamma^{c l}(T)=x$. Let

$$
S^{c l}(T, x, y)=\int_{0}^{T} L\left(\dot{\gamma}^{c l}(t), \gamma^{c l}(t)\right) d t
$$

be the classical action. Then $S^{c l}(T, x, y)$ is of the form

$$
S^{c l}(T, x, y)=\frac{|x-y|^{2}}{2 T}+T \phi^{c l}(T, x, y)
$$

and for any $m \geq 2$ there exists a constant C_{m} such that

$$
\sup _{x}\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \phi^{c l}(T, x, y)\right| \leq C_{m}
$$

if $2 \leq \alpha+\beta \leq m$. Therefore, $S\left(x_{L}, \ldots, x_{0}\right)=\sum_{j=1}^{L} S\left(t_{j}, x_{j}, x_{j-1}\right)$ satisfies the hypothesis (H.1).

Example 2. Let $L(\xi, x)$ be the same lagrangian. Let $\gamma^{l n}(t)$ be the straight line connecting $(0, y)$ and (T, x) in the time-space, i.e.,

$$
\gamma^{l n}(t)=\frac{t}{T} x+\frac{T-t}{T} y
$$

Let

$$
S^{l n}(T, x, y)=\int_{0}^{T} L\left(\dot{\gamma}^{l n}(t), \gamma^{l n}(t)\right) d t
$$

Then function $S^{l n}(T, x, y)$ is of the form

$$
S^{l n}(T, x, y)=\frac{|x-y|^{2}}{2 T}+T \phi^{l n}(T, x, y)
$$

and for any $m \geq 2$ there exists a positive constant C_{m} such that

$$
\sup _{x}\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \phi^{l n}(T, x, y)\right| \leq C_{m}
$$

if $2 \leq \alpha+\beta \leq m$. Therefore, $S^{l n}\left(x_{L}, \ldots, x_{0}\right)=\sum_{j=1}^{L} S^{l n}\left(t_{j}, x_{j}, x_{j-1}\right)$ satisfies the hypothesis (H.1).

Under hypothesis (H.1) the critical point of the function (x_{L-1}, \ldots, $\left.x_{1}\right) \rightarrow S\left(x_{L}, x_{L-1}, \ldots, x_{1}, x_{0}\right)$ is unique if $T_{L}=\sum_{j=1}^{L} t_{j}$ is small. We denote it by $\left(x_{L-1}^{*}, \ldots, x_{1}^{*}\right)$. We abbreviate $S\left(x_{L}, x_{L-1}^{*}, \ldots, x_{1}^{*}, x_{0}\right)$ as $S\left(\overline{x_{L}, x_{0}}\right)$. We can write the Hessian of S at the critical poit as $H+W$, where

$$
H=\left(\begin{array}{ccccc}
\frac{1}{t_{1}}+\frac{1}{t_{2}} & -\frac{1}{t_{2}} & 0 & 0 & \cdots \\
-\frac{1}{t_{2}} & \frac{1}{t_{2}}+\frac{1}{t_{3}} & -\frac{1}{t_{3}} & 0 & \cdots \\
0 & -\frac{1}{t_{3}} & \frac{1}{t_{3}}+\frac{1}{t_{4}} & -\frac{1}{t_{4}} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

and

$$
W=\left(\begin{array}{cccc}
t_{1} \partial_{x_{1}}^{2} \omega_{1}+t_{2} \partial_{x_{1}}^{2} \omega_{2} & t_{2} \partial_{x_{1}} \partial_{x_{2}} \omega_{2} & 0 & \cdots \\
t_{2} \partial_{x_{1}} \partial_{x_{2}} \omega_{2} & t_{2} \partial_{x_{2}}^{2} \omega_{2}+t_{3} \partial_{x_{2}}^{2} \omega_{3} & t_{3} \partial_{x_{2}} \partial_{x_{3}} \omega_{3} & \cdots \\
0 & t_{3} \partial_{x_{2}} \partial_{x_{3}} \omega_{3} & t_{3} \partial_{x_{3}}^{2} \omega_{3}+t_{4} \partial_{x_{3}}^{2} \omega_{4} & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

It is clear that

$$
\operatorname{det} H=\frac{T_{L}}{t_{1} t_{2} \ldots t_{L}} \neq 0
$$

We can state our first result.
Theorem 1. Under the hypothesis (H.1) there exists a positive constant δ_{1} independent of L such that if $T_{L}=t_{1}+\ldots+t_{L} \leq \delta_{1}$ then

$$
\begin{aligned}
& I\left(\left\{t_{j}\right\}, S, 1, \nu\right)\left(x_{L}, x_{0}\right) \\
& \quad=\left(\frac{\nu i}{2 \pi T_{L}}\right)^{1 / 2} e^{-i \nu S\left(\overline{x_{L}, x_{0}}\right)}\left[\operatorname{det}\left(I+H^{-1} W\right)\right]^{-1 / 2}\left(1+r\left(\nu, x_{L}, x_{0}\right)\right)
\end{aligned}
$$

where the remainder term $r\left(\nu, x_{L}, x_{0}\right)$ satisfies the estimate: For any $K \geq 0$ there exists positive constants C_{K} such that if $\left|\alpha_{0}\right|,\left|\alpha_{L}\right| \leq K$

$$
\left|\partial_{x_{0}}^{\alpha_{0}} \partial_{x_{L}}^{\alpha_{L}} r\left(\nu, x_{L}, x_{0}\right)\right| \leq C_{K} T_{L}^{3} \nu^{-1}
$$

Remark. $\quad \delta_{1}$ and C_{K} are independent of L as far as T_{L} is bounded. Therefore, we can control $r\left(\nu, x_{L}, x_{0}\right)$ even when L tends to ∞.

In order to state the result for general integral with amplitude $a(x)$, we require a little more preparations. Let $1 \leq k \leq l \leq L$. Then the
critical point of the function $\left(x_{l-1}, \ldots, x_{k+1}\right) \rightarrow \sum_{j=k+1}^{l} S_{j}\left(t_{j}, x_{j}, x_{j-1}\right)$ is unique if $t_{k+1}+\ldots+t_{l}$ is small. Let $\left(x_{l-1}^{*}, \ldots, x_{k+1}^{*}\right)$ denote the critical point, which is a function of x_{l} and x_{k}. We abbreviate $a\left(x_{L}, \ldots, x_{l}, x_{l-1}^{*}\right.$, $\left.\ldots, x_{k+1}^{*}, x_{k}, \ldots, x_{0}\right)$ to $a\left(x_{L}, \ldots, x_{l+1}, \overline{x_{l}, x_{k}}, x_{k-1}, \ldots, x_{0}\right)$.

Our hypothesis concerning the amplitude function is the following:
Hypothesis (H.2). For any integer $K \geq 0$ there exists a positive constant A_{K} with the following properties: (i) If $\left|\alpha_{j}\right| \leq K$ for $j=$ $0,1, \ldots, L$, then

$$
\left|\prod_{j=0}^{L} \partial_{x_{j}}^{\alpha_{j}} a\left(x_{L}, \ldots, x_{0}\right)\right| \leq A_{K}
$$

(ii) For any sequence of positive integers $\left\{j_{1}, \ldots, j_{s}\right\}$ satisfying

$$
0=j_{0}<j_{1}-1<j_{1}<j_{2}-1<\ldots<j_{s}-1<j_{s}<L
$$

we have

$$
\left|\partial_{x 0}^{\alpha_{0}} \partial_{x L}^{\alpha_{L}} \prod_{k=1}^{s} \partial_{x_{j_{k}-1}}^{\alpha_{j_{k}-1}} \partial_{x_{j_{k}}}^{\alpha_{j_{k}}} a\left(\overline{x_{L}, x_{j_{s}}}, \overline{x_{j_{s}-1}, x_{j_{s-1}}}, \ldots, \overline{x_{j_{1}-1}, x_{j_{0}}}\right)\right| \leq A_{K}
$$

as far as $\left|\alpha_{j}\right| \leq K$ for $j=0, j_{1}-1, j_{1}, \ldots, j_{s}-1, j_{s}, L$.
Before stating our second theorem, we give an example of amplitude functions satisfying hypothesis (H.2).

Example. Let $b_{j}\left(x_{j}, x_{j-1}\right), \quad j=1, \ldots, L$, be functions bounded together with their derivatives of all order, i.e., for any positive integer K there exists C_{K} such that

$$
\sup _{x}\left|\partial_{x_{j}}^{\alpha_{j}} \partial_{x_{j-1}}^{\alpha_{j-1}} b_{j}\left(x_{j}, x_{j-1}\right)\right| \leq C_{K} \quad 0 \leq \alpha_{j}, \alpha_{j-1} \leq K
$$

Then $a\left(x_{L}, \ldots, x_{0}\right)=e^{\left(\sum_{j=1}^{L} t_{j} b_{j}\left(x_{j}, x_{j-1}\right)\right)}$ satisfies hypothesis (H.2) above.

Now we can state our main
Theorem 2. Under the hypotheses (H.1) and (H.2) there exists a positive constant δ_{1} such that if $0<T_{L} \leq \delta_{1}$

$$
\begin{aligned}
& I\left(\left\{t_{j}\right\}, S, a, \nu\right)\left(x_{L}, x_{0}\right) \\
& =\left(\frac{\nu i}{2 \pi T_{L}}\right)^{1 / 2} e^{-i \nu S\left(\overline{x_{L}, x_{0}}\right)}\left[\operatorname{det}\left(I+H^{-1} W\right)\right]^{-1 / 2} \\
& \quad \times\left(a\left(\overline{x_{L}, x_{0}}\right)+r\left(\nu, x_{L}, x_{0}\right)\right)
\end{aligned}
$$

where $r\left(\nu, x_{L}, x_{0}\right)$ satisfies the estimate: For any $K \geq 0$ there exists positive constants C_{K} and $M(K)$ such that if $\left|\alpha_{0}\right|,\left|\alpha_{L}\right| \leq K$ we have

$$
\left|\partial_{x_{0}}^{\alpha_{0}} \partial_{x_{L}}^{\alpha_{L}} r\left(\nu, x_{L}, x_{0}\right)\right| \leq C_{K} T_{L} \nu^{-1} A_{M(K)}
$$

Remark. $\quad \delta_{1}, C_{K}$ and $M(K)$ are independent of L as far as T_{L} is bounded. Therefore, we can control $r\left(\nu, x_{L}, x_{0}\right)$ even when L tends to ∞.

§3. Sketch of the proof

We begin with our key lemma, which is valid under hypothesis (H.3) weaker than (H.2) and is interesting in its own sake.

Hypothesis (H.3). For any integer $K \geq 0$ there exists a positive constant A_{K} such that if $\left|\dot{\alpha}_{j}\right| \leq K$ for $j=0,1, \ldots, L$,

$$
\left|\prod_{j=0}^{L} \partial_{x_{j}}^{\alpha_{j}} a\left(x_{L}, \ldots, x_{0}\right)\right| \leq A_{K} .
$$

We can state

Key Lemma. Under the hypotheses (H.1) and (H.3) there exists a positive constant δ_{0} such that if $T_{L} \leq \delta_{0}$ we have

$$
\begin{aligned}
& I\left(\left\{t_{j}\right\}, S, a, \nu\right)\left(x_{L}, x_{0}\right) \\
& \quad=\left(\frac{\nu i}{2 \pi T_{L}}\right)^{1 / 2} e^{-i \nu S\left(\overline{x_{L}, x_{0}}\right)}\left[\operatorname{det}\left(I+H^{-1} W\right)\right]^{-1 / 2} b\left(\nu, x_{L}, x_{0}\right)
\end{aligned}
$$

where $b\left(\nu, x_{L}, x_{0}\right)$ satisfies the estimate: For any $K \geq 0$ there exists positive constants $C_{1}(K)$ and $M(K)$ such that if $\left|\alpha_{0}\right|,\left|\alpha_{L}\right| \leq K$ we have

$$
\left|\partial_{x_{0}}^{\alpha_{0}} \partial_{x_{L}}^{\alpha_{L}} b\left(\nu, x_{L}, x_{0}\right)\right| \leq C_{1}(K)^{L} A_{M(K)} .
$$

Remark. $C(K)$ and $M(K)$ are independent of $\left\{t_{j}\right\}, L,\left(x_{L}, x_{0}\right)$ and ν as long as $T_{L} \leq \delta_{0}$.

Above Lemma can be proved by modifying the proof of Theorem 6.8 in Chapt. 10 of Kumano-go [7].

Omitting the proof of lemma we proceed to the proof of Theorem 2. To make notations simpler we denote $\frac{\nu i}{2 \pi}$ by E. With this notation we can write

$$
\begin{aligned}
& I\left(\left\{t_{j}\right\}, S, a, \nu\right)\left(x_{L}, x_{0}\right) \\
& \quad=\prod_{j=1}^{L}\left(\frac{E}{t_{j}}\right)^{1 / 2} \int_{R^{L-1}} e^{-i \nu S\left(x_{L}, \ldots, x_{0}\right)} a\left(x_{L}, \ldots, x_{0}\right) \prod_{j=1}^{L-1} d x_{j} .
\end{aligned}
$$

We perform integration over x_{1}-space. Using stationary phase method, we have

$$
\begin{aligned}
& \prod_{j=1}^{2}\left(\frac{E}{t_{j}}\right)^{1 / 2} \int_{R} e^{-i \nu\left\{S_{2}\left(t_{2}, x_{2}, x_{1}\right)+S_{1}\left(t_{1}, x_{1}, x_{0}\right)\right\}} a\left(x_{L}, \ldots, x_{2}, x_{1}, x_{0}\right) d x_{1} \\
& =\left(\frac{E}{T(2,1)}\right)^{1 / 2} e^{-i \nu S_{21}^{*}\left(x_{2}, x_{0}\right)}\left(P_{1} a\left(x_{L}, \ldots, x_{2}, x_{0}\right)+R_{1} a\left(x_{L}, \ldots, x_{2}, x_{0}\right)\right)
\end{aligned}
$$

Here $T(2,1)=t_{2}+t_{1}, S_{21}^{*}\left(x_{2}, x_{0}\right)$ denotes the critical value of $S_{2}\left(t_{2}, x_{2}, x_{1}\right)$ $+S_{1}\left(t_{1}, x_{1}, x_{0}\right)$ with respect to the variable $x_{1}, P_{1} a$ is the main part and $R_{1} a$ is the remainder term of the stationary phase method.

Remark. (A) Clearly, we have

$$
P_{1}(a)\left(x_{L}, \ldots, x_{2}, x_{0}\right)=a\left(x_{L}, x_{L-1}, \ldots, \overline{x_{2}, x_{0}}\right) D\left(S_{1}+S_{2} ; x_{2}, x_{0}\right)^{-1 / 2}
$$

here
$D\left(S_{1}+S_{2} ; x_{2}, x_{0}\right)=1+\frac{t_{1} t_{2}}{t_{1}+t_{2}}\left(t_{2} \partial_{x_{1}}^{2} \omega_{2}\left(t_{2}, x_{2}, x_{1}^{*}\right)+t_{1} \partial_{x_{1}}^{2} \omega_{1}\left(t_{1}, x_{1}^{*}, x_{0}\right)\right)$.
(B) The remainder term $R_{1} a$ is a very complicated function with respect to x_{2} but is simple with respect to the variable $\left(x_{L}, \ldots, x_{3}, x_{0}\right)$. In fact, we have $\partial_{x_{j}}\left(R_{1} a\right)=R_{1} \partial_{x_{j}} a$ for $j=0$ and $3 \leq j \leq L$. And $R_{1} a$ is small in the following sense: For any integer $K \geq 0$ there exists a constant C_{K} such that

$$
\begin{aligned}
& \left|\partial_{x_{0}}^{\alpha_{0}} \partial_{x_{2}}^{\alpha_{2}} \ldots \partial_{x_{L}}^{\alpha_{L}} R_{1} a\left(x_{L}, \ldots, x_{2}, x_{0}\right)\right| \\
& \quad \leq C_{K} \nu^{-1} \frac{t_{1} t_{2}}{t_{1}+t_{2}} \max \sup _{x_{1}}\left|\partial_{x_{0}}^{\alpha_{0}} \partial_{x_{1}}^{\beta_{1}} \partial_{x_{2}}^{\beta_{2}} \partial_{x_{3}}^{\alpha_{3}} \ldots \partial_{x_{L}}^{\alpha_{L}} a\left(x_{L}, \ldots, x_{2}, x_{1}, x_{0}\right)\right| .
\end{aligned}
$$

Here max is taken with respect to β_{1}, β_{2} for $\beta_{1} \leq \alpha_{2}+4, \beta_{2} \leq \alpha_{2}$.

Next we integrate the term $P_{1} a$ over x_{2}-space and apply the stationary phase method. We obtain

$$
\begin{aligned}
& \left(\frac{E}{t_{3}}\right)^{1 / 2} \\
& \left(\frac{E}{T(2,1)}\right)^{1 / 2} \\
& \int_{R} e^{-i \nu\left\{S_{3}\left(t_{3}, x_{3}, x_{2}\right)+S_{21}^{*}\left(x_{2}, x_{0}\right)\right\}} P_{1} a\left(x_{L}, \ldots, x_{2}, x_{0}\right) d x_{2} \\
= & \left(\frac{E}{T(3,1)}\right)^{1 / 2} e^{-i \nu S_{31}^{*}\left(x_{3}, x_{0}\right)} \\
& \left(P_{2} P_{1} a\left(x_{L}, \ldots, x_{3}, x_{0}\right)+R_{2} P_{1} a\left(x_{L}, \ldots, x_{3}, x_{0}\right)\right) .
\end{aligned}
$$

Here $S_{31}^{*}\left(x_{3}, x_{0}\right)$ denotes the critical value of the function $x_{2} \rightarrow S_{3}\left(t_{3}, x_{3}\right.$, $\left.x_{2}\right)+S_{21}^{*}\left(x_{2}, x_{0}\right), P_{2} P_{1} a$ is the main term and $R_{2} P_{1} a$ is the remainder. Since $P_{2} P_{1} a$ is a simple function of x_{3}, we integrate it over x_{3}-space and apply the stationary phase method. The main term includes $P_{3} P_{2} P_{1} a$ and the remainder includes $R_{3} P_{2} P_{1} a$.

Repeating this procedure $L-1$ times, we obtain

$$
A_{0}\left(x_{L}, x_{0}\right)=\left(\frac{E}{T(L, 1)}\right)^{1 / 2} e^{-i \nu S_{L 1}^{*}\left(x_{L}, x_{0}\right)} P_{L-1} \ldots P_{1} a\left(x_{L}, x_{0}\right)
$$

which is nothing but the main term of Theorem 2.
Now we must treat the remainder term. Since $R_{1} a$ is a complicated function of x_{2}, we skip integration over x_{2} space and perform integration over x_{3}-space. Then we obtain

$$
\begin{aligned}
& \left(\frac{E}{t_{4}}\right)^{1 / 2}\left(\frac{E}{t_{3}}\right)^{1 / 2}\left(\frac{E}{T(2,1)}\right)^{1 / 2} \\
& \int_{R} e^{-i \nu\left\{S_{4}\left(t_{4}, x_{4}, x_{3}\right)+S_{3}\left(t_{3}, x_{3}, x_{2}\right)+S_{21}^{*}\left(x_{2}, x_{0}\right)\right\}} R_{1} a\left(x_{L}, \ldots, x_{4}, x_{3}, x_{2}, x_{0}\right) d x_{3} \\
& =\left(\frac{E}{T(4,3)}\right)^{1 / 2}\left(\frac{E}{T(2,1)}\right)^{1 / 2} e^{-i \nu\left\{S_{43}^{*}\left(x_{4}, x_{2}\right)+S_{21}^{*}\left(x_{2}, x_{0}\right)\right\}} \\
& \quad\left(P_{3} R_{1} a\left(x_{L}, \ldots, x_{4}, x_{2}, x_{0}\right)+R_{3} R_{1} a\left(x_{L}, \ldots, x_{4}, x_{2}, x_{0}\right)\right)
\end{aligned}
$$

Here $S_{43}^{*}\left(x_{4}, x_{2}\right)$ denotes the critical value of the function $x_{3} \rightarrow S_{4}\left(t_{4}, x_{4}\right.$, $\left.x_{3}\right)+S_{3}\left(t_{3}, x_{3}, x_{2}\right), P_{3} R_{1} a$ denotes the main term and $R_{3} R_{1} a$ is the remainder. $P_{3} R_{1} a$ is a simple function of the variable x_{4} but $R_{3} R_{1} a$ is not. We integrate $P_{3} R_{1} a$ over x_{4}-space but we skip integration of $R_{3} R_{1} a$ over x_{4}-space.

Similarly, we skip integration of $R_{2} P_{1} a$ over x_{3}-space and integrate it over x_{4}-space. We obtain

$$
\begin{aligned}
& \left(\frac{E}{t_{5}}\right)^{1 / 2}\left(\frac{E}{t_{4}}\right)^{1 / 2}\left(\frac{E}{T(3,1)}\right)^{1 / 2} \\
& \quad \int_{R} e^{-i \nu\left\{S_{5}\left(t_{5}, x_{5}, x_{4}\right)+S_{4}\left(t_{4}, x_{4}, x_{3}\right)+S_{31}^{*}\left(x_{3}, x_{0}\right)\right.} R_{2} P_{1} a\left(x_{L}, \ldots, x_{4}, x_{3}, x_{0}\right) d x_{4} \\
& =\left(\frac{E}{T(5,4)}\right)^{1 / 2}\left(\frac{E}{T(3,1)}\right)^{1 / 2} e^{-i \nu\left\{S_{54}^{*}\left(x_{5}, x_{3}\right)+S_{31}^{*}\left(x_{3}, x_{0}\right)\right\}} \\
& \quad \quad\left(P_{4} R_{2} P_{1} a\left(x_{L}, \ldots, x_{5}, x_{3}, x_{0}\right)+R_{4} R_{2} P_{1} a\left(x_{L}, \ldots, x_{5}, x_{3}, x_{0}\right)\right)
\end{aligned}
$$

We continue this process. The rule is that we apply the stationary phase method when we integrate over x_{k}-space and if R_{k} appears then we skip integration over x_{k+1}-space. We finally obtain the following expression:

$$
I\left(\left\{t_{j}\right\}, S, a, \nu\right)\left(x_{L}, x_{0}\right)=A_{0}\left(x_{L}, x_{0}\right)+\sum^{*} A_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)
$$

where \sum^{*} denotes summation with respect to indices $\left(j_{s}, \ldots, j_{1}\right)$ satisfying

$$
1<j_{1}<j_{2}-1<j_{2}<j_{3}-1<\ldots<j_{s}-1<j_{s}
$$

and each term is an oscillatory integral

$$
\begin{aligned}
& A_{j_{1} j_{2} \ldots j_{s}}\left(x_{L}, x_{0}\right) \\
& =\prod_{m=1}^{s}\left(\frac{E}{T\left(j_{m}, j_{m}-1\right)}\right)^{1 / 2} \\
& \quad \int_{R^{s}} e^{-i \nu S_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right)} b_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right) \prod_{m=1}^{s} d x_{j_{m}},
\end{aligned}
$$

whose phase function is

$$
\begin{aligned}
& S_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right) \\
&=S_{L j_{s}}^{*}\left(x_{L}, x_{j_{s}}\right)+S_{j_{s} j_{s-1}}^{*}\left(x_{j_{s}}, x_{j_{s-1}}\right)+\ldots+S_{j_{1} 0}^{*}\left(x_{j_{1}}, x_{0}\right)
\end{aligned}
$$

and the amplitude is

$$
b_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right)=Q_{L-1} Q_{L-2} \ldots Q_{1} a\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right)
$$

with

$$
Q_{j}= \begin{cases}I d, & \text { for } j=j_{s}, j_{s-1}, \ldots, j_{1} \\ R_{j}, & \text { for } j=j_{s}-1, j_{s-1}-1, \ldots, j_{1}-1 \\ P_{j}, & \text { otherwise }\end{cases}
$$

Furthermore, we can prove that $b_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right)$ satisfies hypothesis (H.3).

Proposition. For any integer $K \geq 0$ there exist positive constants $C_{2}(K)$ and integer $m(K)$ such that

$$
\begin{aligned}
& \left|\partial_{x_{L}}^{\alpha_{L}} \partial_{x_{j_{s}}}^{\alpha_{j_{s}}} \ldots \partial_{x_{j_{1}}}^{\alpha_{j_{1}}} \partial_{x_{0}}^{\alpha_{0}} b_{j_{s} \ldots j_{1}}\left(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0}\right)\right| \\
\leq & C_{2}(K)^{s} A_{m(K)} \prod_{k=1}^{s} \nu^{-1} t_{j_{k}} .
\end{aligned}
$$

Now we apply our key lemma to $A_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)$ and use the proposition above. Then we obtain

$$
A_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)=\left(\frac{E}{T_{L, 1}}\right)^{1 / 2} e^{-i \nu S\left(\overline{x_{L}, x_{0}}\right)} a_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)
$$

where the function $a_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)$ satisfies the following estimates: For any integer $K \geq 0$ we have

$$
\left|\partial_{x_{L}}^{\alpha_{L}} \partial_{x_{0}}^{\alpha_{0}} a_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)\right| \leq C_{1}(K)^{s} C_{2}(M(K))^{s} A_{m(M(K))} \prod_{k=1}^{s} \nu^{-1} t_{j_{k}}
$$

This implies that the remainder term $r\left(\nu, x_{L}, x_{0}\right)$ can be written as

$$
r\left(\nu, x_{L}, x_{0}\right)=\sum^{*} a_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)
$$

If $\alpha_{0}, \alpha_{L} \leq K$ we have

$$
\begin{aligned}
\left|\partial_{x_{L}}^{\alpha_{L}} \partial_{x_{0}}^{\alpha_{0}} r\left(\nu, x_{L}, x_{0}\right)\right| & \leq \sum^{*}\left|\partial_{x_{L}}^{\alpha_{L}} \partial_{x_{0}}^{\alpha_{0}} a_{j_{s} j_{s-1} \ldots j_{1}}\left(x_{L}, x_{0}\right)\right| \\
& \leq \sum^{*} C_{3}(K)^{s} A_{m(M(K))} \prod_{k=1}^{s} \nu^{-1} t_{j_{k}} \\
& \leq A_{m(M(K))}\left(\prod_{j=1}^{L}\left(1+C_{3}(K) \nu^{-1} t_{j}\right)-1\right)
\end{aligned}
$$

where we abbreviated $C_{1}(K) C_{2}(M(K))$ as $C_{3}(K)$. This proves Theorem 2.

Theorem 1 can be proved similarly.
More detailed dicussions are given by [2].

References

[1] K. Asada and D. Fujiwara, On some oscillatory integral transformations in $L^{2}\left(R^{d}\right)$, Japan J. Math., 4 (1978), 299-361.
[2] D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61-97.
[3] D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600.
[4] D. Fujiwara, The Feynman path integrals as an improper integral over the Sobolev space, Proc. of Journées d'equations aux dérivés partielles, St. Jean de Monts 1990 Société Mathématiques de France.
[5] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifols, Preprint.
[6] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifolds, Proc. International conference on Functional Analysis in memory of Professor Kôsaku Yosida, Lecture Notes in Math., 1540, Springer (1993), 39-53.
[7] H. Kumano-go, "Pseudo-differential operators", MIT press, Cambridge, Mass. U.S.A., 1982.

Department of Mathematics
Tokyo Institute of Technology
2-12-1 Oh-okayama
Meguroku, Tokyo 152
Japan
present address:
Department of Mathematics
Gakushuin University
1-5-1 Mejiro
Toshimaku, Tokyo 171
Japan

