Advanced Studies in Pure Mathematics 23, 1994 Spectral and Scattering Theory and Applications pp. 57–67

Stationary Phase Method with Estimate of Remainder Term over a Space of Large Dimension

Daisuke Fujiwara

Abstract.

Let $r_d(\nu)$ denote the remainder term of the stationary phase method over \mathbb{R}^d . Then an estimate of $\nu^{d/2+1}r_d(\nu)$, as $d \to \infty$, is given under certain assumptions, which are tolerable for application to Feynman path integrals.

$\S1.$ Stationary phase method

Stationary phase method is a method to evaluate asymptotically, as $\nu \to \infty$, oscillatory integrals over R^d of the following form:

$$I(S, a, \nu) = \int_{\mathbb{R}^d} e^{-i\nu S(x)} a(x) dx,$$

where S(x) is a real valued C^{∞} function called the phase function, a(x) is a C^{∞} function called the amplitude and ν is a large positive parameter. In the simplest case that $a(x) \in C_0^{\infty}(\mathbb{R}^d)$ and that S(x) has only one critical point x^* , where Hess $S(x^*)$ is non-degenerate, it gives

$$I(S, a, \nu) = \left(\frac{2\pi}{i\nu}\right)^{d/2} \left[\det\{\operatorname{Hess} S(x^*)\}\right]^{-1/2} (e^{-i\nu S(x^*)}a(x^*) + r_d(\nu))$$

and an estimate of the remainder term

$$r_d(\nu) = O(\nu^{-d/2-1}).$$

If support of a(x) is not compact, we have to require some additional assumption that control the behaviour of a(x) at the infinity. For instance (cf. [1]), the same conclusion holds if we assume the following

Received December 28, 1992.

D. Fujiwara

Hypothesis (H.0). (i) $\sup_x |\partial_x^{\alpha} S(x)| < \infty$ for any multi-index α with $|\alpha| \ge 2$. (ii) There exists a constant $\delta > 0$ such that $|\det \operatorname{Hess} S(x)| \ge \delta$. (iii) For any multi-index α , $\sup_x |\partial_x^{\alpha} a(x)| < \infty$.

Since the stationary phase method is closely related to the mathematical theory of Feynman path integrals (cf. [3], [4], [5] and [6]), we wish to investigate the following

Question. Can one control $\nu^{d/2+1}r_d(\nu)$ as $d \to \infty$?

We give a positive answer to this question. Detailed discussions can be found in [2]. Applications are discussed in [4], [5] and [6].

$\S 2.$ Statement of results

We shall treat the following oscillatory integral over L - 1 dimensional space:

$$I(\{t_j\}, S, a, \nu)(x_L, x_0)$$

= $\prod_{j=1}^{L} \left(\frac{\nu i}{2\pi t_j}\right)^{1/2} \int_{R^{L-1}} e^{-i\nu S(x_L, \dots, x_0)} a(x_L, \dots, x_0) \prod_{j=1}^{L-1} dx_j,$

with large positive parameter ν and small positive parameters $\{t_j\}$. Our hypothesis for the phase function is

Hypothesis (H.1). $S(x_L, \ldots, x_0)$ is of the form

$$S(x_L,...,x_0) = \sum_{j=1}^L S_j(t_j,x_j,x_{j-1}),$$

where

$$S_j(t_j, x_j, x_{j-1}) = \frac{|x_j - x_{j-1}|^2}{2t_j} + t_j \omega_j(t_j, x_j, x_{j-1}).$$

For any $m \geq 2$ there exists a positive constant κ_m such that

$$\sup_{x_j,x_{j-1}} \mid \partial_{x_j}^{\alpha} \partial_{x_{j-1}}^{\beta} \omega_j(t_j,x_j,x_{j-1}) \mid \leq \kappa_m$$

if $2 \leq \alpha + \beta \leq m$.

We will give two examples of phase functions satisfying hypothesis (H.1).

Example 1. Let $L(\xi, x) = \frac{1}{2}\xi^2 - V(x)$, $(\xi, x) \in \mathbb{R}^2$, be a Lagrangian with a potential V(x). Assume that the potential V(x) is a real-valued C^{∞} -function satisfying estimates:

$$\sup_x \mid V^{(k)}(x) \mid < \infty \quad ext{ for any } k \geq 2.$$

Then for a small T > 0, there exists a unique classical orbit $\gamma^{cl}(t)$ such that $\gamma^{cl}(0) = y, \gamma^{cl}(T) = x$. Let

$$S^{cl}(T,x,y) = \int_0^T L(\dot{\gamma}^{cl}(t),\gamma^{cl}(t))dt$$

be the classical action. Then $S^{cl}(T, x, y)$ is of the form

$$S^{cl}(T, x, y) = \frac{|x - y|^2}{2T} + T\phi^{cl}(T, x, y)$$

and for any $m \ge 2$ there exists a constant C_m such that

$$\sup_{x} \mid \partial_{x}^{\alpha} \partial_{y}^{\beta} \phi^{cl}(T, x, y) \mid \leq C_{m}$$

if $2 \leq \alpha + \beta \leq m$. Therefore, $S(x_L, \ldots, x_0) = \sum_{j=1}^L S(t_j, x_j, x_{j-1})$ satisfies the hypothesis (H.1).

Example 2. Let $L(\xi, x)$ be the same lagrangian. Let $\gamma^{ln}(t)$ be the straight line connecting (0, y) and (T, x) in the time-space, i.e.,

$$\gamma^{ln}(t) = \frac{t}{T}x + \frac{T-t}{T}y.$$

Let

$$S^{ln}(T,x,y) = \int_0^T L(\dot{\gamma}^{ln}(t),\gamma^{ln}(t))dt.$$

Then function $S^{ln}(T, x, y)$ is of the form

$$S^{ln}(T, x, y) = \frac{|x - y|^2}{2T} + T\phi^{ln}(T, x, y)$$

and for any $m \geq 2$ there exists a positive constant C_m such that

$$\sup_{x} \mid \partial_{x}^{\alpha} \partial_{y}^{\beta} \phi^{ln}(T, x, y) \mid \leq C_{m}$$

D. Fujiwara

if $2 \leq \alpha + \beta \leq m$. Therefore, $S^{ln}(x_L, \ldots, x_0) = \sum_{j=1}^L S^{ln}(t_j, x_j, x_{j-1})$ satisfies the hypothesis (H.1).

Under hypothesis (H.1) the critical point of the function $(x_{L-1}, \ldots, x_1) \rightarrow S(x_L, x_{L-1}, \ldots, x_1, x_0)$ is unique if $T_L = \sum_{j=1}^{L} t_j$ is small. We denote it by $(x_{L-1}^*, \ldots, x_1^*)$. We abbreviate $S(x_L, x_{L-1}^*, \ldots, x_1^*, x_0)$ as $S(\overline{x_L, x_0})$. We can write the Hessian of S at the critical point as H + W, where

$$H = \begin{pmatrix} \frac{1}{t_1} + \frac{1}{t_2} & -\frac{1}{t_2} & 0 & 0 & \dots \\ -\frac{1}{t_2} & \frac{1}{t_2} + \frac{1}{t_3} & -\frac{1}{t_3} & 0 & \dots \\ 0 & -\frac{1}{t_3} & \frac{1}{t_3} + \frac{1}{t_4} & -\frac{1}{t_4} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

and

$$W = \begin{pmatrix} t_1 \partial_{x_1}^2 \omega_1 + t_2 \partial_{x_1}^2 \omega_2 & t_2 \partial_{x_1} \partial_{x_2} \omega_2 & 0 & \dots \\ t_2 \partial_{x_1} \partial_{x_2} \omega_2 & t_2 \partial_{x_2}^2 \omega_2 + t_3 \partial_{x_2}^2 \omega_3 & t_3 \partial_{x_2} \partial_{x_3} \omega_3 & \dots \\ 0 & t_3 \partial_{x_2} \partial_{x_3} \omega_3 & t_3 \partial_{x_3}^2 \omega_3 + t_4 \partial_{x_3}^2 \omega_4 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

It is clear that

$$\det H = \frac{T_L}{t_1 t_2 \dots t_L} \neq 0.$$

We can state our first result.

Theorem 1. Under the hypothesis (H.1) there exists a positive constant δ_1 independent of L such that if $T_L = t_1 + \ldots + t_L \leq \delta_1$ then

$$I(\{t_j\}, S, 1, \nu)(x_L, x_0) = \left(\frac{\nu i}{2\pi T_L}\right)^{1/2} e^{-i\nu S(\overline{x_L}, x_0)} \left[\det(I + H^{-1}W)\right]^{-1/2} \left(1 + r(\nu, x_L, x_0)\right),$$

where the remainder term $r(\nu, x_L, x_0)$ satisfies the estimate: For any $K \ge 0$ there exists positive constants C_K such that if $|\alpha_0|, |\alpha_L| \le K$

$$\left|\partial_{x_0}^{\alpha_0}\partial_{x_L}^{\alpha_L}r(\nu, x_L, x_0)\right| \le C_K T_L^3 \nu^{-1}.$$

Remark. δ_1 and C_K are independent of L as far as T_L is bounded. Therefore, we can control $r(\nu, x_L, x_0)$ even when L tends to ∞ .

In order to state the result for general integral with amplitude a(x), we require a little more preparations. Let $1 \le k \le l \le L$. Then the critical point of the function $(x_{l-1}, \ldots, x_{k+1}) \rightarrow \sum_{j=k+1}^{l} S_j(t_j, x_j, x_{j-1})$ is unique if $t_{k+1} + \ldots + t_l$ is small. Let $(x_{l-1}^*, \ldots, x_{k+1}^*)$ denote the critical point, which is a function of x_l and x_k . We abbreviate $a(x_L, \ldots, x_l, x_{l-1}^*, \ldots, x_{k+1}^*, x_k, \ldots, x_0)$ to $a(x_L, \ldots, x_{l+1}, \overline{x_l, x_k}, x_{k-1}, \ldots, x_0)$.

Our hypothesis concerning the amplitude function is the following:

Hypothesis (H.2). For any integer $K \ge 0$ there exists a positive constant A_K with the following properties: (i) If $| \alpha_j | \le K$ for $j = 0, 1, \ldots, L$, then

$$|\prod_{j=0}^L \partial_{x_j}^{lpha_j} a(x_L,\ldots,x_0)| \le A_K.$$

(ii) For any sequence of positive integers $\{j_1, \ldots, j_s\}$ satisfying

$$0 = j_0 < j_1 - 1 < j_1 < j_2 - 1 < \ldots < j_s - 1 < j_s < L$$

we have

$$|\partial_{x0}^{\alpha_0}\partial_{xL}^{\alpha_L}\prod_{k=1}^s \partial_{x_{j_k-1}}^{\alpha_{j_k-1}}\partial_{x_{j_k}}^{\alpha_{j_k}}a(\overline{x_L,x_{j_s}},\overline{x_{j_s-1}},\overline{x_{j_{s-1}}},\ldots,\overline{x_{j_1-1}},\overline{x_{j_0}})| \le A_K,$$

as far as $|\alpha_j| \leq K$ for $j = 0, j_1 - 1, j_1, \dots, j_s - 1, j_s, L$.

Before stating our second theorem, we give an example of amplitude functions satisfying hypothesis (H.2).

Example. Let $b_j(x_j, x_{j-1})$, j = 1, ..., L, be functions bounded together with their derivatives of all order, i.e., for any positive integer K there exists C_K such that

$$\sup_{x} |\partial_{x_{j}}^{\alpha_{j}} \partial_{x_{j-1}}^{\alpha_{j-1}} b_{j}(x_{j}, x_{j-1})| \le C_{K} \qquad 0 \le \alpha_{j}, \alpha_{j-1} \le K.$$

Then $a(x_L, \ldots, x_0) = e^{(\sum_{j=1}^{L} t_j b_j(x_j, x_{j-1}))}$ satisfies hypothesis (H.2) above.

Now we can state our main

Theorem 2. Under the hypotheses (H.1) and (H.2) there exists a positive constant δ_1 such that if $0 < T_L \leq \delta_1$

$$\begin{split} I(\{t_j\}, S, a, \nu)(x_L, x_0) \\ &= \left(\frac{\nu i}{2\pi T_L}\right)^{1/2} e^{-i\nu S(\overline{x_L}, x_0)} \left[\det(I + H^{-1}W)\right]^{-1/2} \\ &\times \left(a(\overline{x_L}, \overline{x_0}) + r(\nu, x_L, x_0)\right), \end{split}$$

D. Fujiwara

where $r(\nu, x_L, x_0)$ satisfies the estimate: For any $K \ge 0$ there exists positive constants C_K and M(K) such that if $|\alpha_0|, |\alpha_L| \le K$ we have

$$\left| \partial_{x_0}^{\alpha_0} \partial_{x_L}^{\alpha_L} r(\nu, x_L, x_0) \right| \leq C_K T_L \nu^{-1} A_{M(K)}.$$

Remark. δ_1 , C_K and M(K) are independent of L as far as T_L is bounded. Therefore, we can control $r(\nu, x_L, x_0)$ even when L tends to ∞ .

\S **3.** Sketch of the proof

We begin with our key lemma, which is valid under hypothesis (H.3) weaker than (H.2) and is interesting in its own sake.

Hypothesis (H.3). For any integer $K \ge 0$ there exists a positive constant A_K such that if $|\alpha_j| \le K$ for j = 0, 1, ..., L,

$$|\prod_{j=0}^L \partial_{x_j}^{lpha_j} a(x_L,\ldots,x_0)| \le A_K.$$

We can state

Key Lemma. Under the hypotheses (H.1) and (H.3) there exists a positive constant δ_0 such that if $T_L \leq \delta_0$ we have

$$\begin{split} I(\{t_j\}, S, a, \nu)(x_L, x_0) \\ &= \left(\frac{\nu i}{2\pi T_L}\right)^{1/2} e^{-i\nu S(\overline{x_L, x_0})} \left[\det(I + H^{-1}W)\right]^{-1/2} b(\nu, x_L, x_0), \end{split}$$

where $b(\nu, x_L, x_0)$ satisfies the estimate: For any $K \ge 0$ there exists positive constants $C_1(K)$ and M(K) such that if $| \alpha_0 |, | \alpha_L | \le K$ we have

$$\left| \partial_{x_0}^{\alpha_0} \partial_{x_L}^{\alpha_L} b(\nu, x_L, x_0) \right| \le C_1(K)^L A_{M(K)}.$$

Remark. C(K) and M(K) are independent of $\{t_j\}, L, (x_L, x_0)$ and ν as long as $T_L \leq \delta_0$.

Above Lemma can be proved by modifying the proof of Theorem 6.8 in Chapt. 10 of Kumano-go [7].

Omitting the proof of lemma we proceed to the proof of Theorem 2. To make notations simpler we denote $\frac{\nu i}{2\pi}$ by E. With this notation we can write

$$I(\{t_j\}, S, a, \nu)(x_L, x_0) = \prod_{j=1}^{L} \left(\frac{E}{t_j}\right)^{1/2} \int_{\mathbb{R}^{L-1}} e^{-i\nu S(x_L, \dots, x_0)} a(x_L, \dots, x_0) \prod_{j=1}^{L-1} dx_j.$$

We perform integration over x_1 -space. Using stationary phase method, we have

$$\prod_{j=1}^{2} \left(\frac{E}{t_{j}}\right)^{1/2} \int_{R} e^{-i\nu \{S_{2}(t_{2},x_{2},x_{1})+S_{1}(t_{1},x_{1},x_{0})\}} a(x_{L},\dots,x_{2},x_{1},x_{0}) dx_{1}$$
$$= \left(\frac{E}{T(2,1)}\right)^{1/2} e^{-i\nu S_{21}^{*}(x_{2},x_{0})} \left(P_{1}a(x_{L},\dots,x_{2},x_{0})+R_{1}a(x_{L},\dots,x_{2},x_{0})\right)$$

Here $T(2, 1) = t_2 + t_1$, $S_{21}^*(x_2, x_0)$ denotes the critical value of $S_2(t_2, x_2, x_1) + S_1(t_1, x_1, x_0)$ with respect to the variable x_1 , P_1a is the main part and R_1a is the remainder term of the stationary phase method.

Remark. (A) Clearly, we have

$$P_1(a)(x_L, \dots, x_2, x_0) = a(x_L, x_{L-1}, \dots, \overline{x_2, x_0}) D(S_1 + S_2; x_2, x_0)^{-1/2}$$

here

$$D(S_1+S_2;x_2,x_0) = 1 + \frac{t_1t_2}{t_1+t_2} \left(t_2 \partial_{x_1}^2 \omega_2(t_2,x_2,x_1^*) + t_1 \partial_{x_1}^2 \omega_1(t_1,x_1^*,x_0) \right).$$

(B) The remainder term R_1a is a very complicated function with respect to x_2 but is simple with respect to the variable (x_L, \ldots, x_3, x_0) . In fact, we have $\partial_{x_j}(R_1a) = R_1\partial_{x_j}a$ for j = 0 and $3 \le j \le L$. And R_1a is small in the following sense: For any integer $K \ge 0$ there exists a constant C_K such that

$$\begin{split} &| \partial_{x_0}^{\alpha_0} \partial_{x_2}^{\alpha_2} \dots \partial_{x_L}^{\alpha_L} R_1 a(x_L, \dots, x_2, x_0) | \\ &\leq C_K \nu^{-1} \frac{t_1 t_2}{t_1 + t_2} \max_{x_1} | \partial_{x_0}^{\alpha_0} \partial_{x_1}^{\beta_1} \partial_{x_2}^{\beta_2} \partial_{x_3}^{\alpha_3} \dots \partial_{x_L}^{\alpha_L} a(x_L, \dots, x_2, x_1, x_0) | \,. \end{split}$$

Here max is taken with respect to β_1, β_2 for $\beta_1 \leq \alpha_2 + 4, \beta_2 \leq \alpha_2$.

Next we integrate the term P_1a over x_2 -space and apply the stationary phase method. We obtain

$$\left(\frac{E}{t_3}\right)^{1/2} \left(\frac{E}{T(2,1)}\right)^{1/2} \\ \int_R e^{-i\nu \{S_3(t_3,x_3,x_2)+S_{21}^*(x_2,x_0)\}} P_1 a(x_L,\dots,x_2,x_0) dx_2 \\ = \left(\frac{E}{T(3,1)}\right)^{1/2} e^{-i\nu S_{31}^*(x_3,x_0)} \\ (P_2 P_1 a(x_L,\dots,x_3,x_0) + R_2 P_1 a(x_L,\dots,x_3,x_0)).$$

Here $S_{31}^*(x_3, x_0)$ denotes the critical value of the function $x_2 \to S_3(t_3, x_3, x_2) + S_{21}^*(x_2, x_0)$, P_2P_1a is the main term and R_2P_1a is the remainder. Since P_2P_1a is a simple function of x_3 , we integrate it over x_3 -space and apply the stationary phase method. The main term includes $P_3P_2P_1a$ and the remainder includes $R_3P_2P_1a$.

Repeating this procedure L-1 times, we obtain

$$A_0(x_L, x_0) = \left(rac{E}{T(L, 1)}
ight)^{1/2} e^{-i
u S_{L1}^*(x_L, x_0)} P_{L-1} \dots P_1 a(x_L, x_0),$$

which is nothing but the main term of Theorem 2.

Now we must treat the remainder term. Since R_1a is a complicated function of x_2 , we skip integration over x_2 space and perform integration over x_3 -space. Then we obtain

$$\begin{split} &\left(\frac{E}{t_4}\right)^{1/2} \left(\frac{E}{t_3}\right)^{1/2} \left(\frac{E}{T(2,1)}\right)^{1/2} \\ &\int_R e^{-i\nu \{S_4(t_4,x_4,x_3)+S_3(t_3,x_3,x_2)+S_{21}^*(x_2,x_0)\}} R_1 a(x_L,\dots,x_4,x_3,x_2,x_0) dx_3 \\ &= \left(\frac{E}{T(4,3)}\right)^{1/2} \left(\frac{E}{T(2,1)}\right)^{1/2} e^{-i\nu \{S_{43}^*(x_4,x_2)+S_{21}^*(x_2,x_0)\}} \\ &\quad (P_3 R_1 a(x_L,\dots,x_4,x_2,x_0)+R_3 R_1 a(x_L,\dots,x_4,x_2,x_0)) \,. \end{split}$$

Here $S_{43}^*(x_4, x_2)$ denotes the critical value of the function $x_3 \rightarrow S_4(t_4, x_4, x_3) + S_3(t_3, x_3, x_2)$, P_3R_1a denotes the main term and R_3R_1a is the remainder. P_3R_1a is a simple function of the variable x_4 but R_3R_1a is not. We integrate P_3R_1a over x_4 -space but we skip integration of R_3R_1a over x_4 -space.

Similarly, we skip integration of R_2P_1a over x_3 -space and integrate it over x_4 -space. We obtain

$$\left(\frac{E}{t_5}\right)^{1/2} \left(\frac{E}{t_4}\right)^{1/2} \left(\frac{E}{T(3,1)}\right)^{1/2} \int_R e^{-i\nu \{S_5(t_5,x_5,x_4)+S_4(t_4,x_4,x_3)+S_{31}^*(x_3,x_0)} R_2 P_1 a(x_L,\dots,x_4,x_3,x_0) dx_4 = \left(\frac{E}{T(5,4)}\right)^{1/2} \left(\frac{E}{T(3,1)}\right)^{1/2} e^{-i\nu \{S_{54}^*(x_5,x_3)+S_{31}^*(x_3,x_0)\}} (P_4 R_2 P_1 a(x_L,\dots,x_5,x_3,x_0) + R_4 R_2 P_1 a(x_L,\dots,x_5,x_3,x_0)).$$

We continue this process. The rule is that we apply the stationary phase method when we integrate over x_k -space and if R_k appears then we skip integration over x_{k+1} -space. We finally obtain the following expression:

$$I(\{t_j\}, S, a, \nu)(x_L, x_0) = A_0(x_L, x_0) + \sum^* A_{j_s j_{s-1} \dots j_1}(x_L, x_0),$$

where \sum^{*} denotes summation with respect to indices (j_s, \ldots, j_1) satisfying

$$1 < j_1 < j_2 - 1 < j_2 < j_3 - 1 < \ldots < j_s - 1 < j_s$$

and each term is an oscillatory integral

$$\begin{aligned} A_{j_1 j_2 \dots j_s}(x_L, x_0) \\ &= \prod_{m=1}^s \left(\frac{E}{T(j_m, j_m - 1)} \right)^{1/2} \\ &\int_{R^s} e^{-i\nu S_{j_s \dots j_1}(x_L, x_{j_s}, \dots, x_{j_1}, x_0)} b_{j_s \dots j_1}(x_L, x_{j_s}, \dots, x_{j_1}, x_0) \prod_{m=1}^s dx_{j_m}, \end{aligned}$$

whose phase function is

$$S_{j_s\dots j_1}(x_L, x_{j_s}, \dots, x_{j_1}, x_0)$$

= $S^*_{Lj_s}(x_L, x_{j_s}) + S^*_{j_s j_{s-1}}(x_{j_s}, x_{j_{s-1}}) + \dots + S^*_{j_1 0}(x_{j_1}, x_0)$

and the amplitude is

$$b_{j_s\dots j_1}(x_L, x_{j_s}, \dots, x_{j_1}, x_0) = Q_{L-1}Q_{L-2}\dots Q_1a(x_L, x_{j_s}, \dots, x_{j_1}, x_0),$$

with

$$Q_{j} = \begin{cases} Id, & \text{for } j = j_{s}, j_{s-1}, \dots, j_{1}, \\ R_{j}, & \text{for } j = j_{s} - 1, j_{s-1} - 1, \dots, j_{1} - 1, \\ P_{j}, & \text{otherwise.} \end{cases}$$

Furthermore, we can prove that $b_{j_s...j_1}(x_L, x_{j_s}, ..., x_{j_1}, x_0)$ satisfies hypothesis (H.3).

Proposition. For any integer $K \ge 0$ there exist positive constants $C_2(K)$ and integer m(K) such that

$$|\partial_{x_L}^{\alpha_L}\partial_{x_{j_s}}^{\alpha_{j_s}}\dots\partial_{x_{j_1}}^{\alpha_{j_1}}\partial_{x_0}^{\alpha_0}b_{j_s\dots j_1}(x_L, x_{j_s}, \dots, x_{j_1}, x_0)|$$

$$\leq C_2(K)^s A_{m(K)} \prod_{k=1}^s \nu^{-1} t_{j_k}.$$

Now we apply our key lemma to $A_{j_s j_{s-1} \dots j_1}(x_L, x_0)$ and use the proposition above. Then we obtain

$$A_{j_s j_{s-1} \dots j_1}(x_L, x_0) = \left(\frac{E}{T_{L,1)}}\right)^{1/2} e^{-i\nu S(\overline{x_L, x_0})} a_{j_s j_{s-1} \dots j_1}(x_L, x_0),$$

where the function $a_{j_s j_{s-1} \dots j_1}(x_L, x_0)$ satisfies the following estimates: For any integer $K \ge 0$ we have

$$|\partial_{x_L}^{\alpha_L} \partial_{x_0}^{\alpha_0} a_{j_s j_{s-1} \dots j_1}(x_L, x_0)| \le C_1(K)^s C_2(M(K))^s A_{m(M(K))} \prod_{k=1}^{\circ} \nu^{-1} t_{j_k}.$$

This implies that the remainder term $r(\nu, x_L, x_0)$ can be written as

$$r(\nu, x_L, x_0) = \sum^* a_{j_s j_{s-1} \dots j_1}(x_L, x_0).$$

If $\alpha_0, \alpha_L \leq K$ we have

$$| \partial_{x_L}^{\alpha_L} \partial_{x_0}^{\alpha_0} r(\nu, x_L, x_0) | \leq \sum^* | \partial_{x_L}^{\alpha_L} \partial_{x_0}^{\alpha_0} a_{j_s j_{s-1} \dots j_1}(x_L, x_0) | \\ \leq \sum^* C_3(K)^s A_{m(M(K))} \prod_{k=1}^s \nu^{-1} t_{j_k} \\ \leq A_{m(M(K))} \left(\prod_{j=1}^L (1 + C_3(K)\nu^{-1} t_j) - 1 \right)$$

66

where we abbreviated $C_1(K)C_2(M(K))$ as $C_3(K)$. This proves Theorem 2.

Theorem 1 can be proved similarly.

More detailed discussions are given by [2].

References

- [1] K. Asada and D. Fujiwara, On some oscillatory integral transformations in $L^2(\mathbb{R}^d)$, Japan J. Math., 4 (1978), 299–361.
- [2] D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61–97.
- [3] D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600.
- [4] D. Fujiwara, The Feynman path integrals as an improper integral over the Sobolev space, Proc. of Journées d'equations aux dérivés partielles, St. Jean de Monts 1990 Société Mathématiques de France.
- [5] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifols, Preprint.
- [6] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifolds, Proc. International conference on Functional Analysis in memory of Professor Kôsaku Yosida, Lecture Notes in Math., 1540, Springer (1993), 39–53.
- [7] H. Kumano-go, "Pseudo-differential operators", MIT press, Cambridge, Mass. U.S.A., 1982.

Department of Mathematics Tokyo Institute of Technology 2-12-1 Oh-okayama Meguroku, Tokyo 152 Japan

present address: Department of Mathematics Gakushuin University 1-5-1 Mejiro Toshimaku, Tokyo 171 Japan