
Advanced Studies in Pure Mathematics 23, 1994 
Spectral and Scattering Theory and Applications 
pp. 17-26 

Asymptotics for the Painleve II Equation: 
Announcement of Result 

P. A. Deift and X. Zhou 

Submitted in honor of Professor S.T. Kuroda, 
from whom we have learned so much 

1. Introduction 

In this paper we study the asymptotics of a class of solutions of the 
(homogeneous) Painleve II (PII) equation 

(1.1) Uxx = 2u2 + XU , XE~, 

as x -+ ±oo. Following the work of Flaschka and Newell [FN] and 
Jimbo, Miwa and Ueno [JMU] the PII equation can be solved by means 
of a Riemann-Hilbert (RH) factorization problem as follows ([FA]; see 
also [IN]). Let E(1) denote the oriented contour consisting of six rays, 

E(l) = u:=1 { Et) = ei(k-1),r/3~+ }, 

o, 
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with associated jump matrix v< 1l: E<1) -+ M2 (C), v< 1) 1 EP) = (~ f), 
etc., where p, q and r are complex numbers satisfying the relation 

(1.3) p+q+r+pqr=0. 

For x E JR and z E E(1), set 

(1.4) 
vill(z) = e-i( 4 ;

3 +xz)o-3 vUl(z) ei(½z3+xz)o-3} 

= e-i( 4 ;
3 +xz)ado-a v(ll(z) 

where o-3 is the Pauli matrix ( ~ _ ~). 

Now let m<1l(z) = m<1l(x, z) be a (2 x 2 matrix valued) holomorphic 
function defined on (C \ E(l) solving the RH problem 

(1.5) 
m~)(z) = m~)(z)vi1l(z), 0 i- z E E(l) '} 

mUl(z)-+I as z-+oo, 

where m~)(z) (resp. m~)(z)) denotes as usual the boundary value of 

mUl(z) from the left (resp. right) side of the oriented contour E(1). 

(Thus for z E JR+ in particular, we have m~\z) = lim,io mUl(z ± if.), 
etc.). Then 

solves PII, where 

(1.7) 

as z-+ oo. 
For general p, q, rand x, p+q+r+pqr = 0, x E JR, the RH problem 

(1.5) may fail to have a solution. However, every (local) solution of the 
Cauchy problem for (1.1) can be obtained from the RH problem for 
suitable p, q and r by the above prescription. Indeed (see e.g. [FA], 
[IN]) there is an inejctive map (the Direct Transform) 

(1.8) ( u(0), u' (0)) r-t 

(po = p(u(0), u' (0)), q0 = q( u(0), u'(0)), r0 = r(u(0), u' (0))) 

E {(p, q, r): p + q + r + pqr = O} 

with the property that the RH problem (1.5) with p = p0 , q = q0 and r = 
r0 has a solution for all x in a neighborhood of zero, and if u(x;p0 , q0 , r0 ) 
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is the solution of PII obtained from (1.6), then u(x;p0 ,q0 ,r0 ) is the 
unique (local) solution of PII with the given initial data (u(O), u'(O)). 
Moreover, allowing complex values for x in (1.4), u(x; p0 , qo, r0 ) gives a 
meromorphic continuation of the solution to the entire complex plane. 

We are interested in particular in solutions of (1.1) that exist for all 
x in JR. A sufficient condition (see [FZ]) for the RH problem (1.5) to 
have a solution for all x E JR, is that 

(1.8) lq - Pl < 2 and r E JR . 

Real solutions of PII correspond to RH data with the symmetry 

(1.9) p = -ij' r E iJR, 

and pure imaginary solutions correspond to data with 

(1.10) p = ij' 

(cf. [FA], [IN]). From (1.3), (1.8), (1.9) and (1.10), we see that for any 
real q, 

(1.11) -1 < q < l , p= -q' r=O 

formula (1.6) leads to a global, real solution of PU, while for any q E (C 

(1.12) q, p=ij, r=-[(q+q)/(l+lql2 )] EJR 

formula (1.6) leads to a global, purely imaginary solution of PII. Fur
thermore ( see below) a special argument shows that for 

(1.13) q = ±l' p ==fl' r=O 

(1.6) also leads to a global, real solution of (1.1). 
We will study the asymptotic behavior of the solutions of PII in 

these three cases (1.1), (1.2) and (1.3). The results are as follows. 

Theorem 1.14 (global real solutions). For 

-1 < q < l , p = -q and r = 0 , 

(1.15) 

_ ffv (2 3 ; 2 3 ) (log(-x)) u(x)-(-x) 114 cos 3(-x) - 2vlog(-x)+</> +0 (-x) 5/ 4 

as x---+ -oo, 
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where 

(1.16) 

(1.17) 
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-1 
v = v(q) = - log(l - q2 ) 

271" 

¢ = -3v log 2 + log r( iv) + i sgn q - ~ 

(here r denotes the Gamma function) and 

(1.18) u(x) = q e-(2/ 3)"'312 (1 + 0(1)) as x-+ +oo . 
2-jnxl/4 

Theorem 1.19 (global purely imaginary solutions). For 

q E IC , p = ij and r = -[(q + q)/(1 + lql2)] 

(1.20) 

_i(-2v)112 _ (~- 312 _~ _.) (log(-x)) 
u(x)- (-x)l/4 sm 3 ( x) 2 vlog( x)+¢ +0 (-x)5/ 4 

where 

(1.21) 

and 

(1.22) 

-1 
v = - log(l + lql2) 

271" 

7r . 
¢ = -3vlog2 + 4 + arg r(iv) - arg q. 

as x-+ -oo, 

For Re q =I- 0 ( equivalently r =/- 0) 
(1.23) 

_ . ~ _ aiy'v 2v'2 3; 2 _ ~ ( 1 ) 
u(x)-aiy 2 (2x)l/2 cos( 3 x 2 vlogx+¢)+O x(l/2)-e 

as x-+ +oo 

where E is any positive number and 

(1.24) v = ~ log 1 + lql2 
7r 21 Re qi 

(1.25) 
7r 7 

¢ = 4 - 2vlog2 + arg f(iv) + arg(l - q2 ) , 
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(1.26) a= sgn(Re q) , 

and for Re q = 0 ( equivalently r = 0) 

(1.27) u(x) = 1 e-<2!3)x312 (1 + o(l)) as x----+ +oo . 
2ytrxl/4 

Theorem 1.28 (global real solutions: singular case). For 

q = ±I , p = =fl and r = 0 , 

(1.29) 
u(x) = ±[( - ~)1/2 - 2;/2 (-x)-s/2 + 0 ( (-x)-11/2)] 

as x----+ -oo 

and 

(1.30) u(x) = ± 1 e-<2!3)x312 (1 + o(l)) as x----+ +oo . 
2ytrxl/4 

Theorem 1.14 is due to Ablowitz and Segur (see [SAl], [SA2]). A rig
orous justification of the beautiful heuristic calculations in [SAl], [SA2] 
is given in [HM] and [CM], at least up to the phase shift (1.17), using 
a Gelfand-Levitan type equation derived earlier by Ablowitz and Segur 
in [AS] Theorem 1.28, at least to leading order in x, is due to Hastings 
and Mcleod and appears in [HM]. A Gelfand-Levitan approach is only 
possible in the special case of Theorems 1.14 and 1.28 when r = 0 and 
the contour E(l) for the RH problem can be reduced to a single line. 
Theorem 1.19 is due to Its and Kapaev [IK]. In the case r f. 0, the 
contour does not reduce to a line and the RH problem must be solved 
directly as a RH problem on a nontrivial contour with self-interactions. 
The authors in [IK] use the so called "isomonodromy method" which 
they have developed, together with Novokshenov and others, in a won
derful series of papers over the last eight or nine years. An exposition 
of the method, together with a discussion of the many results that have 
been obtained, can be found in [IN]. The method is a descendent of the 
original method of Zakharov and Manikov [ZM] which they derived in 
analyzing the long-time behavior of the nonlinear Schrodinger equation. 
Another derivation of Theorem 1.14, using the isomonodromy method, 
was given by Suleimanov [S]. We note, however, that certain technical 
difficulties in [IK] and [S] remain, and a completely rigorous justifica
tion of the isomonodromy method poses a deep and very interesting 
challenge. 
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The above results solve the so-called "connection problem" for global 
solutions of PII. For example, if we observe the asymptotics of a purely 
imaginary solution of P II as x --t -oo, then v and¢ in (1.20) are known 
and hence q can be computed from (1.21) and (1.22), and so v(q), cp(q) 
and u(q) can be determined from (1.24), (1.25) and (1.26), which yields 
the asymptotics as x --t +oo through (1.23). Conversely if we observe 
the asymptotics of a purely imaginary solution as x --t +oo, then v, cp 

-2Re q. 
and u in (1.23) are known. But then r = I 12 1s known from (1.24) 

1 + q 
and (1.26). This relation can be rewritten as lr-1 + ql 2 = r-2 - 1. On 
the other hand arg(l + rq) = arg((l - q2 )/1 + lql 2 ) = arg(l - q2 ), and 
hence arg(r-1 + q) can be determined from (1.25). Thus r- 1 + q and, 
hence q, is known. Substitution in (1.21) and (1.22) then yields the 
asymptotics as x --t -oo through (1.20). Thus if we know the behavior 
of the solution as x --t +oo (resp. x --t -oo), we can "connect" the 
solution to its asymptotics as x --t -oo (resp. x --t +oo). 

The six Painleve equations PI-PVI were introduced by Painleve 
and Gambier at the beginning of this century on purely mathemati
cal grounds, but recently they have appeared in a wide range of physi
cal applications, including self-similar solutions of the Korteweg de Vries 
equation, correlation functions for the transverse Ising chain in the in
finite temperature limit, nonperturbative 2D quantum gravity, amongst 
many others. A comprehensive survey of recent results and applications 
of Painleve equations can be found in [FI]. It is increasingly recognized 
that the Painleve equations play a role in modern mathematical physics 
analogous to the role played by the classical special functions of the last 
century. Many of the applications of classical special function theory rest 
on the fact that the asymptotics and the associated connection problem 
for the special functions can be solved explicitly. Theorems 1.14, 1.19 
and 1.28 should be viewed as providing the analogous information for 
PII. 

We now make some additional remarks about the asymptotic formu
lae in the above theorems. Note that if q = ±l, p = ±l and r = =fl in 
(1.24)-(1.26) then v = 0 and the lower order oscillatory term in (1.23) is 
absent. This case plays a special role in our analysis of PII and provides 
a model problem by means of which the general case of Theorem 1.19 
can be analyzed. Moreover, in this case, the solution has full fractional 
expansion as x --t +oo identical in form to (1.29). 

It is interesting to consider Theorems 1.14 and 1.28 from the follow
ing point of view. Observe that for large positive x, PII reduces to the 
Airy equation. Question (see [HM]): for real q does there exist a real 
global solution of PII that is asymptotic to qAi(x) as x --t +oo? (Here 
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Ai(x) is the standard Airy function.) Theorems 1.14 and 1.28 show that 
this is so for lql :::; 1 (the asymptotics for Ai(x) can be found, for ex
ample, in [AbSt]). However, if lql > 1 and the solution u(x) ~ qAi(x) 
as x -+ +oo, then u(x) must blow up for some x. This result is due 
to Hastings and McLeod (see [HM]). In fact, as shown by Kapaev and 
Novokshenov, u(x) blows up at an infinite number of points Xn-+ -oo 
( see [KN], [IN]). 

An analysis of the asymptotics of solutions u(x) of PII as x-+ oo 
along a ray in the complex plane has been given by Boutroux [B]. Further 
interesting developments can be found in Novokshenov [N] and Kapaev 
(K], who use the isomonodromy method. 

Recently the authors have introduced a new and general nonlinear 
steepest descent-type method for analyzing the asymptotics of oscilla
tory RH problems (DZl]. The method has been used to derive rigorously 
the long-time asymptotics for the modified Korteweg de Vries (MKdV) 
equation (DZl], for the nonlinear Schrodinger (NLS) equation [DIZ], and 
for the doubly infinite, compactly perturbed Toda lattice (Kam]. The 
method has also been used to announce the derivation of the collision
less shock region of Ablowitz-Segur for the Korteweg de Vries (KdV) 
equation [DZ3], and to obtain the long-time asymptotics for the auto
correlation function of the transverse Ising chain at the critical magnetic 
field (DZ2]. 

As indicated above, many of the results in Theorems 1.14, 1.19 and 
1.28 have not yet been justified rigorously. Moreover, the methods of the 
authors, and in particular the isomonodromy method, require an a priori 
ansatz for the form of the solution. The purpose of this paper is to derive 
Theorems 1.14, 1.19 and 1.28 rigorously and directly with error bounds 
using the steepest descent method of (DZl]. Our approach is algorithmic 
and requires no ansatz for the asymptotic form of the solution. The 
method proceeds by deforming contours, and in the simplest cases, we 
are left with the localized RH problem near the points of stationary 
phase. These localized RH problems can then be solved explicitly in 
terms of classical special functions. This is the case for MKdV in the 
similarity region and also for the asymptotics on (1.15) and (1.20). This 
is not the case, however, for the asymptotics in (1.23) and (1.29): here 
the RH problem localizes on a line segment rather than at the stationary 
phase points. A similar situation arises in the analysis of the collisionless 
shock region in KdV (see (DZ3]). This is a new and essentially nonlinear 
feature of the steepest descent method, and its resolution occupies the 
main part of the work. 
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