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Introduction 

In 1954 E. Calabi [Cl,2,3] posed a conjecture, now so called Calabi's 
conjecture. It states that if a real closed (1, 1 )-form I represents 21r times 
the first Chern class ci(X) of a compact Kahler manifolds X, then one 
can find a Kahler metric whose Ricci form coincides with ,. And an 
altered version of the conjecture says that a compact Kahler manifold 
X with negative first Chern class c1 ( X) < 0 admits an Einstein Kahler 
metric. 

In 1976-77 T. Aubin [Al,2] and S.-T. Yau [Yl,2] proved the con­
jecture and rich applications to algebraic geometry followed. One of the 
most remarkable consequences is the Miyaoka-Yau inequality ( cf. [Ml,2] 
[Y2]). 

Theorem 0.1. Let X be an n-dimensional compact Kahler mani­
fold with negative first Chern class, then the following inequality between 
Chern numbers holds: 

Moreover the equality holds if and only if X is covered by a unit ball in 
en. 

It is very natural to try to generalize the existence theorem of Ein­
stein Kahler metrics and the Miyaoka-Yau inequality. Actually Yau him­
self treated degenerated cases in his paper [Y3] and made an announce­
ment of his extended results in a lecture note of Seminaire Palaiseau 
1978 [Y4]. Later on, he and S.-Y. Cheng [C-Y2] showed the existence 
of Einstein Kahler metrics on bounded domains of holomorphy in en, 
where they introduced the useful notion of bounded geometry. Armed 
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with their methods, R. Kobayashi [Kbl] proceeded to the study of quasi­
projective varieties. Using quasi-coordinate maps, he generalized the 
notion of bounded geometry, and obtained 

Theorem 0.2. Let X be an n-dimensional nonsingular projective 
algebraic variety, K its canonical divisor and D an effective reduced 
divisor on X with simple normal crossings. Assume that K + D is ample. 
Then X - D admits a complete Einstein Kahler metric of negative Ricci 
curvature, and the logarithmic version of the Miyaoka- Yau inequality 
holds: 

He considered algebraic surface cases more thoroughly and obtained 
very satisfying results [Kb2,3,4]. For an account, see his survey in this 
volume. In the course of the study, he was led to work with V-manifolds. 
Cheng and Yau [C-Y3] also generalized their results to open V-manifolds 
including quasi-projective cases. Results in algebraic geometry by Kawa­
mata [Kml,2,3] [KMM] allowed Tsuji [Tsl,2,3,4,5,6] to apply efficiently 
the methods of V-manifolds and branched coverings. In particular he 
proved a significant part of the following result (see also Tian and Yau 
[T-Yl]). 

Theorem 0.3. Let X be an n-dimensional nonsingular projective 
algebraic variety and D an effective reduced divisor with simple normal 
crossings. Assume that K +D is nef and that there exists an effective Q­
divisor E whose support is contained in D such that K + D - E is ample. 
Then K +D is big and X -D admits an almost-complete Einstein Kahler 
metric with negative Ricci curvature. And the logarithmic Miyaoka- Yau 
inequality ( *) holds. Moreover if the equality holds, then X -D is covered 
by a unit ball in en. 

In this chapter we shall restrict our attention to Theorem 0.3 and fol­
low the presentation by Tian and Yau [T-Yl]. In §1, we explain Calabi's 
construction that gives us explicit examples, which we can not obtain 
solveing the Monge-Ampere equation. In §2, we recall the definitions 
and basic properties of V-manifolds. The notion of V-manifolds was 
introduced by I. Satake [Stl,2] in generalizing the notion of manifolds 
to allow quotient singularities. Basically, a V-manifolds is a Hausdorff 
space locally isomorphic to a quotient of the unit ball in Rn by a fi­
nite subgroup of O(n). We require a suitable compatibility in patching. 
Then we can define geometric objects on V-manifolds going up to the 
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local uniformizations. For instance, a smooth V-function means a func­
tion whose liftings are smooth and a V-bundle means a space which has 
equivariant local liftings to smooth bundles. Intuitively these definitions 
are enough and we deal only with very explicit cases. Thus the reader 
would not have any trouble without reading exact definitions. But for 
the sake of completeness, we include the definition of V-manifolds. In 
this section we also collect basic facts on V-manifolds for later use. In 
§3 we state the Schauder estimates on linear and nonlinear second or­
der elliptic partial differential equations which we need in §4. We solve 
in §4 the complex Monge-Ampere equation to obtain Einstein Kahler 
metrics on Kahler manifolds of bounded geometry after the method of 
[T-Yl]. In §5 we see the existence theorem applies to the quasi-projective 
case under the assumption above. In the last section §6 we derive the 
Miyaoka-Yau inequality from the results in §5. 

Here we explain our notations. We identify a Kahler metric g = 
2 Re I: 9i;dzi © dz1 and its Kahler form w = A I: g,1dz' I\ dz1. Its 
Ricci form 'Yw is given by 'Yw = -A88log det(gi 1). The Laplacian 
l::::,.w acting on functions is defined by 

In this chapter we call w an Einstein Kahler metric if 'Yw = -w, unless 
otherwise stated. 

The author wishes to express his thanks gratituded to Prof. R. 
Kobayashi for valuable discussions and Dr. K. Ono for helpful com­
ments in preparing the section on V-manifolds. He also wishes to thank 
Dr. H. Naito for helping the author in turning the manuscript files·into 
AMS- 'I'.EX files with his program. 

§1. Calabi's construction 

In his papers [C5,6,7], E. Calabi constructed many examples of Ein­
stein Kahler metrics on domains of the total spaces of vector bundles. 
His idea is to reduce the problem of the existence of Einstein Kahler 
metrics to that of ordinary differential equations. We here give two 
examples of the construction of Ricci-negative Einstein Kahler metrics. 

Let (M, 8) be an (n-1)-dimensional complete Einstein Kahler mani­
fold such that 19 = a.8, with a E R. For instance, every compact Kahler 
manifold M with negative or vanishing first Chern class c1 (M) < 0, or= 
0 admits such an Einstein Kahler metric by the resolution of Calabi's 
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conjecture by T. Aubin [Al,2] and S.-T. Yau [Y2,3]. See other surveys 
in this volume for recent results. 

Assume that a < 1 and that there exists a holomorphic line bundle 
L ----+ Mover M with a fibre metric II· II whose curvature is equal to -0. 
We consider the metric II · II as a function on the total space L. Define 
a function t by t = log II · II-We seek an Einstein Kahler metric w on a 
domain of Lin the form w = H88F, where F = F(t) is a function in 

t. Putting / = F' = : , we have that if /, /' > 0, them 

w = tRaat + /'Rat A at, 
wn = 1n-1 f'0n-1Rat /\ at, 
'Yw = -Raa1og(r- 1 ten-1 ) = -Raa(log r- 1 f' - at). 

Thus if r- 1 f' = const exp( at+ F), then w is an Einstein Kahler metric 
with 'Yw = -w. 

Theorem 1.1 ([C5] [Ts3]). Assume as above. 
(i) We define the function f(t) by the following formula: 

Then the Kahler metric w constructed above gives a complete Einstein 
Kahler metric on the total space of the unit disk bundle X = { rJ E L J 

llr,11 < 1 }. 

(ii) If a = 0 i.e. 0 is Ricci-fiat, then 

w = H88F(t) = H88log(- log Jlr,JJ2 )-(n+l) 

gives a complete Einstein Kahler metric on the total space of the punc­
tured unit disk bundle X = { TJ E L I O < llr,112 < 1 }. 

§2. V-manifolds 

In this section we recall the notation of V-manifolds introduced by 
I. Satake [Stl,2]. It is the notion of generalized manifolds with quotient 
singularities. We follow the formulation by T. Kawasaki [Ksl,2,3]. 

To define V-manifolds and related notions we start with defining a 
few categories. 
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We define a category £:F. of smooth bundle maps with finite symme­
tries as follows. An object of £:F. is a family D of commutative diagrams 
like 

(E, GE) 
{i} 

(F, GF) -
1 ,rE 1 ,rF 

(M,GM) 
{</>} 

(N,GN) -
D 

Here we assume the following conditions. 
(i) 1rE: E -- M and 1rF: F -- N are smooth fibre bundles over 

connected smooth manifolds Mand N, respectively. 
(ii) The symmetry groups GE and GF are finite groups of smooth 

bundle maps of E and F, respectively. We assume that their actions are 
effective and induce the effective actions of the finite groups GM and GN 
on M and N, respectively. In general the surjective homomorphisms 
pE: GE -- GM and pF: GF -- GN are not injective. 

(iii) Each member¢>: E -- F of { ¢>} is a smooth bundle map which 
induces the smooth map </J: M -- N of base manifolds. We assume 
that for each gE E GE there exists gF E GF such that ¢> o gE = gF o ¢>. 
Note that then for each gM E GM there exists gN E GN such that 
</Jo gM = gN o </). 

(iv) GF acts on{¢>} transitively by (gF ef>)(p) = gF ef>(p), for gF E GF 
and p EE. Then GN acts on{¢} transitively. 

A morphism A: D1 -- D2 

(E1, GE1) 
{ii} 

(F1, GF1) (E2,GE 2 ) 

{i2} 
(F2, GF2 ) - -

1 ,rEl 1 ,rFl 
.>. 

1 ,rE2 1,rF2 --
(M1, GM1) 

{</>i} 
(N1, GN1) (M2, GM•) 

{</>2} 
(N2, GN•) - -

D1 D2 

is a pair ({XE}, {XF}) offamilies of smooth bundle maps 

E1 
{.>.E} - E2 

{F} 
F1- F2 

1,rEl 1,rE2 and 1,rF1 1,rF2 

{.>.M} 
M1 __, M2 

{.>.N} 
N1- N2 
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Here we assume the following conditions. 
(i) The induced maps >,.M and >,_N over the base manifolds are 

diffeomorphisms into domains of M 2 and N2, respectively. 

(ii) The bundle maps XE and XF give bundle isomorphisms E 1 ----=-+ 
(>..M)* E2 and F1 ----=-+ (>..N)* F2 , respectively. 

(iii) For each gE1 E GE1 and gFi E GF1 there are gE2 E GE2 and 
gF2 E GF2 such that XE O gE1 = gE2 0 XE and :>,F O gF1 = gF2 0 XF, 
respectively. Then gE2 and gF2 are uniquely determined by gE1 and 
gF1 , and these correspondences give injective homomorphisms of groups 
GE1 --+ GE2 and GF1 --+ GF2 • Note that then a similar statement 
holds for >,.M and >,_N. 

(iv) For each ¢1 E {¢i} and ¢2 E {¢2 } there are XE E {XE} and 
XF E {XF} such that XF o ¢1 = ¢2 o XE, and then >,_No </)1 = </>2 o >,.M_ 

(v) GE2 and GF2 act on {XE} and {XF} simply transitively by 
(gE2 XE) (pE1) = gE2 XE (pE1) and (gF2 XF) (pF1) = 9F2 XF (pF1), for 

gE2 E GE2 , gF2 E GF2 , pE1 E E 1 and pF1 E F1, respectively. Then 
a similar statement holds for {>..M} and {>..N}. 

We define a category T:F of continuous maps of topological spaces 
as follows. An object of T:F is a continuous map /: X --+ Y between 
connected topological spaces X and Y. A morphism j: (/ 1 : X 1 --+ 

Y1) --+ ('2: X 2 --+ Y2) is a pair (jx,jy) of homeomorphisms into 
subdomains jx: X1 --+ X2 and jy: Y1 --+ Y2 such that '2 o jx = 
jy O Ji. 

An object D of £:F. 

{<,b} -
{</>} -

gives two objects of T :F 

</>t(D): E/GE--+ F/GF and 

</>b(D): M/GM--+ N/GN. 

which are induced by the maps {>.} and {>..}, respectively. Then we 
get the forgetting functors :F};:: £ :F. --+ T :F and :F!;-;: : £ :F. --+ T :F 
by :F};: = </>t(D): E/GE --+ F/GF and :Ff;:= </>b(D): M/GM --+ 

N/GN. 



Negative Ricci Curvature on Open Manifolds 111 

Definition 2.1. Let /: X -----> Y be a continuous map between 
paracompact Hausdorff spaces X and Y. Assume we have saturated 
bases Ux, Uy of open sets of X, Y, respectively, consisting of connected 
open subsets. Here, a basis U is called saturated if each connected open 
subset of a member of U is again a member of U. Then we have a 
subcategory TF(f; Ux,Uy) of TF whose object is flux: Ux-----> Uy, 
with U x E Ux and Uy E Uy such that f (U x) C Uy, and a morphism 
is a pair of natural inclusions. A representative of a smooth V-bundle 
map covering f is a functor VBF(f; Ux,Uy): TF(f; Ux,Uy)-----> £F, 
such that 

FfF o VBF(f; Ux,Uy) = idlTF(f·U u ) · , x, y 

Let U'x_, U~ and V BF(!; U'x_, U~) be another bases and representative. 
We call VBF(f; Ux,Uy) and VBF(f; U'x_,U~) are equivalent if there are 
saturated bases U'Jc of X, U!}-of Y, and a representative V BF(!; U'Jc, U!}-) 
such that 

VBF(f; Ux,Uy)ITF(f·U" U") = VBF(f; U'Jc,U!}-), 
' X' y 

VEF(f; U'x_,U~)ITF(f;U~,u;;) = VBF(f; U'Jc,U!}-). 

We define a smooth V-bundle map covering f as an equivalence class of 
representatives. 

Hereafter we will identify the representatives and their classes. An 
ordinary smooth bundle map of ordinary smooth fibre bundles is an 
example of smooth V-bundle maps. 

Now we define some subcategories of £F,. The subcategory £S, 
of smooth sections with finite symmetries is obtained by requiring its 
objects take the following form. 

For short we write it as 

{•} _____, 

(E, GE) 

{•}U1rE 

(M,GM) 
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The subcategory £. of smooth fibre bundles with finite symmetries 
is obtained by requiring its objects have trivial target bundles. 

(E,GE) ---+ ({*},{id}) 

1 ~E 1 
(M,GM) ---+ ({*},{id}) 

For short we write it as 

The subcategory F. of smooth maps with finite symmetries is ob­
tained by requiring its objects have point bundles. 

(M,GM) 
{¢} 

(N,GN) -
lidM lidN , or (M, GM) ill (N, GN) . 

(M,GM) 
{¢} 

(N, GN) -
The subcategory M. of connected manifolds with finite symmetries 

is obtained as the intersection£. n F •. Its objects are pairs (M, GM). 

Then we have natural forgetting functors. 

(E,GE) 
{~} 

(F, GF) (E, GE) (F, GF) -1 ~E 1 ~F 
~ l~E l ~F 

(M,GM) 
{¢} 

(N, GN) (M,GM) (N, GN) -
D Ff. (D) J1.(D) 

(E, GE) _@ (F, GF) , (M, GM) ill (N, GN) , 

F}. (D) F}. (D) 

F'f:t. (D) = (M, GM) , F1:t. (D) = (E, GE) , 

FJii. (D) = (N, GN) , F;;.i. (D) = (F, GF) 
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Also the category T :F has the subcategory of topological spaces T 
whose objects take the form X ---+ { * }, X for short, and the forgetting­
functors :Ff(!: X---+ Y) = X and :F}(/: X---+ Y) = Y. 

Moreover taking quotients we can define the forgetting functors from 
e:F8 to Tin a similar manner, for instance :Fi,b(D) = M/GM, Fi,t(D) = 
EjGE. 

Now we can define the notion of smooth V-sections, smooth V­
bundles, smooth V-maps and V-manifolds, requiring that the represen­
tatives of smooth V-bundle maps take its values in the corresponding 
subcategories. For instance, 

Definition 2.2. Let X be a paracompact Hausdorff space. X is 
called a V-manifold if there is a saturated base U of open sets consisting 
of connected open subsets of X, which gives a subcategory T(U) of T, 
and we have a functor VM(U): T(U) ---+ Ms such that :Fi,bo VM(U) = 
idlT(U)· 

For U E U we denote VM(U) = (U, Gu) and call it together with 
the projection Pu: U ---+ U = U / Gu a local uniformizing system, and 
Gu a local transformation group. A point p in X is called regular if there 
is a neighborhood U such that Gu = {id}, singular otherwise. Locally, 
X is isomorphic to Rn/ G with a finite subgroup G of the orthogonal 
group O(n). Then we think of the standard coordinates on Rn as a local 
coordinate system of X. 

If functors are compatible, we can say, for instance, that a continuous 
map <f>: X ---+ Y of V-manifolds is smooth V-map and that a V-bundle 
is defined over a V-manifold. 

Definition 2.3. Let <f>: X ---+ Y be a continuous map of V-
manifolds X and Y defined by VM(Ux) and VM(Uy), respectively. 
Then </> is called a smooth V-map if there is a functor V :F( </>; Ux, Uy) of 
a smooth V-map covering</> such that :Ff:t. o V:F(</>; Ux,Uy) = VM(Ux) 
and Pt. o V:F(</>; Ux,Uy) = VM(Uy). 

For U x E Ux, Uy E Uy in the domain of V :F( </>; Ux, Uy), we denote 
{V:F(</>; Ux,Uy)}(<f>lux: Ux---+ Uy) as follows 

We call ¢ux a local lifting of <f>. 
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Example 2.1. Let N be a smooth manifold with a finite group 
G acting on it effectively, and M a G-invariant submanifold. Set GM = 
G/GM, where GM is the isotropy subgroup of M. Then the natural in­
clusion M/GM---+ N/G is an example ofV-maps between V-manifolds. 
Note that in general there is no homomorphism GM ---+ G correspond­
ing to the inclusion. 

Definition 2.4. Let X be a V-manifold defined by VM(U) and 
has a functor VE(U): T(U) ---+ Es defining a V-bundle. We say the V­
bundle is defined over the V-manifold X, if F'f:t. o VE(U) = V M(U). If all 
pE: GE ---+ GM in the diagram in the image of VE(U) are isomorphic, 
we say that V-bundle is proper. We call a V-bundle a vector V-bundle 
if all fibre bundles in the diagrams in the image of VE(U) are vector 
bundles. 

Given a V-bundle VE(U) over a V-manifold X, we can make the 
total space E of the V-bundle. Set Eu = {F!P o VE(U)}(U). We denote 
the inclusion map of U1 C U2, U1, U2 E U as iu 1 ,u2 • Then we have 
an open embedding Ju1,u2 = {F!P o VE(U)}(ju 1 ,u2 ): Eu1 --+ Eu2- We 
glue Eu's by Ju1,U2· 

E = ( U Eu) /"Ju1,u2(P) "'P, for PE Eu/' 
UEU 

Then E makes a paracompact Hausdorff space. Making use of the cor­
respondence Eu ---+ {Ft. o VE(U)}(U) one can show Eis naturally 
a V-manifold. And the functor VE(U) can be considered as a smooth 
V-map 1r: E---+ X of V-manifolds. Then a section of V-bundle E can 
be identified with a smooth V-map s: X --+ E such that 1r o s = idx. 

We can pull back a V-bundle through a smooth V-map by the fol­
lowing construction. 

Assume that we are given a compatible pair of objects in Es and Fs. 

{ 4>} -
We construct an object in Es as follows. First we choose ¢0 E { ¢} and 
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fix it. Set 

E = </Jo* F = { (pM,pF) EM x FI </Jo(PM) = 1rF(pF) }, 

GE= { (gM,gF) E GM X cF I </Jo O gM = pF(gF) 0 <Po}. 

115 

With the natural projection 1rE and GE-action, (E, GE) over (M, GM) 
makes a smooth fibre bundle with finite symmetries. The different choice 
of </Jo E { </J} gives a bundle isomorphic to ( E, GE). And we get the family 
D of commutative diagrams. 

(E, GE) 
{¢} 

(F, GF) -l ~E l ~F 

(M,GM) 
{ "'} 

(N, GN) -
D 

To define tensor V-bundles for V-manifolds we introduce tensor func­
tors F;: M.--> £. by 

where r: Mis the vector bundle of (p, q)-tensors over M, and the action 
of GM on r: M is the natural one. 

Definition 2.5. The (p,q)-tensor V-bundle r:x of X defined by 
VM(U) is a proper vector V-bundle defined by the functor :F:oVM(U). 

In the definition of V-bundles we can work with subcategories of£. 
with additional structures such as orientation, fibre metric, connection, 
and holomorphic structure, requiring the symmetry groups and mor­
phisms to preserve the corresponding structure, and get the notion of 
V-bundles with structures, in particular, V-manifolds with structures. 

Let us denote the space of smooth V-sections of a V-bundle 1r: E --> 

X by r(X; E). If Eis a proper vector V-bundle r(X; E) makes a vector 
space. We denote by !1P(X) the space r(X; 1\P X), where N X is the 
vector V-bundle of p-forms. On a local uniformizing system (U, Gu), a 
smooth V-form w E nP(U) is nothing but a Gu-invariant p-form on U. 
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Thus we can define the exterior differentiation d: !1P(X) --> nP+1 (X). 
If X is oriented we can integrate the top degree forms with compact 
supports. 

Theorem 2.1 ([Stl]). Let X be a V-manifold. Then there is an 
isomorphism between the singular cohomology group H*(X; R) with R­
coefficient and the de Rham cohomology group, under which the cup 
product in H*(X; R) corresponds to the exterior product in !1*(X). 

P( . ) rv kernel [d: nP(X)--> w+i(x)] 
H X, R = image [d: nP- 1 (X)--> W(X)] 

Moreover if X is compact and oriented, we have the Poincare duality. 

For a V-bundle with a connection one can associate characteristic 
forms by the Chern-Weil homomorphism. Since as is the smooth case 
their cohomology classes are independent of the choice of the connec­
tions, we get well-defined characteristic classes. In particular we have 
the Euler class, the Chern classes and the Pontrjagin classes for oriented, 
complex and real vector V-bundles, respectively. 

Now we introduce the notion of bounded geometry which gives us a 
convenient setting to do analysis on V-manifolds. 

Definition 2.6 ([Kbl,2]). Let Bn be the unit ball in the Eu-
clidean space Rn of the same dimension as X. We call a smooth V-map 
</J: Bn --> X a quasi-coordinate map if the local liftings of </J are of max­
imal rank everwhere. We call the image of the origin ¢(0) the center of </J. 
Then we consider the standard coordinate of Bn as a quasi-coordinate 
system. 

Definition 2.7 ([C-Y2,3],[Kbl,2]). A Riemannian V-manifold 
(X,g) is called of bounded geometry oforder k+o:, 0 < k E Z, 0 <a:< 1, 
if for each point p E X there exists a quasi-coordinate map </J: Bn --> X 
centered at p which satisfies the following conditions: 

(i) If we write </J*g = '2.:gii(x)dxidxi in terms of quasi-coordinate 
system x = ( x1 , x2 , ••• , x n), then the matrix (9ii) is bounded from below 
by a constant positive matrix independent of p. 

(ii) The ck,"'-norms of 9ii are uniformly bounded as functions in x. 
On such a V-manifold we can define the Banach space ck,a of ck,a_ 

bounded functions: The norm of a function u E ck,a is given by the 
ck,"'-norms of u with respect to the quasi-coordinates x. 

On a Riemannian V-manifold (X,g) of bounded geometry we have 
the maximum principle due to Yau [Yl] and Cheng-Yau [C-Yl,2,3]. 



Negative Ricci Curvature on Open Manifolds 117 

Lemma 2.1. Let (X,g) be a Riemannian V-manifold of bounded 
geometry of order k + a, with k 2: 1, and u a C 2 -function on X. 

(i) If u is bounded from below, then for any positive number 1: > 0 
there exists a point p in X such that 

u(p) < infu + 1:, 

IVul < e, 

Hess u(p) > -1:g. 

(ii) If u is non-negative and satisfies 

6u 2: ua - C, 

with constants a > 1 and C > 0, then u is bounded from above and 
satisfies 

1 
supu :s; c.:. 

Proof. (i) For given 1: > 0, there is a point p E X such that 
u(p) < inf u + 1:. Let x be a quasi-coorninate centered at p. Then u lifts 
to a C2-function u defined on the unit ball Bn = { !xi < 1 }. The function 
u.(x) = u(x) + 21:Jxl2 on Bn clearly takes its minimum somewhere in 
Bn, say at x0 • Then we have that 

u(xo) :s; u.(x 0 ) :s; u.(o) < infu + e, 

8u ; 8u. 
-8 .(xo) + 41:x0 = -8 . = 0 

x' x' 
and 

( 
{)2 - ) ( {)2 - ) 

{) .8u . + 41:b; i = 8 .8u• . ( xo) 
x• xi ' x• xJ 

2: o, as a matrix. 

Since g is of bounded geometry we get the desired result. 
(ii) Because of (i) we only have to prove the boundedness from 

above. We define a C2-function v as v = (u+l)-b, with b = ½(a-1) > 0. 
If u is not bounded from above, we have inf v = 0. Then there exists 
a sequence {pi} c X such that lim v(p;) = 0, lim IVvl(p;) = 0 and 
liminf 6v(p;) 2: 0. On the other hand, since u satisfies 

1 
6u 2: 2(u + 1)° - C', 

with some C' > 0, we have that 
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6v = -b(u + 1)-b- 16.u + b(b + l)(u + 1)-b- 2Jv'ul2 

::::; -v-1 ( ~ - b: 1 lv'vl2) + C'bv1+¼' 

which gives a contradiction. Q.E.D. 

Like on a Riemannian manifold, we can define the distance function 
d: Xx X --+ Ron a Riemannian V-manifold (X,g). We call (X,g) 
complete if (X, d) is complete as a metric space. If one use the V­
manifold version of the Laplacian comparision theorem, one can show 
that ([Yl], [C~ Yl]) 

Lemma 2.2. If Ricci curvature of a complete Riemanriian V­
manifold (X,g) is bounded from below by a constant, then (ii) of the 
above lemma holds. 

Hereafter we restrict our attention to complex V-manifolds. Let 
X be a complex V-manifold, then X naturally acquires a structure of 
an analytic variety. A closed subset Y is called a subvariety if for any 
local uniformizing system Pu: ff --+ U, Pu1 (Y) C ff is a subvariety. A 
subvariety is irreducible if it is not a union of two other subvarieties. We 
call a codimension one subvariety a hyp~rsurface. A ( Q- )divisor on X is 
a formal sum D = L aiDi, where ai E Z (Q) and {Di} a locally finite 
sequence of irreducible hypersurfaces in X (respectively). Locally finite 
means that every point has a neighborhood which meets only finitely 
many Di's. The divisor D is called effective if all ai are non-negative 
and not all zero. 

For a holomorphic line V-bundle L with a meromorphic section s, 
different from zero section, we have a divisor ( s) on X, namely its zero 
divisor minus its polar divisor. Conversely for any divisor we have a 
proper line V-bundle Lv with a meromorphic V-section s such that 
(s) = D as follows. On ff we have canonically a line bundle Lv,u and 
a meromorphic section su with the required property. One can see that 
Gu naturally acts on Lv,u and we can choose { su} in a compatible 
way. Thus we obtain an object of £Ss (a meromorphic version to be 
precise). If X is compact, the first Chern class c1(Ln) of Lv is the 
Po in care dual of D. 

Given a proper holomorphic vector V-bundle E we have the sheaf 
O(E) of germs of holomorphic V-sections. Like on a smooth manifold, 
we can calculate its cohomology group H*(X; O(E)) via the 8-complex. 
If X is compact, we have the harmonic theory and the Serre duality. 
Moreover if X is Kahler, the Hodge theory holds. If we understand the 
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positivity is defined via positive definite (1, 1)-forms, we get the Kodaira 
vanishing theorem and embedding theorem for proper holomorphic line 
V-bundles. 

For Riemann-Roch theorem refer to [Ks2]. 

Remark. A line V-bundle L on a compact V-manifold becomes a 
line bundle Lm if we mutiply it by an appropriate positive integer m. 

Example 2.2 ([C-Y3], [Ts3,4], [T-Yl]. Let X be a complex man­
ifold and D = L tni, ai: positive integers, a Q-divisor with sim­
ple normal crossings. That means Di's are all non-singular and each 
point has a neighborhood U with coordinates ( z1, z2, ... , zn) such that 
U = { izil < 1, for all i} and Un ( uni) = { z1 z2 · · · zk = 0} with some 
k. Then we can construct a complex V-manifold X(D) in the following 
way. 

(i) As a topological space X(D) is nothing but X. 
(ii) For a point p not contained in UDi, we take a neighborhood 

U disjoint from UD;. And consider (U, { idu}) as a local uniformizing 
system. 

(iii) For a point p E UD;, we take that fJ = { lwil < 1} and 
cu = Za;l x Za,. x · · · Za;,., where Di; = { zi; = 0 }, for 1 :=:; j :=:; k. 

And the projection Pu: fJ ---+ U is given by 

( 1 2 n) (( 1 )a'l (w2 )a·· (wk)a,,. wk+l wn) pw,w, ... ,w = w , , ... , , , ... , . 

Then the identity map X(D)---+ X becomes a holomorphic V-map. 

§3. Schauder estimates 

In this section we recall some results in analysis: the Schauder esti­
mates (cf. [GT], [S2]). 

First we consider . the linear case. Let L be a second order linear 
elliptic differential operator defined on the unit ball B( 1) in Rn expressed 
as 

L .. 82 L. a 
L = a'1 (x)-8 .8 . + a'(x)-8 . + a(x). 

x• xi x• 

Assume that there exists a positive constant >. > 0 such that 

for all~ E Rn and x E B(l), 

and that all functions aii, ai and a belong to ck,a_space. Then we have 
the following Schauder estimates. 
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Theorem 3.1. There is a constant C which depends only on the 
dimension n, .\, k, a and ck,a_norms on B(l) of the coefficients of L 

IJaiiJJc•,0 (B(l)), llaillc•,a(B(l)), llallc•,a(B(l)) such that for any C(k+ 2),a_ 

function u on B(l), we have that 

llullc<"+2),a(B(l/2)) ~ C( llullc 0 (B(l)) + IILullc•,a(B(l)) ). 

Next we consider the nonlinear case. Let F be a C 2-function in 
the variables xi, z, Pi and r;j, which satisfies the following. There exist 
positive constants ,\ and A such that 

for all { E Rn. 

Here subscripts mean the partial differentiation with respect to the cor­
responding variables. Then we have 

Theorem 3.2. Let u E C4 (B(l)) satisfy 

F(x,u(x),u.,,(x),u.,,.,;(x)) = 0, 

and assume that F is concave in r, then we have an estimates 

Here a depends only on n, A and .\, and C depends in addition on 
Jlullc2(B(l)) and the first and second derivatives of F other than Frr· 

If F has further differentiability, talcing derivatives of the equation 
and applying the linear Schauder estimates, we can deduce higher order 
estimates. 

For the proofs see [G-T], [S2]. 

§4. Monge-Ampere equations on V-manifolds 

In this section we shall consider the existence problem of complete 
Ricci-negative Einstein Kahler V-metrics on complex V-manifolds. The 
idea to work on V-manifolds is first carried out by R. Kobayashi [Kb2,3,4] 
and later developed by S.-Y. Cheng-S.-T. Yau [C-Y3], H. Tsuji [Ts3,4,6] 
and G. Tian-S.-T. Yau [T-Yl]. 

Unfortunately it is not yet proved in general the completeness of 
V-metrics obtained solving complex Monge-Ampere equations. To deal 
with the situation the concept of almost completeness was introduced 
by Tian-Yau [T-Yl]. 
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Definition 4.1. Ari Einstein Kahler V-metric w on a complex 
V-manifold Xis said to be almost-complete if there is a sequence { w;} 
of complete Kahler V-metrics satisfying 

(i) 1w, 2 -t;w;, with t; ----+ 1 as i----+ oo, 
(ii) Wi ----+ w as i ----+ oo in C 00 uniformly on copmact sets. 

A direct calculation shows the following infinitesimal Schwarz lemma 
by Chern [Ch], Lu [L] and Yau [Y5]. 

Lemma 4.1. Let (X;, 0;), i = 1, 2, be Kahler V-manifolds and 
</J: X 1 ----+ X 2 a holomorphic V-map. If ld</Jl2 =J: 0, then 

6 lo l8"'l2 > Ric01 (8¢,8</>) _ Bisect0 2 (8</J,84>,8</J,84>) 
01 g 'f' - 18¢12 18¢12 ) 

where 60, Ric0 and Bisect0 are the complex Laplacian, the Ricci tensor 
and the sectional curvature tensor of 8, respectively. 

Moreover if X 1 and X 2 are of the same dimension n and ¢*0 2 =J: 0, 
then 

Applying the maximum principle we obtain the Schwarz lemma. 

Lemma 4.2. Let </J: (X1 , Bi) ----+ (X 2 , 02 ) be as above. Assume 
that ( X 1 , Bi) is complete and its Ricci curvature is bounded below. 

(i) If there are constants K 1 and K 2 > 0 such that Ric01 2 -K 1 

and Bisect 02 ~ -K 2 , and if ld</Jl2 is not identically equal to zero, then 
K 1 > 0 and 

ld</Jl2 ~ :: • 

(ii) If there are constants K 1 and K2 > 0 such that tr0 1 101 2 -nK1 
and 102 ~ -K20 2 , where n = dimX 1 = dimX2, and if ¢*0 2 is not 
identically equal to zero, then K 1 > 0 and 

From the Schwarz lemma one can easily see 

Theorem 4.1 ([T-Yl]). A complex V-manifold admits at most one 
almost-complete Einstein Kahler V-metric. 

Now we state the existence theorem of Einstein Kahler V-metrics. 
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Theorem 4.2 ([T-Yl]). Let (X, w0 ) be an n-dimensional Kahler 
V-manifold of bounded geometry of order k + a, k ~ 4, with holomorphic 
quasi-coordinate maps. 

(i) Assume that there exist a positive constant Eo > 0 and a bounded 

C 2 - V-function f such that iwo ~ -E 0 w0 + ..j=:f_l)[} f. Then X admits an 
Einstein Kahler V-metric w of bounded geometry. And w is comparable 
to w0 , i.e. there exists a positive constant a > 0 such that aw0 ~ w ~ 
a- 1wo. 

(ii) Assume that there exist a positive constant Eo > 0 and a C 2 -

V-function f bounded from above such that iwo ~ -EoWo + ..j=:f_l)[} f, 
and that for any positive E > 0 there exists a bounded C 2 - V-function f, 
such that iwo ~ EWo + ..j=:f_f)[J f ,. Then X admits an almost-complete 
Einstein Kahler V-metric w such that wn ~ cw0 and eAf w0 ~ cw with 
constants c, A > 0. 

Proof. We prove only (ii). The proof of (i) will be apparent on the 
way. 

We employ the continuity method. Consider the following equation 
on the Kahler V-metric w. 

,w = -tw + (t - s)wo + (1 - s),w 0 , 

with t ~ 1 ~ s ~ 0. Note that if s = 0 then we have the trivial solution 
w = w0 , and a solution w for t = s = 1 is the desired Einstein Kahler 
V-metric. 

We rewrite the equation on V-metrics w to the equation on V­
functions u. To set a stage we take two Babach spaces B1 = ck,a, 
B 2 = c(k- 2),a, and define a domain O in B 1 and an operator E from 
0 to B2. Set Wt,s = ( 1 - f )wo - f iwo. ( Wt,s is not necessarily positive 
definite.) 

w = Wt,s + H/J8u, 
0 = { u E B1 I :la> 0 such that aw0 ~ w ~ a- 1w0 }, 

wn 
E(u) = Et,.(u) = log wn - tu. 

0 

Then the equation becomes 

E(u) = 0 i.e. 

Note that the Kahler V-metric w corresponding to an element u in O is 
of bounded geometry of order (k - 2) + a. 
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First we show that for a sufficient large t and 1 2 s 2 0 we can solve 
the equation. We choose a sufficient large constant T and fix t such that 
t 2 T. Since for s = 0 there is the trivial solution, the claim is proved if 
we see that the set { s E [O, 1] I Et,• ( u) = 0 has a solution} is open and 
closed. 

We consider the openness. The linearization d E of E at u is noth­
ing but 6w - t. The standard method shows that d E: B1 -----. B 2 is 
invertible. Namely the uniqueness of the solution v of the equation 
6wv - tv = 0 follows from the maximum principle. And we can find a 
solution v for the equation 6wv - tv = f E B2 as a limit of the solution 
on relative compact domains with the Dirichlet boundary condition. We 
bound the sup norm of v by ¼ times that of f via the maximum prin­
ciple. Then the estimates to guarantee v E B 1 are given by the interior 
Schauder estimates. 

The closedness is assured if one gets an apriori B 1 -estimate of the 
solutions u and the bound of the constants a in the definition of the 
open set 0. Note that the interior Schauder estimates again reduces the 
problem to the question of the estimates of the sup norm and a. 

As to the sup norms, we have that 

Aa8tu = tw - twt,s = tw - (t - s)wo + Srwo, 

tw - (t - c1)wo 2 Aa8tu 2 tw - (t + c2)wo, 

with some positive constants c1 , c2 > 0. Now we get that 

1 

6w 0 tu 2 t trw0 w - n( t + C2) 2 nt ( :; ) ;;-- n( t + c2) 

2 nte¼tu - n(t + c2), 
1 

6w(-tu) 2 (t-c1)trwwo -nt 2 n(t - c1) ( :~) ;;--nt 

2 n(t - c1)e¼(-tu) - nt. 

Then the maximum principle gives the upper bound estimate of u for 
t 2 1 and the lower bound estimate of u for t 2 T > c1 . 

We bound the constant a. Let c3 be a constant such that 

rw = -tw + (t - s)wo + (1 - s),w 0 2 -tw + (t - c3)wo, 

and c4 2 0 an upper bound of the bisectional curvature of wo. We 
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employ the infinitesimal Schwarz lemma for id: ( X, w) -----> ( X, w0 ). 

( t - C3 ) 6w log trw Wo 2 -tn + -n- - C4 trw Wo. 

If we choose T such that T > c3 + nc 4 , then we get the upper bound of 
trw Wo- Together with the equation wn = etuWo we obtain the desired 
bound on a. We remark that up to here we used only the assumption 
of bounded geometry. 

Now we have the solution of the equation for t 2 T, s = 1. 

,w = -tw + (t - l)w 0 2': -tw. 

We next show that the equation has a solution up to t = 1. The 
same argument as before shows the openness of the set { t E (1, T] I 
Et,l ( u) = 0 has a solution } . The closedness is proved as follows. 

Fix t0 > 1 and take f, for E = ½(to - 1). We work with t such that 
t 2 to. 

For the sup norm, as we have seen the upper bound of u is given 
uniformly for t 2". 1, we only have to get the lower bound. 

H88tu = tw - (t - l)wo + /Wo :S tw - EWo + Ra&f., 

6w(-tu + f,) 2 Etrw Wo - nt 2". m ( :€):; -nt 

2 meH-•upf,+(-tu+t,n -nt. 

The maximum principle implies that there is a constant c5 such that 
(-tu+ f,) :S sup f, + c5. Thus we get that 

-tu :S sup f, - inf f. + c5. 

Note that if we use f instead of f. we get that with a constant c6 , 

uniformly in t > 1, 
-tu+ f :S sup f + c5. 

We estimate a. With a positive constant A, we get that 

( t - C3 ) 6w{logtrwwo+A(-tu+f,)} 2 -tn(l+A)+ -n- - C4 + EA trwWo. 

Taking A large enough we get that with positive constants c7 and cg, 

log trw Wo + A( -tu + f .) :S A sup( -tu + f ,) + C7, 

trw Wo :S Cg. 



Negative Ricci Curvature on Open Manifolds 125 

Then combining it with the equation we get the estimate of a. Similarly 
if we use f instead off, we get that with constants cg and c10, uniformly 
int> 1, 

log trw wo + A( -tu+ f) :S: A sup( -tu+ f) + Cg :S: C10. 

Thus we have a solution u E O for t > l. Moreover since we have uniform 
estimates in t > 1 on compact domains, we can subtract a sequence 
{ Ut,} which convergents in Ck,/3_topology on any compact domains, 
with o: > /3 > 0. Then the limit V-metric is the desired almost-complete 
Einstein Kahler V-metric. Q.E.D. 

Remark. In the case of (ii) if f admits an estimate f = o(log r ), 
where r is a distance function form a fixed point in X with respect to 
the metric w0 , then the Einstein Kahler metric is complete. 

Corollary 4.1 ([C-Y2], [M-Y]). Let X be a smooth strictly 
pseudo-convex bounded domain in en. Then X admits an Einstein 
Kahler metric of bounded geometry. Even if we drop the assumption 
of strictness, we get a complete Einstein Kahler metric. 

Proof. For a strictly pseudo-convex domain X we have a smooth 
strictly pseudo-convex function ¢ defined on a neighborhood of X such 
that X = { ¢ < 0} and d</J never vanishes on EJX. Set 

Wo = Aa8log(-¢)-(n+l) = (n + l){ Roa¢+ Ao¢ I\ [Jqy} 
-¢ (-¢)2 . 

Then w0 satisfies the ·assumption of Theorem 4.2 (i). For a weakly 
pseudo-convex domain, we approximate it by strictly pseudo-convex do­
mains from inside and get a sequence of complete Einstein Kahler met­
rics. Then we can show that the sequence converges uniformly on com­
pact domains. The proof of completeness is done through the Schwarz 
lemma. For details see [C-Y2] and [M-Y]. Q.E.D. 

§5. On quasi-projective manifolds 

Let X be a nonsingular n-dimensional projective algebraic variety 
and D be a Q-divisor on X. We denote by K the canonical divisor of 
X. 

Definition 5 .1. 
(i) D is called numerically effective, nef in short, if for any curve C 

in X the intersection number D · C is non-negative. 
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(ii) A nef Q-divisor D is called big if Dn > 0. 
(iii) D is called ample if mD is ample integral divisor for some 

positive integer m. 

The following lemmas by Y. Kawamata suggests the natural as­
sumption to impose for the logarithmic version of Calabi's conjecture 
(cf. [Kml,2,3] [KMM]). 

Lemma 5 .1. Let L be a nef and big divisor on X. Then we have 
the following. 

(i) There exists an effective Q-divisor E such that L - E is ample. 
(ii) There exists a birational morphism µ : Y ---+ X from a non­

singular variety Y and a family of divisors { Fj } on Y such that the 
union of supports ofµ* L and LJ Fi is a divisor with only simple normal 
crossings and such that µ* L - I: DjFj is ample for some Dj E Q with 
o < 8i « 1. 

Lemma 5.2. Let D be a nef Q-divisor and H an ample divisor. 
Then D + 8H is ample for a positive rational number 8. 

Theorem 5.1 ([Kol,2,3,4], [CY3], [Ts3], [TYl]). Let X be an n­
dimensional nonsingular projective algebraic variety and D = I: Di a 
divisor with simple normal crossings. 

(i) If K + D is ample, then there exists an Einstein Kahler metric 
on X - D of bounded geometry. Its Kahler class belongs to the Poincare 
dual of 21T(K + D). 

(ii) Assume that K +Dis nef and there exists an effective Q-divisor 
E whose support is contained in D such that K + D - E is ample. Then 
there exists an almost-complete Einstein Kahler metric w on X - D such 
that fx-D wn = 27r(K + Dt. In particular K + D is big. 

(iii) If a Q-divisor K + I;(l - n!; )Di, with positive integers m;, is 

ample, then there exists an Einstein Kahler V-metric on X (I: n!; D;). 

Its Kahler class belongs to the Poincare dual of 27r{ K + I;(l - n!; )D;}. 

Here X (I: n!; D;) is the V-manifold constructed in the example 2.2 
in §2. 

Proof. Let us consider (iii) first. Because of the assumption there 
exist a smooth volume form n and fibre metics II · II on LD, such that 
H88log ~<i-lJ is a smooth positive definite (1, 1)-form. Here 

IT11u,11 =, 
<T; is a holomorphic section of LD; such that (<T;) = D;, ll<Till2 < 1. For 
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a sufficiently small fixed c > 0 we define smooth V-forms n0 and w0 on 
X (L ,;,. D;) as 

n - n 
0 - 11 2(1 1 ) 2 2 , llo-;II -m, (1-cllo-;llm;) 

wo = H88logno. 

Since 

A 8Blog(l _ ce-t)-1 = _ cCt H88t + te-t A8t I\ Bt 
1 - ce-t (1 - ce-t) 2 ' 

w0 is positive definite and defines a Kahler V-metric. Moreover there 
is a smooth V-function I satisfying Wo = e-tno. Then we have /Wo = 
-w 0 + H88f. Thus applying the existence theorem 4.2 (i) we get an 
Einstein Kahler metric. 

Next we consider (i). We have a smooth volume form n and fibre 
metrics II· II of LD, such that H88log IT 1~, 112 is positive definite. We 

define smooth forms n 0 and w0 on X - D as follows, with a sufficiently 
small fixed c > 0, 

n 
no = 2' 

II lla-;112 (1 - clog lla-;112 ) 

wo = A88log no. 

Since 

11 88- 1 ( )-1 __ A8tJt 2 A8t A at 
v-.l og 1 + ct - c + c ( )2 , 

l+ct l+ct 

w0 is positive definite and defines a Kahler metric on X - D. Moreover w0 

is of bounded geometry with the following quasi-coordinate maps. For 
a point p near D we have a local coordinate system z = ( z1 , z2 , ••• , zn) 
such that D = (z 1 z2 · · · zk). Then take a quasi-coordinate map w 
(w1 , w2 , ••• , wn) 1--t z centered at pas 

for 1 ~ i ~ k, 

fork< i ~ n. 

The function / defined by Wo = e-tno, is bounded. Thus by the ex­
istence theorem 4.2 (i) we get an Einstein Kahler metric of bounded 
geometry. In particular its Kahler class belongs to 21r(K + D). 



128 S. Banda 

In the case (ii) there are rational numbers D;, 0 < Di < 1, a smooth 
volume form n and fibre metrics II· II on Lv; such that if we set 

/1 - n 
w. = v -1.88log IT 11(]";112' 

which corresponds to K + D, then 

is positive difinite, where 0i = -Ff88log ll(Till2 • We define smooth 
forms n(c), for positive E, Do and w0 on X - Das follows, with a suffi­
ciently small fixed Eo > 0, 

Wo = Ao8logfio. 

Then w0 defines a Kahler metric of bounded geometry and we have a 
bounded smooth function f such that w0 = e-fn(c 0 ). Then we have 
that 'Ywo = -wo + F[88(f + :Ebilogll(Tdl 2 ). This means the half of 
the assumption of the existence theorem (ii) is satisfied. Let E be any 
sufficiently small positive number and 0 be a Kahler form corresponding 
to an ample divisor H. There exist a bounded function f~ such that 
w0 = e- 1; Q( E) and a constant c" such that 0 :S c'' wo. Then we have 
that with a constant c', 

" O; 11 - I 
'Ywo '.S -W. + 2E ~ 1 II 112 + y-188/, 1 - E og er; 

:S -w. + c'cwo + Aa&J; 
:S -(w. + c0) + (c' + c")Ewo + Aoaf;. 

By Lemma 5.2 there exists a smooth function f", on X such that w. + 
c0 + Aaa f", is positive definite. Then we get that 

,wo :S (c' + c")cwo +Ao&(!;+!".). 
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Now we can apply the existence theorem 4.2 (ii) and get the desired 
Einstein Kahler metric w on X - D. And 

by the Lebesgue convergence theorem. 
The statements on the Kahler classes in the cases (i) and (iii) are 

standard. 

Remark, We remark that the case (ii) is a log-canonical analogue 
of the case of compact manifolds with ample canonical bundles. Thus we 
conjecture that the almost-complete Einstein Kahler metrics are actually 
complete. We have a characterization of the Einstein Kahler volume 
form wn. 

wn = inf{ on I 0 is a complete Kahler form such that ,0 ~ -0}. 

In the case (ii} of the theorem, there are positive integers mi such 
that K + I:{1 - 1,!.; )Di are ample for all positive integer j. Then we 

have the Einstein Kahler V-metrics w1 on the V-nianifolds X {I: 1,!.; Di). 

Outside the support of D each w1 defines a smooth Einstein Kahler 
metric. 

Theorem 5.2 {[Ts3], [TYl]). As j tends to infinity, the sequence 
{ w1} converges to the almost-complete Einstein Kahler metric w on 
X - D smoothly on compact sets. 

Proof. We use the notation in the proof of theorem (ii). 
The Schwarz lemma gives that w7J ~ wn ~ cw0. Set w7J = euw0, 

u = u1. Then u is a smooth function on X - D and bounded from above. 

Wj = -,w; = - 1w0 + A.88u 

= wo + A.88(u- f- LDilog llcrill2 ). 

For large j considering the order of divergence we see that the function 
v = u - f - I: Di log llcrill2 tends to oo near D. So it takes its mimimum 
somewhere in X - D. At that point w1 ~ w0 and we get a uniform 
lower bound of v. Now let c1 ~ 0 be an upper bound of the bisectional 
curvature of w0 , and A a constant large enough. 

2'w;{logtrw; wo - Av)~ -(1 + nA) + (A - c1) trw; wo. 
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Again considering the order of divergence we get a constant c2 inde­
pendent of large j, such that log trw; w0 - Av :::; c2 • Thus we obtain a 
uniform estimate: with a constant c3 independent of large j, 

Then the interior Schauder estimates give a uniform C 00 -estimates on 
compact sets. So we can take a subsequence which converges to an 
Einstein Kahler metric, say w', on X - D. We have w'n s wn, and by 
the Lebesgue convergence theorem 

( w'n = lim f w'J = {27r(K + D)}n = f wn. 
lx-D lx-D lx-D 

Thus w'n = wn and w' = w, since both Einstein. 

Instead of a reduced divisor D with simple normal crossings we can 
work with non-reduced one. Namely, R. Kobayashi and the author get 

Theorem 5.3. Let X be an n-dimensional nonsingular projec­
tive algebraic variety and D = L aiDi a Q-divisor with simple nor­
mal crossings and ai S 1. Assume that K + D is nef and there ex­
ists an effective Q-divisor E whose support is contained in D such that 
K + D - E is ample. Then we have an Einstein Kahler metric w on 
X - D whose Kahler class belongs to the Poincare dual of 27r(K + D) 
and fx-D wn = {21r(K + D)}n. In particular K +Dis big. w is unique 
in an appropriate class. 

We remark that the situation like above naturally arises in the study 
of weak log-terminal general type. The idea of the proof is to solve the 
following equation and take the limit e --+ 0. 

w=w,+Aaau, 

wn = eu II(llo-ill2 + t)a•n 

II lla-ill2 (1 - t1og lla-ill2 ) 2 ' 

where € > 0, O:i = 1 - ai and 

/1 - n 
w, = v-1.88log 2 + e0, 

II llo-ill2a, (1 - dog llo-ill2) 

with a suitable choice of a volume form n, fibre metrics II · II and a 
Kahler metric 0 on X. To prove the statement of the Kahler class we 
use a lemma of the following type. 
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Lemma 5.3. Let Wi = wo + .;=I88ui be a sequence of smooth 
Kahler forms on a compact Kahler manifold X. Assume that it smoothly 
converges a singular Kahler form w outside of an effective divisor D 
keeping the following estimates. For any E > 0 there exists a constant 
c. such that luil ~ -E log llull2 + C., for all i, where u is a holomorphic 
section of L D such that ( u) = D. Then the current T defined by T( 0) = 
fx-D w I\ 0 is d-closed positive (1, 1)-current and its cohomology class is 
that of wo. 

§6. Miyaoka-Yau inequality 

First we state the Miyaoka-Yau inequality for Einstein Kahler V­
manifolds. 

Theorem 6.1 ([Kb2], [C-Y3], [t-Yl]). For an n-dimensional com­
pact Einstein Kahler V-manifold X, we have the following inequality of 
the Chern numbers. 

where n~ is the holomorphic cotangent V-bundle of X. And if the equal­
ity holds, X is a quotient of the unit ball Bn in en with a properly dis­
continuous group, which has the fixed point locus corresponding to the 
singular locus of X. 

Proof. Let c1 (X,w) and c2 (X,w) be the first and second Chern 
class forms given by the Einstein Kahler metric w, respectively. Define a 
tensor T which measures the deviation of (X,w) from being of constant 
holomorphic sectional curvature, with the curvature tensor R and the 
metric tensor g, 

1 
T;-;k1 = RiJkl + n + l (9;"J9kf + gif9k3)-

Then a calculation shows that 

Since the Chern Weil homomorphism holds on V-manifolds, integrating 
the above equality we get the desired inequality. And if the equality 
holds w is of constant holomorphic sectional curvature. The develop­
ing map can be used also in V-manifolds situation and we get the last 
assertion. 
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Let X be an n-dimensional nonsingular projective algebraic mani­
fold, K its canonical divisor and D = Z: Di an effective reduced divisor 
on X with simple normal crossings. Assume that K + D is nef and that 
there exists an effective Q-divisor E whose support is contained in D 
such that K + D - E is ample. 

Theorem 6.2 ([Kbl,3,4],[C-Y3], [Ts3], [T-Yl]). We assume as 
above, then we have the following inequality between the Chern numbers. 

where n1x,(log D) is the holomorphic cotangent bundle with logarithmic 
poles along D. And if the equality holds, X - D is covered by the unit 
ball Bn in en. 

Proof. By the assumptions we have a sequence of V-manifolds 
Xi = X(Z: i;,., Di) and the Einstein Kahler metrics Wj on them, such 
that Wj converges to the almost-complete Einstein Kahler metric w on 
X-D. 

Let D1 = Z: DL be the reduced divisor on Xi corresponding to 
the singular locus of Xi, and Lv:; the line V-1?undle associated to D~j· 

If we pull back the line bundle Lv, associated to Di via the V-map 
Ii : Xj ---> X induced by the identity map, we get that fJ(Lv.) = 
(Lv,;)®im,_ Thus c1(Lv;) = i;,.,c 1(Lv.) E H 2 (X,R). (Note that Xi 

and X are the same as topological spaces.) Just like in the smooth case, 
considering the Poincare residue maps, we can get that for the total 
Chern classes 

Since nx;(log D1) = /J(Ox(log D)), we get that 

c1(n1x,;) = c1(01x,(logD)) - L j:i c1(Lv.), 

c2(n:x-J = c2(n:x-(logD)) - c1(n1x,(logD)) L ):i c1(Ln.) 

1 1 + L -.-c1(Lv,J-.-c1(Lv, 2 ). 

i1 t- i2 Jmi1 Jmi2 

Now substituting the above equalities into the Miyaoka-Yau inequality 
for Xi, 
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and taking the limit j --+ oo, we get the desired inequality. Moreover 
by the proof and Fubini's theorem we have that, for the limiting almost­
complete Einstein Kahler metric w on X - D 

2{n + l)c2(f!~(log D))c1 (n~-(log D)t- 2 - nc1 (f!~(log D)t 

> n+l r IITll2wn. 
- 41r2n(n-l)lx-D 

Thus if the equality holds T vanishies. It means that w is of constant 
holomorphic sectional curvature. If we know that w is complete, we get 
the last assertion of the theorem. For the proof of completeness, we 
efficiently use the Schwarz lemma. See [T-Yl] for details. 

Although we also have an Einstein Kahler metric for non-reduced 
D, we do not have the corresponding Miyaoka-Yau inequality. It would 
be an interesting problem. 
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