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Introduction 

Let (V, x) be a ( complex) n-dimensional isolated singularity. Given 
a Hermitian metric on V\ { x}, say ds 2 , the r-th £ 2 cohomology group of 
V at x is defined as the inductive limit of the £ 2 de Rham cohomology 
groups H[2) (U\ { x }, ds2 ), where U runs through the neighbourhoods of 

x. Recently, L. Saper [10] established a remarkable result that there 
exist Kahler metrics on V\ { x }, complete near x, for which the r-th 
£ 2 cohomology groups of V at x are zero whenever r ~ n. It implies 
an important fact that the intersection cohomology group of a Kahler 
variety with isolated singularities carries a canonical Hodge structure. 
Relying on Saper's result, the author could show that the £ 2 cohomology 
vanishing as above is also true with respect to the restriction of the 
euclidean metric associated to any holomorphic embedding (V, x) ~ 
( cN, 0) ( cf. [7]). The purpose of the present article is to complement 
these works by giving a self-contained version of the latter work. Namely 
we shall first establish an abstract vanishing theorem as a consequence 
of a new £ 2 estimate with respect to a certain family of metrics and 
weights which seems to be of interest in itself. Then we shall proceed 
to apply it to prove a vanishing theorem of Saper type with respect to 
a certain class of complete Kahler metrics which is actually wider than 
Saper's ones. Hopefully our method will be available to investigate the 
£ 2 cohomology of spaces with non-isolated singularities. Next we shall 
give a new proof of our previous result mentioned above. The argument 
here is essentially the same except that we do not appeal to the existence 
of a projective variety containing (V, x) and tried to make the argument 
more transparent. Therefore some part of the proof will be only sketchy. 
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The author would like to express sincere thanks to L. Saper who has 
pointed out a large mistake in the first version of the manuscript. He 
also thanks to M. Nagase for stimulating discussions by several letters. 

§1. Notation and basic facts 

We shall first prepare notations and state without proofs several 
known facts that we use afterwards. 

Let (X, ds2 ) be a Hermitian manifold of dimension n, and let C0 (X) 
be the set of compactly supported C-valued c= differential forms on 
X. We set 

c;(X) := {u E Co(X);deg u = r} 

and 
Cf{'q(X) := {u E Cf{+q(X);u is of type (p,q)}. 

Let r.p be any real-valued c= function on X. We set 

(u,v)'P := L e-'Pu/\*V for u,v E C0 (X), 

where * ( = *ds2) denotes the Hodge's star operator and *V the complex 
conjugate of *V- Then Co(X) is a pre-Hilbert space equipped with the 
above inner product. We define L'P(X)(= L'P(X, ds2)) to be the comple

tion of C0 (X) with respect to the associated L2 norm II ll'P = ~
We shall refer to r.p as the weight of the L2 norm. For any densely de
fined closed linear operator, say T, from L'P(X) into itself, we denote 
its domain, image and kernel by Dom T, Im T and Ker T, respectively. 
The adjoint of T will be denoted by r;. As usual r.p will not be re
ferred to if r.p = 0. By d we shall denote the exterior derivative, and 
by lJ (resp.&) the (0, 1)-component (resp. (1, 0)-component) of d. Their 
maximal closed extensions will be denoted by the same symbol unless 
there is fear of confusion. By an abuse of language we often identify 
88r.p with the complex Hessian of r.p. 

Proposition O. Suppose that there exists a c= function 1/; : X ---+ 

R such that 
1) ds2 = 2881/; 
2) 181/;I is bounded. 

Then 
llull :::; C(IIBull + IIB*ull):::; C(lldull + lld*ull) 

for any u E q;(X) with r-/- n. Here C = 4sup 181/;I. 

For the proof see [8]. 
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We set 

H[2)(= H(2)(X, ds 2 )) := Kerd n U(X)/Imd n U(X) 

Hc2f (X)(= Hc2f (X, ds 2 )) := Ker8 n Lp,q(X)/Im8 n Lp,q(X). 

One can deduce from Proposition 0 the following. 
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Proposition 1. Let (X, ds 2 ) be a complete Kahler manifold 
equipped with 't/J satisfying 1) and 2). Then H[2i(X) (resp. H('.2) (X)) 
is zero whenever r =/- n (resp. p + q =/- n). Moreover H'f;,)(X) and 

Hct;-p(X) (0 :S: p :S: n) are Hausdorff spaces with respect to the quotient 

topology. 

For the argument needed here, see [1] or [2]. 

Let V be a reduced irreducible complex space of dimension n which is 
properly embedded into CN so that V contains the origin as the possibly 
unique singular point. Let z = (z1 , • • • , ZN) be the coordinate of cN and 

let llzll := o=~l lzil2)1!2. We put V' = V\{0} and denote by llzllv 1 the 
restriction of the function llzll to V'. Then -88log log ( 8llzllv7) defines 
a complete Kahler metric on VJ := {z E V'; llzll < 8}. As a corollary of 
Proposition 1 we have 

Proposition 2. 

H[2) (VJ' -88 log log (8llzllv7 )) = 0 if r =I- n 

and 
Hc2f(VJ,-88loglog(8llzllv7))=0 if p+q=/-n. 

Moreover 
H~i(Vl, -88log log (8llzllv7)) and H(2)-p(Vl, -88log log (8llzllv7)) 
are Hausdorff spaces. 

Proposition 3. 

lim H(r2) (VJ, 88(- log log llzllv7)) = 0 if r > n 
8-+0 

and 
lim Hpct) (VJ, 88(- log log llzllv7 )) = 0 if p + q > n. 
8-+0 

Furthermore the homomorphism 
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is bijective if r < n - l and injective if r = n - l, and the homomorphism 

is bijective if p+ q < n - l and injective if p+ q = n- l. Here Hr ( · ) and 
Hp,q( • ) denote respectively the r-th de Rham cohomology group and the 
Dolbeault cohomology group of type (p, q). 

We put V,5 := {z EV; llzll < 8} and 

Hfo(V,5) := Hfo(VJ,88llzllt,) 

H1f2f (Vi):= H1f2f (VJ, 88llzllt,) 
by an abuse of notation. 

Proposition 4. 
( 1) lim8-+0 H[2 ) (Vi) = lim8-+0 H1f2f (Vi) = 0 if r, p + q > n. 

(2) The homomorphism 

is bijective if r < n - l and injective if r = n - l, and the homomorphism 

is bijective if p + q < n - l and injective p + q = n - l. 

We note that (1) follows from Proposition 3 via a singular pertur
bation ( cf. [5] or [9]), whereas (2) is a consequence of direct application 
of Andreottei-Vesentini's vanishing theorem (cf. [5, Supplement]). 

So far the results have quite straightforward and self-contained 
proofs. However, to proceed further we must rely on the following deep 
result. 

Theorem (Hironaka [H]). There exists a complex submanif old 
- N N' N N' N V C C x P for some N' such that the projection C x P --, C 
induces a proper bimeromorphic morphism from V onto V, say 1r. More
over (V, 1r) can be chosen so that 

i) 1riv\1r-1(o) is bijective. 

ii) 1r- 1 (0) is a divisor whose associated line bundle is isomorphic to 

the restriction of the pull-back, by the projection cN x pN' __, pN', of 
the dual of the hyperplane section bundle. 
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iii) The support of n-1 (0) is a divisor of simple normal crossings. 

Once for all we fix a (V, n) satisfying i)~iii). By iii) there exist 
nonsingular divisors E1, ···,Em (Ei =/ Ej if i # j) such that 

suppn-1 (0) = E1 U · · · U Em. 

By (v, w) = (v1, · · ·, Vk, w1, · · ·, Wn-k) we denote a coordinate around a 
k-ple point of suppn-1 (0) such that v1 · · · · · Vk = 0 is a local defining 
equation of suppn-1(0). By ii) there exist positive integers p1, ···,Pm 
such that the sheaf ®~1 0( - Ei)Pi is very ample. Hence there exists a 
nonsingular integral m x m matrix (Pij) with Pij > 0 such that 

1) ®~1 0(-Ei)Pij are ample for all j. 

2) Let 1::::; i1 < · · · < ik ::::; m (1 ::::; k::::; m). Then det(Piai/3)~,/3=l =/ 0 
k 

whenever n Eia # 0. 
a=l 

Therefore we can find C 00 metrics along the fibers of ®~ 10(-Ei)Pij, say 

aj, whose curvature form is positive. Let Si E r(v, O(Ei)) be so chosen 

that Ei = {y EV; si(Y) = O}, and let Oj be the length of sf1 j • • • · · s~"'j 
with respect to aj. Then - log loga-_;-1 is a plurisubharmonic function 

on a neighbourhood of suppn-1(0), say U. We set 

m 

da-2 := -88L log loga_;-1 on U\suppn-1(0). 
j=l 

Then da2 may well be identified via n with a Kahler metric on VJ := 

½ \ { 0} for sufficiently small 8. We shall refer to da2 as a Sap er metric 
afterwards. We note that, around any k-ple point of suppn-1(0), 

(3) 

l k n-k 

+ -lo-g-lv_1 ______ v_k_l ___ l ( ~ dvidvi + ~ dwjd'iiJ;), 

where A ~ B means that there exists a c E (0, oo) such that c-1 A ::::; 
B ::::;cA. 

The following is also an immediate consequence of Proposition 3. 
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Proposition 5. For sufficiently small 8 and a Saper metric du2 

on V£, 
l)H[2J(V£,du2 )=H'{'25(Vf,du2 )=0 if r,p+q>n. 

2) The canonical homomorphisms 

are bijective if r < n - l and injective if r = n - l. 
3) The canonical homomorphisms 

Hp,q(V;' du2 ) -+ flP,q(V:') 
(2) /j' /j 

are bijective if p + q < n - l and injective if p + q = n - l. 

We call a Saper metric du2 dominating if du2 ~ -88log log llzllv7. 
Here A ~ B means that cA ~ B for some c E (0, oo ). Existence of a 
dominating Saper metric is assured also by Hironaka's theorem. Namely, 
applying Hironaka's desingularization theorem in a more precise form, 
we can find (V, n) so that the maximal ideal of 0 is pulled-back by 

7r to an invertible sheaf ( cf. [HJ). For such V it is clear that du2 ~ 
-88log log llzllv7. 

§2. An abstract L2 vanishing theorem 

In what follows we assume that X admits a C 00 negative plurisub
harmonic function <p such that - log ( -<p) is strictly plurisubharmonic, 
and derive an L2 estimate for the 8-operator with respect to the metrics 
du;:= 2(-88log(-<p) +c:881.p) (c: ~ 0) and weights -E<p. 

For simplicity we set 

( u, V )e := L ee'Pu I\ *eV, 

where *e denotes the Hodge's star operator with respect to du;, and 

llulle := J(u,u)e-
Note that Le(X) =:) L15(X) if c > 8. 
The adjoint of an operator T with respect to ( , )e will be de

noted by T,,* by an abuse of notation. For simplicity we set Ae := 

*;1 e(,;=I(88(-log(-<p) +c:1.p)))*e, where e( ·) stands for the exterior 
multiplication from the left hand side. 
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Proposition 6. If p + q < n, 

for any u E cr;,q (X) and s > 0. 

Proof. Since l8log (-<p)ldu; :::; 1 we have 

([Ae(8&log (-<p)), A8 ]u, u) 8 

:::;11ulle(ll&ulle + 110:ulle + ll8*ulle + ll8eulle). 

Here we put 8,: := (8*);. Hence for any C 2: 1 and a> 0 we have 

(4) ([Ae(88log (-<p)), Ae:]u, u)e: 

:::;2aiiull; + ~ca-1 (ll&ull; + ll&;ull; + ll8*ull; + ll8e:ull;). 

Since 

we have 

so that 

ll8*ull; + ll8e:ull; 

=IIBuli; + 110:ull; + ([Ae(s8&<p),Ae:]u,u)e:, 

([He(88log(-<p) - ~~88<p),Ae:]u,u)8 - 2ailull! 

:::;ca-1 (ll8ull; + 11a;uii;), 

((1- £)[Ae(s88<p),Ae:]u,u)e: + (1- 2a)iluii; 
2a 

:::;ca-1 (ll8ull; + 11a;u1i;). 

Since aa log (-<p) = -<p- 188<p + <p- 2a<p8<p, 

([Ae(88<p),Ae:]u,u)e::::; 0 

1 
if deg u < n. Hence, letting a = 4 and C = 1 we obtain 

for all u E C{;'q(X) with p + q < n. 

Now we can state our vanishing theorem. 
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• 
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Theorem 7. Let X be a complex manifold of dimension n ad
mitting a negative plurisubharmonic function cp such that -88 log (-cp) 
is a complet K iihler metric. Take any f E Lp,q ( X, -88 log ( -cp)) with 
p + q :::; n. Then f E Im 8 if and only if there exist 90 E L,; (X) for every 
c > 0 such that 8g0 = f. 

Proof. Since L 0 (X) :) L0 (X), 'only if' part is clear. To prove 'if' 
part, one has only to apply Proposition 6. 

• 
We note that 

8,;u = au+ e:8cp I\ u. 

Hence 

since supe0 'Ple:8cpl~"2 :::; sup et• t2 = 4e-2 . 
o tE(-oo,O) 

Therefore we have 

(5) 

for any g E Dom(8 + a;). Here we may choose A= n · 2n + 4e-2 . Thus 
we obtain the following version of Theorem 7. 

Theorem 8. Let X and cp be as above, and take any 
f E U(X, -88log (-cp)) with r:::; n. Then f E Imd if and only if there 
exist 90 E L;- 1 (X) for every c > 0 such that dg0 = f. 

§3. Application of a topological lemma 

Let (V, 0) ~ ( cN, 0) be as before, and let p : W -+ V be any proper 
holomorphic map such that Plw\p-i(o) is bijective and Wis nonsingular. 

We set W 8 = p- 1 (Vi) and W~ = W 8\p- 1 (0). The following fact, first 
pointed out in [4], is crucial for our purpose. 

Lemma 9. The canonical homomorphisms 

are surjective for r < n if O < 8 « l. Here 8W.5 denotes the boundary 
ofW.5. 

For the proof, see [3] or [6]. 
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Let ds 2 be a Hermitian metric on V'. We put 

H[2i,0 (WJ, p*ds2 ) := 

{u E £T(WJ,p*ds2 );du = 0 and suppu c.s W 0 } 

/{u E Lr(W~,p*ds2 );:lv E u-1 (WJ,p*ds2 ) such that 

suppv c.s W 0 and dv = u}. 

Then Lemma 9 implies the following. 
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Proposition 10. Let r < n. Suppose that the metric ds 2 enjoys 
a property that C0(W6 ) c Lr(WJ, p*ds2 ) for 6 > 0. Then the canonical 
homomorphism 

H r+l (W' *d 2) Hr+l (W' *d 2) (2),0 ,5, p S --, (2) ,5, p S 

is injective for O < 6 « 1. 

Proof. Let u E Lr+1 (W6,p*ds2 ),suppu c.s W0 and du= 0. Assume 
that there exist av E Lr(W6, p*ds2 ) satisfying dv = u. If 6 is chosen so 
that dllzllv, =I= 0 on &V0, for all 6' E (0, 6], from Lemma 9 there exists a 
measurable r - 1 form g on W 0 with suppg n W 6 ; 2 = 0 such that g and 
dg are locally square integrable on W0 and a locally square integrable 
d-closed r form w on W0 , C 00 on W6; 2 , such that v = w + dg outside a 

compact subset of W 6 . By assumption v-w-dg E Lr(w6, p*ds2 ). Since 
supp( v - w - dg) c.s W 0 and d( v - w - dg) = u, the assertion was proved. 

• 
Corollary 11. Under the above situation, suppose moreover that 

ds2 is complete and r = n - 1. Then the homomorphism 

has a dense image. 

Proposition 12. Let dcr2 be a Saper metric on VJ associated to 

a desingularization 1r: V--, V, and let V6 := 1r-1 (V6 ). Then 

Proof. Let u E C0 (V6 ) be any element, and let D be a neighbour
hood of a k-ple point of suppw- 1 (0) with coordinate (v, w) as described 
before. Since dcr2 satisfies ( 3), we have 
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if lvl < 1/2. Let d'7r,,-) be the volume form of da 2 • Then (3) implies that 

dV(a-) ~ lv1 · ··· ·vkl-2(loglv1 · ··· ·vkl-1)-n-k_ 

Therefore, if r < n 

l lul 2d'7ra-) 

~ 11/2 .. · 11/2 (t1 ..... tk)-1 

X (log((t1 · · · · · tk)-1)-n-k+rdt1 · · · · · dtk 

::; 11/2 .. · 11/2 (t1 ..... tk)-1 

x ( log ((t1 · · · · · tk)- 1 )-k-1dt1 · · · · · dtk 

§4. A homotopy operator 

• 

Let 7r: l7r8) --> V be as before. Once for all we fix C00 metrics along 
the fibers of O(Ei) and denote by lsi I the length of the canonical section 

Si of O(Ei)- Then we put s := min lsil and l1(8) := {y E V; s < a}. 
i 

Note that V(.5) is a tubular neighbourhood of supp1r- 1(0) if O <a« l. 
We may choose 8 so that 8l1(8) is piecewise smooth and there exists a 

piecewise smooth retraction r,5 : l1(8) \suppn-1(0) --> 8l1(8) which is up 

to a local diffeomorphism of V(.5) of the form 

(v, w)--> ((8 + lv1I - lvil)eargv1, ... , 8eargv,, ... , (8 + lvkl - lvil)eargvk' w) 

on {y; lvi(Y)I = min lvJ(Y)I}- Note that any differential form f on 
1'.'oj9 

l1(8) \supp1r-1(0) splits into the sum ds I\ Jo+ Ji, where fi = gi · r8hi 

for some functions gi and differential forms hi on 8l1( o) in the piecewise 

smooth sense. For any u E Co(l1(8)), with a splitting u = ds I\ uo + u1 
as above, we put 

K,5u := 1s ua(t, · )dt, 
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where t denotes the s-variable. Clearly K15 is extendable by continuity 
to a linear operator on the space of locally square integrable forms on 

1/io) \supp1r- 1 (0), which shall be denoted also by K 8 . Note that d(K8u) 

if du = 0 and suppu (S 11ctS) · 

§5. L2 vanishing theorems for isolated singularities 

From now on we put~~) := 1/io) \supp1r- 1 (0). Combining Theorem 

8 with Proposition 2 and Corollary 11 we obtain the following. 

Theorem 13. Let r.p be a C 00 negative plurisubharmonic function 
on V£0 ( 0 < 80 « 1) such that ds2 := 288( - log ( -r.p)) is a complete 
Kahler metric on V£0 • Suppose that the following conditions are satisfied. 

(a) c;;i-1(11(00)) C Ln- 1 (V£0, ds2) 
(b) K15 extends to a continuous linear map from Ln(V£0 , ds2 ) to 

L ~--;~ (V£0, ds2 + 2c88r.p) if E > 0 and ~'8) (S V.50. 
Then 

Our next task is to apply Theorem 13 to prove that lim H(1) (V£, d<Y2 ) 
0---->0 

= 0 for any Sa per metric d<Y2 • 

Lemma 14. Let d<Y2 be a Saper metric on VJ. Then there exists 
a negative C 00 plurisubharmonic function r.p on V£ such that 

(i) 288( - log ( -r.p)) = d<Y2 on V£;2 . 

(ii) 288(- log (-cp)) is a complete Kahler metric on VJ. 

Proof. Let o-i be as in §1 and put 

Then 

88r.pr, 

m 

'Pri := - IT (-log<Yi)r/, 
i=l 

for 77E(O,l). 

= (-cpr,) { f)- log <Yi)-r/88(-(- log<Yi)r/) - 772 L 8/ 0 g <Yi 8/ 0 g <Yj} . 
i=l i,j og <Yi og <Yj 

Since 88(-(- log<Yi)ri) 2: 77(l-77)(- log<Yi)ri- 28log<Yi8log<Yi, we obtain 

88r.pri 2: 0 if O < 77 :S: 1/2. Let >. be a C 00 convex increasing function such 
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1 1 
that >.(t) = - 2log2 on (-oo,-log2) and >.(t) =ton (-2log2,oo). 

Then we put 

<p = 'Pl/2 + >.(log(8llzllv~)). 

Clearly <p satisfies (i) and (ii). D 

From Proposition 12 it follows immediately that (a) is true for da-2 

since so is it for 288( - log ( -<p)), where <p is as above. We are going to 
show that (b) is also true for this choice of <p. 

Take any k-ple point x E supp1r- 1 (0) and a neighbourhood D 3 x 
with a local coordinate ( v, w) around x as before. From the obvious 
asymptotics of da-2 and 88<p around x, the metric do-; = da-2 + c&B<p is 
estimated as 

(6) 

and 

(7) 

Let Di= {y ED; lvi(Y)I = 1~i!\ lv1(y)I}- We shall estimate IIK0,ullc:,Di 
_J_ 

( 8' « 8) for each i. Fixing i we set t1 = lvj I - !vi I for j -/=- i. Furthermore 
we put 01 = argvj for 1 S j S k. Then (6) and (7) are rewritten in terms 

i 
of a (piecewise smooth) local coordinate (s, t1 , • • · V • • •, tk, 01 , • • •, 0k, 
w1,···,wn-k) as 

ds 2 dt2 

Re da-2 >---- + '°' 1 
"'~ s2 (logs)2 ~=f.- (tj + s)2(logs) 2 

J i 

(8) 
k d02 1 n-k 

+ L (l i )2 + -1- Re L dwj&wj 
i=l ogs - ogs j=l 



and 
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2 ds2 '°" dt3 ~ 2 
Redat: ;S~ + L..t (t· s)2 + L..td0i 

j=/.i J + i=l 

n-k 

+ Re L dwjdWj
i=i 
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Take any 8' > 0 with V(o') Cs' V0 and let u = ds I\ u0 (s, •) + u 1 (s, •) E 

C0(v?0,)), where u0 and u 1 are determined as before. Then we put 

lluollce),t := r luol;d½,t for t < a', 
} {y;s(y)=t} 

where dVt:,t denotes the volume form with respect to da;l{y; s(y) = t} 
(in the piecewise smooth sense). Note that s ;S ldsle ;S 1 and 

lluo llce),t ;S ( log c 1 ) 2n llullco),t 

by ( 8) and ( 9) . Therefore 

IIKa,ull;,ni 

= I/Ls ua(t, ·)dt[Di 

if c > 0. 
Thus we have verified (b) for r.p. Consequently we obtain the follow

ing. 

Theorem 15. 

for any Saper metric do-2 • 

We now turn our attention to more general metrics. First we prepare 
a comparison lemma. 
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Lemma 16. Let X be a complex manifold, let dsf ( i = 0, 1) be 
C 00 Hermitian metrics on X satisfying ds6 ;S dsi, and let fl C X be 
a domain whose boundary 80 is compact. With respect to the metrics 
ds; := c:ds6 + (1 - c:)dsr, E E [O, 1], with associated L2 norms II lie:, 
suppose that ds; are complete and there exist a compact subset K C D 
and a constant C independent of E E [O, 1] such that 

(10) l!u!le:,O ::; C(llulle:,K + lldul!e:,o + l!d;,oulle:,ri) 
for any u E Dom(d + d;, 0 ) n Lr±1 (n, ds;). Here d;,0 denotes the ad
joint of d with respect to II lle:,O and r is a nonnegative integer. Then 

dimH(2r(n, ds;) < oo. Moreover 

(11) 

if 

(12) 

dim H'[2) (n, dsl) ::; dim H[2) (n, dsi) 

hold for j = ±1 and t: E [0, l]. 

Proof. That dimH(2r (0, ds;) < oo follows from (10) is well known 

(cf. [2]). Suppose moreover that (12) holds. Then there must exist a 
constant C' such that 

(13) 

ifu E Dom(d+d;,0 )nu±1 (0,ds;)GKer(d+d;, 0 ). (See [8] for the 

argument.) (13) shows that dim Hfo (0, ds5) '.S dim Ker( d + d;,0 ) = 
dim H[2l (0, ds;). • 

By Lemma 16, we have the following generalization of Theorem 13. 

Proposition 17. Let c.p and Vf0 be as in Theorem 13, and let 'ljJ 
be a C 00 plurisubharmonic function on Vf0 such that 

l) 88'1/J is a complete Kahler metric 
2) 18'1/Jlaa,;,, is bounded 
3) 88¢ ;S 88(-log(-c.p)). 

Then lim H(1) (VJ, 88¢) = 0. 
8-+0 

Proof. We put ds5 = 88¢ and dsi = 88( - log ( -c.p)). Then we can 
apply Lemma 16 in virtue of Proposition 1. • 

Thus the existence of dominating Saper metrics implies the follow
ing. 
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Corollary 18. lim H(~)(VJ, 88(-log log llzllv~)) = 0. 
15-+0 

Finally we shall prove the £ 2 cohomology vanishing with respect to 
88llzlli,. For that purpose we prepare another lemma. 

Lemma 19. Let n and ds; be as in Lemma 16 except that ds5 is 
not necessarily complete and instead of (10) we assume the estimate 

for any s E (0, 1] and u E Dom(d + d;,0 ) n r±1(n, ds;). Here T/c: are 
continuous functions on n with values in (1, oo) such that 
(15) T/c: -----t T)o uniformly on compact subsets of n. 
(16) There exists a sequence of C 00 functions {xµ}~=l on D satisfying 

i) ldxµ lds2 < T/O 0 -

00 

ii) SUPPXµ is compact and u SUPPXµ = n 
µ=l 

iii) 0::; Xµ::; 1 and Xµ = l on SUPPXµ-l· 
Assume moreover that 

(17) 

Then dim Hfo (D, dsi) ::; dimH[2) (D, dsi). 

Proof. To be precise, let dmax and dmin denote respectively the 
maximal and the minimal closed extensions of don L(D, ds5). By (16,i) 
we have 

Domdmax n {u E L(D,ds5); llrioullo,o < oo} C Domdmin· 

Similarly u E Domd~ax if llrioullo,o < oo and XµU E Domd~ax for allµ. 
Suppose that dim Hfo (D, ds5) > dim Hfo (D, dsr). Then there must ex-

ist a finite dimensional subspace W C Lr(n, ds5)n Ker dmax consisting of 
0 and non-dmax-exact forms, and a sequence f µ E W (µ = 1, 2, · · ·) such 
that llf µllo = 1 and Xµf µ1- Ker (d + d';_; 0 ) in r(n, dsi; ). Therefore, µ, µ 

by (14) and (17) there must exist a constant C',gµ E Lr- 1 (D,dsi;µ) 

and hµ E Lr+l(n, dsi;µ) such that 

{ 
Xµfµ = dgµ + d';_;µ,ohµ 

ll'P1/µ9µll1;µ,0::; C' 

ll'P1/µhµlli;µ,O::; C'. 
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Choosing weakly convergent subsequences of Jµ,9µ and hµ we thus ob
tain f E W g E Dom dmin and h E Dom d:Uax such that f = dming + 
d:Uaxh. Since f E Ker dmax, d:Uaxh = 0. Therefore f = 0. On the other 
hand f -/- 0 since IIJµlli;µ = 1 and W is finite dimensional. This is a 
contradiction. 

Combining Corollary 18 and Lemma 19 we obtain the following. 

Theorem 20. 

• 

Proof. Put ds5 = aa11z11i,' dsf = 88(- log log llzllvn and let 'T/e: 

be the smallest eigenvalue of 88(- log log llzllv~) with respect to (1 -

c)ds5+cdsr, Since the other eigenvalues of 88(-log log llzllv~) are equal 
to each other, we have the estimate (14) for r = n (cf. [8]). (16) follows 
from the fact that (tlogt)- 1 is non-integrable on (0, 1/2). (15) is trivial. 
(17) is a consequence of Corollary 18 together with Proposition 3 and 
Proposition 4. • 
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