Advanced Studies in Pure Mathematics 21, 1992 Zeta Functions in Geometry pp. 21–31

On Adelic Zeta Functions of Prehomogeneous Vector Spaces with a Finitely Many Adelic Open Orbits

Tatsuo Kimura and Takeyoshi Kogiso

Introduction

The two adelic zeta functions $Z_a(\omega, \Phi)$ and $Z_m(\omega, \Phi)$ for a prehomogeneous vector space (abbrev. P.V.) (G, ρ, V) have no relation in general. For an irreducible case, Professor J. Igusa showed that $Z_a = \tau Z_m$ with some constant τ when $\#(G_A \setminus Y_A) < \infty$ under the condition (HW) where Y is the open G-orbit in V (see Igusa [4]).

In this paper, we shall show that the condition (HW) is not necessary. Moreover, we shall show that the theorem of the same type holds even for simple P.V's and 2-simple P.V.'s of type I. It is known that when $Z_a = \tau Z_m$ holds, we can generalize Iwasawa-Tate Theory for such P.V.'s and we can have many informations (see T. Kimura [11]).

Contents

§1. Basic definitions

- §2. Some sufficient conditions for $Z_a = \tau Z_m$
- §3. Simple P.V.'s with $\#(G_A \setminus Y_A) < +\infty$
- §4. 2-Simple P.V.'s of Type I with $\#(G_A \setminus Y_A) < +\infty$

§1. Basic definitions

Let G be a connected reductive linear algebraic group and $\rho: G \longrightarrow GL(V)$ a rational representation of G with the open dense G-orbit Y. In this case, we call a triplet (G, ρ, V) a prehomogeneous vector space (abbrev. P.V.). The complement S of Y is a Zariskiclosed set which is called the singular set of (G, ρ, V) . We assume that the isotropy subgroup H of $\rho(G)$ at a point in Y is connected and semisimple. The irreducible components S_i of codimension one

Received January 20, 1991.

T. Kimura and T. Kogiso

are the zeros of some irreducible polynomials $f_i(x)$ (i = 1, 2, ..., r). Then $f_1(x), f_2(x), ..., f_r(x)$ are algebraically independent relative invariants, i.e., $f_i(\rho(g)x) = \chi_i(g)f_i(x)$ for $g \in G$, $x \in V$ with some rational characters χ_i of G. Moreover any relative invariant rational function f(x) is of the form $f(x) = c \cdot f_1(x)^{m_1} f_2(x)^{m_2} \cdots f_r(x)^{m_r}$ with $(m_1, m_2, \ldots, m_r) \in \mathbb{Z}^r$ and some constant c (see p.60 in (M. Sato and T. Kimura [5])).

Let k be an algebraic number field. We assume that (G, ρ, V) is defined over k and all coefficients of $f_i(x)$ are in k. We denote by G_A, V_A , etc. the adelization of G, V, etc. with respect to k. Let $\Omega(k_A^{\times}/k^{\times})$ be the space of quasicharacters of the idele class group k_A^{\times}/k^{\times} and $\mathcal{S}(V_A)$ the Schwartz-Bruhat space on V_A .

For $\omega = (\omega_1, \ldots, \omega_r) \in \Omega(k_A^{\times}/k^{\times})^r$, we write $\omega(\chi(g)) = \omega_1(\chi_1(g))$ $\cdots \omega_r(\chi_r(g))$ and $\omega(f(x)) = \omega_1(f_1(x)) \cdots \omega_r(f_r(x))$ $(g \in G_A, x \in Y_A = (V - S)_A)$ for simplicity. Now we define the two adelic zeta-functions $Z_a(\omega, \Phi)$ and $Z_m(\omega, \Phi)$ of (G, ρ, V) .

$$Z_{a}(\omega, \Phi) = \int_{G_{A}/G_{k}} \omega(\chi(g)) \sum_{\xi \in Y_{k}} \Phi(\rho(g) \cdot \xi) d_{G_{A}}(g)$$
$$Z_{m}(\omega, \Phi) = \int_{Y_{A}} \omega(f(x)) \Phi(x) d_{Y_{A}}(x)$$
$$(\Phi \in \mathcal{S}(V_{A}))$$

Here d_{G_A} is a Haar measure on G_A and d_{Y_A} is a G_A -invariant measure on Y_A (see the beginning of § 2). We take the same convergence factor for d_{G_A} and d_{Y_A} . The role of $Z_a(\omega, \Phi)$ is a functional equation based on the adelic Poisson summation formula while $Z_m(\omega, \Phi)$ has an Euler product $Z_m(\omega, \Phi) = \prod_{v \in \Sigma} Z_v(\omega_v, \Phi_v)$ when $\Phi = \bigotimes_{v \in \Sigma} \Phi_v$ where Σ denotes the set of places of k.

For the absolute convergence of $Z_m(\omega, \Phi)$, see p.90 in (T. Ono [13] and F. Sato [9]).

§2. Some sufficient conditions for $Z_a = \tau Z_m$

For simplicity, we assume that $G \subset GL(V)$ and (G, V) is defined over an algebraic number field k. Take a k-rational generic point $\eta \in$ $Y_k = (V - S)_k$ and we denote by H the isotropy subgroup of G at η . Since we assume that H is semisimple, we have $\operatorname{vol}(H_A/H_k) < +\infty$ (see A. Borel and Harish-Chandra [12]), and there exists a G_A -invariant measure d_{Y_A} on Y_A . Since H is connected, $G_A \cdot \eta$ is open in Y_A . We normalize measures d_{G_A}, d_{H_A} and d_{Y_A} on G_A, H_A and Y_A by

$$\begin{split} \int_{G_A} \phi(g) d_{G_A}(g) &= \int_{G_A \cdot \eta} d_{Y_A}(x) (\int_{H_A} \phi(gh) d_{H_A}(h)) \\ (\text{with } x = gH_A) \end{split}$$

for any $\phi \in L^1(G_A)$.

Proposition 1-1. We have

(1.1)
$$\int_{G_A/G_k} \omega(\chi(g)) \sum_{\xi \in G_k \cdot \eta} \Phi(g\xi) d_{G_A}(g)$$
$$= \tau \int_{G_A \cdot \eta} \omega(f(x)) \Phi(x) d_{Y_A}(x)$$

for $\Phi \in \mathcal{S}(V_A)$ where $\tau = \int_{H_A/H_k} d_{H_A} (= \operatorname{vol}(H_A/H_k) < +\infty).$

Proof. First we observe that $\omega(\chi(\gamma)) = 1$ for $\gamma \in G_k$ and $\omega(f(\eta)) = 1$, i.e., $\omega(\chi(g\gamma)) = \omega(f(g\eta))$.

Since G is reductive, the Haar measure d_{G_A} is right-invariant, i.e., $d_{G_A}(g\gamma) = d_{G_A}(g)$.

Now

where $\tau = \int_{H_A/H_k} d_{H_A}$ is a finite number by assumption.

Q.E.D.

Now the following proposition is obvious.

Proposition 1-2. Assume that $Y_k = G_k \cdot \eta$ and $Y_A = G_A \cdot \eta$. Then we have $Z_a = \tau Z_m$.

Proposition 1-3. Let (G, V) and (G', V) be P.V.'s satisfying $G \subset G' \subset GL(V)$ and Y' = Y. If $Y_k = G_k \cdot \eta$ and $Y_A = G_A \cdot \eta$, then we have $Z'_a = \tau' Z'_m = \frac{\tau'}{\tau} Z_a$ and $Z'_m = Z_m$.

Proof. Since Y' = Y, we have $Z'_m = Z_m$. Since $G \subset G'$, we have $Y_k = G'_k \cdot \eta$ and $Y_A = G'_A \cdot \eta$, hence $Z'_a = \tau' Z_m$ by Proposition 1-2. Since $Z_a = \tau Z_m$, we have $Z'_a = \frac{\tau'}{\tau} Z_a$. Q.E.D.

Proposition 1-4. For (GL_d, M_d) with a k-form $(GL_d(k), M_d(k))$, we have $Y_k = G_k \cdot I_d$ and $Y_A = G_A \cdot I_d$ (hence we have $Z_a = \tau Z_m$).

Proof. Since $Y_k = GL_d(k) = G_k = G_k \cdot I_d$, and $Y_A = (GL_d)_A = G_A = G_A \cdot I_d$, we have our assertion by Proposition 1-2. Q.E.D.

Proposition 1-5. Let G_o be a connected k-split algebraic subgroup of SL_d acting on M_d as $\rho(g_o, g_1) \cdot x = g_o x^t g_1$ ($g_o \in G_o, g_1 \in GL_d, x \in M_d$). Then for a P.V. ($G_o \times GL_d, \rho, M_d$) with the k-form

$$((G_o)_k \times GL_d(k), \rho, M_d(k)),$$

we have $Z_a = \tau Z_m$.

Proof. It is clear by Proposition 1-3 and Proposition 1-4.

Q.E.D.

Theorem 1-6 (Igusa [4] with the above Proposition 1-5). Let (G, ρ, V) be an irreducible regular P.V. defined over k such that Y_A decomposes into a finitely many G_A -orbits. Then with a suitable k-form, we have

$$Z_a = \tau Z_m.$$

Remark. The point of Theorem 1-6 is that the condition (HW) is not necessary (see p.16 Remark in (Igusa [4])).

More explicitly, we can express Theorem 1-6 as follows.

Theorem 1-7. We have $Z_a(\omega, \Phi) = \tau Z_m(\omega, \Phi)$ for an irreducible regular P.V. which is castling-equivalent to one of the following reduced P.V.'s with the split k-form.

(1) $(H \times GL_m, \rho_m, M_m)$ where H is any k-split connected semisimple algebraic subgroup of SL_m with $\rho_m(h, g)x = hx^tg$ for $(g, h) \in H \times GL_m$ and $x \in M_m$. We take a k-form $(H_k \times GL_m(k), \rho_m, M_m(k))$. The relative invariant $f(x) = \det x$.

(2) $(GL_{2m}, \rho, \operatorname{Alt}_{2m})$ where $\rho(g)x = gx^tg$ for $g \in GL_{2m}$ and $x = -tx \in \operatorname{Alt}_{2m}$. We take a k-form $(GL_{2m}(k), \rho, \operatorname{Alt}_{2m}(k))$. The relative invariant $f(x) = \operatorname{Pf}(x)$ (= the Pfaffian of x).

(3)
$$(GL_1 \times SO_{2m}, \Lambda_1 \otimes \Lambda_1, Aff^{2m})$$
 with $m \ge 2$.

Here $SO_{2m} = \{A \in SL_{2m}; AKA = K\}$ with $K = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$ so that $f(x) = x_1x_{m+1} + \cdots + x_mx_{2m}$ is the relative invariant. Let G be the image of $GL_1 \times SO_{2m}$ by $\rho = \Lambda_1 \otimes \Lambda_1$ in GL_{2m} , and put $G_k = G \cap GL_{2m}(k)$. We take a k-form (G_k, k^{2m}) . For any $\lambda \in k^{\times}$, put

$$g(\lambda) = \rho(\sqrt{\lambda}, \begin{pmatrix} \sqrt{\lambda}I_m & 0\\ 0 & \frac{1}{\sqrt{\lambda}}I_m \end{pmatrix}).$$

Then $g(\lambda)$ is in G_k and $f(g(\lambda)x) = \lambda f(x)$.

Hence, with the $SO_{2m}(k)$ -homogeneity of $f^{-1}(1)$, we have $Y_k = G_k \cdot \xi$ with $\xi = e_1 + e_{m+1}$. The isotropy subgroup G_{ξ} of G at ξ is SO_{2m-1} . Note that $\rho(-1, -I_{2m}) = 1$. Since SO_{2m-1} is connected, we have $Y_A = G_A \cdot \xi$ (cf. Theorem 1-8).

(3)' $(GL_1 \times \text{Spin}_7, \Lambda_1 \otimes (\text{the spin rep.}), V(8))$ We identify V(8) with Aff^8 by the standard base

$$\{1, e_i e_j (1 \le i < j \le 4), e_1 e_2 e_3 e_4\}.$$

Let G be the image of $GL_1 \times \text{Spin}_7$ in GL_8 by $\Lambda_1 \otimes$ (the spin rep.) and put $G_k = G \cap GL_8(k)$. We take a k-form (G_k, k^8) . Since the relative invariant is a quadratic form, we have $G \subset GO(8)$. By p.13 in (Igusa [2]), one sees that $Y_k = G_k \cdot \xi$. We have $Y_A = G_A \cdot \xi$ (see Igusa [4]).

(3)" $(GL_1 \times \text{Spin}_9, \Lambda_1 \otimes \Lambda_1, V(16))$ Everything is similar as (3)'. In this case, we have $G \subset GO(16)$.

(4) $(Sp_m \times GL_{2r}, \Lambda_1 \otimes \Lambda_1, M_{2m,2r}) \ (m \ge 2r)$ We take k-form

$$(Sp_m(k) imes GL_{2r}(k), \Lambda_1 \otimes \Lambda_1, M_{2m,2r}(k)).$$

The relative invariant $f(x) = Pf({}^{t}xJx)$.

(5) $(GL_1 \times E_6, \Lambda_1, \mathcal{J}(27))$

 $\mathcal{J}(27)$ is the totality of 3×3 hermitian matrices over the octonion algebra, and the relative invariant f(x) is their determinant. The image G of $GL_1 \times E_6$ by $\Lambda_1 \otimes \Lambda_1$ is Sim(f) and G_k is transitive on Y_k (see p.15 in (Igusa [2]).

(6) $(\operatorname{Spin}_{10} \times GL_2, (a \text{ half-spin rep.}) \otimes \Lambda_1, V(16) \otimes V(2))$

Let G be the image of $\text{Spin}_{10} \times GL_2$ in GL_{32} . We identify V(16) with Aff^{16} by the standard basis

$$\{1, e_i e_j (1 \le i < j \le 5), e_k^* (1 \le k \le 5)\},\$$

and put $G_k = GL_{32}(k) \cap G$. Put $S_i(\lambda) = \lambda^{-1} + (\lambda - \lambda^{-1})e_ie_{i+5}$ (see p.1002 in (Igusa [1])). For any $\alpha \in k^{\times}$, put $g(\alpha) = (s_1(\lambda) \cdots s_5(\lambda), \lambda I_2)$ with $\lambda =^4 \sqrt{\alpha}$. Then we have $g(\alpha) \in G_k$ and $f(g(\alpha)x) = \alpha f(x)$. Since $f^{-1}(1)$ is Spin_{10} -homogeneous, we can say that $Y_{\xi} = G_k \cdot \xi$ and $Y_A = G_A \cdot \xi$ for

(6)' $(GL_1 \times \text{Spin}_{10}, \Lambda_1 \otimes (\Lambda + \Lambda), V(16) \oplus V(16))$ where Λ is the (even) half-spin representation.

In particular, we have $Y_k = G_k \cdot \xi$ and $Y_A = G_A \cdot \xi$ for (6).

(7) $(GL_7, \Lambda_3, V(35))$

Let G be the image of GL_7 under Λ_3 in GL_{35} . For any local field $k \neq \mathbf{R}$, Y_k is G_k -homogeneous and $Y_{\mathbf{R}} = G_{\mathbf{R}} \cdot \xi_1 \sqcup G_{\mathbf{R}} \cdot \xi_2$. However we have $\#(G_A \setminus Y_A) < +\infty$. The relative invariant f(x) is of degree 7. In this case, we have $Z_a = \tau Z_m$ by (Igusa [4]).

Theorem 1-8. Assume that a universally transitive regular P.V.

(G, V) defined over k satisfies the two conditions:

(1) $Y_k = G_k \cdot \eta$

(2) the isotropy subgroup G_{η} is connected. Then we have $Z_a = \tau Z_m$.

Proof. By (2), every G_A -orbit in Y_A contains a point of Y_k (see (p.14 in Igusa [4]). Then, by (1), we have $Y_A = G_A \cdot \eta$. Hence by Proposition 1-2, we obtain our result. Q.E.D.

§3. Simple P.V.'s with $\#(G_A \setminus Y_A) < +\infty$

Assume that $\#(G_A \setminus Y_A) < +\infty$ for a simple P.V. (\tilde{G}, ρ, V) with $G = \rho(\tilde{G})$. Then for almost all places v of k, Y_v must be G_v -transitive. Such non-irreducible regular simple P.V.'s with a semisimple generic isotropy subgroup $H = \rho(G_{\xi})$ ($\xi \in Y_k$) are given as follows. (see (T. Kimura, S. Kasai and H. Hosokawa [8])).

(1) $(GL_1 \times SL_n, \Lambda_1 \otimes \Lambda_1 + 1 \otimes \Lambda_1^*)$ with $H = SL_n$.

(2) $(GL_n, \overbrace{\Lambda_1 \oplus \cdots \oplus \Lambda_1}^n)$ with $H = \{1\}$.

(3) $(GL_1^n \times GL_n, \rho_n + 1 \otimes \Lambda_1)$ with $H = \{1\}$, where $\rho_n(g)x = Ax(\operatorname{diag}(\alpha_1, \cdots, \alpha_n))$ for $g = (\alpha_1, \cdots, \alpha_n, A) \in GL_1^n \times GL_n$ and $x \in M_n$.

(4) $(GL_1 \times Sp_n, \Lambda_1 \oplus (\Lambda_1 + \Lambda_1))$ with $H = Sp_{n-1}$

(5) $(GL_1 \times GL_{2m}, 1 \otimes \Lambda_2 + \Lambda_1 \otimes (\Lambda_1^{(*)} + \Lambda_1^{(*)}))$ with $H = Sp_{m-1}$.

(6)
$$(GL_{2m+1}, \Lambda_2 \oplus \Lambda_1)$$
 with $H = Sp_m$.

(7) $(GL_1^3 \times GL_{2m+1}, \Lambda_2 \oplus \Lambda_1 \oplus (\Lambda_1 \oplus \Lambda_1)^{(*)})$ with $H = Sp_{m-1}$, where GL_1^3 acts on $\Lambda_1 \oplus (\Lambda_1 \oplus \Lambda_1)^{(*)}$ as scalar multiplications. Here $(\Lambda_1 \oplus \Lambda_1)^{(*)}$ stands for $\Lambda_1 \oplus \Lambda_1$ or its dual $(\Lambda_1 \oplus \Lambda_1)^*$).

(8) $(GL_1^2 \times \text{Spin}_n, \text{ (a half-spin rep.)} \oplus (\text{vector rep.}))$ (n = 8, 10)with $H = (G_2)$ for n = 8 and $H = \text{Spin}_7$ for n = 10.

(9) $(GL_1 \times \text{Spin}_{10}, \Lambda_1 \otimes (\Lambda + \Lambda))$ with $H = (G_2)$, where Λ is the even half-spin representation.

We shall check each of them.

(1) We take a k-form $(GL_1(k) \times SL_n(k), \Lambda_1 \otimes \Lambda_1 + 1 \otimes \Lambda_1^*, k^n \oplus k^n)$. Then $Y_k = G_k \cdot \xi$ with $\xi = (e_1, e_1)$ and $G_{\xi} \cong SL_{n-1}(k)$.

(2) For $(GL_n(k), \overbrace{\Lambda_1 \oplus \cdots \oplus \Lambda_1}^n, M_n(k))$, we have $Y_k = G_k \cdot I_n$ and $H = \{1\}$.

(3) We take a k-form

$$(GL_1^n(k) \times GL_n(k), M_n(k) \oplus k^n),$$

and put $\xi = (I_n, {}^t(1, \dots, 1))$. Then $Y_k = G_k \cdot \xi$ and $G_{\xi} = \{1\}$.

(4) Let G be the image of $GL_1 \times Sp_n$ in GL_{4n} by $\rho = \Lambda_1 \otimes (\Lambda_1 + \Lambda_1)$, and put $G_k = G \cap GL_{4n}(k)$. For any $\alpha \in k^{\times}$, put

$$g(\alpha) = (\sqrt{\alpha}, \begin{pmatrix} \sqrt{\alpha}I_n & 0\\ 0 & \frac{1}{\sqrt{\alpha}}I_n \end{pmatrix}).$$

Then $g(\alpha) \in G_k$ and $f(g(\alpha)x) = \alpha f(x)$. Since $f^{-1}(1)$ is $Sp_n(k)$ -transitive, we have $Y_k = G_k \cdot \xi$ with $\xi = (e_1, e_{n+1})$ and $G_{\xi} = Sp_{n-1}$ (see p.16 in [8]).

(5) We take a k-form

 $(GL_1(k) \times GL_{2m}(k), 1 \otimes \Lambda_2 + \Lambda_1 \otimes (\Lambda_1^{(*)} + \Lambda_1^{(*)}), \operatorname{Alt}_{2n}(k) \oplus k^{2m} \oplus k^{2m}),$

where $\Lambda_1^{(*)}$ implies Λ_1 or its dual Λ_1^* . Since the generic isotropy subgroup of (GL_{2m}, Λ_2) is exactly Sp_m , we have $Y_k = G_k \cdot \xi$ and $Y_A = G_A \cdot \xi$ by (4).

(6) Consider $(GL_{2m+1}(k), \Lambda_2 \oplus \Lambda_1, \operatorname{Alt}_{2m+1}(k) \oplus k^{2m+1})$. Then $Y_k = GL_{2m+1}(k) \cdot \xi$ with

$$\xi = \left(\begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix}, t (0, \cdots, 0, 1) \right)$$

where $J = \begin{bmatrix} 0 & I_m \\ -I_m & 0 \end{bmatrix}$ and $G_{\xi} = Sp_m(k)$. By Theorem 1-8, we have $Y_k = G_k \cdot \xi$ and $Y_A = G_A \cdot \xi$ for (6).

(7) We take a k-form

$$(GL_{2m+1}(k) \times GL_1^3(k), \Lambda_2 + \Lambda_1 + (\Lambda_1 + \Lambda_1)^{(*)},$$

Alt_{2m+1}(k) $\oplus k^{2m+1} \oplus k^{2m+1} \oplus k^{2m+1})$

where $GL_1^3(k)$ acts on $k^{2m+1} \oplus k^{2m+1} \oplus k^{2m+1}$ as scalar multiplications. Then we have $Y_k = G_k \cdot \xi$ with

$$\xi = \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix}, e_{2m+1}, e_1 + e_{2m+1}, e_{m+1} + e_{2m+1})$$

and the image of the isotropy subgroup is connected. Note that $(-I_{2m+1}, -1, -1, -1)$ is in the kernel of

$$\rho = \Lambda_2 \oplus \Lambda_1 \oplus (\Lambda_1 \oplus \Lambda_1)^{(*)}.$$

(8) Since the generic isotropy subgroup of $(\Lambda_1 \otimes \phi)(GL_1 \times \text{Spin}_{2n})$ is $\phi(\text{Spin}_{2n-1})$ where ϕ is the vector representation, we have $Y_k = G_k \cdot \xi$ and $Y_A = G_A \cdot \xi$ by using the results of irreducible case.

(9) In p.14 of (Igusa [2]), it is proved that $Y_k = G_k \cdot \xi$. One can see easily from p.11 of (Igusa [4]) that G_{ξ} is connected so that $Y_A = G_A \cdot \xi$.

From the above observation, we obtain the following theorem.

Theorem 2-1. For a simple regular P.V. with $\#(G_A \setminus Y_A) < +\infty$, we have $Z_a = \tau Z_m$.

Theorem 2-2. For a simple regular P.V. with $\#(G_A \setminus Y_A) < +\infty$, we have $\#(G_k \setminus Y_k) = \#(G_A \setminus Y_A) = 1$ for a suitable k-form.

§4. 2-Simple P.V.'s of Type I with $\#(G_A \setminus Y_A) < +\infty$

By (T. Kimura, S. Kasai and H. Hosokawa [8]), all non-irreducible regular 2-simple P.V.'s of Type I with $\#(G_A \setminus Y_A) < +\infty$ are given as follows. Here we adjust the scalar multiplications so that the generic isotropy subgroup $H = \rho(G_{\xi})$ is semisimple.

(1) $(GL_1 \times GL_5 \times GL_2, 1 \otimes \Lambda_2 \otimes \Lambda_1 + 1 \otimes \Lambda_1^* \otimes 1 + \Lambda_1 \otimes \Lambda_1^* \otimes 1)$ with $H = \{1\}$.

(2) $(GL_1 \times Sp_n \times GL_{2m}, 1 \otimes \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes 1 \otimes (\Lambda_1^{(*)} + \Lambda_1^{(*)}))$ (n > m) with $H = Sp_{n-m} \times Sp_{m-1}$.

(3) $(Sp_n \times GL_{2m+1}, \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes 1)$ (n > m) with $H = Sp_m \times Sp_{n-m-1}$.

(4) $(GL_1^3 \times Sp_n \times GL_{2m+1}, \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes 1 + 1 \otimes (\Lambda_1 + \Lambda_1)^{(*)}) (n > m)$ with $H = Sp_{m-1} \times Sp_{n-m-1}$, where GL_1^3 acts on $\Lambda_1 \otimes 1 + 1 \otimes (\Lambda_1 + \Lambda_1)^{(*)}$ as scalar multiplications.

(5) $(GL_1 \times \text{Spin}_{10} \times GL_2, 1 \otimes \text{ (a half-spin rep.)} \otimes \Lambda_1 + \Lambda_1 \otimes 1 \otimes (\Lambda_1 + \Lambda_1))$ with $H = G_2$.

(6) $(GL_1 \times \operatorname{Spin}_{10} \times GL_1^2 \times GL_2, \Lambda_1 \otimes \text{ (a half-spin rep.) } \otimes 1 \otimes \Lambda_1 + 1 \otimes 1 \otimes (\rho_2 + 1 \otimes \Lambda_1))$ with $H = G_2$. (See (3) in §3 for ρ_2).

We shall check each of them.

(1) We take a k-form

 $(GL_1(k) \times GL_5(k) \times GL_2(k), 1 \otimes \Lambda_2 \otimes \Lambda_1 + 1 \otimes \Lambda_1^* \otimes 1 + \Lambda_1 \otimes \Lambda_1^* \otimes 1).$

Its generic isotropy subgroup is exactly $\{1\}$ (see (p.26-p.27) in T. Kimura, S. Kasai and H. Hosokawa [8]). We have $Y_k = G_k \cdot \xi$.

(2) We shall consider $(GL_1 \times Sp_n \times GL_{2m}, 1 \otimes \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes 1 \otimes (\Lambda_1^{(*)} + \Lambda_1^{(*)}))$

We take a k-form of the image of $\rho = 1 \otimes \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes 1 \otimes (\Lambda_1^{(*)} + \Lambda_1^{(*)}).$

Since GL_{2m} -part of the generic isotropy subgroup of $(Sp_n \times GL_{2m}, \Lambda_1 \otimes \Lambda_1)$ is Sp_m , it reduces to (4) in §3.

(3) In this case, we have $G_{\xi} = Sp_m \times Sp_{n-m-1}$ and $Y_k = G_k \cdot \xi$ (cf. p.102 in (M. Sato and T. Kimura [5])).

 $\begin{array}{ll} (4) & ((GL_1^3 \times) Sp_n \times GL_{2m+1}, \Lambda_1 \otimes \Lambda_1 + (\Lambda_1 \otimes 1 + 1 \otimes (\Lambda_1 + \Lambda_1)^{(*)})(n > m) \text{ where } GL_1^3 \text{ acts on } \Lambda_1 \otimes 1 + 1 \otimes (\Lambda_1 + \Lambda_1)^{(*)} \text{ as scalar multiplications.} \\ \text{Since } GL_{2m+1}\text{-part of the generic isotropy subgroup of } (GL_1 \times Sp_n \times GL_{2m+1}, 1 \otimes \Lambda_1 \otimes \Lambda_1 + \Lambda_1 \otimes \Lambda_1 \otimes 1) \text{ is } \{ \begin{pmatrix} A & 0 \\ 0 & \alpha \end{pmatrix}; A \in Sp_m; \alpha \in GL_1 \} , \\ \text{it reduces to } (4) \text{ of } \S 3. \text{ We have } Y_k = G_k \cdot \xi \text{ and } G_{\xi} = Sp_{m-1} \times Sp_{n-m-1}. \\ \text{Note that } (-1)^3 \times (-I_{2n}) \times (-I_{2m+1}) \text{ is in the kernel of } \rho = \Lambda_1 \otimes \Lambda_1 + \\ \Lambda_1 \otimes 1 + 1 \otimes (\Lambda_1 + \Lambda_1)^{(*)}. \end{array}$

(5) $(GL_1 \times \operatorname{Spin}_{10} \times GL_2, 1 \otimes \Lambda \otimes \Lambda_1 + \Lambda_1 \otimes 1 \otimes (\Lambda_1 + \Lambda_1))$ with $\Lambda = (a \text{ half-spin representation})$. Since the generic isotropy subgroup of $(GL_1 \times GL_2, \Lambda_1 \otimes (\Lambda_1 + \Lambda_1))$ is $\{(\alpha^{-1}, \alpha I_2); \alpha \in GL_1\}$, (5) reduces to (9) in §3.

(6) Since GL_2 -part of the generic isotropy subgroup of $(GL_1^2 \times GL_2, \rho_2 + 1 \otimes \Lambda_1)$ is 1 (see (3) in §3), reduces to (9) in §3.

Theorem 3-1. For a regular 2-simple P.V. of type I with $\#(G_A \setminus Y_A) < +\infty$, we have $Z_a = \tau Z_m$.

Theorem 3-2. For a regular 2-simple P.V.'s of type I with $\#(G_A \setminus Y_A) < +\infty$, we have $\#(G_k \setminus Y_k) = \#(G_A \setminus Y_A) = 1$ for a suitable k-form.

References

- J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math., 92 (1970), 997–1028.
- [2] _____, On functional equations of complex powers, Invent. Math., 85 (1986), 1–29.
- [3] _____, On a certain class of prehomogeneous vector spaces, J. Pure Appl., 47 (1987), 265–282.
- [4] _____, Zeta distributions associated with some invariants, Amer. J. Math., 109 (1987), 1–34.
- [5] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1–155.
- [6] T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra, 83 No. 1 (1983), 72–100.
- T. Kimura, S. Kasai, M. Inuzuka and O. Yasukura, A classification of 2-simple prehomogeneous vector spaces of type I, J. Algebra, 114 No. 2 (1988), 369–400.

- [8] T. Kimura, S. Kasai and H. Hosokawa, Universal transitivity of simple and 2-simple prehomogeneous vector spaces, Ann. Inst. Fourier (Grenoble), 38,2 (1988), 11–41.
- [9] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces II: A covergence criterion, Tohoku Math. J., 35 No. 1 (1983), 77–99.
- [10] T. Kimura, The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J., 85 (1982), 1–80.
- [11] _____, Iwasawa-Tate theory for prehomogeneous vector spaces with $Za = \tau Zm$.
- [12] A. Borel and Harish-Chandra, Arithmetic subgroups and Algebraic groups, Ann. of Math., 75 (1962), 458–535.
- [13] T. Ono, an integral attached to a hypersurface, Amer. J. Math., 90 (1968), 1224–1236.

The Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan