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Abstract. 

On Eigenvalues of the Laplacian 
for Hecke Triangle Groups 

Dennis A. Hejhal* 

The purpose of this Note is to provide a survey of some of the re
cent experimental work aimed at computing eigenvalues of the Lapla
cian for a variety of Hecke triangle groups G(2 cos ft) \ H. 1 

§1. Introduction 

Let r be a Fuchsian group of finite area acting on the Poincare upper 
half-plane H. Let 

f:lu = y 2 (uxx + Uyy) 

be the non-Euclidean Laplacian on H. One of the most important zeta 
functions associated with r \ H is the Selberg zeta function Zr ( s), which 
we'll simply write as Z(s). It is well-known ([9, p.72 (11)], [10, p.498], 
[30, pp. 75-79]) that the nontrivial zeros of Z ( s) are intimately connected 
with the spectral decomposition of tl over L2 (r \ H). 

One would very much like to find a good way of computing Z ( s) for 
arbitrary r whens is restricted, say, to {-1 ~ Re(s) ~ 2}. 

Since Z has order ~ 2, one possible approach would be to use the 
Hadamard product formula (cf., for instance, [9, pp.72 (10), 148 (10.1)], 
[10, pp.435-440, 496-499], [29] and [38]) to reduce things to calculating 
the zeros of Z(s). 2 

Received July 1, 1990. Revised August 16, 1991. 
*With support from NSF Grant DMS 89-10744 and computer time from the 
Minnesota Supercomputer Institute (CRAY2), Pittsburgh Supercomputing 
Center (YMP-832), and San Diego Supercomputer Center (XMP-48). 
1Part of the work described herein is discussed (or, otherwise pursued) to 
greater depth in the author's forthcoming American Mathematical Society 
Memoir (12]. 
2 Even if another method based on (say) numerical analytic continuation ul
timately proved to be superior, apriori knowledge of the zeros of Z(s) would 
still be quite useful, particularly as a check on the overall accuracy. 
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One knows, of course, that any zeros of Z ( s) situated along {Re( s) = 
½} must correspond to eigenvalues of -b. under the mapping 

1 1 2 - ± iR ---+ - + R 
2 4 ' 

at least for R > 0. 
For this reason, as well as one of intrinsic importance, it would be 

highly desirable to find good ways of computing the discrete eigenvalues 
of -b. (for given f). 

From the intrinsic standpoint, it would be even better if one could 
somehow determine the corresponding eigenfunctions themselves. 

Currently, not too much is known about either problem. Cf. [2], [10, 
Appendix C], [11], [16], [35], [39] for a quick look at some of the existing 
work. Papers [11, 39] are of particular interest here. 

In cases where I' has cusps, the philosophy of Sarnak and Phillips ([3, 
23, 24, 28]) suggests that, unless f possesses some type of arithmeticity 
or symmetry property, the discrete spectrum of - b. will be very sparse 
(and, most likely, finite). 

[In order to recover the familiar Weyl law in such cases, one needs 
to (properly) combine the poles of the Eisenstein series in {Re( s) < ½} 
with the discrete eigenvalues ¼ + R;,. Cf. [10, pp.210, 231 (top), 437, 
456-458, 476] and [32].] 

In the present paper, we shall be concerned exclusively with the clas
sical eigenvalues ¼ + R;, - and shall take as our r a Hecke triangle group 
G(2 cos N ). This choice represents one of the simplest possible gener
alizations of (the classical modular group) PSL(2, Z). Cf. [8, pp.592, 
629]. 

For the sake of clarity, we stop to recall a few basic properties of 
G(2 cos N ). First and foremost: GN = G(2 cos N) is generated by 

1 
E(z) = --

z 
and T(z)=z+£ 

where £ = 2 cos( N ). The number N is a positive integer ;::: 3. It is 
easily seen that 

FN = Hn {lzl > 1} n {IRe(z)I < ~} 

is a fundamental region for GN \Hand that GN has signature 

(g,n;v1, ... ,vn) = (0,3;2,N,oo). 
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Cf. [10, pp.5, 569], [19, pp.227, 235], [8, pp.609-616]. The group GN is 

(thus) a particular realization of the Schwarz triangle group T( ~, !!.... , !!.... ) . 
2 N oo 

It virtually goes without saying here that G3 = PSL(2, Z) and that GN 
admits an obvious symmetry with respect to the imaginary axis. 

The group GN is known to be commensurable with PSL(2, Z) iff 
N = 3, 4, 6. Cf. [17] and [20, 36] for the "if'' and "only if'', respectively. 

Our goal is to study the discrete spectrum of G N \ H for a variety 
of N. 

The results we describe (in §§5-6) will serve to amplify the earlier 
work of A. Winkler [39]. 

Winkler's approach is substantially different than ours (resting, as 
it does, on a fair number of preliminary lemmas). 

Prior to outlining the "mechanics" of our approach, it is worthwhile 
to highlight what the Sarnak-Phillips philosophy specifically predicts 
concerning r = G ( 2 cos N) . 

The group GN has a symmetry with respect to the imaginary axis. 
Exactly as in [10, p.590 (13)], one finds that the spectral decomposition 
of L 2 (GN \ H) splits into two "halves", one "even" and one "odd." The 
Eisenstein series appears only in the "even" half. 

The odd portion of L2 ( G N \ H) will therefore be purely discrete. 
There is no difficulty obtaining Weyl's law for this half. Cf. [37, §§6.5, 
6.7] and [30, pp.69, 72 (t)]. 

The Sarnak-Phillips philosophy refers mainly to the other (i.e. 
"even") half of L2 . 

Since the first (nonzero) eigenvalue of any triangle group is auto
matically bigger than ¼ (cf. [10, p.583 (8)]), the relevant conjecture can 
be stated as follows: 

(*) { forN-=f.3,4,6, theHeckegroupG. (2cos ;)}· 

should admit no even cusp forms 

For N = 3, 4, 6, the quotient GN \ H is arithmetic and even cusp 
forms will exist in abundance. In fact, Weyl's law holds exactly as in the 
case of "odd" R. (cf. [10, pp.511 (top), 476] and equation (4.15) below.) 

The contrast between odd/even and arithmetic/nonarithmetic is in
deed striking. It is now apparent why G N \ H is such a natural candidate 
for some computer experimentation. 

§2. The procedure in a nutshell 

Our aim is to find cusp forms 'P(z) for G(2cos N ). By virtue of an 
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earlier remark, we already know ,\ must be strictly greater than ¼. This 
leads to R > 0 and a Fourier expansion 

(2.1) ~ 1 (2nny) 
<p(x + iy) = ~ CnY 2 KiR -----Z-

. (2nnx) Sln --
£ 

depending on whether <p is even or odd. As usual: ,\ = ¼ + R 2 • There 
is no loss of generality in assuming that Cn E R. 

The RHS of (2.1) is automatically invariant under z f---> z + .C. To 
achieve full automorphy, we need to ensure that 

(2.2) 

For a "true" cusp form we stress that (2.1) must be absolutely convergent 
on all of H. Cf. [10, pp.23-25]. 

The K-Bessel function is defined via 

(2.3) 

Due to the extremely small size of KiR(X) for R > 20, it is best ([11, 14]) 
to compute (2.3) by bending the contour in a manner similar to station
ary phase. In this way: there is no difficulty calculating exp(~R)KiR(X) 
to 10 or 11 places for R-values all the way out to 75000. 

The algorithm we use in connection with (2.1) + (2.2) is very similar 
to [11]. There is one major difference, however. Namely: the group GN 
does not generally admit any Hecke operators. Cf. [20], [31, §4], [33]. 
This effectively eliminates any hope of determining R by use of some 
sort of multiplicative relations among the en-

To circumvent this difficulty, we proceed as follows. First of all: 
recall that (2.2) is equivalent to 
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00 

(2.4) L Cnln(z, R) = 0. 3 

n=l 

We now select two batches of points {z1, ... , ZM-1} and { w1, ... , WM-1} 
in FN (with suitable M) and repeatedly solve 

M 

(2.51) L Cnln(Zj, R) = -Ji(zj, R), 1;;; j;;; M - l; 
n=2 

M 

(2.511 ) LCnin(Wj,R) = -fi(wj,R), l;;; j;;; M - l. 
n=2 

The goal is to determine those R-values for which the solution sets 
( c;, c;, ... , c'.w) and ( c;, c~, ... , c11 ) match [as far as possible]. 

To this end: one simply "checks" (2.51) versus (2.511 ) on a sufficiently 
fine R-grid, looking first for approximately coincident (c~) and (c%), and 
then, in each such instance, proceeds to calculate the "point of closest 
approach" by repeating the comparison on a still finer R-grid. 7 

If the final differences le~ - c{I are small enough (in an appropriate 
norm), the resulting R is declared a "success". 

If the same R-value (and ck-coefficients) arise for widely disparate 
Zj & Wj, it is reasonable to expect that one has actually found a true 
cusp form. 

This is the new strategy in a nutshell. 
There is very little difficulty modifying the code in [11, appendix A] 

to accomodate this revised procedure. Cf. [12, appendix A]. 
These two references also provide further information about the var

ious subtleties that can (and do!) occur. 
Far and away the most important thing to worry about is that the 

pseudo cusp forms8 introduced in [13] are properly excluded from 
occurring in (2.5') (2.5"). One does this by requiring that the bulk of 
the test points Zj, Wj satisfy 

(2.6) Im E(zj) < Im (p), Im E(wj) < Im (p), 

3 And that the terms In ultimately decay exponentially fast wrt n. [To bring 
the first few In "up" closer to 1, it is customary to premultiply KiR(X) by 
exp(% R). We tacitly assume that this has been done. See [4] for the relevant 
asymptotics of KiR(X).] 
7In line with [11], we'll denote the respective R-increments by H2 and H3. 
8(and their relatives a1Gs(z; TI)+···+ amGs(z; Tm)!!) 
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where p = exp(1ri/N). (Note that pis simply the lower right-hand corner 
of FN,)9 

The final code is implemented in standard Cray-Fortran and is about 
1200 lines long. Only single-precision variables are used ... 

In solving (2.5), we employ standard Gauss-elimination. Cf. [6, 
pp.65-72 (II)]. 

§3. Some theoretical concerns and related caveats 

A little thought shows that the algorithm in §2 actually rests on a 
number of presumptions ( whose validity may be troublesome to demon
strate apriori). 

First of all, in considering (2.5), it is clear that we have assumed 
that: 

(3.1) 

Cusp forms satisfying this condition will be referred to as "unit normal
ized." Insofar as we are not dealing with any kind of multiple eigenvalue, 
this normalization seems perfectly legitimate. Things happen for rea
sons; it is difficult to imagine what c1 = 0 could possibly mean (especially 
in a nonarithmetic setting). 

It is essential to bear in mind here that G N is a maximal Fuchsian 
group. Cf. [7, 22, 34]. As such: its normalizer can't be something strictly 
bigger. This effectively rules out any kind of intrinsic ( or representation
theoretic) reason for multiple eigenvalues. 1° Compare [25]. 

In our actual experiments, R will be kept less than 60 or so, while 
N will be taken :::;: 7. 

The hope (in each instance) will be to attain 6 decimal place accu
racy for the Rn. 

In line with this, the parameters H2 and H3 will be taken to be 
10-3 and 10-6 , respectively. 

To the extent that Weyl's law does hold, the average distance be
tween successive odd ( or even) Rn will be about 41r / AR, where 

A= 1r ( 1 - ~) = the hyperbolic area of FN, 

9 In connection with footnote 5, we stress that the G N-orbit of p never rises 
above y = sin(11-/N). Cf. [20, p.201 (middle)]. 
10 (the relevant format being simply rp('yz)) 
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To minimize any potential difficulties caused by multiple, or nearly mul
tiple, eigenvalues, one needs to insist that H2 be a tiny fraction of 
41r / AR. For the above-mentioned values, one easily checks that: 

{ 
0.50%} 

H2 ~ 1.00% 
1.50% 

of 
41r 

AR 
when { 

R :S: 20} 
R ~ 40 . 
R :S: 60 

Beyond hoping that these percentages are sufficient, it is also appar
ent that the success of our algorithm will hinge (just as importantly!) 
on how rapidly the solutions of (2.5') (2.5") vary wrt R. 

Indeed, even in the best of cases, one has to contend with the pos
sible occurrence of (small) regions of ill-conditioning for one or both 
systems. This issue becomes increasingly important as the size of R & 
M grows, and is one of the main reasons for our insisting that a variety 
of (disparate) batches { Zj} U { w j} be used. 

With each of these concerns, there are simply no apriori guaran
tees.11 

This lack of guarantees is balanced, however, by the fact that R is 
quite modest. The total number of eigenvalues involved here is simply 
not that great. If suspicious results do occur, one is always free to test 
another batch {zj} U {wj}, or to reduce H2 & H3. 

This point-of-view needs to be kept in mind when considering Tables 
1,2,3,6,7. Though we lack any kind of rigorous proof of completeness, 
the reasonableness of our parameters [and built-in stability checks!] will 
tend to give us confidence that nothing has been missed.12 

In the future, some way of eliminating most ( or all) of the guesswork 
in (2.5) may yet be found. 

In the meantime, one fact to keep in mind is that the modified 
Laplacians considered in [39, p.196] all have compact resolvent (with 
appropriately smooth dependence on the cut-off level a). It is therefore 
conceivable that our approach [using (2.5)] may somehow be combined 
with that of [39, 40] in order to create a "hybrid" method characterized 
by a significantly higher level of both rigor and computational control. 

See [5] for some ideas in this direction ( after taking due note of the 
last 4 paragraphs of §6). 

11 Part of these difficulties are, of course, common to any eigenvalue computa
tion 
12 Any residual uncertainties here are best viewed as reflections of the fact that 
this whole area remains largely in an exploratory phase. 
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§4. Coefficient relations for N = 4 and 6 

Since G 4 and G5 are commensurable with PSL(2, Z), it is reason
able to conjecture that some type of Hecke operators will now exist ~ 
and that the Fourier coefficients of any unit-normalized cp automatically 
satisfy certain multiplicative relations ( at least if ,\ has multiplicity 1). 

To treat N = 4 and 6 simultaneously, we set 

N 
q= 2 

and ( then) observe that £ = 2 cos( N) = ,Jri_. 
Let g be the subgroup of PSL(2, R) which is generated by 

w f---+ w + l and 
1 

Wf---+--. 
qw 

The group g is nothing but G N viewed under the auxiliary mapping 

( 4.1) z = ,Jri_w. 

We also set: 

fo(q) = { (: ! ) E SL(2, Z); c = 0 mod q}. 

The discussion in [17] shows that f 0 (q) ~ g and that the index is 
2. We already know that g is a maximal Fuchsian group. Cf. §3. The 
analysis in [1, p.139] immediately implies that: 

g = the normalizer of r O ( q). 

With these items in place, it is now possible to derive an important 
connection between cusp forms on PSL(2, Z), GN, and f 0 (q). 

To explain things, we assume that the reader already has some fa
miliarity with the Atkin-Lehner formalism [1] and is willing to grant that 
similar things should hold for nonholomorphic cusp forms. Compare [21, 
26]. 

In the remarks that follow, we restrict ourselves to the case of "even" 
forms. The "odd" case is similar. 

To get started: let f 0 (z) be any Hecke-normalized cusp form on 
PSL(2, Z) with eigenvalue ,\ = ¼ + R 2 . We therefore have 

00 

(4.2) fo(x+iy) = I:,,any½KiR(21rny)cos(21rnx) 
n=l 
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and 

(4.3) 
oo an l 
L ns = II 1 _ a p-s + p-2s · 
n=l p P 

Cf. [11, equation (2.3)]. 
By an old remark of Rausenberger [27], the function 

( 4.4) go(z) = Jo(z,Jq) +Jo(~) 
is automorphic (hence cuspidal) on G N. A trivial manipulation yields: 

(4.5) ( ) 
1/2 oo ( ) ( ) 1 1 21rny 21rnx 

go(z) = - Lcny 2 KiR -- cos --
,Jq n=l 01 01 

where 

(4.6) 

The symbol an/q is understood to be O if q f n. 
By applying z = ,Jqw, we see that 

(4.7) ho(w) = Jo(qw) + Jo(w) 

is cuspidal on g_ Since Jo "lives" on PSL(2, Z), the function ho is an 
old-form on f 0 (q). Cf. [1, pp.145-146]. 

The Fourier expansion of ho ( w) is simply 

00 

(4.8) h0 (u +iv)= L env½ KiR(21rnv) cos(21rnu). 
n=l 

This expansion is augmented by the relation: 

(4.9) ho ( - q~ ) = ho ( w). 

We now turn matters completely around and begin with any new
form h(w) on f 0 (q) \ H. Cf. [1, p.145] and [26, pp.321-328]. 

There are two types of new-forms depending on whether 

h (- q~) = ±h(w). 
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Cf. [1, p.147]. To obtain automorphy on 9, we obviously want the "+" 
sign to hold. Such new-forms will be called "proper." (The underlying 
theme here is essentially one of invariant subspaces. Cf. [1, Lemma 25].) 

For proper h, we have: 

(4.10) 

and 

(4.lls) 

00 

h(w) = L CnV½ K{R(21rnv) cos(21rnu) 
n=l 

~Cn 1 II 1 
L...., ns = 1 - C q-s 1 - C p-s + p-2s 
n=l q p=/q p 

1 
Cq = - ,jg_" 

Cf. [1, pp.147, 150]. 
By applying z = ,jq_w, we see that 

( 4.12) 
z 

g(z) = h(-) 
,jg_ 

is cuspidal on G N and has Fourier expansion: 

(4.13) ( ) 
1/2 oo ( ) ( ) 1 1 21rny 21rnx 

g(z) = - Lcny 2 KiR -- cos -- . 
,jg_ n=I ,jg_ ,jg_ 

It makes sense to call g a new-form on G N. The earlier function g0 

will (then) be called an old-form. 

By abuse of language, we can use the same terminology for cg and 
ego, c # 0. 

By reviewing the definition of new-form in [1, 26], it is easily seen 
that any two g and g0 must be orthogonal (independent of their eigen
value). In fact: 

1 
(g, go) = (h, ho)g = [9 : ro(q)] (h, ho)r0 (q) = 0. 

This observation leads to the following reformulation. Let ,,\ = 
¼ + R 2 be any eigenvalue for G N \ H with multiplicity 1. Let the corre
sponding unit-normalized eigenfunction be '-P· 
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If>. is an eigenvalue for PSL(2, Z), then 

for a uniquely determined Jo on PSL(2, Z) \ H. Otherwise, 

rp = (y'q)l/2g(z) 

for a uniquely determined (proper) new-form hon f 0 (q) \ H. 
All that we're really doing here is looking at the old-form/new-form 

decomposition of rp(w-Jq) on f 0 (q) \ H ... 
We won't worry about multiplicity > 1. 
Watching old-forms appear [on the machine] and verifying13 the re

lations implicit in (4.3), (4.6), (4.11) should prove quite interesting. Es
pecially: (4.ll)B, 

We summarize things with a diagram: 

normalized Jo on PSL(2, Z) old rp on GN\H 
---------------- --.-+ -----------------

coefficients an coefficients Cn =an+ -Jqan/q 

proper newform h on r O ( q) new rp on GN\H 
---------------- --.-+ -----------------

coefficients Cn coefficients en 

Incidentally: in the case of old forms, one naturally expects that 
{Jo( w), Jo(qw)} will be a basis for the corresponding eigenspace of fo(q). 
The associated multiplicity on f 0 (q) will therefore by 2. [On Q, it'll be 
1.] 

The corresponding numerology with regard to Weyl's law then goes 
as follows: 

PSL(2,Z) ~ 

q+I ~ 

fo(q) 

Q ~ 
13for both old and new! 
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p = N[proper new-forms with An~ x] 

i = N[improper new-forms with An~ x] 

(q + l)µ ( 1 . 1· . 2) µ x' . --- = mu tip 1c1ty - + p+ z 
4n 4n 

A µ 
-X=-X+p 
4n 4n 

A µ . 
-X = -X + z [by switching + to - in eq. (4.4)]. 
4n 4n 

Since (q + l)µ = 2A, everything is consistent, and we simply find that: 

l µ 
p = -(q- l)-X + [lower order terms] 

2 4n 

. 1 µ 
z = -(q - 1)-X + [lower order terms]. 

2 4n 

Before closing this section, we stop to point out a useful fact con
cerning Eisenstein series. 

Let EN(z; s) be the obvious Eisenstein series for GN \H with N = 
4, 6. Cf. [10, pp.569, 280] for the proper normalization. The analysis 
near (4.4) is easily modified to show that 

(4.15) 

where E3 and cp3 correspond to PSL(2, Z) \ H. 
These relations reflect the fact that G 4 and G 6 are both arithmetic. 

§5. "Odd" eigenvalues for N = 4,5,6 

Prior to giving the results, it is useful to say just a few words about 
the procedure. 
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Our primary goal [in this set of experiments] was to compute the 
odd eigenvalues of G 4 , G 5 , G 6 with R ;; 25 to an R-accuracy of six 
decimal places. 

One wished to do this as efficaciously as possible - which basically 
meant that (2.5) had to be "optimally conditioned." This, in turn, meant 
that some caution had to be exercised in the choice of Zj and Wj-

A batch {zj} U {wj} is said to be of type (a1, .. ,,ar/l,61, ... ,,68 ) 

when: 

(i) the points E(zj) are distributed in some regular fashion along the 
1. t {O < < 1£ - ·} 1 < . < · 1ne segmen s = x = 2 , y - a, , = i = r, 

(ii) similarly for E(wj) and {O;; x;; ½L, y = ,Bk}, 1;; k;; s. 
To discourage pseudo cusp forms (as in §2), one requires that: 

a· <sin(!!_) 
' N ' 

Since (2.4) must hold at any z EH, it is not necessary that the (original) 
points Zj and Wj lie in F N. Indeed: for purposes of achieving better 
conditioning, it would seem wise to let E(zj) and E(wj) range all the 

way out to x = ½L. (Intuitively: one wants to spread things out a bit. 
Cf. Figure 1. Several test runs with N = 6 convinced us early on that 
this "trick" would be a very good idea. We adopted it without further 
ado.) 

y=<lj 

N=3 N_5 

Figure 1 
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Any number of other configurations were (actually) tested before we 
finally settled on type (all,8). One curious finding was that the vertical 
batches used in [11] do not seem to condition so well once N starts to 
mcrease. 

Our production jobs were all of type ( a1, a2ll,81, ,82)- The parameters 
were as follows: 

N=4 N=5 N=6 

(.60, .65 II -62, .67) (.45, .5o 11 .47, .52) ( Ao, .45 11 .42, .4 7) 

( .50, .55 II .52, .57) (.4o, .45 II .42, .47) (.35, Ao 11 .37, .42) 

sin ¾ = . 70711 sin i = .58779 sin {f = .50000 

H2 = .001 
' 

H3 = 10-6 

As noted earlier, the algorithm outlined in §2 was implemented in 
standard CRAY-Fortran. In doing so: we were especially careful to 
arrange things so that, by deleting several z1 and w1 , it would14 be pos
sible to treat several M-values in parallel~ at least up to those points 
where (2.5) actually needed to be solved. [This is done by appropriately 
structuring the "flow pattern" through levels H2 and H3.] 

For safety: we (then) worked with 3 such M-values in our actual 
runs. Since the number of distinct (all,8) types is 2, this gives an effective 
total of 6 "tracks." 

The choice of M changes with R. This is necessary to ensure "ad
missibility" in the sense of [11, eq.(2.6)]. That is: we need to have 

(5.1) < ( something like ) 1Ie(z1 , R)I = 10_9 · max IIn(Zk, R)I 
1:;;k:;;M-l 

1:;;n:;;M 

for£> M. 
It is not wise to overshoot by too much on this aspect of the code. 
The variability in M means that the grid points z1 and w1 must also 

be (occasionally) changed as well. 
Fortunately: these changes are all very gradual. 

14 (in effect) 
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For each (all,6) type, we then prepared a list of semifinal R-values 
by scanning the 3 outputs (wrt M) for the best le~ - c%1 values. 

To obtain the final R-values, we repeated this procedure ( on the 2 
semi-final lists). 

The difference between the semifinal and final R-values was usually 
less than ½ x 10-5 and never greater than 1 x 10-6 . 

Our final Rn-values are shown in Tables 1-3. 

N=4 

7.220872 16.138073* 20.530160 24.028513 

9.533695* 16.644259* 21.049526 24.419715* 

11.317680 17.493113 21.479057* 25.050855* 

12.173008* 18.180918* 22.194674* 25.119336 

13.310164 18.437078 22.374933 ... 
14.358510* 19.484714* 23.201396* 

15.274023 20.106695* 23.263712* 

Odd Eigenvalues for G(2 cos¾) 

* indicates an old-form 

Table 1 

N=5 

6.473700 15.176893 19.385430 23.052526 

8.636765 15.759928 19.962241 23.438611 

10.136450 16.276410 20.597938 23.509476 

11.015570 16.890976 20.745577 24.001860 

12.084067 17.757303 21.287052 24.239718 

12.851289 18.031441 21.675649 24.631401 

14.071834 18.633434 22.197638 25.081315 

14.307857 19.011695 22.399384 ... 

Odd Eigenvalues for G(2 cos i) 

Table 2 
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N=6 

6.120576 15.483162 20.106695* 23.460177 

8.193036 16.138073* 20.409439 24.209622 

9.533695* 16.644259* 21.108696 24.419715* 

10.507607 16.965398 21.479057* 24.916657 

11.365904 17.820675 21.612650 24.952648 

12.173008* 18.018977 22.100313 25.050855* 

13.378621 18.180918* 22.194674* ... 

13.507911 19.026777 22.671118 

14.358510* 19.484714* 23.201396* 

14.787325 19.566910 23.263712* 

Odd Eigenvalues for G(2 cos i) 
* indicates an old-form 

Table 3 

Tables 4 and 5 supply some additional data. For information about 
CPU times, see §8(B). 

N type R ~ 10 R~ 18 R~25 

4 (.60, .65 II -62, .67) 12 16 19 

4 ( .50, .55 II .52, .57) 15 18 22 

5 (.45, .5o II .47, .52) 18 23 27 

5 (Ao, .45 II .42, .47) 21 25 30 

6 (Ao, .45 II .42, .47) 22 27 32 

6 (.35, Ao II -37, .42) 25 31 36 

Sample M-values 

Table 4 



On Eigenvalues of the Laplacian for Hecke Triangle Groups 375 

N R-range 2 3 4 5 6 7 8 9 10 12 14 16 

4 10 ~ 15 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 E-4 E-2 * * 
4 20 ~ 25 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-4 E-3 E-2 

5 10 ~ 15 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 E-3 E-2 * 
5 20 ~ 25 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 

6 10 ~ 15 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 E-4 E-3 E-2 

6 20 ~ 25 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 

Typical· orders-of-magnitude for I c~ - c% I 
using semifinal Rn-values 

N. B. The best cases are typically better by 1 or 2 orders. 

Table 5 

Thus far we have emphasized Rn and not the associated Fourier 
coefficients ck. Though the latter are certainly of interest, there seems to 
be very little point in making complete lists of all the Fourier coefficients 
that were actually obtained. 

In §7, we'll discuss 15 typical ( or otherwise interesting!!) examples 
in greater detail. 

Readers needing more information than this are advised to contact 
the author; the complete mass of Fourier coefficients is available on 
magnetic tape. 

In scanning this output, we discovered no counterexamples to the 
Ramanujan-Petersson conjecture (for N = 4, 6). Cf. [18] and equations 
(4.3), (4.11). 
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§6. "Even" eigenvalues for N = 4,5,6, 7 

The situation for the arithmetic cases N = 4 and 6 is very similar 
to §5. Our aim was to compute the even eigenvalues [of G4 and G5] 
with R ;; 25 to an R-accuracy of six decimal places. 

Our production jobs were all of type ( a 1, a 2 I I /31, /32). The parameters 
were as follows: 

N=4 N=6 

(.50, .55 II -52, .57) (Ao, .45 II .42, .47) 

(Ao, .45 II .42, .47) (.35, .4011-37, .42) 

sin¾ = .70711 sin i = .50000 

H2 = .001 
' 

H3 = 10-5 

In an attempt to gain better accuracy, we decided to run things 
using six M-values (instead of just 3). 

Our final Rn-values [for N = 4, 6] are displayed in Tables 6 and 7. 

N=4 

8.922877 17.878003 22.785909* 

10.920392 19.125423 23.496586 

13.779751 * 19.423481 * 24.112353* 

14.685016 20.547604 24.856199 

16.404109 21.315796* 25.052424 

17.738563* 22.089045 ... 

Even Eigenvalues for G(2 cos ¾) 

* indicates an old-form 

Table 6 
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N=6 

5.098742 16.736215 21.807127 

8.038861 17.500557 22.659272 

9.743749 17.738563* 22.785908* 

11.346418 18.647430 22.839291 

11.889976 18.962642 23.620927 

13.135144 19.423482* 23.979851 

13.779751 * 19.896104 24.112353* 

14.626236 20.664907 24.298256 

15.799494 21.315796* 24.931087 

16.270959 21.434643 ... 

Even Eigenvalues for G(2 cos i) 
* indicates an old-form 

Table 7 

The discrepancy between the semifinal and final R-values was, ex
cept for the last 4 entries in Table 7, entirely similar to §5. [The excep
tions seemed to be caused by a conditioning problem with one of the 
types. The other type worked perfectly fine ... ] 

Tables 8 and 9 (top) supply some additional data. 
See §8 (B) for information about CPU times and §7 for various ex

amples illustrating the actual Fourier coefficients. 
[No counterexamples to Ramanujan-Petersson were found in a scan 

through the total mass of computed ck ... ] 

The focus in the nonarithmetic cases was ( of course) quite different. 
Here one basically wished to investigate conjecture ( *). We at-

tacked this problem in the following ranges: 

{ 
0 ~ R ~ 60 for N = 5 } 

- - - - - - - - - - --

0 ~ R ~ 40 for N = 7 

In both cases: no even cusp forms were found. 
This assertion requires some elaboration, however. 
Up to a point: the basic procedure is exactly like before. Our pro

duction jobs had the following parameters 
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N=5 N=7 

(.50, .55 II -52, .57) (.30, .35 II -32, .37) 

(.4o, .45 II .42, .47) 

(.30, .35 II -32, .37) 

for R < 15 

(.45, .5o II .47, .52) 

(.4o, .45 II .42, .47) 

for R > 15 

sin ~ = .58779 sin f = .43388 

H2 = .001 
' 

H3 = 10-5 

For N = 5 and 0 ~ R ~ 15, we ran 6 (and sometimes 9) M-values 
in parallel. In all other cases: we used 3. 

The case N = 7 was pursued in earnest only after N = 5 was 
complete. Its purpose was (thus) mainly one of insurance. To save 
computer time, we decided to proceed with only one "type." 

In §3, we explained why it is important to keep the numbers ai and 
f3k below sin(-Ki' ). Placing these levels too low, however, causes M to 
become rather large - which begins to affect the overall accuracy ( and 
CPU time) adversely. It is therefore necessary to strike some kind of 
balance. 

One might think that running jobs with the parameters shown above 
would simply produce no output [in accordance with (*)]. This, how
ever, is not the case. 

The assertion that "no even cusp forms were found" is not as simple 
as it looks. 

What typically happened in our ( even) nonarithmetic jobs was that 
R-values would occasionally come out showing differences le~ - c%1 that 
looked "half-way" respectable. 

BUT (and this is the key point!): one or more danger signs would 
invariably apply. 

These signs included: 

(a) excessive movement (or disappearance!) of the proposed R-value 
when M is varied; 
(b) excessive movement ( or disappearance!) of the proposed R-value 
when the "type" is varied; 
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( c) excessive movement in the first few Fourier coefficients under sim
ilar variations; 
(d) values of le~ - c~I that were typically 3 to 4 orders-of-magnitude 
worse than their "counterparts" for odd R (in the same range). 

Item (d), on its own, was usually enough to destroy any putative R. 
The essential point here is that [philosophically] one should expect 

similar levels of "stability" to be exhibited by both the even and odd 
R-values. This was certainly the case for N = 4, 6. 15 

One always has to be a bit careful in situations like this to exclude 
the possibility that some type of intrinsic "static" region (wrt R) is the 
real culprit in (a)-(d). On such R-regions, there could easily be an 
overall degradation in conditioning-level [which causes ( a)-( d)]. 

This effect was discussed in [11] at some length. The same effect 
certainly occurs for N = 4, 5, 6, 7. In fact: here it begins even earlier 
[with "missing" Rn-values occurring on one-or-another track for R as 
low as 9.533]. 

At this stage of the game, one can only hope that the (potential) 
effects of such "static" are indeed minimized by running several tracks 
and/or types. 16 

In this connection: the most interesting thing is that some R-values 
with half-way decent le~ - c~I did manage to stay reasonably "intact" 
[wrt (a)-(c)] under several changes of track. 

For N = 5 at least, such R-values seemed to be most common [and 
"strongest"] in cases where a and /3 could come closest to sin( N). 

In view of this a/3-dependence, it is natural to conjecture that the 
foregoing R-values must simply represent some type of "residual" effect 
from the pseudo cusp forms mentioned in §2. 

This issue is carefully explored in [12] ~ on both the theoretical 
and experimental fronts. The proposed explanation [in terms of pseudo
residuals] is found to be very well-substantiated by further experimen
tation. 

The upshot of these remarks is very simple. The occurrence of 
"pseudo-residuals" makes it doubly important to pay close attention to 
(a)-( d) [ and to the size of ai and f3k]. Failure to do so may cause one to 
"snare" the wrong type of "animal" altogether ... 

15Though this expectation seems reasonable enough for arbitrary N, we make 
no pretenses about having a rigorous proof. The full statement for N = 5, 7 
should therefore read: no even cusp forms meeting a reasonable set of standards 
were detected by the machine. 
16 (the rationale being that such "static" regions should occur randomly and 
with small relative measure) 
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Tables 8 and 9 provide some additional information about our 
"even" runs. Compare: Tables 4,5 in §5. 

N R-range 2 3 4 5 6 7 8 9 10 12 14 16 

4 10 ~ 15 E-7 E-7 E-7 E-6 E-6 E-6 E-6 E-6 E-4 E-2 * * 
4 20 ~ 25 E-6 E-6 E-6 E-6 E-6 E-6 E-5 E-5 E-5 E-5 E-4 E-2 

6 10 ~ 15 E-7 E-7 E-7 E-7 E-6 E-6 E-6 E-5 E-5 E-3 E-1 * 
6 20 ~ 25 E-7 E-7 E-7 E-7 E-7 E-6 E-6 E-6 E-6 E-5 E-5 E-5 

Typical orders-of-magnitude for Jci - c%1 

using semifinal Rn-values 

N. B. The best cases are typically better by 1 or 2 orders. 

Table 8 

N type R ,:::; 10 R ,:::; 18 R ,:::; 25 R ,:::; 40 R ,:::; 50 R ,:::; 60 

4 (.50, .55 II .52, .57) 15 18 22 * * * 
4 (.40, .45 JJ .42, .47) 17 21 25 * * * 
6 (.40, .45 JJ .42, .47) 21 26 31 * * * 
6 (.35, .40 JJ .37, .42) 23 29 34 * * * 
5 (.45, .5o II .47, .52) * 23 26 40 46 52 

5 (.40, .45 jj .42, .47) 21 25 29 44 51 58 

7 (.30, .35 Jj .32, .37) 34 40 48 64 * * 
Sample M-values 

Table 9 
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To round things out, we now compare our results with those of 
Winkler. 

On the matter of ( *), there is little to comment on beyond reporting 
that Winkler tested N = 5, 7, 8 for R ~ 20 and found no even cusp forms. 

For N = 4 and 6, Winkler's results go as follows: 

N=4 

8.922877 

10.920392 

14.685016 

16.40411 

19.12512 

even R 

Table 10 

N=6 

5.098742 

8.038861 

9.743749 

11.34642 

11.889976 

13.135144 

14.626227 

15.799498 

16.736246 

17.500559 

even R 

Table 11 

For the most part, Winkler's entries show excellent agreement with our 
values. 17 Much more striking, however, is the fact that no old-forms 
were detected!! (Two new-forms were also missed: 17.878003 for N = 4 
and 16.270959 for N = 6.) 

17 Any discrepancies are easily explained by looking at the control numbers 
listed in the 2nd column of Winkler's original tables [39, p.200]. 
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With regard to the old-forms [and examples 7,10,11 in §7], we wish 
to stress that, near such R, our CRAY output was always quite stable 
(and well-conditioned). 18 

In particular: there is absolutely no indication of any kind of "hid
den" new-form also being present. (To achieve the proper perspective on 
this, it is helpful to review (4.11A), [33, p.80 (bottom)], and the remark 
about (g,go) in §4.) 

Before implementing any kind of "hybrid" technique (as suggested 
at the end of §3), it would obviously be desirable to learn why Winkler's 
method missed the values it did [particularly after doing so well on the 
others]. 

§7. Some examples 

In this section, we'll look at 15 examples which serve to illustrate 
various aspects of our production runs. The information given in each 
case will include: appropriately rounded valued of ½ ( c~ + c%) ; a rough 
indication of le~ - c%1; and a brief description of the "track" used. 

When discussing old-forms, remember that: 

by virtue of (4.6). 

Example 1. R = 7.220872 (N = 4/odd/new-form). 

k l(c' + c") 2 k k rough diff. k l(c' + c") 2 k k rough diff. 

2 -.7071067 2E-8 7 -.0625 5E-4 

3 -.9493510 3E-8 8 -.3460 4E-3 

4 .5000021 5E-7 9 -.142 3E-2 

5 -.869730 6E-6 10 .80 0.1 

6 .671435 6E-5 11 -.57 0.3 

type (.60, .65 II -62, .67) M=ll I final R 

18 See §8(A) for a related example. 



On Eigenvalues of the Laplacian for Hecke Triangle Groups 383 

As an indication of (overall) accuracy, note that: 

1 v2 = . 707106781, 
1 1 

lc2 + 1nl = .0000001, lc4 - -I= .0000021 
v2 2 

leg - (c~ - 1)1 = .043 

1 
!cs+ 1nl = .0076 

2v2 

lc10 - c2csl = .19. 

Example 2. R = 12.173008 (N = 4/odd/old-form). 

k l(c' + c") 2 k k rough diff. ak 

2 1.7034654 lE-8 .2892518 

3 -1.2018588 lE-8 -1.2018588 

4 -.5072694 4E-9 -.9163332 

5 .0395527 6E-11 .0395527 

6 -2.0473248 2E-9 -.3476398 

7 .4481331 3E-8 .4481331 

8 :__1.8501922 3E-7 -.5543014 

9 .4444580 6E-7 .4444580 

10 .06754 6E-5 .01160 

11 -.6935 6E-4 -.6935 

12 .638 lE-2 1.130 

13 -3.11 1.25(!!) -3.11 

type (.50, .55 II .52, .57) M= 17 I final R 

As an indication of (overall) accuracy, note that: 

la4 - (a~ -1)1 = .0000002 

las - (a~ - 2a2)I = .0000015 

law - a2a5 I = .00016 

la6 - a2a3I = .0000000 

jag - (a~ - 1)1 = .0000066 

la12 - a3a4I = .029. 

In view of the (large) difference at k = 13, we do not take c13 seriously. 
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The situation fork ~ 14 gets progressively worse. In the terminology 
of [11], we can thus say that the en "hump" occurs at about 13 ~ 14. 

Incidentally: observe that 

_ {.2892518 
a2 - .289252 

_ { .0395527 
as - .042 

here } 
in [11] 

here } 
in [11] 

_ { -1.2018588 
a3 - -1.201858 

a7 = { .4481331 

* ** 
The current ak-listing is (thus) significantly better than the one in [11]. 
This improvement basically reflects the change in geometry. 

Example 3. R = 24.028513 (N = 4/odd/new-form). 

k l(c' + c") 2 k k rough cliff. k ½(c~ + c%) rough cliff. 

2 -.7071066 3E-8 11 -.879083 lE-6 

3 .5772141 2E-8 12 .28860 5E-5 

4 .5000000 4E-8 13 1.6529 2E-4 

5 .2392995 7E-8 14 .0854 3E-4 

6 -.4081516 5E-8 15 .143 3E-3 

7 -.1212567 2E-7 16 .247 8E-4 

8 -.3535511 3E-7 17 -1.09 0.17 

9 -.666826 2E-6 18 .68 0.45 

10 -.169205 4E-6 

type (.50, .55 II -52, .57) M=22 I final R 

To indicate the overall accuracy, note that: 

1 
lc2 + 0 1 = .0000002 

leg - (c~ - 1)1 = .000002 

lc12 - c3c4I = .000007 

lc15 - c3c5 I = .005 

1 
lc4 - 21 = .0000000 

1 
lcs + 1n I = .0000023 

2v2 

!cm - c2c5 I = .000005 

lc14 - c2c1I = .0003 

1 
1cl6 - 41 = .o03 . 
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The Cn "hump" occurs at about n = 18. 

Before moving onward, we need to draw attention to an important 
fact. By reviewing Examples 1-3, it becomes apparent that the number 
le~ - c%1 is not a true indicator of the actual error in Ck. (This is seen 
by looking at the multiplicative relations.) To be on the safe side, it 
seems preferable to use something like max[2 x 10-7, 5( cliff)] as the "basic 
indicator" of fuzz-level. 19 

Example 4. R = 6.120576 (N = 6/odd/new-form). 

k l(c' + c") 2 k k rough cliff. k ½(c~ + c%) rough cliff. 

2 -.6716156 lE-9 10 -.21872 3E-5 

3 -.5773503 4E-10 11 -.68593 3E-5 

4 -.5489325 4E-9 12 .3176 8E-4 

5 .3256987 2E-9 13 -.3325 8E-4 

6 .3877575 6E-8 14 .99 2E-2 

7 -1.4557169 4E-8 15 -.17 2E-2 

8 1.040288 lE-6 16 .30 0.64 

9 .333334 lE-6 

type (.4o, .45 II .42, .47) M=20 I final R 

To indicate the overall accuracy, note that: 

~ = .577350269 

lc4 - (c~ - 1)1 = .0000000 

ics - (c~ - 2c2)I = .0000008 

lc10 - c2c5j = .00002 

lc14 - c2c1i = .012 

1 
jc3 + v'3 I = .0000000 

lc6 - c2c3 j = .0000000 

1 
leg - 31 = .000001 

ic12 - C3C4 I = .0007 

lc15 - c3c5 I = .02 . 

19To mollify purely random effects, ( diff) should actually be replaced here by 
some type of backward average. [Unless le~ -c~ I is abnormally small compared 
to its neighbors, this modification is usually insignificant ... ] 
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The Cn "hump" occurs at about n = 16. 

Example 5. R = 12.173008 (N = 6/odd/old-form). 

k ½(c~ + c%) rough diff. ak 

2 .2892519 6E-8 .2892519 

3 .5301920 2E-8 -1.2018588 

4 -.9163334 3E-8 -.9163334 

5 .0395526 6E-8 .0395526 

6 .1533590 8E-8 -.3476400 

7 .4481331 8E-8 .4481331 

8 -.5543028 2E-7 -.5543028 

9 -1.6372162 4E-7 .4444643 

10 .011442 2E-6 .011442 

11 -.691455 7E-6 -.691455 

12 -.48581 3E-5 1.10133 

13 -.8030 3E-4 -.8030 

14 .132 3E-3 .132 

15 .02 8E-3 -.05 

16 .72 4E-2 .72 

17 -.7 0.41 -.7 

type (.35, .4011 .37, .42) M=27 I a semifinal R 

To indicate the overall accuracy, note that: 

la4 - (a~ - 1)1 = .0000001 

las - (a~ - 2a2)I = .0000003 

law - a2a5I = .000001 

la14 - a2a1I = .002 

lal6 - (a~ - 3a~ + 1)1 = .036 . 

The Cn "hump" occurs at about n = 18. 

la5 - a2a3I = .0000001 

lag - (a~ - 1)1 = .0000003 

la12 - a3a4I = .000027 

la15 - a3a5I = .002 

The current ak-values are an improvement over those in Example 2. 
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It is also interesting to compare things with the old result in [10, 
p.653], [16]: 

R = 12.1730083246797 

a 2 = .2892518714 

a3 = -1.201858761 

a5 = .03955272 

a7 = .4481 

These numbers were obtained using double-precision arithmetic (and an 
uninspired Newton-Cotes type algorithm for the K-Bessel function). 

Example 6. R = 24.419715 (N = 6/odd/old-form). 

k l(c' + c") 2 k k rough cliff. ak 

2 .9655410 2E-7 .9655410 

3 1.0417911 2E-7 -.6902597 

4 -.0677319 2E-7 -.0677319 

5 1.3158034 2E-7 1.3158034 

6 1.0058915 5E-7 -.6664746 

7 -.5454961 6E-7 -.5454961 

8 -1.0309378 2E-8 -1.0309378 

9 -1.719106 2E-6 -.523541 

10 1.270463 2E-6 1.270463 

11 -.156968 3E-6 -.156968 

12 -.070563 3E-6 .046752 

13 -1.894287 7E-6 -1.894287 

14 -.526697 4E-6 -.526697 

15 1.370791 4E-6 -.908247 

16 -.927680 5E-6 -.927680 

17 .344743 8E-6 .344743 

18 -1.659862 lE-5 -.505494 

19 -.10064 2E-5 -.10064 

20 -.08913 2E-5 -.08913 
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21 -.56832 6E-5 .37651 

22 -.15148 2E-4 -.15148 

23 -.70406 4E-5 -.70406 

24 -1.07402 7E-6 .71162 

25 .7321 2E-3 .7321 

26 -1.8307 3E-3 -1.8307 

27 .156 2E-2 1.063 

28 .028 2E-2 .028 

29 .360 4E-2 .360 

30 1.27 IE-I -.93 

31 .29 4E-2 .29 

32 -.09 4E-1 -.09 

type (.35, .4011.37, .42) M=37 a typical final R 

( with some what larger M) 

As an indication of (overall) accuracy, note that: 

la4 - (a~ - I)I = .0000013 

las - (a~ - 2a2)I = .0000002 

la10 - a2asl = .000001 

la14 - a2a1I = .000002 

la15 - (a~ - 3a~ + I)I = .000002 

la20 - a4asl = .000008 

la22 - a2au I = .00008 

la25 - (a~ - I)I = .0008 

la27 - (a~ - 2a3)I = .011 

la30 - a2a1sl = .053 

la6 - a2a3I = .0000006 

lag - (a~ - I)I = .0000005 

la12 - a3a4I = .000001 

la15 - a3a5 I = .000001 

la1s - a2agl = .000006 

la21 - a3a1I = .00002 

la24 - a3asl = .00001 

la25 - a2ad = .0017 

la2s - a4a1I = .009 

la32 - (a~ - 4a~ + 3a2)I = .23 . 

The en "hump" occurs at about 32 ~ 33. 
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By way of comparison to [11], observe that: 

_ { .9655410 
a2 - .965541 

_ { 1.3158034 
as - 1.315804 

here } 
in [11] 

here } 
in [11] 

{ -.6902597} 
a3 = -.690260 

_ {-.5454961} 
a7 - -.545 

Example 7. R = 13.77975137 (N = 4/even/old-form) . 

k .! ( c' + c") 2 k k rough diff. ak 

2 2.9635181 3E-9 1.5493045 

3 .2468996 3E-9 .2468996 

4 3.5913914 9E-8 1.4003440 

5 .7370610 9E-7 .7370610 

6 . 7316926 3E-7 .3825238 

7 -.2614212 8E-7 -.2614212 

8 2.600645 2E-6 .620260 

9 -.939045 2E-6 -.939045 

10 2.1825 2E-3 1.1401 

11 -.960 7E-3 -.960 

12 1.15 0.37 .61 

type (Ao, .45 II .42, .47) M=19 I final R 

For the overall accuracy, note that: 

ia4 - (a~ - 1)1 = .0000004 

las - (a~ - 2a2)I = .000005 lag - (a~ - 1)1 = .000004 

The Cn "hump" occurs at about n = 12. 
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To make a comparison with [11, 35], observe that: 

{ 
13. 77975137 

R = 13.77975135189 
13. 7797513519 

{ 
1.5493045 

a2 = 1.54930447794 
1.5493044779 

{ 
.7370610 } 

a5 = . 737060383 
. 7370603853 

here } 
in [11, §10] 

in [35] 

here } 
in [11, §10] 

in [35] 

an= { -~
9
:~ } 

-.9535646526 

{ 
.2468996 } 

a3 = .24689977245 
.2468997725 

{ 
-.2614212 } 

a7 = -.261421 
-.2614200758 

Our earlier remark about ck-error is nicely illustrated at k = 3. 
[Errors of this kind appear to stem mainly from the fact that we chose 
H3 to be 10-5 in all our production runs. Cf. §§3,5,6. A reduction in 
H3 should yield better accuracy ... ] 

For the sake of completeness, we also recall that [10, p.653], [16] 
had: 

R = 13.7797513518907 

a2 = 1.54930447794 

a5 = . 7370604 

a3 = .24689977245 

a7 = -.2614 



k 

2 

3 

4 

5 

6 

7 

8 

9 
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Example 8. R = 17.878003 (N = 4/even/new-form). 

l(c' + c") 2 k k rough cliff. k l(c' 2 k + c%) rough cliff. 

-.707106798 7E-11 10 -1.2811050 2E-6 

.9825686 4E-12 11 -.1747944 5E-7 

.50000000 2E-9 12 .491474 lE-6 

1.8117563 lE-9 13 1.10189 7E-5 

-.6947809 4E-8 14 -.0101 lE-3 

.0082109 3E-8 15 1.795 6E-3 

-.3535540 4E-7 16 .261 2E-3 

-.0345570 lE-6 17 .43 0.14 

type (.4o, .45 II .42, .47) Af =21 I final R 

To indicate the overall accuracy, note that: 

1 
ic2 + --/21 = .000000017 

jc9 - (c~ - 1)1 = .0000019 

lc12 - C3c4i = .000190 

1 
jc4 - 21 = .0000000 

1 
lcs + ;;:;-I= .0000006 

2v2 

lc10 - C2C5 I = .0000002 

lc14 - c2c1I = .0043 

1 
jc15 - 41 = .01 . 

The cn "hump" occurs at about 17 ~ 18. 

[This R-value is one of the new-forms missed by Winkler.] 
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Example 9. R = 14.626236 (N = 6/even/new-form). 

k ½(c~ + c%) rough cliff. k ½(c~ + c%) rough cliff. 

2 .55536214 7E-10 10 -.5291602 9E-7 

3 -.57735035 3E-8 11 -.015748 4E-6 

4 -.6915731 3E-7 12 .39927 2E-5 

5 -.9528186 3E-7 13 1.0297 lE-3 

6 -.3206385 3E-7 14 1.017 9E-3 

7 1.8374419 3E-7 15 .66 lE-2 

8 -.9394356 lE-7 16 -.05 0.17 

9 .3333338 3E-7 

type (.40, .45 [[ .42, .47) M=22 I final R 

As an indication of overall accuracy, note that: 

1 
[c3 + v'3 [ = .00000008 

[c6 - c2c3[ = .0000000 

1 
[cg - 3 [ = .0000005 

[c12 - C3C4[ = .00001 

[c15 - C3C5[ = .11 

[c4 - (c~ - 1)[ = .0000002 

[cs - (c~ - 2c2)[ = .0000001 

[c14 - c2c1[ = .003 

[c16 - (c~ - 3c~ + 1)[ = .22 . 

The Cn "hump" occurs at about n = 16. 

Winkler's value was R = 14.626227. 
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Example 10. R = 13.7797513515 (N = 6/even/old-form). 

k l(c' + c") 2 k k rough cliff. ak 

2 1.549304477 5E-11 1.549304477 

3 1.978950582 6E-10 .246899774 

4 1.400344368 lE-9 1.400344368 

5 .737060386 lE-8 .737060386 

6 3.065997001 lE-8 .382522930 

7 -.26142006 lE-8 -.26142006 

8 .62025531 lE-8 .62025531 

9 -.5113975 3E-8 -.9390405 

10 1.1419309 9E-8 1.1419309 

11 -.9535642 3E-7 -.9535642 

12 2.771212 3E-6 .345744 

13 .278822 2E-5 .278822 

14 -.40516 2E-5 -.40516 

15 1.464 4E-3 .187 

16 -.46 2E-2 -.46 

17 1.17 0.11 1.17 

type (Ao, .45 II .42, .47) M=20 

I 
one of our strongest 
final R 

To indicate the overall accuracy, note that: 

la4 - (a~ - 1)1 = .000000006 

las - (a~ - 2a2)I = .00000000 

la10 - a2asl = .0000001 

la14 - a2a1I = .00014 

la16 - (a~ - 3a~ + 1)1 = .02 . 

The Cn "hump" occurs at about 17 ~ 18. 

ia6 - a2a3I = .000000005 

lag - (a~ - 1)1 = .0000000 

la12 - a3a4I = .000001 

la15 - a3asl = .005 

It is also interesting to compare things with [11, 10, 16, 35] as in 
Example 7. 
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here [35];[10, p.729] [11, §10] [10, p.653] 

R-13 . 7797513515 .77975135189 . 77975135189 . 77975135189 

a2 1.549304477 1.5493044 7794 1.5493044 7794 1.5493044 7794 

a3 .246899774 .24689977245 .24689977245 .24689977245 

a5 .737060386 .73706038534 .737060383 .7370604 

a7 -.26142006 -.26142007577 -.261421 -.2614 

an -.9535642 -.95356465262 *** *** 
a13 .278822 .27882702916 *** *** 
a17 1.17 1.30734171453 *** *** 

The present accuracy is very striking because taking H3 = 10-5 

would ordinarily suggest 7 ~ 7 ½ decimal places as being the upper limit. 
[Bear in mind too that M = 20, and that we are using only single
precision arithmetic ... ] 

Example 11. R = 17.73856338 (N = 6/even/old-form). 

k ½(c~ + c%) rough cliff. ak 

2 -.76545805 2E-10 -.76545805 

3 .75427190 3E-11 -.97777891 

4 -.41407396 lE-9 -.41407396 

5 -1.01527351 lE-11 -1.01527351 

6 -.57736350 2E-9 .74844873 

7 1.18082083 7E-9 1.18082083 

8 1.08241430 5E-9 1.08241430 

9 -1.7375111 4E-8 -.0439483 

10 .7771493 2E-8 .7771493 

11 -.6204877 lE-7 -.6204877 

12 -.312325 3E-6 .404872 

13 .265291 2E-5 .265291 
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14 -.90386 2E-5 -.90386 

15 -.7659 5E-4 .9926 

16 -.414 2E-3 -.414 

17 -.135 2E-3 -.135 

18 1.33 2E-2 .034 

19 .18 .09 .18 

type (.40, .45 ff .42, .47) M=27 

I 
one of our strongest 
final R 

For the overall accuracy, note that: 

fa4 - (a~ - l)f = .00000001 

fag - (a~ - 2a2)[ = .00000001 fag - (a~ - l)f = .0000001 

[a16 - (a~ - 3a~ + l)f = .000 

The Cn "hump" occurs at about n = 20. 
A comparison with [10, pp.653, 729] gives: 

here [10, p.729] [10, p.653] 

R 17. 73856338 17. 7385633811 17. 7385633811 

a2 -.76545805 -.76545806 -.7654580566 

a3 -.97777891 -.9777789 -.9777789075 

a5 -1.01527351 -1.0152735 -1.0152735 

a7 1.18082083 1.1808208 1.1807 

au -.6204877 -.6204877 *** 
a13 .265291 .2652887 *** 
a17 -.135 -.1357407 *** 
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The results in the middle column were obtained by H. Stark using 
the same method as in [35]. 

The present accuracy is again rather striking. 

Example 12. R = 14.0718340 (N = 5/odd). In a nonarithmetic 
case like N = 5, it is not so clear what will happen. We therefore look 
at both semifinal values. 

R = 14.0718340 R = 14.0718335 

k l(c' + c") 2 k k rough diff. k l(c' + c") 2 k k rough diff. 

2 -.3658834 3E-9 2 -.365882 IE-6 

3 -.5092615 IE-8 3 -.509263 2E-6 

4 .5249263 3E-7 4 .524923 5E-6 

5 .0132187 2E-7 5 .013217 2E-7 

6 .169034 5E-7 6 .169027 4E-6 

7 .509436 4E-8 7 .509436 5E-8 

8 1.007591 2E-7 8 1.007585 6E-7 

9 -.477043 2E-7 9 -.477040 IE-6 

10 -1.113400 4E-7 10 -1.11347 3E-5 

11 -.178021 2E-6 11 -.17791 7E-5 

12 -1.038675 2E-6 12 -1.040 IE-3 

13 -.53924 2E-5 13 -.536 2E-3 

14 -1.2025 3E-4 14 -1.25 4E-2 

15 .639 2E-3 15 .72 .08 

16 -.04 .06 16 -1.5 1.56 

left type (.40, .45 II .42, .47) M=22 typical semifinal 

right type (.45, .50 II .47, .52) M= 18 R-values 

The en "hump" occurs at about 17 and 15, respectively. The agree
ment between the 2 columns (of en) is consistent with our earlier remark 
about fuzz-level. In view of Table 5, the right-hand differences are just 
about average. The ones on the left are significantly better. [Though 
in this example there was some advantage to keeping O'.i and f3k further 
away from sinG), the overall situation is basically random.] 
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There are no (obvious) multiplicative relations. 

Example 13. R = 14.307857 (N = 5/odd). This example illus
trates the possibility of large en occurring when GN is non-arithmetic. 

R = 14.3078567 R = 14.3078568 

k l(c' + c") 2 k k rough diff. k l(c' + c") 2 k k rough diff. 

2 10.37429 6E-5 2 10.37433 4E-4 

3 -3.15814 2E-5 3 -3.15815 lE-4 

4 6.954667 2E-6 4 6.95462 lE-4 

5 -5.74760 lE-4 5 -5.74765 2E-4 

6 -7.46890 3E-5 6 -7.4690 4E-4 

7 -7.69329 8E-5 7 -7.6933 3E-4 

8 3.48202 3E-5 8 3.4819 lE-4 

9 -6.6204 lE-4 9 -6.6203 3E-6 

10 2.5325 2E-4 10 2.531 3E-3 

11 .2486 8E-4 11 .251 4E-3 

12 -4.893 4E-3 12 -4.93 6E-2 

13 -.19 9E-2 13 -.01 0.11 

14 6.96 0.29 14 5.9 1.62 

left type (.40, .45 II .42, .47) M=23 worse than average 

right type (.45, .50 II .47, .52) M=18 semifinal R 

The en "hump" occurs at about 15 and 14, respectively. The agree
ment between the en's is consistent with our rule-of-thumb. Though the 
differences are below average in quality, things don't look so bad if one 
deals with significant figures instead. [On a floating-point machine, this 
might not be such a bad idea ... ] 

Other cases having relatively large en are: 

R = 25.081315 (e.g. c2 = -5.703319, c3 = -9.051076); 

R = 30.029497 (e.g. c2 = -12.67644, c3 = 22.34885). 
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In order to properly calibrate the output from our even runs with 
N = 5 and 7, we made a number of odd runs [ using the same N and 
o:11,8] in selected R-ranges beyond 25. The following is an illustration. 

Example 14. R = 50.488237 (N = 5/odd). 

R = 50.48823748 R = 50.48823704 

k ½(c~ + c%) rough diff. k ½(c~+c%) rough diff. 

2 -3.814250 8E-6 2 -3.81433 lE-4 

3 3.965753 8E-6 3 3.96583 lE-4 

4 1.162531 2E-6 4 1.16255 3E-5 

5 1.821024 5E-6 5 1.82104 2E-5 

6 -1.664537 lE-6 6 -1.66457 7E-5 

7 1.012407 2E-6 7 1.01242 3E-5 

8 .608971 6E-6 8 .608989 6E-7 

9 -.157489 lE-6 9 -.157488 6E-6 

10 -1.592329 6E-7 10 -1.592300 5E-6 

12 -3.305690 5E-6 12 -3.30577 lE-4 

14 2.548589 2E-6 14 2.54862 lE-4 

16 3.509777 7E-6 16 3.50983 lE-4 

18 2.861370 3E-5 18 2.86141 6E-5 

20 -.036687 2E-6 20 -.03668 3E-5 

25 4.55179 5E-5 25 4.55174 4E-4 

30 -.41234 2E-5 30 -.41239 lE-4 

35 3.9363 2E-4 35 3.93652 lE-5 

40 .3673 5E-3 40 .3671 2E-3 

45 -.18 1.11 45 1.14 0.61 

type (Ao, .45 II .42, .47) 
left M = 48 a fairly typical case illus-

right M = 50 trating variation wrt M 
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The purpose of this example is partly to show how much variation 
in quality can take place simply by varying M. Both M's are admissible 
in the sense of §5 and [11, eq.(2.6)]. The le.ft-hand column represents 
the "final" R and is about average in quality. 

[The agreement between the en's is consistent with our basic rule
of-thumb.] 

To further illustrate N = 5, it may be useful to take a look at 
some typical "output" for the case of even R. We do so in the following 
example. The contrast between odd and even speaks for itself. [Cf. §6 
items (a)-(d).] 

Example 15. R = 48.244 (N = 5/even). 

R = 48.244655 R = 48.244535 

k l(c' + c") 2 k k rough cliff. k l(c' + c") 2 k k rough cliff. 

2 -2.0084 lE-3 2 -2.0389 5E-3 

3 .4828 6E-5 3 .5085 3E-6 

4 -2.0096 2E-3 4 -2.0615 7E-3 

5 -.5300 lE-3 5 -.5457 5E-3 

6 .2072 2E-5 6 .2035 9E-6 

7 -1.4332 2E-3 7 -1.4718 9E-3 

8 .7030 2E-3 8 .735 lE-2 

9 .4987 9E-5 9 .5158 3E-4 

10 2.2295 3E-3 10 2.264 lE-2 

20 .994 lE-1 20 1.028 5E-2 

25 .016 lE-2 25 .038 8E-2 

30 .093 9E-2 30 .030 2E-1 

type ( .40, .45 II .42, .4 7) type (.40, .4511.42, .47) 

M=47 M=48 
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R = 48.244524 R = 48.247737(!) 

k 1 ( c' + c") 2 k k rough cliff. k ½(c~ + cD rough cliff. 

2 -2.037 2E-2 2 -2.075 2E-2 

3 .492 2E-2 3 .590 6E-6 

4 -2.037 2E-2 4 -2.197 4E-2 

5 -.537 4E-2 5 -.602 8E-3 

6 .208 4E-3 6 .186 3E-4 

7 -1.462 6E-2 7 -1.593 2E-2 

8 .717 9E-2 8 .869 lE-2 

9 .504 lE-2 9 .592 3E-2 

10 2.258 5E-2 10 2.290 7E-3 

20 .941 3E-2 20 .969 lE-1 

25 -.034 8E-2 25 .051 4E-2 

30 .000 4E-2 30 .047 2E-2 

type (.35, .4011.37, .42) type (.35, .40 II -37, .42) 

M=57 M=58 

Type (.40, .45Jl.42, .47) also included M = 49; nothing even 
remotely resembling 48.244 was picked up there. Similarly for type 
(.35, .40IJ.37, .42) and M = 56. 

Output of this kind certainly does not give one any reason to hope 
that R = 48.244+ is an (even) eigenvalue. Things are simply too unsta
ble/fuzzy. 

Note that the quality is definitely better for type (.40, .45ll.42, .47) 
than for (.35, .4011-37, .42). This agrees with our earlier comment in §6 
about pseudo-residuals. 

Examples of this kind were a real nuisance in our production runs. 
They appeared much more frequently than we originally hoped ~ and 
succeeded only in wasting a great deal of CPU time ( since the machine 
was obligated to pursue each one of them down to the level of H3). 

This completes our tour of interesting "specimens." 
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§8. Concluding remarks 

It remains to wrap up a few loose ends before we close. 

(A) In [11], we saw that, when solving (2.5'), it was not generally 
safe to regard Cn as a smooth function of R at the level of H3. This 
was especially true for larger values of M and R. This state-of-affairs 
basically stems from a mixture of finite-precision and conditioning effects 
[on the machine]. 

In the remarks that follow, let vk denote the ( coarse-grained) rate
of-change of ck with respect to an R-interval of length H2. [It is helpful 
to think of Vk as a velocity. Though, for the sake of precision, we are 
referring to (2.5'), the other system can be considered here just as well.] 

In situations where vk does not (yet!) change very rapidly, it is 
tempting to employ the approximate relation ~ Ck ~ Vk • ~ R in an 
attempt to draw additional accuracy from the existing outout [at no 
extra cost] by making one final interpolation beyond H3. Fortunately, 
in designing our code, we decided20 to display both Vk and its local 
fluctuation ( wrt neighboring H2 intervals). A quick review of the output 
files shows that in numerous cases 

I velocity fluctuation I 
~1 

Vk 
for 2 s ks M. 

[Small ratios of this type tend to be indicative of good conditioning.] 
Take Example 1, for instance. Here the foregoing ratio is never 

bigger than .003.21 The coefficients c~ and c% can (therefore) be viewed 
as linear functions of R with slope v~ and v~. Let Ro be the "final" 
R-value obtained ala §2. We now write 

R=Ro+h 

and consider the equations 

{c;(R) = ci(R),c;(R) = cr(R),c~(R) = c1(R),c~(R) = c~(R), .. ·}.22 

The corresponding h-values turn out to be : 

20for reasons of safety 
21 Cf. the excerpt printed below. 
19 as though the contribution form {n > M} in (2.4) were exactly O !! 
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{h2 = 3.765E-8, h3 = 3.56lE-8, h4 = 3.599E-8, hs = 3.588E-8, · · ·}. 

Note that these h-values are all roughly in the same neighborhood. 
Upon taking h = 3.6E - 8, we get: 

R = 7.220871975 

k l(c' + c") 2 k k rough cliff. k l ( c' + c") 2 k k rough cliff. 

2 -.707106778 6E-10 7 -.061440 5E-6 

3 -.949350733 2E-10 8 -.35283 6E-5 

4 .500000082 lE-10 9 -.1044 4E-4 

5 -.86971384 2E-8 10 .652 2E-3 

6 .6713004 4E-7 11 -.252 7E-3 

To gauge the overall accuracy, note that: 

1 
lc2 + v'21 = .000000003 

leg - (c~ - 1)1 = .0057 

1 lc4 - 21 = .000000082 

1 
lcs + !<>I= .00072 

2v2 

It is clear that we have obtained a substantial increase in accuracy 
(over Example 1). 

Similar refinements can be made in many other cases. 
[The essential requirement is that the velocity fluctuations be small 

compared to lvkl- Since the K-Bessel functions are only accurate to 
between 10 and 12 places, 9-place accuracy in ck is nearing the limit of 
what we can feasibly hope for.] 
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FOR R = 7.2208719388 le~ - ctl value at k 
DIFFS: 0.00000002 (2) 0.00000003 (3) 0.00000045 ( 4) 0.00000550 (5) 

DIFFS: 0.00005861 ( 6) 0.00054128 (7) 0.00418757 (8) 0.02564663 (9) 

DIFFS: 0.11171821 (10) 0.00000000 (12) 0.00000000 (14) 0.00000000 (16) 

C( 2)= -o. 101106664330198E+oo 0.2966E-02 -0.3140E+0l 0.9445E-03 

C( 3)= -0.949351004190930E+oo 0.8271E-02 0.7540E+0l 0.1097E-02 

C( 4)= o.500001888356337E+oo 0.9235E-0l -0.5018E+02 0.1840E-02 

C( 5)= -0.86972752834 7259E+oo o.8678E+oo 0.3800E+o3 0.2283E-02 

C( 6)= o.6714062sosos934E+oo 0.7460E+Dl -0.2935E+04 0.2541E-02 

C( 7)= -0.622010799211770E-0l 0.5714E+o2 0.2107E+05 0.2711E-02 

C( 8)= -0.348053589509238E+oo 0.3735E+03 -0.1319E+06 0.283lE-02 

C( 9)= -0.128818742385188E+oo 0.1960E+04 0.6708E+o6 0.2922E-02 

C( 10)= o. 142214809428828E+oo 0.7394E+04 -0.2472E+07 0.299lE-02 

C( 11)= -0.435335184866034E+oo 0.1524E+05 0.5001E+07 0.3047E-02 

C( 2)= -o.101106679686245E+oo 0.269lE-02 -0.2731E+0l 0.9852E-03 

C( 3)= -0.949351032342392E+oo 0.6287E-02 0.8329E+0l 0.7548E-03 

C( 4)= o.500002342953834E+oo 0.9063E-0l -0.6281E+02 0.1443E-03 

C( 5)= -0.86973303261647oE+oo 0.9764E-00 0.5334E+03 0.183lE-02 

C( 6)= o.671464893062694E+oo 0.9411E+0l -0.4574E+04 0.2057E-02 

C( 7)= -0.627423593924994E-0l 0.801DE+02 0.3626E+05 0.2209E-02 

C( 8)= -0.343866023884553E+oo 0.5791E+03 -0.2499E+06 0.2318E-02 

C( 9)= -0.154465374877827E+oo 0.3351E+04 0.1396E+o7 0.2400E-02 

C( 10)= o.s53993022650567E+oo 0.1391E+05 -0.5645E+07 0.2464E-03 

C( 11)= -0.698895232302622E+oo 0.3151E+08 0.1252E+08 0.2516E-02 

r i i 
vel. ftuct. Vk lratiol 

(wrt H2) 

Part of the original CRAY-2 output for Example 1 

(B) As far as the numerics go, the foregoing results all seem very 
satisfactory. Some readers may wonder, however, how much computer 
time was actually required. To answer this question, we provide the 
following sample table. 

In interpreting these figures, bear in mind that each job consists of 
2 parts: (a) the (unavoidable) portion dealing with level H2; (b) the 
portion stemming from any "blowups" that need to be made at level 
H3. 

A quick look at column 6 shows that the relative contribution of (a) 
and (b) can very quite a bit from one job to another. [This fact needs 
to be taken into account when assigning time limits for the various jobs 
... ] 
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total no.of 

job category "' machine CPU time H3 blowups 

N=4 RE [5 - I, 10 + I] 
I 

odd M = 10, 11, 12 
. 60 CRAY2 (cft) 228 sec . 2+2+2=6 

N=4 RE [20-1,25+1] CRAY2 (cft) 764 sec. ON CRAY-2 

2a . 60 XMP (cft77) 764 sec . 11 + 11 + 12 = 34 
odd M = 17, 18, 19 YMP (cft77) 532 sec. time spent 

N=4 RE [20 - /, 25 + I] in part (a) 
2b 

M = 18, 19, 20 
. 50 CRAY2 (cft) 903 sec . 17 + 13 + 12 = 42 ~ 175 sec. even 

N=5 RE [10-1,15+1] 
3 

M = 23, 24, 25 
.40 CRAY2 (cft) 265 sec . o+o+o=o 

even 

N=5 RE [20 -1, 25 + I] CRAY2 (cft) 1494 sec. ON CRAY-2 
4a 

odd M = 28, 29, 30 
.40 

XMP (cft77) 1450 sec. 
14 + 14 + 13 = 41 

time spent 

N=5 RE [20 - I, 25 + I] in part (a) 
4b .40 CRAY2 (cft) 1097 sec . 11+6+8=25 

even M = 28, 29, 30 ~ 475 sec. 

N=5 RE [45 -1, 50 + I] 
5 

M = 47, 48, 49 
. 40 CRAY2 (cft) 2100 sec . 2+2+2=6 

even 

N=5 RE [55-1,60+ I] 
6 

M = 56, 57, 58 
.40 CRAY2 (cft) 2008 sec . o+o+o=o 

even 

N=6 RE [20-1,25 + I] 
7 

M = 31, 32, 33 
. 40 CRAY2 (cft) 2714 sec . 19 + 26 + 24 = 69 

even 

N=7 RE [30-1,35 + I] 
8 

M = 56, 57, 58 
. 30 YMP (cft77) 2268 sec . 12+7+3= 22 

even 

N=7 RE[35-l,40+1] 
9 

M = 62, 63, 64 
. 30 YMP (cft77) 10594 sec . 41 + 41 + 33 = 115 

even 

N=5 49.875 :, R:, 51.000 CRAY2 (cft) 1366 sec. 
CRAY2 (cft77) 1270 sec. 

10 
odd M=48,50 

. 40 XMP (cft77) 1370 sec . 7 + 7 = 14 

test run YMP (cft77) 966 sec. 

N=7 50.125 :, R:, 51.25 
11 odd M = 75, 76, 77 . 30 CRAY2 (cft) 5882 sec . 8+8+10=26 

test run 

type (o,,o,llili,/l,) H2 = .001, H3 = 10-• /= 1 
- 8 

On the basis of this table, the following speed ratios are seen to 
apply: 

YMP(cft77) 
( ) ~ 1.42, 

CRAY2 cft 

In all: 

YMP(cft77) 
CRAY2(cft77) ~ l.3l, 

YMP(cft77) ~ 26 

XMP(cft77) = 1.42 ' 

of our type ( 0:1, o:2 I I ,81, ,82) jobs used the XMP . { 
CRAY2 } 

YMP 

20 As usual, these figures represent a composite of both the memory and clock 
speeds. 
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The corresponding CPU totals were: 

CRAY2 

XMP 

YMP 

N=4 

3962 

764 

532 

odd 
N=5 N=6 

10840 4820 

5553 8172 

966 0 

even 
N=7 N=4 N=5 

8319 9351 35337 

0 0 0 

0 0 0 

N=6 N=7 

22313 12747 107689 sec. 

0 0 14489 sec. 

0 16231 17729 sec. 

(C) We finish up by drawing attention to several possibilities for 
further work. 

(a) Linear Algebra. Our subroutine for solving linear equations is 
nothing but standard Gauss elimination. It can certainly be improved. 
For values of M bigger than 60 or so, it would probably be best to 
switch over to one of the optimized routines available in a standard 
library. [This would help cut the CPU time!] Creative use of iterative 
techniques is another possibility. 

(/3) Additional Coefficients. For arithmetic G N, it would be quite 
useful to obtain many more Fourier coefficients than we currently have. 
This can probably be done by implementing some version of H. Stark's 
method [35]. 30 

In nonarithmetic cases, this problem is also quite interesting. Here, 
however, it is not so clear what to do. Further analysis seems very much 
in order. 

('-y) Other Groups. It goes without saying that one would very 
much like to run similar Rn-experiments for more general r ( and for 
more general multiplier systems). [Though in this paper we have fo
cussed only on GN, the numerical groundwork we've laid can clearly 
be extended to much more general groups. Any subtleties that occur 
for GN can be expected to recur (possibly with a vengeance!) when 
more general r are used. For this reason, the case of G N is actually an 
important testing-ground.] 

( 8) Completeness Questions. In the absence of any kind of 
(numerical) argument principle for Zr(s), it is a bit irritating that one 
cannot rigorously say when one is done. Can this deficiency be corrected 
?? Cf. the suggestions at the end of §3. 

3°For an update on progress in this area, see [15]. 
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