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§1. Introduction 

Roughly speaking, we will show that the "ratio" 

det(Cayley transform of v'Ll) 
SZF attached to the difference of spin representations 

is essentially equal to the exponential of 77-invariant. Of course, we 
mean "det" the functional determinant. So we need the discussion on 
the regularization of these kind of determinants. This invariant was 
introduced by Atiyah-Patodi-Singer and indices the spectral asymmetry 
of (an odd dimensional) Riemannian manifold. Namely, at least formally 
( or symbolically), 

77-invariant 

=the internal index (signature) of an infinite quadratic form 

tdX.\!'LldX. on dfl(dimension -1)/2 

=~{positive eigenvalues of v'Ll} - tt{negative eigenvalues of \/'Ll}. 

By the way, as to the result on the SZF related to the spin representations 
on the compact quotient of the hyperbolic space of dimension 4n - 1, 
there is a work by Milson. For computing the 77-invariant in terms of 
the SZF, he found the intermediate formula (Selberg trace formula for 
"odd" type). Our result mentioned above is the one for the Milson's 
type SZF. (But we also consider the objects which are associated with 
the finite dimensional unitary representations of the fundamental group.) 
However this type of zeta function is actually defined by the "difference" 
of the two spin representations that decompose the action of S0(2p) on 
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AP!C2P. On the other hand, we can naturally define the SZF as usual, (in 
our situation, this means that the "sum" of two spin representations). 
Using these kind of SZF, we can separate the spin representations at 
the spectrum level and hence pick up and define a new SZF exclusively 
attached to only one spin representation. That is to say, we are able to 
show that 

the "Characteristic polynomial" of v'Ll =anew SZF. 

§2. The root of the Hodge Laplacian and the 17-invariant 

Let X = r\H = r\G/K = r\S00 (2n - 1, 1)/S0(2n - 1) be a 
compact oriented hyperbolic manifold of odd dimension£= 2n - 1, r 
its fundamental group. Let G = K ApN be the Iwasawa decomposition 
of G. The centralizer M of Ap in K is isomorphic to S0(£-1). Let x be 
an unitary representation of r on cm. Let Slq = St~ be the space of all 
x-twisted q-forms on H (that is, '"'f*W = x('"'!)w, values in cm). In other 
words, we consider the flat unitary bundle associated with X· Consider 
the operator Ae (resp. A 0 ) on (x-twisted) even (resp. odd) forms on H, 
defined on [2 2P (resp. S1 2p-l) by the formula 

(2-1) Ae = in(-1)P+1(*d - d*) I+ neven = EB;~JS12P, 

where d is the exterior differential and * is the Hodge duality operator 
defined by the metric. 

Let A denote Ae (resp. A 0 ). Anyway, it is easy to see that the 
operator A is formally self-adjoint, elliptic and square A2 is the Hodge 
Laplacian Ll = d8+8d, where 8 stands for the formal adjoint of d. Hence 
A is diagonalizable with real eigenvalues and the eigenvalues of A are 
square roots of those of Ll. It follows that they can be either positive 
or negative. By the way, Atiyah-Patodi-Singer introduced the so-called 
"eta-function" 

(2-3) 1J(X: s) = 1JA(X: s) = I)sign>.)l>-1-s, 
.\;iO 

where the summation is taken over all eigenvalues of A counting with 
multiplicity. It is easy to verify that 

11(x: s) = Tr(A(Ll)-Cs+i)/2 ) 

(2-4) = 1 1= tCs+l)/2 Tr(Ae-M) dt 
I'((s + 1)/2) 0 t 
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for Res » 0. By means of this formula, they proved that T/(X : s) 
has a meromorphic continuation to the entire complex plane and does 
not have a pole at zero. From this it follows that T/(X) = T/(X : 0) is 
well-defined and is called the 7]-invariant. 

§3. Formal definition of infinite determinants 

For simplicity, we assume that f:' = dimX = 4n - 1 (that is, G = 
SO0 (4n - 1, 1)) and put p = R;l = 2n - l. In this case, note that 

Define two self-adjoint square roots of Ll as follows : 

(3-1) 

B 0 = AO I the space of coclosed forms in !12 n - l 

= *dlthe space of coclosed forms in !)2n-l, 

Be = A e !the space of closed forms in !12 n 

= d * !the space of closed forms in !12n · 

Since the Hodge operator * gives the isomorphism 

it is easy to see that Spec B 0 = Spec Be. So we concentrate on the 
operator B 0 • We prepare several notations. Let uq be the standard 
action of M = SO(i:'-1) = SO( 4n-2) on ,1,._qcce- 1 . Then uq is irreducible 
except when q = p in which case it decomposes as the sum of the two 
spin representations u+, u-. Let · · · < ->.J+l < ->.j < · · · < ->.1 < 
>.a = 0 < >.1 < · · · < Ak < Ak+l < · · · be the (possible) eigenvalues of 
B 0 • We denote by N ( u+, Aj) ( resp. N ( u-, Aj)) the multiplicity with 
which the principal series representation 7ra+ .>... (resp. 7ra- .>...) induced 

' J ' J 

from the representation u+ ® Aj ® l (resp. u- ® Aj ® 1) of the minimal 
parabolic subgroup MApN occurs in L2 (f\G, x), the £ 2-sections of the 
vector bundle associated with x on r\G. Note that N(u±,>.j) may be 
equal to 0. We put m1 = N(u+, Aj) ± N(u-, Aj)-

Put >._j = -Aj- Since 7ra+,.>..j -:::: 7ra-,-.>..j (equivalent) as a unitary 
representation of G, it is clear that N(u+, ±>.j) = N(u-, ~>.J)- By 
N(x : ±>.j) we denote this common value. Then the number N(x : 
Aj) (j E Z) is nothing but the multiplicity of the eigenvalue Aj of B 0 • 

Furthermore, let bq denotes the q-th (x-twisted) Betti number, that is 
the multiplicity of the zero eigenvalue of the restriction of Ll to Dq. 
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Then, in particular, bp = N(x : 0). For simplicity, throughout the paper 
set 

L'.1° = L'.lJthe space of coclosed forms in !1 2 n-l. 

Under these notation, we will define three kinds of infinite determinants 
which are related to the operator B 0 • At least formally, it is quite natural 
that they are given by the following way : 

(The characteristic polynomial of L'.1°) 

(3-2) 

det((Bo)2 + s2) = IT(>.;+ s2)N(x:>-;)s2bp 

>-;#0 

= IT (>.; + s2rt sfbp. 

Aj>O 

(The determinant of the Cayley transform of -vL\° / s) 

det(Bo - ~s) = IT (Aj - ~s)N(x:>-Jl(-l/P 
B 0 + is >.1 + is 

>-1#0 
(3-3) 

(The characteristic polynomial of 'VL\°) 

(3-4) det(B0 - is) = IT (>.1 - is )N(x:>-;) (-is /P. 

>-1#0 

§4. Definition of functional determinant 

In this section, we devote to regularize various (functional) deter
minant. First of all, we consider the characteristic polynomial of L'.1° by 
means of the usual zeta function method (e.g. [DP], [Sar], [VJ, [D2]). 
We denote by Tr e-tLl0 the trace of the heat kernel to L'.1°. As is well 
known from differential equations (see e.g. [G]), the asymptotic law at 
0 is given by 

00 

(4-1) Tr' e-tLlo et>-f ~ L O:ntn-fr t l 0. 
n=0 

where we set Tr' e-tLl 0 = Tr e-tLl 0 
- bp. Also we put 

m+ 
H(z,w) = L (>.~ :z)w· 

>-1 >O 1 
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It is well known that the above series converges absolutely and uniformly 
on compact sets in Rew > ! . Therefore in this half plane we see that 

(4-2) 1 100 
I t AO t dt H(z,w) = -- Tr e- ~ e-z tw-. 

I'(w) 0 t 

Lemma 1. Suppose that Re s2 > -Ai- Then H ( s2, w) can be 
meromorphically continued to any half plane Rew > -w0 (w0 E JR) and 
regular at the integer points which are greater than -w0 . In particular, 
i! ( s2, 0) is smooth in s in this range. 

Proof. We may assume that w0 E Zand w0 2: -"!1 . The asymp
totic expansion enables us to write 

H(z, w) = H1(z, w) + H2(z, w) + H3(z, w), 

where we put 

H (z w) = - 1- [1 [Tr' e-U1° e0 'i - 0 (t)]e-t(z+>-i)tw dt 
1' I'(w)}o wo t 

H2(z w) = - 1- [1 0 (t)e-t(z+>-i)tw dt 
' I'(w) Jo wo t 

1 J,oo I -t~o -zt w dt 
H3(z, w) = I'(w) 1 Tr e e t t' 

Here we put 
£! 1 +wo 

0w0 (t)= L O:ntn-!_ 
n=O 

Fort 2: 1, the elementary estimate shows that 

for some constant c. Therefore, since Re s2 > 0, it is obvious to see that 
H 3 ( s2 , w) is analytic in w. It is also clear that the same assertion holds 
for 8l;,,1 (s2 ,w). As for the term H 2 (s 2 ,w), a little manipulation shows 
that 

£! 1 +wo 

Hi(s 2 ,w) = L 
n=O 

O!n [ ( £ ) ---------~~I'w--+n 
I'(w)(s2 + Ai)(2w-R+2n)/2 2 
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Since I! is odd, this completes the proof of the lemma. 

Formally, 

8H ( 2 ) '°' + ( 2 2) aw s , O = - ~ mi log \ + s , 
AJ>O 

so, by means of Lemma 1, we define 

(4-3) 

Next, we shall define a functional determinant of the Cayley trans
form of v'ifo / s. At the first place we have the following. 

Lemma 2. Put 

I(s) = 1= e-ts2 Tr(B 0 e-t6. 0 )dt. 

Then the function I ( s) is analytic in the half plane Re s2 > ->..r and can 
be meromorphically continued to the wholes plane. The poles of I(s) 
occur at the points ±i>..j (j = l, 2, • • •). These poles are all simple and 

m-:-
the residues at ±iAj are ±Ti, respectively. 

Proof. It is known [BF] that 

Tr(B 0 e-t6.0
) = O(t112 ) t l 0. 

On the other hand, for fixed t0 > 0, it is easy to see that there is a 
constant c such that the following estimate holds: 

Hence the function I ( s) is analytic for Re s2 > - >,. r. Using again both 
estimates and Fubini's theorem we see that 

It should be noted that, for each c > 0, Tr( ,1.f;s2 e-e:(6. 0 +s2
)) is a mero

morphic function with simple poles at ±i>..j (j = 1, 2, • • •) and residue 
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of it at the point ±i>..j are ± ri;f , respectively. Hence ( 4-4) implies the 
desired results. 

Formally we have 

1 I: _ i i m. (--- + ---) 
2i 1 >.. · + is >.. · - is · 

~1>0 J J 

Therefore we may define det( ~=+!:) as the meromorphic function which 
is uniquely determined by the following way: 

(1) fs logdet(~:+!;) = f I(s), 

(2) det(~:+!;)ls=O = (-llP. 

Here log stands for the principal branch of the logarithmic function. 
Since I ( s) is even, by the definition it is clear that 

(4-5) d ( B 0 
- is) d ( B 0 + is) et --- et --- = 1. 

B 0 + is B 0 - is 

Lastly we want to define det( B 0 - is). Let d( s) be the unique func
tion defined for Re s2 > -Ai such that 

(1) d( s )2 = det( (B 0 ) 2 + s2 )s-Zbp det( ~=+!; )(-1 tP, 
(2) d(O) = exp[-½ i~ (0, O)]. 

Now we put 

(4-6) det(B 0 - is)= d(s)(is)bp. 

Eventually, since (SpecB0 ) 2 = Spec Ll0 , under these normalization, it is 
obvious to see that 

(4-7) 
B 0 -is 

det((B0 ) 2 +s2 )det( . )±1 = (det(B0 =t=is)) 2 . 
B 0 +is 

§5. Formulas for the determinants 

The closed geodesics 'Y are in a one to one correspondence to the non
trivial conjugacy classes in r. So, we can write Tr xb) for a geodesic 
'Y· Further we write m, for the holonomy map of the parallel displace
ment along 'Y· This m, also may be considered as an element of M. 
We denote by£("!) the length of 'Y and "/p the primitive closed geodesic 
underlying 'Y· More precisely, since all elements 'Y E r are semisimple 
and r has no elements of finite order, it follows that every element 'Y E r 
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is conjugate in G = S00 ( 4n -1, 1) to an element of the Cartan subgroup 
A= AtAp (At C M = S0(4n - 2)). Choose an element h('Y) of A to 
which 'Y is conjugate. Then we can write h( 'Y) = m"la( 'Y) ( a( 'Y) E Ap). We 
further demand that h('Y) be chosen so that a('Y) lies in At = exp at, the 
positive Weyl chamber in Ap. Of course, we see that Cb)= a(loga('Y)), 
where a stands for the unique positive restricted root with respect to 
ap. For any linear form >. on ap,IC, let 6. denote the character of the 
Cartan subgroup A defined by 6. ( h) = exp >.(log h) ( h E A). Let P + be 
the subset of 6. +, the set of positive roots relative to the pair (G, A), so 
that the restriction to ap are all a. We now enumerate the roots in P+ 
as a1, · · ·, O:zn-1· 

Now we define two Selberg zeta functions which are exclusively at
tached to only one spin representation u± of M, respectively, by the 
following Euler product: 

z(x: u±: s) = II II det(I-x('Yp)Tr(u±(m"/p)-1 )6.(h('Yp))- 1e-s£(,p)) 
"Ip ,\EA 

where A denotes the semi-lattice defined by 

2n-l 

A= { L miai; mi 2: 0, mi E 2}. 
i=l 

It should be noted that any >. E A is written uniquely as a non-negative 
linear combination of ai 's. 

Further on, we put 

(5-1) 

zt is an ordinary type and z; is Millson's type Selberg zeta function. 

Now we describe the the Selberg trace formula (STF). Put J 0 = 
{z EC; JlmzJ < p+ c:}, where p = £21 . For any E > 0, by A" we 
denote the set of all functions h which are holomorphic in the strip J" 
and satisfy the growth condition h(z) = O([zJ-£- 0 ) on this strip. For 

such functions we put h(u) = 2~ J~= h(s)eisuds. In this situation, using 

the results in [Fl] concerning the trace of the heat kernel we have the 
following two types of Selberg trace formulas. The first one is due to 
Deitmar [D 1]. 

(STF for Even Type) Let h E A 0 be even. Then we have with 
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absolute convergence of both sides of sums 

Bph(O) + L mjh(>-.j) 
Aj>O 

=2 Tr x(l) vol(X) 1-: h(x)µ,(x)dx + L st,xe-pCC,,)fi(R(,,)). 
'Y 

where the summation is taken over all closed geodesics in X and BP 
stands for the alternating sum of Betti numbers, namely 

q 

Bq = L(-l)i+qbi. 
j=O 

Also, under the suitable normalization of the Haar measure on H 
S00 (4n -1, l)/S0(4n -1) (e.g. [Wakl]), the density of the Plancherel 
measures associated to the spin representations a± (both of them coin
cide with each other) are given by 

(5-2) 7r (4n - 2) 2rrn-l 2 ·2 

µ,(x) = 28n-6 I'(2n - ½)2 2n -1 j=l [x + J ]. 

(STF for Odd Type) Suppose that h E A" is odd. Then we have 
with absolute convergence of both sides of sums 

Here we put 

Proposition 1. 

det((B 0 ) 2 + s2 ) = s2bp exp[Px(s)]Z1(s + p), 

where Px( s) is an odd polynomial of degree£ given by 

Px(s) = 41rTrx(l)vol(X) 1s µ,(it)dt. 

Remark. The above result is derived also in [D2] except for the 
deciding "integration constants" . 

In order to prove the proposition, we need some elementary lemmas. 
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Lemma 3. Suppose that Res > 0. Then for ( m, w) E <C2 satisfy
ing Rem>-½, Re(w - m - ½) > 0, the following formula holds: 

e-s ttw{ e-r tr2mdr }- = 8 2(m-w)+1 I'(w _ m __ )I'(m + -). 100 
2 1= 2 dt l 1 

0 -oo t 2 2 

We omit the proof. 

Lemma 4. Put 

Then 
1 a , 
--0 logdet(Ll0 + s2 ) = H(s 2 , 1). 
2s s 

Proof. It is easy to see that Lemma 1 implies the regularity of 
H(z, w) as well as the smoothness (for s, Res2 > -Ai) of a:H(s2 , w) 
at w = 0, l, so by the definition , we have 

a 
oz H(z, w) = -wH(z, w + l), 

hence also 

1aa 2 2 a 2 
---H(s ,w) = -H(s ,w + 1) -w-H(s ,w + 1). 
2s OS aw ow 

Therefore letting w ----+ 0 we get the desired formula. 

Now applied to the function h(>-.) = e-t>.2 (t > 0), the STF of even 
type gives 

(5-3) Bp+Tr'(e-M 0
) =2Trx(l)vol(X) 1-: e-tr2 µ(r)dr+L(t) 

where we put 

(5-4) L(t) = ~c:t,xe-pR(,)e-R(1')2/4t_ 
, 
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Using Lemma 3 and the definition of the function H ( s2 , w), if Rew ~ O 
then ( 4-3) implies that 

-- L(t)e- 8 ttw - = H(s 2 , w) + __!!_ 1 100 
2 dt B 

I'(w) 0 t 8 2 

(5-5) 

2 Tr x(l) vol(X) 2Ln-l 2(k-w)+lr( k l) (k 1) 
- ------ CkS W - + - I' + - . 

I'(w) 2 2 
k=O 

Here the constants ck is defined by the formula 

2n-1 

µ(r) = L ckr2k. 
k=O 

Since the right hand side of (5-5) is meromorphic, hence defines a mero
morphic continuation of the left hand side. Hence using Lemma 4 we 
see that 

lim -- L(t)e- 8 ttw -1 100 
2 dt 

wP I'(w) o t 

(5-6) 
1 8 1 d' ( 110 2 ) BP 27rTrx(l)vol(X) (.) =-- og et L..1 +s +- - -------µis. 

2s 8s s2 s 

On the other hand, as in [Wakl], by means of the dominated convergence 
theorem we obtain 

lim -- L(t)e- 8 ttw - = L(t)e-s t_ 1 100 
2 dt 100 

2 dt 
wp I'(w) o t o t 

(5-7) _ 1 8 + ) 
- 2s 8s log zx ( s + p . 

Here we used the well known integral formula: 

100 1 1 
~ exp[-(x2 + y2 /4t)]dt = -e-xy_ 

o v47rt 2x 

Hence if we put 

then 

I 

R(s) = logdet(L'.1° + s2 ) - Px(s) + 2Bp logs - log z;(s + p) 

d 
-R(s) = O 
ds 
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as a meromorphic function. Therefore R( s) is equal to a constant C. 
We now claim that 

Bµ = C=0. 

As in (4-1) we can write 

00 

Tr' e-t(.4°) ~ Lfintn-! t l 0. 
n=O 

If we split the integral (4-2) as we did in the proof of Lemma 1, since e 
is odd we get 

£-1 

8H - 2 e 
ow(s2 ,0)=-L.8nI'(n- 2 )st-2n+o(l) as s--+oo. 

n=O 

On the other hand, since log zt ( s; p) --+ 0 as s --+ oo we see that 

lira (2Bµ logs - C) = 0. 
S----+00 

This completes the proof of the proposition. 

We turn our attention to the determinant of the Cayley transform. 
Namely, we have also a following result which is considered as an odd 
version of the preceding proposition. 

Proposition 2. 

B 0 - is • 
det( . )=e,ri(bp-rJ(x))z-(s+p). 

B 0 + is X 

If we put the function h(>..) = >..e--X2 t (t > 0) into the STF of odd 
type, then 

Using the similar argument as we did in (5-7), we obtain 

Lemma 5 ([Mill). For Re s2 > ->..~ we have 

I(s) = f00 e-ts2 Tr(B0e-t4°)dt = !:_dd logZ~(s + p). lo 2 s . 
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This lemma implies that there exist a constant K such that 

B 0 -is 
det(B . ) = Kzx-(s + p). 

0 + is 

By the way, by (2-4) we get 

~ >.. 
77(x: s) = L, m; J>. ·J~+i 

Aj>O J 

i r= a 
=r(1¥)r(1?) lo x-s 8xlogZ~(x+p)dx 

83 

for Res2 > ->.i, Res< l. But since limx_..+00 Z~(x) = 1, I'(l/2) = 
,fir, we see that ([Mill) 

(4-8) 
1 

77(x) = 7/(X: 0) =---; logZ~(p). 
1ri 

Hence, by the definition of the normalization of det( ~:+!:) at O we 
obtain 

The proposition now follows. 

Combining Propositions 1, 2 with the proof of Proposition 1 we can 
easily show that 

d(±s) 1 . 
log ( ± ) = -((Px(s) =f m77(x)). 

zx:u :s+p 2 

Hence we obtain 

Theorem. 

det(B 0 =f is)= (±is)bp exp ~(Px(s) =f i1r77(x))z(x: u±: s + p). 

We use the notations B 0 (x), bp(X) instead of B 0 , bp to express the 
dependence on x precisely. Then we have the functional equation. 

Corollary 1. 

z(x: u+: -s + p) = exp(Px(s) + i1r77(x))z(x: u- : s + p). 
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Proof. Since the operator B 0 (x) is formally self adjoint, it is clear 
that b-;,(x) = bp(X), 11(x) = 11(x). Also, note the fact that the odd polyno
mial Px ( s) has real coefficients and satisfies the relations Px ( s) = Px:( s). 
On the other hand, by the Euler product expression of z(x: a± : s + p) 
we have 

z(x: a+ : s + p) = z(x: a- : s + p). 

The result now follows immediately from those facts. 

According to [APS3], we define the reduced 77-invariant rf(x) by the 
formula 

rf(x) = 11(x) - x(l )11(1) 

where I denotes the trivial representation of r. Then, since P x ( s) 
x(l)PI(s) we obtain 

Corollary 2. 

e1/J-ry(x) det(B 0 (x) - is) = (istP(x)-x(l)bp(I) z(x: a+: s + p) _ 
det(B 0 (I) - is )x(1) z( I : a+ : s + p )x(1) 

The author closes this paper with some comment on the study of 
the determinant of the Cayley transform of the square root of Laplacian. 
Until Professor Stanton pointed out to the author during the Conference 
on Zeta Functions in Geometry held at Tokyo Institute of Technology, 
he did not know their study in [MSl], for his lack of care. Thus, un
fortunately, there was no reference on their work in the first draft and 
his talk at this conference. More precisely, in spite of some minor differ
ences between the two methods, Lemma 2 and accordingly, Proposition 
2 of this paper is already proved in more general situation . In fact, our 
operator B 0 is the most important one but the special type of the Dirac 
operator investigated in their paper [MSl). The author would like to 
thank Professor Stanton for his magnanimity and kind advice. 
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