On Eigenvalues of the Laplacian for Hecke Triangle Groups

Dennis A. Hejhal*

Abstract

. The purpose of this Note is to provide a survey of some of the recent experimental work aimed at computing eigenvalues of the Laplacian for a variety of Hecke triangle groups $\mathbf{G}\left(2 \cos \frac{\pi}{N}\right) \backslash H .{ }^{1}$

§1. Introduction

Let Γ be a Fuchsian group of finite area acting on the Poincaré upper half-plane H. Let

$$
\Delta u=y^{2}\left(u_{x x}+u_{y y}\right)
$$

be the non-Euclidean Laplacian on H. One of the most important zeta functions associated with $\Gamma \backslash H$ is the Selberg zeta function $Z_{\Gamma}(s)$, which we'll simply write as $Z(s)$. It is well-known ([9, p. 72 (11)], [10, p.498], [30, pp.75-79]) that the nontrivial zeros of $Z(s)$ are intimately connected with the spectral decomposition of Δ over $L_{2}(\Gamma \backslash H)$.

One would very much like to find a good way of computing $Z(s)$ for arbitrary Γ when s is restricted, say, to $\{-1 \leqq \operatorname{Re}(s) \leqq 2\}$.

Since Z has order $\leqq 2$, one possible approach would be to use the Hadamard product formula (cf., for instance, [9, pp. 72 (10), 148 (10.1)], [10, pp.435-440, 496-499], [29] and [38]) to reduce things to calculating the zeros of $Z(s) .{ }^{2}$

Received July 1, 1990. Revised August 16, 1991.
*With support from NSF Grant DMS 89-10744 and computer time from the Minnesota Supercomputer Institute (CRAY2), Pittsburgh Supercomputing Center (YMP-832), and San Diego Supercomputer Center (XMP-48).
${ }^{1}$ Part of the work described herein is discussed (or, otherwise pursued) to greater depth in the author's forthcoming American Mathematical Society Memoir [12].
${ }^{2}$ Even if another method based on (say) numerical analytic continuation ultimately proved to be superior, apriori knowledge of the zeros of $Z(s)$ would still be quite useful, particularly as a check on the overall accuracy.

One knows, of course, that any zeros of $Z(s)$ situated along $\{\operatorname{Re}(s)=$ $\left.\frac{1}{2}\right\}$ must correspond to eigenvalues of $-\Delta$ under the mapping

$$
\frac{1}{2} \pm i R \longrightarrow \frac{1}{4}+R^{2}
$$

at least for $R>0$.
For this reason, as well as one of intrinsic importance, it would be highly desirable to find good ways of computing the discrete eigenvalues of $-\Delta($ for given $\Gamma)$.

From the intrinsic standpoint, it would be even better if one could somehow determine the corresponding eigenfunctions themselves.

Currently, not too much is known about either problem. Cf. [2], [10, Appendix C], [11], [16], [35], [39] for a quick look at some of the existing work. Papers $[11,39]$ are of particular interest here.

In cases where Γ has cusps, the philosophy of Sarnak and Phillips ([3, $23,24,28]$) suggests that, unless Γ possesses some type of arithmeticity or symmetry property, the discrete spectrum of $-\Delta$ will be very sparse (and, most likely, finite).

【In order to recover the familiar Weyl law in such cases, one needs to (properly) combine the poles of the Eisenstein series in $\left\{\operatorname{Re}(s)<\frac{1}{2}\right\}$ with the discrete eigenvalues $\frac{1}{4}+R_{n}^{2}$. Cf. [10, pp.210, 231 (top), 437, 456-458, 476] and [32].]

In the present paper, we shall be concerned exclusively with the classical eigenvalues $\frac{1}{4}+R_{n}^{2}$ - and shall take as our Γ a Hecke triangle group $\mathbf{G}\left(2 \cos \frac{\pi}{N}\right)$. This choice represents one of the simplest possible generalizations of (the classical modular group) PSL(2, Z). Cf. [8, pp.592, 629].

For the sake of clarity, we stop to recall a few basic properties of $\mathbf{G}\left(2 \cos \frac{\pi}{N}\right)$. First and foremost: $\mathbf{G}_{N} \equiv \mathbf{G}\left(2 \cos \frac{\pi}{N}\right)$ is generated by

$$
E(z)=-\frac{1}{z} \quad \text { and } \quad T(z)=z+\mathcal{L}
$$

where $\mathcal{L}=2 \cos \left(\frac{\pi}{N}\right)$. The number N is a positive integer $\geqq 3$. It is easily seen that

$$
\mathcal{F}_{N}=H \cap\{|z|>1\} \cap\left\{|\operatorname{Re}(z)|<\frac{\mathcal{L}}{2}\right\}
$$

is a fundamental region for $\mathbf{G}_{N} \backslash H$ and that \mathbf{G}_{N} has signature

$$
\left(g, n ; \nu_{1}, \ldots, \nu_{n}\right)=(0,3 ; 2, N, \infty)
$$

Cf. [10, pp.5, 569], [19, pp.227, 235], [8, pp.609-616]. The group \mathbf{G}_{N} is (thus) a particular realization of the Schwarz triangle group $\mathbf{T}\left(\frac{\pi}{2}, \frac{\pi}{N}, \frac{\pi}{\infty}\right)$.
It virtually goes without saying here that $\mathbf{G}_{3}=\operatorname{PSL}(2, \mathbf{Z})$ and that \mathbf{G}_{N} admits an obvious symmetry with respect to the imaginary axis.

The group \mathbf{G}_{N} is known to be commensurable with $\operatorname{PSL}(2, \mathbf{Z})$ iff $N=3,4,6$. Cf. [17] and $[20,36]$ for the "if" and "only if", respectively.

Our goal is to study the discrete spectrum of $\mathbf{G}_{N} \backslash H$ for a variety of N.

The results we describe (in §§5-6) will serve to amplify the earlier work of A. Winkler [39].

Winkler's approach is substantially different than ours (resting, as it does, on a fair number of preliminary lemmas).

Prior to outlining the "mechanics" of our approach, it is worthwhile to highlight what the Sarnak-Phillips philosophy specifically predicts concerning $\Gamma=\mathbf{G}\left(2 \cos \frac{\pi}{N}\right)$.

The group \mathbf{G}_{N} has a symmetry with respect to the imaginary axis. Exactly as in [10, p. 590 (13)], one finds that the spectral decomposition of $L_{2}\left(\mathbf{G}_{N} \backslash H\right)$ splits into two "halves", one "even" and one "odd." The Eisenstein series appears only in the "even" half.

The odd portion of $L_{2}\left(\mathbf{G}_{N} \backslash H\right)$ will therefore be purely discrete. There is no difficulty obtaining Weyl's law for this half. Cf. [37, $\S \S 6.5$, $6.7]$ and [30, pp.69, $72(\dagger)]$.

The Sarnak-Phillips philosophy refers mainly to the other (i.e. "even") half of L_{2}.

Since the first (nonzero) eigenvalue of any triangle group is automatically bigger than $\frac{1}{4}$ (cf. [10, p. 583 (8)]), the relevant conjecture can be stated as follows:
$(\star) \quad\left\{\begin{array}{l}\text { for } N \neq 3,4,6, \text { the Hecke group } \mathbf{G}\left(2 \cos \frac{\pi}{N}\right) \\ \text { should admit no even cusp forms }\end{array}\right\}$.
For $N=3,4,6$, the quotient $\mathbf{G}_{N} \backslash H$ is arithmetic and even cusp forms will exist in abundance. In fact, Weyl's law holds exactly as in the case of "odd" R. (cf. [10, pp. 511 (top), 476] and equation (4.15) below.)

The contrast between odd/even and arithmetic/nonarithmetic is indeed striking. It is now apparent why $\mathbf{G}_{N} \backslash H$ is such a natural candidate for some computer experimentation.

§2. The procedure in a nutshell

Our aim is to find cusp forms $\varphi(z)$ for $\mathbf{G}\left(2 \cos \frac{\pi}{N}\right)$. By virtue of an
earlier remark, we already know λ must be strictly greater than $\frac{1}{4}$. This leads to $R>0$ and a Fourier expansion

$$
\varphi(x+i y)=\sum_{n=1}^{\infty} c_{n} y^{\frac{1}{2}} K_{i R}\left(\frac{2 \pi n y}{\mathcal{L}}\right)\left\{\begin{array}{c}
\cos \left(\frac{2 \pi n x}{\mathcal{L}}\right) \tag{2.1}\\
-\cdots-\cdots---- \\
\sin \left(\frac{2 \pi n x}{\mathcal{L}}\right)
\end{array}\right\}
$$

depending on whether φ is even or odd. As usual: $\lambda=\frac{1}{4}+R^{2}$. There is no loss of generality in assuming that $c_{n} \in \mathbf{R}$.

The RHS of (2.1) is automatically invariant under $z \mapsto z+\mathcal{L}$. To achieve full automorphy, we need to ensure that

$$
\begin{equation*}
\varphi\left(-\frac{1}{z}\right) \equiv \varphi(z) \tag{2.2}
\end{equation*}
$$

For a "true" cusp form we stress that (2.1) must be absolutely convergent on all of H. Cf. [10, pp.23-25].

The K-Bessel function is defined via

$$
\begin{equation*}
K_{i R}(X)=\frac{1}{2} \int_{-\infty}^{\infty} e^{-X \cosh t} e^{i R t} d t \tag{2.3}
\end{equation*}
$$

Due to the extremely small size of $K_{i R}(X)$ for $R>20$, it is best ($[11,14]$) to compute (2.3) by bending the contour in a manner similar to stationary phase. In this way: there is no difficulty calculating $\exp \left(\frac{\pi}{2} R\right) K_{i R}(X)$ to 10 or 11 places for R-values all the way out to 75000 .

The algorithm we use in connection with $(2.1)+(2.2)$ is very similar to [11]. There is one major difference, however. Namely: the group \mathbf{G}_{N} does not generally admit any Hecke operators. Cf. [20], [31, §4], [33]. This effectively eliminates any hope of determining R by use of some sort of multiplicative relations among the c_{n}.

To circumvent this difficulty, we proceed as follows. First of all: recall that (2.2) is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} I_{n}(z, R)=0 .^{3} \tag{2.4}
\end{equation*}
$$

We now select two batches of points $\left\{z_{1}, \ldots, z_{M-1}\right\}$ and $\left\{w_{1}, \ldots, w_{M-1}\right\}$ in \mathcal{F}_{N} (with suitable M) and repeatedly solve

$$
\sum_{n=2}^{M} c_{n} I_{n}\left(z_{j}, R\right)=-I_{1}\left(z_{j}, R\right), \quad 1 \leqq j \leqq M-1
$$

$\left(2.5^{\prime \prime}\right) \quad \sum_{n=2}^{M} c_{n} I_{n}\left(w_{j}, R\right)=-I_{1}\left(w_{j}, R\right), \quad 1 \leqq j \leqq M-1$.
The goal is to determine those R-values for which the solution sets $\left(c_{2}^{\prime}, c_{3}^{\prime}, \ldots, c_{M}^{\prime}\right)$ and $\left(c_{2}^{\prime \prime}, c_{3}^{\prime \prime}, \ldots, c_{M}^{\prime \prime}\right)$ match [as far as possible].

To this end: one simply "checks" $\left(2.5^{\prime}\right)$ versus $\left(2.5^{\prime \prime}\right)$ on a sufficiently fine R-grid, looking first for approximately coincident $\left(c_{k}^{\prime}\right)$ and $\left(c_{k}^{\prime \prime}\right)$, and then, in each such instance, proceeds to calculate the "point of closest approach" by repeating the comparison on a still finer R-grid. ${ }^{7}$

If the final differences $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ are small enough (in an appropriate norm), the resulting R is declared a "success".

If the same R-value (and c_{k}-coefficients) arise for widely disparate $z_{j} \& w_{j}$, it is reasonable to expect that one has actually found a true cusp form.

This is the new strategy in a nutshell.
There is very little difficulty modifying the code in [11, appendix A] to accomodate this revised procedure. Cf. [12, appendix A].

These two references also provide further information about the various subtleties that can (and do!) occur.

Far and away the most important thing to worry about is that the pseudo cusp forms ${ }^{8}$ introduced in [13] are properly excluded from occurring in $\left(2.5^{\prime}\right)\left(2.5^{\prime \prime}\right)$. One does this by requiring that the bulk of the test points z_{j}, w_{j} satisfy

$$
\begin{equation*}
\operatorname{Im} E\left(z_{j}\right)<\operatorname{Im}(\rho), \quad \operatorname{Im} E\left(w_{j}\right)<\operatorname{Im}(\rho) \tag{2.6}
\end{equation*}
$$

[^0]where $\rho \equiv \exp (\pi i / N)$. (Note that ρ is simply the lower right-hand corner of $\left.\mathcal{F}_{N}.\right)^{9}$

The final code is implemented in standard Cray-Fortran and is about 1200 lines long. Only single-precision variables are used ...

In solving (2.5), we employ standard Gauss-elimination. Cf. [6, pp.65-72 (II)].

§3. Some theoretical concerns and related caveats

A little thought shows that the algorithm in $\S 2$ actually rests on a number of presumptions (whose validity may be troublesome to demonstrate apriori).

First of all, in considering (2.5), it is clear that we have assumed that:

$$
\begin{equation*}
c_{1}=1 \tag{3.1}
\end{equation*}
$$

Cusp forms satisfying this condition will be referred to as "unit normalized." Insofar as we are not dealing with any kind of multiple eigenvalue, this normalization seems perfectly legitimate. Things happen for reasons; it is difficult to imagine what $c_{1}=0$ could possibly mean (especially in a nonarithmetic setting).

It is essential to bear in mind here that \mathbf{G}_{N} is a maximal Fuchsian group. Cf. [7, 22, 34]. As such: its normalizer can't be something strictly bigger. This effectively rules out any kind of intrinsic (or representationtheoretic) reason for multiple eigenvalues. ${ }^{10}$ Compare [25].

In our actual experiments, R will be kept less than 60 or so, while N will be taken $\leqq 7$.

The hope (in each instance) will be to attain 6 decimal place accuracy for the R_{n}.

In line with this, the parameters $H 2$ and $H 3$ will be taken to be 10^{-3} and 10^{-6}, respectively.

To the extent that Weyl's law does hold, the average distance between successive odd (or even) R_{n} will be about $4 \pi / A R$, where

$$
A=\pi\left(1-\frac{2}{N}\right)=\text { the hyperbolic area of } \mathcal{F}_{N}
$$

[^1]To minimize any potential difficulties caused by multiple, or nearly multiple, eigenvalues, one needs to insist that $H 2$ be a tiny fraction of $4 \pi / A R$. For the above-mentioned values, one easily checks that:

$$
H 2 \leqq\left\{\begin{array}{l}
0.50 \% \\
1.00 \% \\
1.50 \%
\end{array}\right\} \quad \text { of } \quad \frac{4 \pi}{A R} \quad \text { when } \quad\left\{\begin{array}{l}
R \leqq 20 \\
R \leqq 40 \\
R \leqq 60
\end{array}\right\}
$$

Beyond hoping that these percentages are sufficient, it is also apparent that the success of our algorithm will hinge (just as importantly!) on how rapidly the solutions of $\left(2.5^{\prime}\right)\left(2.5^{\prime \prime}\right)$ vary wrt R.

Indeed, even in the best of cases, one has to contend with the possible occurrence of (small) regions of ill-conditioning for one or both systems. This issue becomes increasingly important as the size of $R \&$ M grows, and is one of the main reasons for our insisting that a variety of (disparate) batches $\left\{z_{j}\right\} \cup\left\{w_{j}\right\}$ be used.

With each of these concerns, there are simply no apriori guarantees. ${ }^{11}$

This lack of guarantees is balanced, however, by the fact that R is quite modest. The total number of eigenvalues involved here is simply not that great. If suspicious results do occur, one is always free to test another batch $\left\{z_{j}\right\} \cup\left\{w_{j}\right\}$, or to reduce $H 2 \& H 3$.

This point-of-view needs to be kept in mind when considering Tables $1,2,3,6,7$. Though we lack any kind of rigorous proof of completeness, the reasonableness of our parameters [and built-in stability checks!] will tend to give us confidence that nothing has been missed. ${ }^{12}$

In the future, some way of eliminating most (or all) of the guesswork in (2.5) may yet be found.

In the meantime, one fact to keep in mind is that the modified Laplacians considered in [39, p.196] all have compact resolvent (with appropriately smooth dependence on the cut-off level a). It is therefore conceivable that our approach 〔using (2.5)】 may somehow be combined with that of $[39,40]$ in order to create a "hybrid" method characterized by a significantly higher level of both rigor and computational control.

See [5] for some ideas in this direction (after taking due note of the last 4 paragraphs of $\S 6$).

[^2]
$\S 4 . \quad$ Coefficient relations for $N=4$ and 6

Since \mathbf{G}_{4} and \mathbf{G}_{6} are commensurable with $\operatorname{PSL}(2, \mathbf{Z})$, it is reasonable to conjecture that some type of Hecke operators will now exist and that the Fourier coefficients of any unit-normalized φ automatically satisfy certain multiplicative relations (at least if λ has multiplicity 1).

To treat $N=4$ and 6 simultaneously, we set

$$
q=\frac{N}{2}
$$

and (then) observe that $\mathcal{L}=2 \cos \left(\frac{\pi}{N}\right)=\sqrt{q}$.
Let \mathcal{G} be the subgroup of $\operatorname{PSL}(2, \mathbf{R})$ which is generated by

$$
w \mapsto w+1 \quad \text { and } \quad w \mapsto-\frac{1}{q w}
$$

The group \mathcal{G} is nothing but \mathbf{G}_{N} viewed under the auxiliary mapping

$$
\begin{equation*}
z=\sqrt{q} w \tag{4.1}
\end{equation*}
$$

We also set:

$$
\Gamma_{0}(q)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbf{Z}) ; c \equiv 0 \bmod q\right\}
$$

The discussion in $[17]$ shows that $\Gamma_{0}(q) \leqq \mathcal{G}$ and that the index is 2. We already know that \mathcal{G} is a maximal Fuchsian group. Cf. $\S 3$. The analysis in [1, p.139] immediately implies that:

$$
\mathcal{G}=\text { the normalizer of } \Gamma_{0}(q)
$$

With these items in place, it is now possible to derive an important connection between cusp forms on $\operatorname{PSL}(2, \mathbf{Z}), \mathbf{G}_{N}$, and $\Gamma_{0}(q)$.

To explain things, we assume that the reader already has some familiarity with the Atkin-Lehner formalism [1] and is willing to grant that similar things should hold for nonholomorphic cusp forms. Compare [21, 26].

In the remarks that follow, we restrict ourselves to the case of "even" forms. The "odd" case is similar.

To get started: let $f_{0}(z)$ be any Hecke-normalized cusp form on $\operatorname{PSL}(2, \mathbf{Z})$ with eigenvalue $\lambda \equiv \frac{1}{4}+R^{2}$. We therefore have

$$
\begin{equation*}
f_{0}(x+i y)=\sum_{n=1}^{\infty} a_{n} y^{\frac{1}{2}} K_{i R}(2 \pi n y) \cos (2 \pi n x) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{1-a_{p} p^{-s}+p^{-2 s}} \tag{4.3}
\end{equation*}
$$

Cf. [11, equation (2.3)].
By an old remark of Rausenberger [27], the function

$$
\begin{equation*}
g_{0}(z)=f_{0}(z \sqrt{q})+f_{0}\left(\frac{z}{\sqrt{q}}\right) \tag{4.4}
\end{equation*}
$$

is automorphic (hence cuspidal) on \mathbf{G}_{N}. A trivial manipulation yields:

$$
\begin{equation*}
g_{0}(z)=\left(\frac{1}{\sqrt{q}}\right)^{1 / 2} \sum_{n=1}^{\infty} c_{n} y^{\frac{1}{2}} K_{i R}\left(\frac{2 \pi n y}{\sqrt{q}}\right) \cos \left(\frac{2 \pi n x}{\sqrt{q}}\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=a_{n}+\sqrt{q} a_{\frac{n}{q}} . \tag{4.6}
\end{equation*}
$$

The symbol $a_{n / q}$ is understood to be 0 if $q \nmid n$.
By applying $z=\sqrt{q} w$, we see that

$$
\begin{equation*}
h_{0}(w)=f_{0}(q w)+f_{0}(w) \tag{4.7}
\end{equation*}
$$

is cuspidal on \mathcal{G}. Since f_{0} "lives" on $\operatorname{PSL}(2, \mathbf{Z})$, the function h_{0} is an old-form on $\Gamma_{0}(q)$. Cf. [1, pp.145-146].

The Fourier expansion of $h_{0}(w)$ is simply

$$
\begin{equation*}
h_{0}(u+i v)=\sum_{n=1}^{\infty} c_{n} v^{\frac{1}{2}} K_{i R}(2 \pi n v) \cos (2 \pi n u) \tag{4.8}
\end{equation*}
$$

This expansion is augmented by the relation:

$$
\begin{equation*}
h_{0}\left(-\frac{1}{q w}\right)=h_{0}(w) \tag{4.9}
\end{equation*}
$$

We now turn matters completely around and begin with any newform $h(w)$ on $\Gamma_{0}(q) \backslash H$. Cf. [1, p.145] and [26, pp.321-328].

There are two types of new-forms depending on whether

$$
h\left(-\frac{1}{q w}\right)= \pm h(w)
$$

Cf. [1, p.147]. To obtain automorphy on \mathcal{G}, we obviously want the "+" sign to hold. Such new-forms will be called "proper." (The underlying theme here is essentially one of invariant subspaces. Cf. [1, Lemma 25].)

For proper h, we have:

$$
\begin{equation*}
h(w)=\sum_{n=1}^{\infty} c_{n} v^{\frac{1}{2}} K_{i R}(2 \pi n v) \cos (2 \pi n u) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}=\frac{1}{1-c_{q} q^{-s}} \prod_{p \neq q} \frac{1}{1-c_{p} p^{-s}+p^{-2 s}} \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
c_{q}=-\frac{1}{\sqrt{q}} \tag{B}
\end{equation*}
$$

Cf. [1, pp.147, 150].
By applying $z=\sqrt{q} w$, we see that

$$
\begin{equation*}
g(z)=h\left(\frac{z}{\sqrt{q}}\right) \tag{4.12}
\end{equation*}
$$

is cuspidal on \mathbf{G}_{N} and has Fourier expansion:

$$
\begin{equation*}
g(z)=\left(\frac{1}{\sqrt{q}}\right)^{1 / 2} \sum_{n=1}^{\infty} c_{n} y^{\frac{1}{2}} K_{i R}\left(\frac{2 \pi n y}{\sqrt{q}}\right) \cos \left(\frac{2 \pi n x}{\sqrt{q}}\right) . \tag{4.13}
\end{equation*}
$$

It makes sense to call g a new-form on \mathbf{G}_{N}. The earlier function g_{0} will (then) be called an old-form.

By abuse of language, we can use the same terminology for $c g$ and $c g_{0}, c \neq 0$.

By reviewing the definition of new-form in $[1,26]$, it is easily seen that any two g and g_{0} must be orthogonal (independent of their eigenvalue). In fact:

$$
\left\langle g, g_{0}\right\rangle=\left\langle h, h_{0}\right\rangle_{\mathcal{G}}=\frac{1}{\left[\mathcal{G}: \Gamma_{0}(q)\right]}\left\langle h, h_{0}\right\rangle_{\Gamma_{0}(q)}=0
$$

This observation leads to the following reformulation. Let $\lambda=$ $\frac{1}{4}+R^{2}$ be any eigenvalue for $\mathbf{G}_{N} \backslash H$ with multiplicity 1 . Let the corresponding unit-normalized eigenfunction be φ.

If λ is an eigenvalue for $\operatorname{PSL}(2, \mathbf{Z})$, then

$$
\begin{equation*}
\varphi=(\sqrt{q})^{1 / 2} g_{0} \tag{A}
\end{equation*}
$$

for a uniquely determined f_{0} on $\operatorname{PSL}(2, \mathbf{Z}) \backslash H$. Otherwise,

$$
\begin{equation*}
\varphi=(\sqrt{q})^{1 / 2} g(z) \tag{B}
\end{equation*}
$$

for a uniquely determined (proper) new-form h on $\Gamma_{0}(q) \backslash H$.
All that we're really doing here is looking at the old-form/new-form decomposition of $\varphi(w \sqrt{q})$ on $\Gamma_{0}(q) \backslash H \ldots$

We won't worry about multiplicity >1.
Watching old-forms appear [on the machine] and verifying ${ }^{13}$ the $r e-$ lations implicit in (4.3), (4.6), (4.11) should prove quite interesting. Especially: $(4.11)_{\mathrm{B}}$.

We summarize things with a diagram:

normalized f_{0} on $P S L(2, \mathbf{Z})$ ------ coefficients a_{n}

proper newform h on $\Gamma_{0}(q)$ -------------- coefficients c_{n}

Incidentally: in the case of old forms, one naturally expects that $\left\{f_{0}(w), f_{0}(q w)\right\}$ will be a basis for the corresponding eigenspace of $\Gamma_{0}(q)$. The associated multiplicity on $\Gamma_{0}(q)$ will therefore by 2 . [On \mathcal{G}, it'll be 1.]

The corresponding numerology with regard to Weyl's law then goes as follows:

$$
\begin{aligned}
p & =N\left[\text { proper new-forms with } \lambda_{n} \leqq x\right] \\
i & =N\left[\text { improper new-forms with } \lambda_{n} \leqq x\right] \\
\frac{(q+1) \mu}{4 \pi} & =(\text { multiplicity } 2) \frac{\mu}{4 \pi} X+p+i \\
\frac{A}{4 \pi} X & =\frac{\mu}{4 \pi} X+p \\
\frac{A}{4 \pi} X & =\frac{\mu}{4 \pi} X+i \quad[\text { by switching }+ \text { to }- \text { in eq. (4.4)]. }
\end{aligned}
$$

Since $(q+1) \mu=2 A$, everything is consistent, and we simply find that:

$$
\begin{aligned}
p & =\frac{1}{2}(q-1) \frac{\mu}{4 \pi} X+[\text { lower order terms }] \\
i & =\frac{1}{2}(q-1) \frac{\mu}{4 \pi} X+[\text { lower order terms }] .
\end{aligned}
$$

Before closing this section, we stop to point out a useful fact concerning Eisenstein series.

Let $E_{N}(z ; s)$ be the obvious Eisenstein series for $\mathbf{G}_{N} \backslash H$ with $N=$ 4,6 . Cf. [10, pp.569, 280] for the proper normalization. The analysis near (4.4) is easily modified to show that

$$
\left\{\begin{array}{l}
E_{N}(z ; s)=\frac{1}{1+q^{s}}\left[E_{3}(z \sqrt{q} ; s)+E_{3}\left(\frac{z}{\sqrt{q}} ; s\right)\right] \tag{4.15}\\
\varphi_{N}(s)=\varphi_{3}(s) \frac{1+q^{1-s}}{1+q^{s}}
\end{array}\right\}
$$

where E_{3} and φ_{3} correspond to $\operatorname{PSL}(2, \mathbf{Z}) \backslash H$.
These relations reflect the fact that \mathbf{G}_{4} and \mathbf{G}_{6} are both arithmetic.

§5. "Odd" eigenvaluès for $N=4,5,6$

Prior to giving the results, it is useful to say just a few words about the procedure.

Our primary goal [in this set of experiments] was to compute the odd eigenvalues of $\mathbf{G}_{4}, \mathbf{G}_{5}, \mathbf{G}_{6}$ with $R \leqq 25$ to an R-accuracy of six decimal places.

One wished to do this as efficaciously as possible - which basically meant that (2.5) had to be "optimally conditioned." This, in turn, meant that some caution had to be exercised in the choice of z_{j} and w_{j}.

A batch $\left\{z_{j}\right\} \cup\left\{w_{j}\right\}$ is said to be of type $\left(\alpha_{1}, \ldots, \alpha_{r} \| \beta_{1}, \ldots, \beta_{s}\right)$ when:
(i) the points $E\left(z_{j}\right)$ are distributed in some regular fashion along the line segments $\left\{0 \leqq x \leqq \frac{1}{2} \mathcal{L}, y=\alpha_{i}\right\}, 1 \leqq i \leqq r$;
(ii) similarly for $E\left(w_{j}\right)$ and $\left\{0 \leqq x \leqq \frac{1}{2} \mathcal{L}, y=\beta_{k}\right\}, 1 \leqq k \leqq s$.

To discourage pseudo cusp forms (as in §2), one requires that:

$$
\alpha_{i}<\sin \left(\frac{\pi}{N}\right), \quad \beta_{k}<\sin \left(\frac{\pi}{N}\right) .
$$

Since (2.4) must hold at any $z \in H$, it is not necessary that the (original) points z_{j} and w_{j} lie in \mathcal{F}_{N}. Indeed: for purposes of achieving better conditioning, it would seem wise to let $E\left(z_{j}\right)$ and $E\left(w_{j}\right)$ range all the way out to $x=\frac{1}{2} \mathcal{L}$. (Intuitively: one wants to spread things out a bit. Cf. Figure 1. Several test runs with $N=6$ convinced us early on that this "trick" would be a very good idea. We adopted it without further ado.)

Figure 1

Any number of other configurations were (actually) tested before we finally settled on type $(\alpha \| \beta)$. One curious finding was that the vertical batches used in [11] do not seem to condition so well once N starts to increase.

Our production jobs were all of type $\left(\alpha_{1}, \alpha_{2} \| \beta_{1}, \beta_{2}\right)$. The parameters were as follows:

$N=4$	$N=5$	$N=6$			
$(.60, .65 \\| .62, .67)$	$(.45, .50 \\| .47, .52)$	$(.40, .45 \\| .42, .47)$			
$(.50, .55 \\| .52, .57)$	$(.40, .45 \\| .42, .47)$	$(.35, .40 \\| .37, .42)$			
$\sin \frac{\pi}{4}=.70711$	$\sin \frac{\pi}{5}=.58779$	$\sin \frac{\pi}{6}=.50000$			
$H 2=.001 \quad ; \quad H 3=10^{-6}$					

As noted earlier, the algorithm outlined in $\S 2$ was implemented in standard CRAY-Fortran. In doing so: we were especially careful to arrange things so that, by deleting several z_{j} and w_{j}, it would ${ }^{14}$ be possible to treat several M-values in parallel - at least up to those points where (2.5) actually needed to be solved. [This is done by appropriately structuring the "flow pattern" through levels $H 2$ and H3.]

For safety: we (then) worked with 3 such M-values in our actual runs. Since the number of distinct $(\alpha \| \beta)$ types is 2 , this gives an effective total of 6 "tracks."

The choice of M changes with R. This is necessary to ensure "admissibility" in the sense of [11, eq.(2.6)]. That is: we need to have

$$
\begin{equation*}
\left|I_{\ell}\left(z_{j}, R\right)\right| \leqq\binom{\text { something like }}{10^{-9}} \cdot \max _{\substack{1 \leqq k \leqq M-1 \\ 1 \leqq n \leqq M}}\left|I_{n}\left(z_{k}, R\right)\right| \tag{5.1}
\end{equation*}
$$

for $\ell>M$.
It is not wise to overshoot by too much on this aspect of the code.
The variability in M means that the grid points z_{j} and w_{j} must also be (occasionally) changed as well.

Fortunately: these changes are all very gradual.

[^3]For each $(\alpha \| \beta)$ type, we then prepared a list of semifinal R-values by scanning the 3 outputs (wrt M) for the best $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ values.

To obtain the final R-values, we repeated this procedure (on the 2 semi-final lists).

The difference between the semifinal and final R-values was usually less than $\frac{1}{2} \times 10^{-6}$ and never greater than 1×10^{-6}.

Our final R_{n}-values are shown in Tables $1-3$.

7.220872	16.138073^{*}	20.530160	24.028513	
9.533695^{*}	16.644259^{*}	21.049526	24.419715^{*}	
11.317680	17.493113	21.479057^{*}	25.050855^{*}	
12.173008^{*}	18.180918^{*}	22.194674^{*}	25.119336	
13.310164	18.437078	22.374933	\ldots	
14.358510^{*}	19.484714^{*}	23.201396^{*}		
15.274023	20.106695^{*}	23.263712^{*}		
Odd Eigenvalues for G(2 cos $\left.\frac{\pi}{4}\right)$				
indicates an old-form				

Table 1

6.473700	15.176893	19.385430	23.052526	
8.636765	15.759928	19.962241	23.438611	
10.136450	16.276410	20.597938	23.509476	
11.015570	16.890976	20.745577	24.001860	
12.084067	17.757303	21.287052	24.239718	
12.851289	18.031441	21.675649	24.631401	
14.071834	18.633434	22.197638	25.081315	
14.307857	19.011695	22.399384	\cdots	
Odd Eigenvalues for $\mathbf{G}\left(2 \cos \frac{\pi}{5}\right)$				

Table 2

6.120576	15.483162	20.106695^{*}	23.460177	
8.193036	16.138073^{*}	20.409439	24.209622	
9.533695^{*}	16.644259^{*}	21.108696	24.419715^{*}	
10.507607	16.965398	21.479057^{*}	24.916657	
11.365904	17.820675	21.612650	24.952648	
12.173008^{*}	18.018977	22.100313	25.050855^{*}	
13.378621	18.180918^{*}	22.194674^{*}	\ldots	
13.507911	19.026777	22.671118		
14.358510^{*}	19.484714^{*}	23.201396^{*}		
14.787325	19.566910	23.263712^{*}		
Odd Eigenvalues for G(2 cos $\left.\frac{\pi}{6}\right)$				
indicates an old-form				

Table 3

Tables 4 and 5 supply some additional data. For information about CPU times, see $\S 8(B)$.

N	type	$R \approx 10$	$R \approx 18$	$R \approx 25$	
4	$(.60, .65 \\| .62, .67)$	12	16	19	
4	$(.50, .55 \\| .52, .57)$	15	18	22	
5	$(.45, .50 \\| .47, .52)$	18	23	27	
5	$(.40, .45 \\| .42, .47)$	21	25	30	
6	$(.40, .45 \\| .42, .47)$	22	27	32	
6	$(.35, .40 \\| .37, .42)$	25	31	36	
Sample M-values					

Table 4

	R-range	2	3	4	5	6	7	8	9	10	12	14	16
4	$10 \sim 15$	E-6	E-6	E-6	E-6	E-6	E-6	E-5	E-5	E-4	E-2	*	*
4	$20 \sim 25$	E-6	E-5	E-4	E-3	E-2							
5	$10 \sim 15$	E-6	E-5	E-5	E-3	E-2	*						
5	$20 \sim 25$	E-6	E-5	E-5									
6	$10 \sim 15$	E-6	E-5	E-5	E-4	E-3	E-2						
6	$20 \sim 25$	E-6	E-5	5									
Typical orders-of-magnitude for $\left\|c_{k}^{\prime}-c_{k}^{\prime \prime}\right\|$													
using semifinal R_{n}-values													
N. B. The best cases are typically better by 1 or 2 orders.													

Table 5

Thus far we have emphasized R_{n} and not the associated Fourier coefficients c_{k}. Though the latter are certainly of interest, there seems to be very little point in making complete lists of all the Fourier coefficients that were actually obtained.

In $\S 7$, we'll discuss 15 typical (or otherwise interesting!!) examples in greater detail.

Readers needing more information than this are advised to contact the author; the complete mass of Fourier coefficients is available on magnetic tape.

In scanning this output, we discovered no counterexamples to the Ramanujan-Petersson conjecture (for $N=4,6$). Cf. [18] and equations (4.3), (4.11).

§6. "Even" eigenvalues for $N=4,5,6,7$

The situation for the arithmetic cases $N=4$ and 6 is very similar to $\S 5$. Our aim was to compute the even eigenvalues \llbracket of \mathbf{G}_{4} and $\mathbf{G}_{6} \rrbracket$ with $R \leqq 25$ to an R-accuracy of six decimal places.

Our production jobs were all of type ($\alpha_{1}, \alpha_{2} \| \beta_{1}, \beta_{2}$). The parameters were as follows:

$N=4$	$N=6$		
$(.50, .55 \\| .52, .57)$	$(.40, .45 \\| .42, .47)$		
$(.40, .45 \\| .42, .47)$	$(.35, .40 \\| .37, .42)$		
$\sin \frac{\pi}{4}=.70711$	$\sin \frac{\pi}{6}=.50000$		
$H 2=.001 \quad ; \quad H 3=10^{-6}$			

In an attempt to gain better accuracy, we decided to run things using six M-values (instead of just 3).

Our final R_{n}-values [for $N=4,6$] are displayed in Tables 6 and 7 .

$N=4$		
8.922877	17.878003	22.785909^{*}
10.920392	19.125423	23.496586
13.779751^{*}	19.423481^{*}	24.112353^{*}
14.685016	20.547604	24.856199
16.404109	21.315796^{*}	25.052424
17.738563^{*}	22.089045	\cdots
Even Eigenvalues for G $\left(2 \cos \frac{\pi}{4}\right)$		
* indicates an old-form		

Table 6

$N=6$		
5.098742	16.736215	21.807127
8.038861	17.500557	22.659272
9.743749	17.738563^{*}	22.785908^{*}
11.346418	18.647430	22.839291
11.889976	18.962642	23.620927
13.135144	19.423482^{*}	23.979851
13.779751^{*}	19.896104	24.112353^{*}
14.626236	20.664907	24.298256
15.799494	21.315796^{*}	24.931087
16.270959	21.434643	\cdots
Even Eigenvalues for G(2 cos $\left.\frac{\pi}{6}\right)$		
* indicates an old-form		

Table 7

The discrepancy between the semifinal and final R-values was, except for the last 4 entries in Table 7, entirely similar to $\S 5$. [The exceptions seemed to be caused by a conditioning problem with one of the types. The other type worked perfectly fine ...]

Tables 8 and 9 (top) supply some additional data.
See $\S 8$ (B) for information about CPU times and $\S 7$ for various examples illustrating the actual Fourier coefficients.

【No counterexamples to Ramanujan-Petersson were found in a scan through the total mass of computed $c_{k} \ldots$ 】

The focus in the nonarithmetic cases was (of course) quite different.
Here one basically wished to investigate conjecture (\star). We attacked this problem in the following ranges:

In both cases: no even cusp forms were found.
This assertion requires some elaboration, however.
Up to a point: the basic procedure is exactly like before. Our production jobs had the following parameters

$N=5$	$N=7$				
$\begin{gathered} (.50, .55 \\| .52, .57) \\ (.40, .45 \\| .42, .47) \\ (.30, .35 \\| .32, .37) \\ \text { for } R<15 \end{gathered}$	(.30, .35 \|	.32, .37)			
$\begin{gathered} (.45, .50 \\| .47, .52) \\ (.40, .45 \\| .42, .47) \\ \text { for } \quad R>15 \end{gathered}$					
$\sin \frac{\pi}{5}=.58779$	$\sin \frac{\pi}{7}=.43388$				
$H 2=.001$	$H 3=10^{-6}$				

Σ

For $N=5$ and $0 \leqq R \leqq 15$, we ran 6 (and sometimes 9) M-values in parallel. In all other cases: we used 3.

The case $N=7$ was pursued in earnest only after $N=5$ was complete. Its purpose was (thus) mainly one of insurance. To save computer time, we decided to proceed with only one "type."

In $\S 3$, we explained why it is important to keep the numbers α_{i} and β_{k} below $\sin \left(\frac{\pi}{N}\right)$. Placing these levels too low, however, causes M to become rather large - which begins to affect the overall accuracy (and CPU time) adversely. It is therefore necessary to strike some kind of balance.

One might think that running jobs with the parameters shown above would simply produce no output [in accordance with (\star)]. This, however, is not the case.

The assertion that "no even cusp forms were found" is not as simple as it looks.

What typically happened in our (even) nonarithmetic jobs was that R-values would occasionally come out showing differences $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ that looked "half-way" respectable.

BUT (and this is the key point!): one or more danger signs would invariably apply.

These signs included:
(a) excessive movement (or disappearance!) of the proposed R-value when M is varied;
(b) excessive movement (or disappearance!) of the proposed R-value when the "type" is varied;
(c) excessive movement in the first few Fourier coefficients under similar variations;
(d) values of $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ that were typically 3 to 4 orders-of-magnitude worse than their "counterparts" for odd R (in the same range).

Item (d), on its own, was usually enough to destroy any putative R.
The essential point here is that [philosophically] one should expect similar levels of "stability" to be exhibited by both the even and odd R-values. This was certainly the case for $N=4,6 .{ }^{15}$

One always has to be a bit careful in situations like this to exclude the possibility that some type of intrinsic "static" region (wrt R) is the real culprit in (a)-(d). On such R-regions, there could easily be an overall degradation in conditioning-level [which causes (a)-(d)].

This effect was discussed in [11] at some length. The same effect certainly occurs for $N=4,5,6,7$. In fact: here it begins even earlier [with "missing" R_{n}-values occurring on one-or-another track for R as low as 9.533].

At this stage of the game, one can only hope that the (potential) effects of such "static" are indeed minimized by running several tracks and/or types. ${ }^{16}$

In this connection: the most interesting thing is that some R-values with half-way decent $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ did manage to stay reasonably "intact" [wrt (a)-(c)] under several changes of track.

For $N=5$ at least, such R-values seemed to be most common [and "strongest"] in cases where α and β could come closest to $\sin \left(\frac{\pi}{N}\right)$.

In view of this $\alpha \beta$-dependence, it is natural to conjecture that the foregoing R-values must simply represent some type of "residual" effect from the pseudo cusp forms mentioned in $\S 2$.

This issue is carefully explored in [12] — on both the theoretical and experimental fronts. The proposed explanation [in terms of pseudoresiduals] is found to be very well-substantiated by further experimentation.

The upshot of these remarks is very simple. The occurrence of "pseudo-residuals" makes it doubly important to pay close attention to (a)-(d) [and to the size of α_{i} and $\left.\beta_{k}\right]$. Failure to do so may cause one to "snare" the wrong type of "animal" altogether ...

[^4]Tables 8 and 9 provide some additional information about our "even" runs. Compare: Tables 4,5 in $\S 5$.

	R-range	2	3	4	5	6	7	8	9	10	12	14	16
4	$10 \sim 15$	E-7	E-7	E-7	E-6	E-6	E-6	E-6	E-6	E-4	E-2	*	*
4	$20 \sim 25$	E-6	E-6	E-6	E-6	E-6	E-6	E-5	E-5	E-5	E-5	E-4	E-2
6	$10 \sim 15$	E-7	E-7	E-7	E-7	E-6	E-6	E-6	E-5	E-5	E-3	E-1	
6	$20 \sim 25$	E-7	E-7	E-7	E-7	E-7	E-6	E-6	E-6	E-6	E-5	E-5	E-5
Typical orders-of-magnitude for $\left\|c_{k}^{\prime}-c_{k}^{\prime \prime}\right\|$													
using semifinal R_{n}-values													
N. B. The best cases are typically better by 1 or 2 orders.													

Table 8

N	type	≈ 1	≈ 1			\approx	$R \approx$	
4	(.50, .55 \|	.52, .57)	15	18	22	*	*	*
4	(.40, .45 \|	.42, .47)	17	21	25	*	*	*
6	(.40, .45 \|	.42, .47)	21	26	31	*	*	*
6	(.35, . 40 \|	.37, .42)	23	29	34	*	*	*
5	(.45, .50 \|	.47, .52)	*	23	26	40	46	52
5	(.40, .45\\|.42, .47)	21	25	29	44	51	58	
7	(.30, .35 \|	.32, .37)	34	40	48	64	*	*
Sample M-values								

Table 9

To round things out, we now compare our results with those of Winkler.

On the matter of (\star), there is little to comment on beyond reporting that Winkler tested $N=5,7,8$ for $R \leqq 20$ and found no even cusp forms.

For $N=4$ and 6 , Winkler's results go as follows:

$N=4$
8.922877
10.920392
14.685016
16.40411
19.12512
even R

Table 10

$$
N=6
$$

$$
5.098742
$$

$$
8.038861
$$

$$
9.743749
$$

$$
11.34642
$$

11.889976
13.135144
14.626227
15.799498
16.736246
17.500559
even R
Table 11
For the most part, Winkler's entries show excellent agreement with our values. ${ }^{17}$ Much more striking, however, is the fact that no old-forms were detected!! (Two new-forms were also missed: 17.878003 for $N=4$ and 16.270959 for $N=6$.)

[^5]With regard to the old-forms 【and examples $7,10,11$ in $\S 7 \rrbracket$, we wish to stress that, near such R, our CRAY output was always quite stable (and well-conditioned). ${ }^{18}$

In particular: there is absolutely no indication of any kind of "hidden" new-form also being present. (To achieve the proper perspective on this, it is helpful to review $\left(4.11_{\mathrm{A}}\right),[33$, p. 80 (bottom)], and the remark about $\left\langle g, g_{0}\right\rangle$ in §4.)

Before implementing any kind of "hybrid" technique (as suggested at the end of §3), it would obviously be desirable to learn why Winkler's method missed the values it did [particularly after doing so well on the others].

§7. Some examples

In this section, we'll look at 15 examples which serve to illustrate various aspects of our production runs. The information given in each case will include: appropriately rounded valued of $\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$; a rough indication of $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$; and a brief description of the "track" used.

When discussing old-forms, remember that:

$$
c_{n}=a_{n}+\sqrt{q} a_{\frac{n}{q}}
$$

by virtue of (4.6).
Example 1. $\quad R=7.220872(N=4 /$ odd/new-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	
2	-.7071067	$2 \mathrm{E}-8$	7	-.0625	$5 \mathrm{E}-4$	
3	-.9493510	$3 \mathrm{E}-8$	8	-.3460	$4 \mathrm{E}-3$	
4	.5000021	$5 \mathrm{E}-7$	9	-.142	$3 \mathrm{E}-2$	
5	-.869730	$6 \mathrm{E}-6$	10	.80	0.1	
6	.671435	$6 \mathrm{E}-5$	11	-.57	0.3	
$M=11$						
type $(.60, .65 \\| .62, .67)$	final R					

[^6]As an indication of (overall) accuracy, note that:

$$
\begin{array}{rlr}
\frac{1}{\sqrt{2}}=.707106781, \quad\left|c_{2}+\frac{1}{\sqrt{2}}\right|=.0000001, \quad\left|c_{4}-\frac{1}{2}\right|=.0000021 \\
& \left|c_{6}-c_{2} c_{3}\right|=.000143 & \left|c_{8}+\frac{1}{2 \sqrt{2}}\right|=.0076 \\
& \left|c_{9}-\left(c_{3}^{2}-1\right)\right|=.043 & \left|c_{10}-c_{2} c_{5}\right|=.19
\end{array}
$$

Example 2. $\quad R=12.173008(N=4 /$ odd/old-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}
2	1.7034654	$1 \mathrm{E}-8$.2892518
3	-1.2018588	$1 \mathrm{E}-8$	-1.2018588
4	-.5072694	$4 \mathrm{E}-9$	-.9163332
5	.0395527	$6 \mathrm{E}-11$.0395527
6	-2.0473248	$2 \mathrm{E}-9$	-.3476398
7	.4481331	$3 \mathrm{E}-8$.4481331
8	-1.8501922	$3 \mathrm{E}-7$	-.5543014
9	.4444580	$6 \mathrm{E}-7$.4444580
10	.06754	$6 \mathrm{E}-5$.01160
11	-.6935	$6 \mathrm{E}-4$	-.6935
12	.638	$1 \mathrm{E}-2$	1.130
13	-3.11	$1.25(!!)$	-3.11
$M=17$ final R			

As an indication of (overall) accuracy, note that:

$$
\begin{array}{ll}
\left|a_{4}-\left(a_{2}^{2}-1\right)\right|=.0000002 & \left|a_{6}-a_{2} a_{3}\right|=.0000000 \\
\left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right|=.0000015 & \left|a_{9}-\left(a_{3}^{2}-1\right)\right|=.0000066 \\
\left|a_{10}-a_{2} a_{5}\right|=.00016 & \left|a_{12}-a_{3} a_{4}\right|=.029
\end{array}
$$

In view of the (large) difference at $k=13$, we do not take c_{13} seriously.

The situation for $k \geqq 14$ gets progressively worse. In the terminology of [11], we can thus say that the c_{n} "hump" occurs at about $13 \sim 14$.

Incidentally: observe that

$$
\begin{array}{ll}
a_{2}=\left\{\begin{array}{lc}
.2892518 & \text { here } \\
.289252 & \text { in [11] }
\end{array}\right\} & a_{3}=\left\{\begin{array}{cc}
-1.2018588 & \text { here } \\
-1.201858 & \text { in }[11]
\end{array}\right\} \\
a_{5}=\left\{\begin{array}{lcc}
.0395527 & \text { here } \\
.042 & \text { in [11] }
\end{array}\right\} & a_{7}=\left\{\begin{array}{cc}
.4481331 & \text { here } \\
* * * & \text { in [11] }
\end{array}\right\}
\end{array}
$$

The current a_{k}-listing is (thus) significantly better than the one in [11]. This improvement basically reflects the change in geometry.

Example 3. $R=24.028513(N=4 /$ odd/new-form) .

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	
2	-.7071066	$3 \mathrm{E}-8$	11	-.879083	$1 \mathrm{E}-6$	
3	.5772141	$2 \mathrm{E}-8$	12	.28860	$5 \mathrm{E}-5$	
4	.5000000	$4 \mathrm{E}-8$	13	1.6529	$2 \mathrm{E}-4$	
5	.2392995	$7 \mathrm{E}-8$	14	.0854	$3 \mathrm{E}-4$	
6	-.4081516	$5 \mathrm{E}-8$	15	.143	$3 \mathrm{E}-3$	
7	-.1212567	$2 \mathrm{E}-7$	16	.247	$8 \mathrm{E}-4$	
8	-.3535511	$3 \mathrm{E}-7$	17	-1.09	0.17	
9	-.666826	$2 \mathrm{E}-6$	18	.68	0.45	
10	-.169205	$4 \mathrm{E}-6$				
type $(.50, .55 \\| .52, .57)$					$M=22$	
final R						

To indicate the overall accuracy, note that:

$$
\begin{aligned}
\left|c_{2}+\frac{1}{\sqrt{2}}\right| & =.0000002 & \left|c_{4}-\frac{1}{2}\right| & =.0000000 \\
\left|c_{6}-c_{2} c_{3}\right| & =.0000003 & \left|c_{8}+\frac{1}{2 \sqrt{2}}\right| & =.0000023 \\
\left|c_{9}-\left(c_{3}^{2}-1\right)\right| & =.000002 & \left|c_{10}-c_{2} c_{5}\right| & =.000005 \\
\left|c_{12}-c_{3} c_{4}\right| & =.000007 & \left|c_{14}-c_{2} c_{7}\right| & =.0003 \\
\left|c_{15}-c_{3} c_{5}\right| & =.005 & \left|c_{16}-\frac{1}{4}\right| & =.003 .
\end{aligned}
$$

The c_{n} "hump" occurs at about $n=18$.
Before moving onward, we need to draw attention to an important fact. By reviewing Examples 1-3, it becomes apparent that the number $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ is not a true indicator of the actual error in c_{k}. (This is seen by looking at the multiplicative relations.) To be on the safe side, it seems preferable to use something like $\max \left[2 \times 10^{-7}, 5\right.$ (diff)] as the "basic indicator" of fuzz-level. ${ }^{19}$

Example 4. $R=6.120576(N=6 /$ odd/new-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.		
2	-.6716156	$1 \mathrm{E}-9$	10	-.21872	$3 \mathrm{E}-5$		
3	-.5773503	$4 \mathrm{E}-10$	11	-.68593	$3 \mathrm{E}-5$		
4	-.5489325	$4 \mathrm{E}-9$	12	.3176	$8 \mathrm{E}-4$		
5	.3256987	$2 \mathrm{E}-9$	13	-.3325	$8 \mathrm{E}-4$		
6	.3877575	$6 \mathrm{E}-8$	14	.99	$2 \mathrm{E}-2$		
7	-1.4557169	$4 \mathrm{E}-8$	15	-.17	$2 \mathrm{E}-2$		
8	1.040288	$1 \mathrm{E}-6$	16	.30	0.64		
9	.333334	$1 \mathrm{E}-6$					
type $(.40, .45 \\| .42, .47)$							
$M=20$	final R						

To indicate the overall accuracy, note that:

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =.577350269 & \left|c_{3}+\frac{1}{\sqrt{3}}\right| & =.0000000 \\
\left|c_{4}-\left(c_{2}^{2}-1\right)\right| & =.0000000 & \left|c_{6}-c_{2} c_{3}\right| & =.0000000 \\
\left|c_{8}-\left(c_{2}^{3}-2 c_{2}\right)\right| & =.0000008 & \left|c_{9}-\frac{1}{3}\right| & =.000001 \\
\left|c_{10}-c_{2} c_{5}\right| & =.00002 & \left|c_{12}-c_{3} c_{4}\right| & =.0007 \\
\left|c_{14}-c_{2} c_{7}\right| & =.012 & \left|c_{15}-c_{3} c_{5}\right| & =.02 .
\end{aligned}
$$

[^7]The c_{n} "hump" occurs at about $n=16$.
Example 5. $\quad R=12.173008(N=6 /$ odd/old-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}	
2	.2892519	$6 \mathrm{E}-8$.2892519	
3	.5301920	$2 \mathrm{E}-8$	-1.2018588	
4	-.9163334	$3 \mathrm{E}-8$	-.9163334	
5	.0395526	$6 \mathrm{E}-8$.0395526	
6	.1533590	$8 \mathrm{E}-8$	-.3476400	
7	.4481331	$8 \mathrm{E}-8$.4481331	
8	-.5543028	$2 \mathrm{E}-7$	-.5543028	
9	-1.6372162	$4 \mathrm{E}-7$.4444643	
10	.011442	$2 \mathrm{E}-6$.011442	
11	-.691455	$7 \mathrm{E}-6$	-.691455	
12	-.48581	$3 \mathrm{E}-5$	1.10133	
13	-.8030	$3 \mathrm{E}-4$	-.8030	
14	.132	$3 \mathrm{E}-3$.132	
15	.02	$8 \mathrm{E}-3$	-.05	
16	.72	$4 \mathrm{E}-2$.72	
17	-.7	0.41	-.7	
type $(.35, .40 \\| .37, .42)$	$M=27$	a semifinal R		

To indicate the overall accuracy, note that:

$$
\begin{aligned}
\left|a_{4}-\left(a_{2}^{2}-1\right)\right| & =.0000001 & \left|a_{6}-a_{2} a_{3}\right| & =.0000001 \\
\left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right| & =.0000003 & \left|a_{9}-\left(a_{3}^{2}-1\right)\right| & =.0000003 \\
\left|a_{10}-a_{2} a_{5}\right| & =.000001 & \left|a_{12}-a_{3} a_{4}\right| & =.000027 \\
\left|a_{14}-a_{2} a_{7}\right| & =.002 & \left|a_{15}-a_{3} a_{5}\right| & =.002 \\
\left|a_{16}-\left(a_{2}^{4}-3 a_{2}^{2}+1\right)\right| & =.036 . & &
\end{aligned}
$$

The c_{n} "hump" occurs at about $n=18$.
The current a_{k}-values are an improvement over those in Example 2.

It is also interesting to compare things with the old result in $[10$, p.653], [16]:

\[

\]

These numbers were obtained using double-precision arithmetic (and an uninspired Newton-Cotes type algorithm for the K-Bessel function).

Example 6. $R=24.419715(N=6 /$ odd/old-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}
2	.9655410	$2 \mathrm{E}-7$.9655410
3	1.0417911	$2 \mathrm{E}-7$	-.6902597
4	-.0677319	$2 \mathrm{E}-7$	-.0677319
5	1.3158034	$2 \mathrm{E}-7$	1.3158034
6	1.0058915	$5 \mathrm{E}-7$	-.6664746
7	-.5454961	$6 \mathrm{E}-7$	-.5454961
8	-1.0309378	$2 \mathrm{E}-8$	-1.0309378
9	-1.719106	$2 \mathrm{E}-6$	-.523541
10	1.270463	$2 \mathrm{E}-6$	1.270463
11	-.156968	$3 \mathrm{E}-6$	-.156968
12	-.070563	$3 \mathrm{E}-6$.046752
13	-1.894287	$7 \mathrm{E}-6$	-1.894287
14	-.526697	$4 \mathrm{E}-6$	-.526697
15	1.370791	$4 \mathrm{E}-6$	-.908247
16	-.927680	$5 \mathrm{E}-6$	-.927680
17	.344743	$8 \mathrm{E}-6$.344743
18	-1.659862	$1 \mathrm{E}-5$	-.505494
19	-.10064	$2 \mathrm{E}-5$	-.10064
20	-.08913	$2 \mathrm{E}-5$	-.08913

21	$-.56832$	6E-5		. 37651	
22	-. 15148	2E-4		-. 15148	
23	-. 70406	$4 \mathrm{E}-5$		-. 70406	
24	-1.07402	7E-6		. 71162	
25	. 7321	$2 \mathrm{E}-3$. 7321	
26	-1.8307	$3 \mathrm{E}-3$		-1.8307	
27	. 156	$2 \mathrm{E}-2$		1.063	
28	. 028	$2 \mathrm{E}-2$. 028	
29	. 360	4E-2		. 360	
30	1.27	$1 \mathrm{E}-1$		-. 93	
31	. 29	4E-2		. 29	
32	-. 09	4E-1		-. 09	
type (.35, $.40 \\| .37, .42) \quad M=37$				a typical final R (with some what larger M)	

As an indication of (overall) accuracy, note that:

$$
\begin{aligned}
\left|a_{4}-\left(a_{2}^{2}-1\right)\right| & =.0000013 & \left|a_{6}-a_{2} a_{3}\right| & =.0000006 \\
\left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right| & =.0000002 & \left|a_{9}-\left(a_{3}^{2}-1\right)\right| & =.0000005 \\
\left|a_{10}-a_{2} a_{5}\right| & =.000001 & \left|a_{12}-a_{3} a_{4}\right| & =.000001 \\
\left|a_{14}-a_{2} a_{7}\right| & =.000002 & \left|a_{15}-a_{3} a_{5}\right| & =.000001 \\
\left|a_{16}-\left(a_{2}^{4}-3 a_{2}^{2}+1\right)\right| & =.000002 & \left|a_{18}-a_{2} a_{9}\right| & =.000006 \\
\left|a_{20}-a_{4} a_{5}\right| & =.000008 & \left|a_{21}-a_{3} a_{7}\right| & =.00002 \\
\left|a_{22}-a_{2} a_{11}\right| & =.00008 & \left|a_{24}-a_{3} a_{8}\right| & =.00001 \\
\left|a_{25}-\left(a_{5}^{2}-1\right)\right| & =.0008 & \left|a_{26}-a_{2} a_{13}\right| & =.0017 \\
\left|a_{27}-\left(a_{3}^{3}-2 a_{3}\right)\right| & =.011 & \left|a_{28}-a_{4} a_{7}\right| & =.009 \\
\left|a_{30}-a_{2} a_{15}\right| & =.053 & \left|a_{32}-\left(a_{2}^{5}-4 a_{2}^{3}+3 a_{2}\right)\right| & =.23 .
\end{aligned}
$$

The c_{n} "hump" occurs at about $32 \sim 33$.

By way of comparison to [11], observe that:

$$
\begin{array}{cc}
a_{2}=\left\{\begin{array}{lc}
.9655410 & \text { here } \\
.965541 & \text { in }[11]
\end{array}\right\} & a_{3}=\left\{\begin{array}{l}
-.6902597 \\
-.690260
\end{array}\right\} \\
a_{5}=\left\{\begin{array}{ll}
1.3158034 & \text { here } \\
1.315804 & \text { in }[11]
\end{array}\right\} & a_{7}=\left\{\begin{array}{l}
-.5454961 \\
-.545
\end{array}\right\}
\end{array}
$$

Example 7. $\quad R=13.77975137(N=4 /$ even/old-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}				
2	2.9635181	$3 \mathrm{E}-9$	1.5493045				
3	.2468996	$3 \mathrm{E}-9$.2468996				
4	3.5913914	$9 \mathrm{E}-8$	1.4003440				
5	.7370610	$9 \mathrm{E}-7$.7370610				
6	.7316926	$3 \mathrm{E}-7$.3825238				
7	-.2614212	$8 \mathrm{E}-7$	-.2614212				
8	2.600645	$2 \mathrm{E}-6$.620260				
9	-.939045	$2 \mathrm{E}-6$	-.939045				
10	2.1825	$2 \mathrm{E}-3$	1.1401				
11	-.960	$7 \mathrm{E}-3$	-.960				
12	1.15	0.37	.61				
type $(.40, .45 \\| .42, .47)$					$M=19$	final R	

For the overall accuracy, note that:

$$
\begin{aligned}
\left|a_{4}-\left(a_{2}^{2}-1\right)\right| & =.0000004 & \left|a_{6}-a_{2} a_{3}\right| & =.0000011 \\
\left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right| & =.000005 & \left|a_{9}-\left(a_{3}^{2}-1\right)\right| & =.000004 \\
\left|a_{10}-a_{2} a_{5}\right| & =.0018 & \left|a_{12}-a_{3} a_{4}\right| & =.26 .
\end{aligned}
$$

The c_{n} "hump" occurs at about $n=12$.

To make a comparison with [11, 35], observe that:

$$
\begin{aligned}
& R=\left\{\begin{array}{lc}
13.77975137 & \text { here } \\
13.77975135189 \\
13.7797513519 & \text { in }[11, \S 10] \\
\text { in }[35]
\end{array}\right\} \\
& a_{2}=\left\{\begin{array}{lc}
1.5493045 & \text { here } \\
1.54930447794 \\
1.5493044779 & \text { in }[11, \S 10] \\
\text { in }[35]
\end{array}\right\} \quad a_{3}=\left\{\begin{array}{l}
.2468996 \\
.24689977245 \\
.2468997725
\end{array}\right\} \\
& a_{5}=\left\{\begin{array}{l}
.7370610 \\
.737060383 \\
.7370603853
\end{array}\right\} \\
& a_{11}=\left\{\begin{array}{c}
-.960 \\
* * * \\
-.9535646526
\end{array}\right\}
\end{aligned}
$$

Our earlier remark about c_{k}-error is nicely illustrated at $k=3$.【Errors of this kind appear to stem mainly from the fact that we chose H 3 to be 10^{-6} in all our production runs. Cf. $\S \S 3,5,6$. A reduction in H3 should yield better accuracy ...】

For the sake of completeness, we also recall that [10, p.653], [16] had:

$$
\begin{aligned}
& R=13.7797513518907 \\
& \hline \begin{array}{l|l|}
\hline a_{2}=1.54930447794 & a_{3}=.24689977245 \\
a_{5}=.7370604 & a_{7}=-.2614 \\
\hline
\end{array}
\end{aligned}
$$

Example 8. $R=17.878003(N=4 /$ even/new-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	
2	-.707106798	$7 \mathrm{E}-11$	10	-1.2811050	$2 \mathrm{E}-6$	
3	.9825686	$4 \mathrm{E}-12$	11	-.1747944	$5 \mathrm{E}-7$	
4	.50000000	$2 \mathrm{E}-9$	12	.491474	$1 \mathrm{E}-6$	
5	1.8117563	$1 \mathrm{E}-9$	13	1.10189	$7 \mathrm{E}-5$	
6	-.6947809	$4 \mathrm{E}-8$	14	-.0101	$1 \mathrm{E}-3$	
7	.0082109	$3 \mathrm{E}-8$	15	1.795	$6 \mathrm{E}-3$	
8	-.3535540	$4 \mathrm{E}-7$	16	.261	$2 \mathrm{E}-3$	
9	-.0345570	$1 \mathrm{E}-6$	17	.43	0.14	
type $(.40, .45 \\| .42, .47)$						

To indicate the overall accuracy, note that:

$$
\begin{aligned}
\left|c_{2}+\frac{1}{\sqrt{2}}\right| & =.000000017 & \left|c_{4}-\frac{1}{2}\right| & =.0000000 \\
\left|c_{6}-c_{2} c_{3}\right| & =.0000000 & \left|c_{8}+\frac{1}{2 \sqrt{2}}\right| & =.0000006 \\
\left|c_{9}-\left(c_{3}^{2}-1\right)\right| & =.0000019 & \left|c_{10}-c_{2} c_{5}\right| & =.0000002 \\
\left|c_{12}-c_{3} c_{4}\right| & =.000190 & \left|c_{14}-c_{2} c_{7}\right| & =.0043 \\
\left|c_{15}-c_{3} c_{5}\right| & =.015 & \left|c_{16}-\frac{1}{4}\right| & =.01
\end{aligned}
$$

The c_{n} "hump" occurs at about $17 \sim 18$.
【This R-value is one of the new-forms missed by Winkler.】

Example 9. $\quad R=14.626236(N=6 /$ even/new-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	
2	.55536214	$7 \mathrm{E}-10$	10	-.5291602	$9 \mathrm{E}-7$	
3	-.57735035	$3 \mathrm{E}-8$	11	-.015748	$4 \mathrm{E}-6$	
4	-.6915731	$3 \mathrm{E}-7$	12	.39927	$2 \mathrm{E}-5$	
5	-.9528186	$3 \mathrm{E}-7$	13	1.0297	$1 \mathrm{E}-3$	
6	-.3206385	$3 \mathrm{E}-7$	14	1.017	$9 \mathrm{E}-3$	
7	1.8374419	$3 \mathrm{E}-7$	15	.66	$1 \mathrm{E}-2$	
8	-.9394356	$1 \mathrm{E}-7$	16	-.05	0.17	
9	.3333338	$3 \mathrm{E}-7$				
type $(.40, .45 \\| .42, .47)$						

As an indication of overall accuracy, note that:

$$
\begin{aligned}
\left|c_{3}+\frac{1}{\sqrt{3}}\right| & =.00000008 & \left|c_{4}-\left(c_{2}^{2}-1\right)\right| & =.0000002 \\
\left|c_{6}-c_{2} c_{3}\right| & =.0000000 & \left|c_{8}-\left(c_{2}^{3}-2 c_{2}\right)\right| & =.0000001 \\
\left|c_{9}-\frac{1}{3}\right| & =.0000005 & \left|c_{10}-c_{2} c_{5}\right| & =.0000008 \\
\left|c_{12}-c_{3} c_{4}\right| & =.00001 & \left|c_{14}-c_{2} c_{7}\right| & =.003 \\
\left|c_{15}-c_{3} c_{5}\right| & =.11 & \left|c_{16}-\left(c_{2}^{4}-3 c_{2}^{2}+1\right)\right| & =.22
\end{aligned}
$$

The c_{n} "hump" occurs at about $n=16$.
Winkler's value was $R=14.626227$.

Example 10. $\quad R=13.7797513515$ ($N=6 /$ even/old-form).

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}	
2	1.549304477	$5 \mathrm{E}-11$	1.549304477	
3	1.978950582	$6 \mathrm{E}-10$.246899774	
4	1.400344368	$1 \mathrm{E}-9$	1.400344368	
5	.737060386	$1 \mathrm{E}-8$.737060386	
6	3.065997001	$1 \mathrm{E}-8$.382522930	
7	-.26142006	$1 \mathrm{E}-8$	-.26142006	
8	.62025531	$1 \mathrm{E}-8$.62025531	
9	-.5113975	$3 \mathrm{E}-8$	-.9390405	
10	1.1419309	$9 \mathrm{E}-8$	1.1419309	
11	-.9535642	$3 \mathrm{E}-7$	-.9535642	
12	2.771212	$3 \mathrm{E}-6$.345744	
13	.278822	$2 \mathrm{E}-5$.278822	
14	-.40516	$2 \mathrm{E}-5$	-.40516	
15	1.464	$4 \mathrm{E}-3$.187	
16	-.46	$2 \mathrm{E}-2$	-.46	
17	1.17	0.11	1.17	
type $(.40, .45 \\| .42, .47)$				

To indicate the overall accuracy, note that:

$$
\begin{array}{rlrl}
\left|a_{4}-\left(a_{2}^{2}-1\right)\right| & =.000000006 & \left|a_{6}-a_{2} a_{3}\right| & =.000000005 \\
\left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right| & =.00000000 & \left|a_{9}-\left(a_{3}^{2}-1\right)\right| & =.0000000 \\
\left|a_{10}-a_{2} a_{5}\right| & =.0000001 & \left|a_{12}-a_{3} a_{4}\right| & =.000001 \\
\left|a_{14}-a_{2} a_{7}\right| & =.00014 & \left|a_{15}-a_{3} a_{5}\right| & =.005 \\
\left|a_{16}-\left(a_{2}^{4}-3 a_{2}^{2}+1\right)\right| & =.02 . &
\end{array}
$$

The c_{n} "hump" occurs at about $17 \sim 18$.
It is also interesting to compare things with $[11,10,16,35]$ as in Example 7.

	here	$[35] ;[10, \mathrm{p} .729]$	$[11, \S 10]$	$[10, \mathrm{p} .653]$
$R-13$.7797513515	.77975135189	.77975135189	.77975135189
a_{2}	1.549304477	1.54930447794	1.54930447794	1.54930447794
a_{3}	.246899774	.24689977245	.24689977245	.24689977245
a_{5}	.737060386	.73706038534	.737060383	.7370604
a_{7}	-.26142006	-.26142007577	-.261421	-.2614
a_{11}	-.9535642	-.95356465262	$* * *$	$* * *$
a_{13}	.278822	.27882702916	$* * *$	$* * *$
a_{17}	1.17	1.30734171453	$* * *$	$* * *$

The present accuracy is very striking because taking $\mathrm{H} 3=10^{-6}$ would ordinarily suggest $7 \sim 7 \frac{1}{2}$ decimal places as being the upper limit. [Bear in mind too that $M=20$, and that we are using only singleprecision arithmetic...]

Example 11. $\quad R=17.73856338(N=6 /$ even/old-form $)$.

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	a_{k}
2	-.76545805	$2 \mathrm{E}-10$	-.76545805
3	.75427190	$3 \mathrm{E}-11$	-.97777891
4	-.41407396	$1 \mathrm{E}-9$	-.41407396
5	-1.01527351	$1 \mathrm{E}-11$	-1.01527351
6	-.57736350	$2 \mathrm{E}-9$.74844873
7	1.18082083	$7 \mathrm{E}-9$	1.18082083
8	1.08241430	$5 \mathrm{E}-9$	1.08241430
9	-1.7375111	$4 \mathrm{E}-8$	-.0439483
10	.7771493	$2 \mathrm{E}-8$.7771493
11	-.6204877	$1 \mathrm{E}-7$	-.6204877
12	-.312325	$3 \mathrm{E}-6$.404872
13	.265291	$2 \mathrm{E}-5$.265291

14	-.90386	$2 \mathrm{E}-5$	-.90386	
15	-.7659	$5 \mathrm{E}-4$.9926	
16	-.414	$2 \mathrm{E}-3$	-.414	
17	-.135	$2 \mathrm{E}-3$	-.135	
18	1.33	$2 \mathrm{E}-2$.034	
19	.18	.09	.18	
type $(.40, .45 \\| .42, .47)$				

For the overall accuracy, note that:

$$
\begin{aligned}
& \left|a_{4}-\left(a_{2}^{2}-1\right)\right|=.00000001 \quad\left|a_{6}-a_{2} a_{3}\right|=.00000001 \\
& \left|a_{8}-\left(a_{2}^{3}-2 a_{2}\right)\right|=.00000001 \quad\left|a_{9}-\left(a_{3}^{2}-1\right)\right|=.0000001 \\
& \left|a_{10}-a_{2} a_{5}\right|=.0000000 \quad\left|a_{12}-a_{3} a_{4}\right|=.000001 \\
& \left|a_{14}-a_{2} a_{7}\right|=.00001 \quad\left|a_{15}-a_{3} a_{5}\right|=.0001 \\
& \left|a_{16}-\left(a_{2}^{4}-3 a_{2}^{2}+1\right)\right|=.000 \quad\left|a_{18}-a_{2} a_{9}\right|=.000 .
\end{aligned}
$$

The c_{n} "hump" occurs at about $n=20$.
A comparison with [10, pp.653, 729] gives:

	here	$[10$, p.729]	$[10, \mathrm{p} .653]$
R	17.73856338	17.7385633811	17.7385633811
a_{2}	-.76545805	-.76545806	-.7654580566
a_{3}	-.97777891	-.9777789	-.9777789075
a_{5}	-1.01527351	-1.0152735	-1.0152735
a_{7}	1.18082083	1.1808208	1.1807
a_{11}	-.6204877	-.6204877	$* * *$
a_{13}	.265291	.2652887	$* * *$
a_{17}	-.135	-.1357407	$* * *$

The results in the middle column were obtained by H. Stark using the same method as in [35].

The present accuracy is again rather striking.
Example 12. $R=14.0718340(N=5 /$ odd $)$. In a nonarithmetic case like $N=5$, it is not so clear what will happen. We therefore look at both semifinal values.

$R=14.0718340$
k $\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$ rough diff. k $\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$ rough diff. 2 -.3658834 $3 \mathrm{E}-9$ 2 -.365882 $1 \mathrm{E}-6$ 3 -.5092615 $1 \mathrm{E}-8$ 3 -.509263 $2 \mathrm{E}-6$ 4 .5249263 $3 \mathrm{E}-7$ 4 .524923 $5 \mathrm{E}-6$ 5 .0132187 $2 \mathrm{E}-7$ 5 .013217 $2 \mathrm{E}-7$ 6 .169034 $5 \mathrm{E}-7$ 6 .169027 $4 \mathrm{E}-6$ 7 .509436 $4 \mathrm{E}-8$ 7 .509436 $5 \mathrm{E}-8$ 8 1.007591 $2 \mathrm{E}-7$ 8 1.007585 $6 \mathrm{E}-7$ 9 -.477043 $2 \mathrm{E}-7$ 9 -.477040 $1 \mathrm{E}-6$ 10 -1.113400 $4 \mathrm{E}-7$ 10 -1.11347 $3 \mathrm{E}-5$ 11 -.178021 $2 \mathrm{E}-6$ 11 -.17791 $7 \mathrm{E}-5$ 12 -1.038675 $2 \mathrm{E}-6$ 12 -1.040 $1 \mathrm{E}-3$ 13 -.53924 $2 \mathrm{E}-5$ 13 -.536 $2 \mathrm{E}-3$ 14 -1.2025 $3 \mathrm{E}-4$ 14 -1.25 $4 \mathrm{E}-2$ 15 .639 $2 \mathrm{E}-3$ 15 .72 .08 16 -.04 .06 16 -1.5 1.56 left type $(.40, .45 \\| .42, .47)$ right type $(.45, .50 \\| .47, .52)$ $M=22$ typical semifinal

The c_{n} "hump" occurs at about 17 and 15 , respectively. The agreement between the 2 columns (of c_{n}) is consistent with our earlier remark about fuzz-level. In view of Table 5 , the right-hand differences are just about average. The ones on the left are significantly better. [Though in this example there was some advantage to keeping α_{i} and β_{k} further away from $\sin \left(\frac{\pi}{5}\right)$, the overall situation is basically random.]

There are no (obvious) multiplicative relations.
Example 13. $\quad R=14.307857$ ($N=5$ /odd). This example illustrates the possibility of large c_{n} occurring when \mathbf{G}_{N} is non-arithmetic.

$R=14.3078567$			$R=14.3078568$				
k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.		
2	10.37429	$6 \mathrm{E}-5$	2	10.37433	$4 \mathrm{E}-4$		
3	-3.15814	$2 \mathrm{E}-5$	3	-3.15815	$1 \mathrm{E}-4$		
4	6.954667	2E-6	4	6.95462	1E-4		
5	-5.74760	1E-4	5	-5.74765	$2 \mathrm{E}-4$		
6	-7.46890	$3 \mathrm{E}-5$	6	-7.4690	$4 \mathrm{E}-4$		
7	-7.69329	$8 \mathrm{E}-5$	7	-7.6933	$3 \mathrm{E}-4$		
8	3.48202	$3 \mathrm{E}-5$	8	3.4819	1E-4		
9	-6.6204	1E-4	9	-6.6203	3E-6		
10	2.5325	2E-4	10	2.531	3E-3		
11	. 2486	8E-4	11	. 251	$4 \mathrm{E}-3$		
12	-4.893	$4 \mathrm{E}-3$	12	-4.93	6E-2		
13	-. 19	9E-2	13	-. 01	0.11		
14	6.96	0.29	14	5.9	1.62		
left type $(.40, .45 \\| .42, .47)$ right type (.45, .50\\|.47, .52)					worse than average semifinal R		

The c_{n} "hump" occurs at about 15 and 14 , respectively. The agreement between the c_{n} 's is consistent with our rule-of-thumb. Though the differences are below average in quality, things don't look so bad if one deals with significant figures instead. [On a floating-point machine, this might not be such a bad idea ...]

Other cases having relatively large c_{n} are:

$$
\begin{array}{lll}
R=25.081315 & \left(\text { e.g. } c_{2}=-5.703319,\right. & \left.c_{3}=-9.051076\right) \\
R=30.029497 & \left(\text { e.g. } c_{2}=-12.67644,\right. & \left.c_{3}=22.34885\right)
\end{array}
$$

In order to properly calibrate the output from our even runs with $N=5$ and 7 , we made a number of odd runs [using the same N and $\alpha \| \beta]$ in selected R-ranges beyond 25 . The following is an illustration.

Example 14. $\quad R=50.488237(N=5 /$ odd $)$.

$R=50.48823748$			$R=50.48823704$			
k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	
2	-3.814250	8E-6	2	-3.81433	$1 \mathrm{E}-4$	
3	3.965753	8E-6	3	3.96583	$1 \mathrm{E}-4$	
4	1.162531	$2 \mathrm{E}-6$	4	1.16255	$3 \mathrm{E}-5$	
5	1.821024	$5 \mathrm{E}-6$	5	1.82104	$2 \mathrm{E}-5$	
6	-1.664537	1E-6	6	-1.66457	$7 \mathrm{E}-5$	
7	1.012407	$2 \mathrm{E}-6$	7	1.01242	$3 \mathrm{E}-5$	
8	. 608971	6E-6	8	. 608989	$6 \mathrm{E}-7$	
9	-. 157489	1E-6	9	-. 157488	6E-6	
10	-1.592329	$6 \mathrm{E}-7$	10	-1.592300	$5 \mathrm{E}-6$	
12	-3.305690	5E-6	12	-3.30577	1E-4	
14	2.548589	2E-6	14	2.54862	1E-4	
16	3.509777	7E-6	16	3.50983	1E-4	
18	2.861370	$3 \mathrm{E}-5$	18	2.86141	$6 \mathrm{E}-5$	
20	-. 036687	$2 \mathrm{E}-6$	20	-. 03668	$3 \mathrm{E}-5$	
25	4.55179	$5 \mathrm{E}-5$	25	4.55174	$4 \mathrm{E}-4$	
30	-. 41234	2E-5	30	-. 41239	1E-4	
35	3.9363	$2 \mathrm{E}-4$	35	3.93652	$1 \mathrm{E}-5$	
40	. 3673	$5 \mathrm{E}-3$	40	. 3671	$2 \mathrm{E}-3$	
45	-. 18	1.11	45	1.14	0.61	
type (.40, .45 \|	.42, .47)			left $M=48$ right $M=50$		a fairly typical case illustrating variation wrt M

The purpose of this example is partly to show how much variation in quality can take place simply by varying M. Both M 's are admissible in the sense of $\S 5$ and [11, eq.(2.6)]. The left-hand column represents the "final" R and is about average in quality.
[The agreement between the c_{n} 's is consistent with our basic rule-of-thumb.]

To further illustrate $N=5$, it may be useful to take a look at some typical "output" for the case of even R. We do so in the following example. The contrast between odd and even speaks for itself. [Cf. §6 items (a)-(d).]

Example 15. $\quad R=48.244(N=5 /$ even $)$.

$R=48.244655$
k $\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$ rough diff. k $\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$ rough diff. 2 -2.0084 $1 \mathrm{E}-3$ 2 -2.0389 $5 \mathrm{E}-3$ 3 .4828 $6 \mathrm{E}-5$ 3 .5085 $3 \mathrm{E}-6$ 4 -2.0096 $2 \mathrm{E}-3$ 4 -2.0615 $7 \mathrm{E}-3$ 5 -.5300 $1 \mathrm{E}-3$ 5 -.5457 $5 \mathrm{E}-3$ 6 .2072 $2 \mathrm{E}-5$ 6 .2035 $9 \mathrm{E}-6$ 7 -1.4332 $2 \mathrm{E}-3$ 7 -1.4718 $9 \mathrm{E}-3$ 8 .7030 $2 \mathrm{E}-3$ 8 .735 $1 \mathrm{E}-2$ 9 .4987 $9 \mathrm{E}-5$ 9 .5158 $3 \mathrm{E}-4$ 10 2.2295 $3 \mathrm{E}-3$ 10 2.264 $1 \mathrm{E}-2$ 20 .994 $1 \mathrm{E}-1$ 20 1.028 $5 \mathrm{E}-2$ 25 .016 $1 \mathrm{E}-2$ 25 .038 $8 \mathrm{E}-2$ 30 .093 $9 \mathrm{E}-2$ 30 .030 $2 \mathrm{E}-1$ type $(.40, .45 \\| .42, .47)$ type $(.40, .45 \\| .42, .47)$ $. M=47$ $M=48$

$R=48.244524$

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.		
2	-2.037	$2 \mathrm{E}-2$	2	-2.075	$2 \mathrm{E}-2$		
3	.492	$2 \mathrm{E}-2$	3	.590	$6 \mathrm{E}-6$		
4	-2.037	$2 \mathrm{E}-2$	4	-2.197	$4 \mathrm{E}-2$		
5	-.537	$4 \mathrm{E}-2$	5	-.602	$8 \mathrm{E}-3$		
6	.208	$4 \mathrm{E}-3$	6	.186	$3 \mathrm{E}-4$		
7	-1.462	$6 \mathrm{E}-2$	7	-1.593	$2 \mathrm{E}-2$		
8	.717	$9 \mathrm{E}-2$	8	.869	$1 \mathrm{E}-2$		
9	.504	$1 \mathrm{E}-2$	9	.592	$3 \mathrm{E}-2$		
10	2.258	$5 \mathrm{E}-2$	10	2.290	$7 \mathrm{E}-3$		
20	.941	$3 \mathrm{E}-2$	20	.969	$1 \mathrm{E}-1$		
25	-.034	$8 \mathrm{E}-2$	25	.051	$4 \mathrm{E}-2$		
30	.000	$4 \mathrm{E}-2$	30	.047	$2 \mathrm{E}-2$		
type $(.35, .40 \\| .37, .42)$	type $(.35, .40 \\| .37, .42)$						
$M=57$	$M=58$						

Type (.40,.45\|.42,.47) also included $M=49$; nothing even remotely resembling 48.244 was picked up there. Similarly for type $(.35, .40 \| .37, .42)$ and $M=56$.

Output of this kind certainly does not give one any reason to hope that $R=48.244^{+}$is an (even) eigenvalue. Things are simply too unstable/fuzzy.

Note that the quality is definitely better for type (.40, .45\|.42, .47) than for (.35, .40\|.37,.42). This agrees with our earlier comment in $\S 6$ about pseudo-residuals.

Examples of this kind were a real nuisance in our production runs. They appeared much more frequently than we originally hoped - and succeeded only in wasting a great deal of CPU time (since the machine was obligated to pursue each one of them down to the level of $H 3$).

This completes our tour of interesting "specimens."

§8. Concluding remarks

It remains to wrap up a few loose ends before we close.
(A) In [11], we saw that, when solving (2.5'), it was not generally safe to regard c_{n} as a smooth function of R at the level of $H 3$. This was especially true for larger values of M and R. This state-of-affairs basically stems from a mixture of finite-precision and conditioning effects [on the machine].

In the remarks that follow, let v_{k} denote the (coarse-grained) rate-of-change of c_{k} with respect to an R-interval of length $H 2$. [It is helpful to think of v_{k} as a velocity. Though, for the sake of precision, we are referring to $\left(2.5^{\prime}\right)$, the other system can be considered here just as well.]

In situations where v_{k} does not (yet!) change very rapidly, it is tempting to employ the approximate relation $\Delta c_{k} \cong v_{k} \cdot \Delta R$ in an attempt to draw additional accuracy from the existing outout [at no extra cost] by making one final interpolation beyond H3. Fortunately, in designing our code, we decided ${ }^{20}$ to display both v_{k} and its local fluctuation (wrt neighboring H2 intervals). A quick review of the output files shows that in numerous cases

$$
\left|\frac{\text { velocity fluctuation }}{v_{k}}\right| \ll 1 \quad \text { for } \quad 2 \leqq k \leqq M
$$

【Small ratios of this type tend to be indicative of good conditioning.】
Take Example 1, for instance. Here the foregoing ratio is never bigger than .003. ${ }^{21}$ The coefficients c_{k}^{\prime} and $c_{k}^{\prime \prime}$ can (therefore) be viewed as linear functions of R with slope v_{k}^{\prime} and $v_{k}^{\prime \prime}$. Let R_{0} be the "final" R-value obtained ala $\S 2$. We now write

$$
R=R_{0}+h
$$

and consider the equations

$$
\left\{c_{2}^{\prime}(R)=c_{2}^{\prime \prime}(R), c_{3}^{\prime}(R)=c_{3}^{\prime \prime}(R), c_{4}^{\prime}(R)=c_{4}^{\prime \prime}(R), c_{5}^{\prime}(R)=c_{5}^{\prime \prime}(R), \cdots\right\}^{22}
$$

The corresponding h-values turn out to be :

[^8]$$
\left\{h_{2}=3.765 E-8, h_{3}=3.561 E-8, h_{4}=3.599 E-8, h_{5}=3.588 E-8, \cdots\right\} .
$$

Note that these h-values are all roughly in the same neighborhood.
Upon taking $h \equiv 3.6 E-8$, we get:
$R=7.220871975$

k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.	k	$\frac{1}{2}\left(c_{k}^{\prime}+c_{k}^{\prime \prime}\right)$	rough diff.
2	-.707106778	$6 \mathrm{E}-10$	7	-.061440	$5 \mathrm{E}-6$
3	-.949350733	$2 \mathrm{E}-10$	8	-.35283	$6 \mathrm{E}-5$
4	.500000082	$1 \mathrm{E}-10$	9	-.1044	$4 \mathrm{E}-4$
5	-.86971384	$2 \mathrm{E}-8$	10	.652	$2 \mathrm{E}-3$
6	.6713004	$4 \mathrm{E}-7$	11	-.252	$7 \mathrm{E}-3$

To gauge the overall accuracy, note that:

$$
\left.\begin{array}{rlr}
\left|c_{2}+\frac{1}{\sqrt{2}}\right|=.000000003 & \left|c_{4}-\frac{1}{2}\right|=.000000082 \\
\left|c_{6}-c_{2} c_{3}\right| & =.00000081 & \left|c_{8}+\frac{1}{2 \sqrt{2}}\right|=.00072 \\
\left|c_{9}-\left(c_{3}^{2}-1\right)\right| & =.0057 & \left|c_{10}-c_{2} c_{5}\right|
\end{array}\right) .037 .
$$

It is clear that we have obtained a substantial increase in accuracy (over Example 1).

Similar refinements can be made in many other cases.
【The essential requirement is that the velocity fluctuations be small compared to $\left|v_{k}\right|$. Since the K-Bessel functions are only accurate to between 10 and 12 places, 9-place accuracy in c_{k} is nearing the limit of what we can feasibly hope for.】

Part of the original CRAY-2 output for Example 1
(B) As far as the numerics go, the foregoing results all seem very satisfactory. Some readers may wonder, however, how much computer time was actually required. To answer this question, we provide the following sample table.

In interpreting these figures, bear in mind that each job consists of 2 parts: (a) the (unavoidable) portion dealing with level $H 2$; (b) the portion stemming from any "blowups" that need to be made at level H3.

A quick look at column 6 shows that the relative contribution of (a) and (b) can very quite a bit from one job to another. [This fact needs to be taken into account when assigning time limits for the various jobs ...]

job category		α_{1}	machine	CPU time	total no.of H3 blowups		
1	$N=4 \quad R \in[5-l, 10+l]$ odd $\quad M=10,11,12$. 60	CRAY2 (cft)	228 sec .	$2+2+2=6$		
2a	$\begin{aligned} & N=4 \quad R \in[20-l, 25+l] \\ & \text { odd } \quad M=17,18,19 \end{aligned}$. 60	$\begin{aligned} & \text { CRAY2 (cft) } \\ & \text { XMP (cft77) } \\ & \text { YMP (cft77) } \\ & \hline \end{aligned}$	$\begin{aligned} & 764 \mathrm{sec} . \\ & 764 \mathrm{sec} . \\ & 532 \mathrm{sec} . \end{aligned}$	$11+11+12=34$	ON CRAY-2	
						time spent in part (a) $\sim 175 \mathrm{sec}$.	
2b	$\begin{array}{ll} N=4 & R \in[20-l, 25+l] \\ \text { even } & M=18,19,20 \end{array}$. 50	CRAY2 (cft)	903 sec .	$17+13+12=42$		
3	$\begin{aligned} & N=5 \quad R \in[10-l, 15+l] \\ & \text { even } \quad M=23,24,25 \end{aligned}$. 40	CRAY2 (cft)	265 sec .	$0+0+0=0$		
4a	$N=5 \quad R \in[20-l, 25+l]$ odd $\quad M=28,29,30$. 40	$\begin{aligned} & \text { CRAY2 (cft) } \\ & \text { XMP (cft77) } \end{aligned}$	1494 sec. 1450 sec .	$14+14+13=41$	ON CRAY-2	
						time spent in part (a) $\sim 475 \mathrm{sec}$.	
4b	$\begin{aligned} & N=5 \quad R \in[20-l, 25+l] \\ & \text { even } \quad M=28,29,30 \end{aligned}$. 40	CRAY2 (cft)	1097 sec.	$11+6+8=25$		
5	$\begin{aligned} & N=5 \quad R \in[45-l, 50+l] \\ & \text { even } \quad M=47,48,49 \end{aligned}$. 40	CRAY2 (cft)	2100 sec.	$2+2+2=6$		
6	$N=5 \quad R \in[55-l, 60+l]$ even $\quad M=56,57,58$. 40	CRAY2 (cft)	2008 sec .	$0+0+0=0$		
7	$N=6 \quad R \in[20-l, 25+l]$ even $\quad M=31,32,33$. 40	CRAY2 (cft)	2714 sec .	$19+26+24=69$		
8	$\begin{aligned} & N=7 \quad R \in[30-l, 35+l] \\ & \text { even } \quad M=56,57,58 \end{aligned}$. 30	YMP (cft77)	2268 sec .	$12+7+3=22$		
9	$\begin{aligned} & N=7 \quad R \in[35-l, 40+l] \\ & \text { even } \quad M=62,63,64 \end{aligned}$. 30	YMP (cft77)	10594 sec .	$41+41+33=115$		
10	$\begin{aligned} & N=5 \quad 49.875 \leq R \leq 51.000 \\ & \text { odd } \quad \begin{array}{c} M=48,50 \\ \text { test run } \end{array} \end{aligned}$. 40	CRAY2 (cft) CRAY2 (cft77) XMP (cft77) YMP (cft77)	1366 sec . 1270 sec . 1370 sec . 966 sec .	$7+7=14$		
11	$\begin{aligned} & N=7 \quad 50.125 \leq R \leq 51.25 \\ & \text { odd } \quad \begin{array}{l} M=75,76,77 \\ \\ \text { test run } \end{array} \end{aligned}$. 30	CRAY2 (cft)	5882 sec .	$8+8+10=26$		
$\operatorname{type}\left(\alpha_{1}, \alpha_{2} \\| \beta_{1}, \beta_{2}\right)$			$H 2=.001, H 3=10^{-6}$		$l \equiv \frac{1}{8}$		

On the basis of this table, the following speed ratios are seen to apply:
$\frac{\mathrm{YMP}(\mathrm{cft} 77)}{\mathrm{CRAY} 2(\mathrm{cft})} \cong 1.42, \quad \frac{\mathrm{YMP}(\mathrm{cft} 77)}{\mathrm{CRAY} 2(\mathrm{cft} 77)} \cong 1.31, \quad \frac{\mathrm{YMP}(\mathrm{cft} 77)}{\mathrm{XMP}(\mathrm{cft} 77)} \cong 1.42,{ }^{26}$
In all:

$$
\left\{\begin{array}{r}
110 \\
14 \\
5
\end{array}\right\} \text { of our type }\left(\alpha_{1}, \alpha_{2} \| \beta_{1}, \beta_{2}\right) \text { jobs used the }\left\{\begin{array}{l}
\text { CRAY2 } \\
\text { XMP } \\
\text { YMP }
\end{array}\right\}
$$

[^9]The corresponding CPU totals were:

	$\|N=4\|$	$\begin{aligned} & \text { odd } \\ & N=5 \end{aligned}$	$\|N=6\|$	$N=7$	$N=4$	$\begin{aligned} & \text { even } \\ & \|N=5\| \end{aligned}$	$N=6$	$N=7$	
CRAY2	3962	10840	4820	8319	9351	35337	22313	12747	107689 sec .
XMP	764	5553	8172	0	0	0	0	0	14489 sec .
YMP	532	966	0	0	0	0	0	16231	17729 sec .

(C) We finish up by drawing attention to several possibilities for further work.
(α) Linear Algebra. Our subroutine for solving linear equations is nothing but standard Gauss elimination. It can certainly be improved. For values of M bigger than 60 or so, it would probably be best to switch over to one of the optimized routines available in a standard library. [This would help cut the CPU time!] Creative use of iterative techniques is another possibility.
(β) Additional Coefficients. For arithmetic \mathbf{G}_{N}, it would be quite useful to obtain many more Fourier coefficients than we currently have. This can probably be done by implementing some version of H. Stark's method [35]. ${ }^{30}$

In nonarithmetic cases, this problem is also quite interesting. Here, however, it is not so clear what to do. Further analysis seems very much in order.
(γ) Other Groups. It goes without saying that one would very much like to run similar R_{n}-experiments for more general Γ (and for more general multiplier systems). 【Though in this paper we have focussed only on \mathbf{G}_{N}, the numerical groundwork we've laid can clearly be extended to much more general groups. Any subtleties that occur for \mathbf{G}_{N} can be expected to recur (possibly with a vengeance!) when more general Γ are used. For this reason, the case of \mathbf{G}_{N} is actually an important testing-ground.】
(δ) Completeness Questions. In the absence of any kind of (numerical) argument principle for $Z_{\Gamma}(s)$, it is a bit irritating that one cannot rigorously say when one is done. Can this deficiency be corrected ?? Cf. the suggestions at the end of $\S 3$.

[^10]
References

[1] A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann., 185 (1970), 134-160.
[2] N.L. Balazs and A. Voros, Chaos on the pseudosphere, Physics Rep., 143 (1986), 109-240.
[3] J.M. Deshouillers, H. Iwaniec, R.S. Phillips and P. Sarnak, Maass cusp forms, Proc. National Acad. Sci. U.S.A., 82 (1985), 3533-3534.
[4] A. Erdélyi, et. al., "Higher Transcendental Functions", vol.2, McGrawHill, 1953, pp. 86-88, esp. 86(7), 87(18), 88(19)(20).
[5] L. Fox, P. Henrici, C. Moler, Approximations and bounds for eigenvalues of elliptic operators, SIAM J. Num. Anal., 4 (1967), 89-102.
[6] G.H. Golub and C.F. Van Loan, "Matrix Computations", Johns Hopkins Univ. Press, 1983.
[7] L. Greenberg, Maximal groups and signatures, in Discontinuous Groups and Riemann Surfaces, Annals of Math. Studies, No. 79 (1974), 207226. See also: Bull. Amer. Math. Soc. 69 (1963), 569-573
[8] E. Hecke, "Mathematische Werke", Vandenhoeck \& Ruprecht, Göttingen, 1959.
[9] D.A. Hejhal, "The Selberg Trace Formula for PSL $(2, \mathbf{R})$ ", vol.1, Springer Lecture Notes No. 548, 1976.
$[10] \quad$ " "The Selberg Trace Formula for PSL $(2, \mathbf{R})$ ", vol.2, Springer Lecture Notes, No. 1001, 1983.
[11] __ Eigenvalues of the Laplacian for $\operatorname{PSL}(2, \mathbf{Z})$: some new results and computational techniques, in International Symposium in Memory of Hua Loo-Keng (ed. by S. Gong, Q. Lu, Y. Wang, L. Yang), Science Press and Springer-Verlag, 1991, vol.1, pp.59-102.
$[12] \longrightarrow$, Eigenvalues of the Laplacian for Hecke triangle groups, Amer. Math. Soc. Memoirs, to appear, 1992.
[13] __ Some observations concerning eigenvalues of the Laplacian and Dirichlet L-series, in Recent Progress in Analytic Number Theory, vol. 2, Academic Press, 1981, 95-110.
[14] Z Zeros of Epstein zeta functions and supercomputers, in Proc. of the International Congr. of Math., Berkeley 1986, pp.1362-1384.
[15] D.A. Hejhal and S. Arno, Fourier coefficients for Maass waveforms on $\operatorname{PSL}(2, \mathbf{Z})$, preprint, 1991.
[16] D.A. Hejhal and B. Berg, Some new results concerning eigenvalues of the non-Euclidean Laplacian for PSL(2, Z), Univ. of Minn. Math. Report No. 82-172, 1982, 7pp.
[17] A. Hurwitz, Über eine Reihe neuer Funktionen, welche die absoluten Invarianten gewisser Gruppen ganzzahliger linearer Transformationen bilden, Math. Ann., 20 (1882), 125-134.
[18] H. Iwaniec, Non-holomorphic modular forms and their applications, in Modular Forms (ed. by R.A. Rankin), Ellis-Horwood, 1984, pp.157196, especially 178-180.
[19] J. Lehner, "Discontinuous Groups and Automorphic Functions", AMS Math. Surveys, No. 8, 1964.
[20] A. Leutbecher, Über die Heckeschen Gruppen $\mathbf{G}(\lambda)$, Abh. Math. Sem. Hamburg, 31 (1967), 199-205.
[21] T. Miyake, On automorphic forms on GL(2) and Hecke operators, Ann of Math., 94 (1971), 174-189.
[22] H. Petersson, Über die eindeutige Bestimmung und die Erweiterungsfähigkeit von gewissen Grenzkreisgruppen, Abh. Math. Sem. Hamburg, 12 (1938), 180-199, especially 184 (middle), 193 (Satz 4). Also: E. Schulenberg, same journal, 13 (1939), 144-199.
[23] R.S. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL(2, R), Invent. Math., 80 (1985), 339-364.
[24] \longrightarrow, The Weyl theorem and the deformation of discrete groups, Comm Pure Appl. Math., 38 (1985), 853-866.
[25] B. Randol, A remark on the multiplicity of the discrete spectrum of congruence groups, Proc. Amer. Math. Soc., 81 (1981), 339-340.
[26] R.A. Rankin, "Modular Forms and Functions", Cambridge Univ. Press, 1977, pp. 245-342.
[27] O. Rausenberger, Zur Theorie der Funktionen mit mehreren, nicht vertauschbaren Perioden, Math. Ann., 20 (1882), 47-48.
[28] P. Sarnak, On cusp forms, Contemp. Math., 53 (1986), 393-407.
[29] _, Determinants of Laplacians, Comm. Math. Phys., 110 (1987), 113-120.
[30] A. Seiberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Ind. Math. Soc., 20 (1956), 47-87.
[31] _ Discontinuous groups and harmonic analysis, in Proc. of the Internat. Congr. of Math., Stockholm 1962, pp.177-189.
[32] \quad, Remarks on the distribution of poles of Eisenstein series, to appear in "Collected Papers," vol.2, Springer-Verlag, 1992.
[33] G. Shimura, "Introduction to the Arithmetic Theory of Automorphic Functions", Princeton Univ. Press, 1971, especially $\S 3.4,3.5$.
[34] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc., 6 (1972), 29-38.
[35] H. Stark, Fourier coefficients of Maass waveforms, in Modular Forms (ed. by R.A. Rankin), Ellis-Horwood, 1984, pp.263-269.
[36] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan, 29 (1977), 91-106. Also: J. Fac. Sci. Univ. Tokyo 24 (1977), 201-212.
[37] A.B. Venkov, Spectral theory of automorphic functions, Proc. Steklov Inst. Math., 153 (1982).
[38] A. Voros, Spectral functions, special functions, and the Selberg zeta function, Comm. Math. Phys., 110 (1987), 439-465.
[39] A. Winkler, Cusp forms and Hecke groups, J. Reine Angew. Math., 386 (1988), 187-204.
[40] \quad, Dirichlet and Neumann spectrum, Comm. Pure Appl. Math., 41 (1988), 305-316.

School of Mathematics
University of Minnesota
Minneapolis, MN 55455
U.S.A.

[^0]: ${ }^{3}$ And that the terms I_{n} ultimately decay exponentially fast wrt n. [To bring the first few I_{n} "up" closer to 1 , it is customary to premultiply $K_{i R}(X)$ by $\exp \left(\frac{\pi}{2} R\right)$. We tacitly assume that this has been done. See [4] for the relevant asymptotics of $K_{i R}(X)$.】
 ${ }^{7}$ In line with [11], we'll denote the respective R-increments by H2 and H3. ${ }^{8}$ (and their relatives $a_{1} G_{s}\left(z ; \tau_{1}\right)+\cdots+a_{m} G_{s}\left(z ; \tau_{m}\right)!!$)

[^1]: ${ }^{9}$ In connection with footnote 5 , we stress that the \mathbf{G}_{N}-orbit of ρ never rises above $y=\sin (\pi / N)$. Cf. [20, p. 201 (middle)]. ${ }^{10}$ (the relevant format being simply $\varphi(\gamma z)$)

[^2]: ${ }^{11}$ Part of these difficulties are, of course, common to any eigenvalue computation
 ${ }^{12}$ Any residual uncertainties here are best viewed as reflections of the fact that this whole area remains largely in an exploratory phase.

[^3]: ${ }^{14}$ (in effect)

[^4]: ${ }^{15}$ Though this expectation seems reasonable enough for arbitrary N, we make no pretenses about having a rigorous proof. The full statement for $N=5,7$ should therefore read: no even cusp forms meeting a reasonable set of standards were detected by the machine.
 ${ }^{16}$ (the rationale being that such "static" regions should occur randomly and with small relative measure)

[^5]: ${ }^{17}$ Any discrepancies are easily explained by looking at the control numbers listed in the $2^{\text {nd }}$ column of Winkler's original tables [39, p.200].

[^6]: ${ }^{18}$ See $\S 8(\mathrm{~A})$ for a related example.

[^7]: ${ }^{19}$ To mollify purely random effects, (diff) should actually be replaced here by some type of backward average. [Unless $\left|c_{k}^{\prime}-c_{k}^{\prime \prime}\right|$ is abnormally small compared to its neighbors, this modification is usually insignificant ...】

[^8]: ${ }^{20}$ for reasons of safety
 ${ }^{21} \mathrm{Cf}$. the excerpt printed below.
 ${ }^{19}$ as though the contribution form $\{n>M\}$ in (2.4) were exactly 0 !!

[^9]: ${ }^{20}$ As usual, these figures represent a composite of both the memory and clock speeds.

[^10]: ${ }^{30}$ For an update on progress in this area, see [15].

