Eta Invariants and Automorphisms of Compact Complex Manifolds

Akito Futaki and Kenji Tsuboi

Dedicated to Professor Akio Hattori on his sixtieth birthday

§1. Introduction

Let M be an m-dimensional compact complex manifold, G the group of all automorphisms of M and \mathfrak{g} the complex Lie algebra of all holomorphic vector fields on M. In [F1, FMo] we defined a complex Lie algebra character $\mathcal{F}: \mathfrak{g} \rightarrow \mathbb{C}$ with properties that \mathcal{F} depends only on the complex structure of M, and that the vanishing of \mathcal{F} is a necessary condition for M to admit an Einstein-Kähler metric. \mathcal{F} can be lifted to a group character $\widehat{\mathcal{F}}: G \rightarrow \mathbb{C} / \mathbb{Z}$. For these we refer the reader to a survey [FMaS], Chapters 1 and 3 in this volume; but brief reviews of \mathcal{F} and $\widehat{\mathcal{F}}$ will be given respectively in this section and at the beginning of Section 3.

In this paper we apply the theory of eta invariants of [APS] and [D] to obtain an interpretation of $\widehat{\mathcal{F}}$ in terms of eta invariants (Theorem 3.7) and a localization formula for $\widehat{\mathcal{F}}(a)$ in terms of the fixed point set of an automorphism $a \in G$ (Theorem 3.10). We also compute a few examples.

An unsolved question, which motivated this study, is whether M admits an Einstein-Kähler metric if $c_{1}(M)>0$ and $\mathfrak{g}=\{0\}$. Note that if $\mathfrak{g}=\{0\}$ then $\mathcal{F}=0$ trivially. Our study began with an attempt to know whether $\widehat{\mathcal{F}}$ can play any role even if $\mathfrak{g}=\{0\}$. If $c_{1}(M)>0$ and $\mathfrak{g}=\{0\}$ then G is a finite group and the imaginary part $\operatorname{Im} \widehat{\mathcal{F}}: G \rightarrow \mathbb{R}$ vanishes identically, but the real part $\operatorname{Re} \widehat{\mathcal{F}}: G \rightarrow \mathbb{R} / \mathbb{Z}$ may not do. Our aim is therefore to find an example of a compact complex manifold with $\mathfrak{g}=\{0\}$ and with $\widehat{\mathcal{F}} \neq 0$. We mention however that it is not known whether $\widehat{\mathcal{F}} \neq 0$ implies the nonexistence of an Einstein-Kähler metric,
while it is obvious from the definition of \mathcal{F} that $\mathcal{F} \neq 0$ implies the nonexistence of an Einstein-Kähler metric. Let us recall the definition of \mathcal{F}.

Let h be a Hermitian metric of M, and $\omega=(i / 2 \pi) h_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}$ be its fundamental 2 -form. Let \mathcal{Y} be a holomorphic vector field on M. The character \mathcal{F} can be expressed by

$$
\mathcal{F}(\mathcal{Y})=(m+1) \frac{i}{2 \pi} \int_{M} \operatorname{div}(\mathcal{Y}) c_{1}(h)^{m}
$$

where $\operatorname{div}(\mathcal{Y})$ is the complex divergence defined by

$$
d\left(i(\mathcal{Y}) \omega^{m}\right)=\operatorname{div}(\mathcal{Y}) \omega^{m}
$$

and $c_{1}(h)$ is the first Chern form with respect to h :

$$
c_{1}(h)=-\frac{i}{2 \pi} \partial \bar{\partial} \log \operatorname{det}\left(h_{\alpha \bar{\beta}}\right) .
$$

If h is an Einstein-Kähler metric, i.e. $c_{1}(h)=k \omega$ for some real constant k, then, from the Stokes theorem

$$
\mathcal{F}(\mathcal{Y})=(m+1) \frac{i k^{m}}{2 \pi} \int_{M} d\left(i(\mathcal{Y}) \omega^{m}\right)=0
$$

Thus $\mathcal{F} \neq 0$ implies the nonexistence of an Einstein-Kähler metric. This statement is strengthened as follows: $\mathcal{F} \neq 0$ implies the nonexistence of a Hermitian metric such that for some real constant k^{\prime}

$$
c_{1}(h)^{m}=k^{\prime} \omega^{m}
$$

for we can rewrite the above formula of \mathcal{F} as

$$
\mathcal{F}(\mathcal{Y})=-(m+1) \int_{M} \mathcal{Y}\left(\frac{c_{1}(h)^{m}}{\omega^{m}}\right) \omega^{m}
$$

Note that $c_{1}(h)^{m} / \omega^{m}$ is a smooth function globally well defined on M.
In Section 4 we shall exhibit an example of a rational surface with $\mathfrak{g}=\{0\}$ and with $\widehat{\mathcal{F}} \neq 0$. The first Chern class of this surface, however, is not positive. We could not find an example with an additional assumption $c_{1}(M)>0$.

Finally we mention the recent existence results of Einstein-Kähler metrics of positive Ricci curvature. First of all, in [Sa, KS1, KS2] Sakane and Koiso considered a certain class of P^{1}-bundles with \mathbb{C}^{*}-action which restrict to actions on the fibers P^{1}. Let \mathcal{Y} be the holomorphic vector
field induced from this action. They showed that $\mathcal{F}(\mathcal{Y})=0$ becomes a sufficient condition for the existence of an Einstein-Kähler metric of positive Ricci curvature. In the proof of this result it is shown that if $\mathcal{F}(\mathcal{Y}) \neq 0$ then the regularity of the solution to the Einstein equation is spoiled along the zero $\operatorname{set} \operatorname{zero}(\mathcal{Y})$ of \mathcal{Y}. Note that zero (\mathcal{Y}) is the fixed point set of the \mathbb{C}^{*}-action. Secondly Siu [Si], Tian [T] and Tian and Yau $[\mathrm{TY}]$ proved that every differentiable type of $\mathbb{P}^{2} \sharp k \overline{\mathrm{P}^{2}}$ with $3 \leq k \leq 8$ admits an Einstein-Kähler metric of positive Ricci curvature. The methods of their proofs show that if M has good symmetries one can prove the existence of an Einstein-Kähler metric.

§2. Signature operators and eta invariants

In this section we review the definitions and known results on the eta invariants. We refer the reader to [APS] and [D] for the detail. Let X be a real $2 l$-dimensional compact oriented smooth manifold with boundary Y, and ξ a complex vector bundle over X. Assume that the metrics and metric connections of X and ξ are product near the boundary. Let τ be an involution of $\wedge^{*} T^{*} X \otimes \xi$ defined by

$$
\tau(\alpha)=i^{q(q-1)+l} * \alpha \quad \text { for } \quad \alpha \in \wedge^{q} T^{*} X \otimes \xi
$$

where $*: \wedge^{q} T^{*} X \otimes \xi \rightarrow \wedge^{2 l-q} T^{*} X \otimes \xi$ is the Hodge star operator defined by the metric and the orientation of X. Let \wedge^{+}be the subbundle of $\wedge^{\text {even }} T^{*} X \otimes \xi$ which consists of +1 -eigenvectors of τ, and \wedge^{-}the subbundle of $\wedge^{\text {odd }} T^{*} X \otimes \xi$ which consists of -1-eigenvectors of τ. Let $\Gamma\left(\wedge^{+}: P\right)$ denote the the subspace of $\Gamma\left(\wedge^{+}\right)$satisfying the boundary condition $P(f \mid \partial X)=0$ where P denotes the spectral projection corresponding to the eigenvalues $\lambda \geq 0$ of A_{ξ} defined below. Then ξ-valued signature operator $D_{\xi}: \Gamma\left(\wedge^{+}: P\right) \rightarrow \Gamma\left(\wedge^{-}\right)$is defined by

$$
D_{\xi} \phi=\left(d_{\xi}+d_{\xi}^{*}\right) \phi=\left(d_{\xi}-* d_{\xi} *\right) \phi
$$

for $\phi \in \Gamma\left(\wedge^{+}\right)$, where d_{ξ} denotes the covariant exterior differential operator induced from the connection of ξ.

Definition 2.1. $\operatorname{sign}(X, \xi)$ is defined to be the index of D_{ξ}, namely,

$$
\operatorname{sign}(X, \xi)=\operatorname{dim} \operatorname{ker} D_{\xi}-\operatorname{dim} \operatorname{coker} D_{\xi}
$$

By an automorphism of a vector bundle we mean a diffeomorphism of the total space such that it descends to a diffeomorphism of the base
space and that it maps a fiber to a fiber isomorphically. When an automorphism a acts on $\wedge^{*} T^{*} X \otimes \xi$ commuting with $D_{\xi}, \operatorname{sign}(a, X, \xi)$ is defined to be the a-index of D_{ξ}, namely,

$$
\operatorname{sign}(a, X, \xi)=\operatorname{tr}\left(a \mid \operatorname{ker} D_{\xi}\right)-\operatorname{tr}\left(a \mid \operatorname{coker} D_{\xi}\right)
$$

Note that $\operatorname{sign}(X, \xi)=\operatorname{sign}(1, X, \xi)$.
Let $C=Y \times I$ be a collar neighborhood of the boundary $Y=\partial X$ and $\gamma: C \rightarrow Y$ the projection. Let $\tilde{\xi}$ be the restriction of ξ to Y. Then $\tau_{+}=1+\tau$ induces an isomorphism

$$
\tau_{+}:\left.\gamma^{*}\left(\wedge^{\text {even }} T^{*} Y \otimes \widetilde{\xi}\right) \xrightarrow{\sim} \wedge^{+}\right|_{C}
$$

We define a first order self-adjoint elliptic differential operator

$$
A_{\widetilde{\xi}}: \Gamma\left(\wedge^{\text {even }} T^{*} Y \otimes \widetilde{\xi}\right) \rightarrow \Gamma\left(\wedge^{\text {even }} T^{*} Y \otimes \widetilde{\xi}\right)
$$

by

$$
\begin{equation*}
A_{\widetilde{\xi}} \phi=i^{l}(-1)^{q+1}\left(* d_{\widetilde{\xi}}-d_{\widetilde{\xi}^{*}}\right) \phi \tag{2.2}
\end{equation*}
$$

for $\phi \in \Gamma\left(\wedge^{2 q} T^{*} Y \otimes \tilde{\xi}\right)$ where $*: \wedge^{q} T^{*} Y \otimes \tilde{\xi} \rightarrow \wedge^{2 l-1-q} T^{*} Y \otimes \tilde{\xi}$ is the Hodge star operator for Y and $d_{\tilde{\xi}}: \Gamma\left(\wedge^{q} T^{*} Y \otimes \widetilde{\xi}\right) \rightarrow \Gamma\left(\wedge^{q+1} T^{*} Y \otimes \tilde{\xi}\right)$ is the covariant exterior differential operator as before.

The following proposition can be shown by the same computations as in [APS], p. 63.

Proposition 2.3. On the collar C, the signature operator D_{ξ} is of the form

$$
D_{\xi}=\sigma \circ \tau_{+} \circ\left(\frac{\partial}{\partial u}+A_{\xi}\right) \circ \tau_{+}^{-1}
$$

where $u \in I$ is the normal coordinate and $\sigma=\sigma\left(D_{\xi}\right)(d u):\left.\left.\wedge^{+}\right|_{C} \xrightarrow{\sim} \wedge^{-}\right|_{C}$ is the isomorphism defined by the principal symbol of D_{ξ}.

The eta invariants of $A_{\widetilde{\xi}}$ are defined as follows.
Definition 2.4. Let a be an automorphism of $\wedge^{\text {even }} T^{*} Y \otimes \tilde{\xi}$, and suppose that a commutes with $A_{\widetilde{\xi}}$ Then the equivariant eta function $\eta_{\widetilde{\xi}}(a, s)$ of $A_{\widetilde{\xi}}$ is defined by

$$
\eta_{\widetilde{\xi}}(a, s)=\sum_{\lambda \neq 0} \operatorname{sign}(\lambda) \operatorname{tr}\left(\left.a\right|_{F_{\lambda}}\right)|\lambda|^{-s}
$$

where λ are non-zero eigenvalues of $A_{\widetilde{\xi}}$ and F_{λ} is the λ-eigenspace. $\eta_{\widetilde{\xi}}(a, s)$ is meromorphically continued to the whole s-plane and the equivariant eta invariant $\eta_{\widehat{\xi}}(a)$ is defined by

$$
\eta_{\widetilde{\xi}}(a)=\eta_{\widetilde{\xi}}(a, 0),
$$

see [D], Theorem 1.2. Note that $\eta_{\bar{\xi}}(1)$ is the ordinary non-equivariant eta invariant of $A_{\widetilde{\xi}}$. Note moreover that

$$
\eta_{\widetilde{\xi}_{1} \oplus \widetilde{\xi}_{2}}(a)=\eta_{\widetilde{\xi}_{1}}(a)+\eta_{\widetilde{\xi}_{2}}(a)
$$

since $A_{\widetilde{\xi}_{1} \oplus \tilde{\xi}_{2}}=A_{\widetilde{\xi}_{1}} \oplus A_{\widetilde{\xi}_{2}}$ with respect to the direct sum connection.
Suppose now that a compact Lie group K acts on X and ξ, preserving the orientation, the metrics and the metric connections of X and ξ, and that an element $a \in K$ acts freely on Y. Let $\Omega \subset X$ be the fixed point set of $a(\Omega \cap Y=\emptyset)$ which is the disjoint union of connected closed submanifolds N. The normal bundle $T N^{\perp}$ of N is decomposed into the Whitney sum of subbundles

$$
T N^{\perp}=T N^{\perp}(-1) \oplus T N^{\perp}\left(\theta_{1}\right) \oplus \cdots \oplus T N^{\perp}\left(\theta_{s}\right)
$$

where a acts on $T N^{\perp}(-1)$ via multiplication by -1 and on complex vector bundle $T N^{\perp}\left(\theta_{j}\right)$ via multiplication by $e^{i \theta_{j}}, \theta_{j} \neq \pi$. Further $\left.\xi\right|_{N}$ is decomposed into the Whitney sum of subbundles

$$
\left.\xi\right|_{N}=\xi\left(\psi_{1}\right) \oplus \ldots \oplus \xi\left(\psi_{r}\right)
$$

where a acts on $\xi\left(\psi_{j}\right)$ via multiplication by $e^{i \psi_{j}}$, see [D], p.901. On the other hand a induces automorphisms of $\wedge^{*} T^{*} X \otimes \xi$ and $\wedge^{*} T^{*} Y \otimes \widetilde{\xi}$, which commute with $A_{\widetilde{\xi}}$

We shall see that $\operatorname{sign}(X, \xi)$ and $\operatorname{sign}(a, X, \xi)$ are computed in terms of certain characteristic forms (or classes) and eta invariants. We first define characteristic forms and classes which we need.

Definition 2.5. (a) $\operatorname{ch}(\xi)$ is the Chern character form of a complex vector bundle ξ with respect to the connection of ξ. Note that

$$
\operatorname{ch}(\xi)=\operatorname{rank}_{\mathbb{C}} \xi+c_{1}(\xi)+\text { higher terms }
$$

where $c_{1}(\xi)$ is the first Chern form of ξ, and that

$$
\begin{gathered}
\operatorname{ch}\left(\xi_{1} \oplus \xi_{2}\right)=\operatorname{ch}\left(\xi_{1}\right)+\operatorname{ch}\left(\xi_{2}\right) \\
\operatorname{ch}\left(\xi_{1} \otimes \xi_{2}\right)=\operatorname{ch}\left(\xi_{1}\right) \wedge \operatorname{ch}\left(\xi_{2}\right)
\end{gathered}
$$

with respect to the direct sum and tensor product connections.
(b) The \mathcal{L}-polynomial of the Pontrjagin classes p_{1}, p_{2}, \ldots is defined by

$$
\begin{aligned}
\mathcal{L}(p) & =\prod_{j} \frac{x_{j} / 2}{\tanh \left(x_{j} / 2\right)} \\
& =1+\frac{1}{12} p_{1}+\ldots
\end{aligned}
$$

where p_{i} is the i-th symmetric function of the x_{j}^{2}. $\mathcal{L}(X)=\mathcal{L}(p(T X))$ is the \mathcal{L}-form of tangent bundle $T X$ with respect to the metric of X. Note that the evaluation of $\mathcal{L}(N)$ at the fundamental cycle $[N]$ of a closed submanifold N is independent of the metric and that $\mathcal{L}(N)=1$ if N is a point.
(c) $\operatorname{ch}\left(\left.\xi\right|_{N}, a\right)$ is an element of $\prod_{q=0}^{\infty} H^{2 q}(N ; \mathbb{C})$ defined by

$$
\operatorname{ch}\left(\left.\xi\right|_{N}, a\right)=\sum_{j=1}^{r} e^{i \psi_{j}} \operatorname{ch}\left(\xi\left(\psi_{j}\right)\right)
$$

where $\operatorname{ch}\left(\xi\left(\psi_{j}\right)\right)$ is the ordinary Chern character of $\xi\left(\psi_{j}\right)$. Note that

$$
\begin{aligned}
& \operatorname{ch}\left(\left.\xi_{1} \oplus \xi_{2}\right|_{N}, a\right)=\operatorname{ch}\left(\left.\xi_{1}\right|_{N}, a\right)+\operatorname{ch}\left(\left.\xi_{2}\right|_{N}, a\right) \\
& \operatorname{ch}\left(\left.\xi_{1} \otimes \xi_{2}\right|_{N}, a\right)=\operatorname{ch}\left(\left.\xi_{1}\right|_{N}, a\right) \operatorname{ch}\left(\left.\xi_{2}\right|_{N}, a\right)
\end{aligned}
$$

(d) Finally, the \mathcal{M}^{θ}-polynomial of the Chern classes $c_{i}\left(T N^{\perp}(\theta)\right)$ is defined by

$$
\mathcal{M}^{\theta}=\prod_{j} \frac{\tanh (i \theta / 2)}{\tanh \left(\left(x_{j}+i \theta\right) / 2\right)}
$$

where $c_{i}\left(T N^{\perp}(\theta)\right)$ is the i-th elementary symmetric function of the x_{j}. Note that $\mathcal{M}^{\theta}\left(T N^{\perp}(\theta)\right)=1$ if $T N^{\perp}(\theta)=\{0\}$.

Theorem (cf. Theorem 3.10 in [APS] and Theorem 2.5 in [D]). Under the notations $n=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} N, d=\frac{1}{2} \operatorname{rank}_{\mathbb{R}} T N^{\perp}(-1)$ and $c\left(\theta_{j}\right)=$ $\operatorname{rank}_{\mathbb{C}} T N^{\perp}\left(\theta_{j}\right)$, we have

$$
\begin{gather*}
\operatorname{sign}(X, \xi)=2^{l} \int_{X} \operatorname{ch}(\xi) \mathcal{L}(X)-\eta_{\widetilde{\xi}}(1) \tag{2.6}\\
\operatorname{sign}(a, X, \xi)=\sum_{N \subset \Omega} 2^{n-d} \operatorname{ch} \cdot \mathcal{L}(a)[N]-\eta_{\widetilde{\xi}}(a) \tag{2.7}
\end{gather*}
$$

where $\operatorname{ch} \cdot \mathcal{L}(a) \in \prod_{q=0}^{\infty} H^{2 q}(N ; \mathbb{C})$ is defined by

$$
\begin{aligned}
\operatorname{ch} \cdot \mathcal{L}(a)= & \operatorname{ch}\left(\left.\xi\right|_{N}, a\right) \prod_{j}\left(-i \cot \left(\theta_{j} / 2\right)\right)^{c\left(\theta_{j}\right)} \mathcal{L}(N) \\
& \mathcal{L}\left(T N^{\perp}(-1)\right)^{-1} e\left(T N^{\perp}(-1)\right) \prod_{j} \mathcal{M}^{\theta_{j}}\left(T N^{\perp}\left(\theta_{j}\right)\right)
\end{aligned}
$$

and $e\left(T N^{\perp}(-1)\right)$ is the Euler class of $T N^{\perp}(-1)$.
Now assume that the compact Lie group K is a finite group and that K acts freely on Y. Since the K-action preserves the orientation, metrics and connections of Y and $\tilde{\xi}$, there exist an orientation and a metric on Y / K, a complex vector bundle $\widehat{\xi}=\widetilde{\xi} / K$ over Y / K and a connection in $\widehat{\xi}$ such that the projection $\pi: Y \rightarrow Y / K$ is a Riemannian covering and that $\pi^{*} \widehat{\xi}$ is isomorphic to $\tilde{\xi}$ as a vector bundle with a connection.

Definition 2.8. A first order self-adjoint elliptic differential operator $A_{\widehat{\xi}}: \Gamma\left(\wedge^{\text {even }} T^{*}(Y / K) \otimes \widehat{\xi}\right) \rightarrow \Gamma\left(\wedge^{\text {even }} T^{*}(Y / K) \otimes \widehat{\xi}\right)$ is defined just as in 2.2 and the eta invariant $\eta_{\widehat{\xi}}(1)$ is also defined as in 2.4. Note that $A_{\widehat{\xi}}$ is locally the same as $A_{\tilde{\xi}}$.

The eigenvalues of $A_{\widehat{\xi}}$ is closely related to those of $A_{\widetilde{\xi}}$ and the next proposition can be proved similarly to (3.6) in [D].

Proposition 2.9.

$$
\eta_{\widehat{\xi}}(1)=\frac{1}{|K|} \sum_{a \in K} \eta_{\widetilde{\xi}}(a)
$$

In later sections, we consider the signatures and the eta invariants for virtual vector bundles ξ.

Definition 2.10. Let ξ_{1} and ξ_{2} be complex vector bundles over X which satisfy the conditions in Definitions 2.1, 2.4 and 2.5. For the virtual bundle $\xi=\xi_{1}-\xi_{2}$, we define $\operatorname{sign}(a, X, \xi), \eta_{\xi}(a), \operatorname{ch}(\xi)$ and $\operatorname{ch}\left(\left.\xi\right|_{N}, a\right)$ by

$$
\begin{gathered}
\operatorname{sign}(a, X, \xi)=\operatorname{sign}\left(a, X, \xi_{1}\right)-\operatorname{sign}\left(a, X, \xi_{2}\right) \\
\eta_{\xi}(a)=\eta_{\xi_{1}}(a)-\eta_{\xi_{2}}(a) \\
\operatorname{ch}(\xi)=\operatorname{ch}\left(\xi_{1}\right)-\operatorname{ch}\left(\xi_{2}\right) \quad \text { and } \\
\operatorname{ch}\left(\left.\xi\right|_{N}, a\right)=\operatorname{ch}\left(\left.\xi_{1}\right|_{N}, a\right)-\operatorname{ch}\left(\left.\xi_{2}\right|_{N}, a\right)
\end{gathered}
$$

Then, the next proposition is obvious.

Proposition 2.11. The formulae 2.6, 2.7 and Proposition 2.9 hold for the virtual bundles $\xi, \widetilde{\xi}$ and $\widehat{\xi}$.

§3. $\widehat{\mathcal{F}}$ and eta invariants

Let M be an m-dimensional compact complex manifold, G the group of all biholomorphic automorphisms of M and \mathfrak{g} the complex Lie algebra of all holomorphic vector fields on M. In [FMo] it is shown that the Lie algebra character \mathcal{F} can be expressed in terms of Simons character of a certain foliation.

Theorem ([FMo]). For $\mathcal{Y} \in \mathfrak{g}$, let $\mathrm{Fol}_{\mathcal{Y}}$ be a complex foliation of codimension m on $M \times S^{1}$ defined by the vector field $\frac{\partial}{\partial t}+2 \operatorname{Re} \mathcal{Y}$ where t is the coordinate of S^{1} and $\operatorname{Re} \mathcal{Y}$ denotes the real part of \mathcal{Y}. Then

$$
\mathcal{F}(\mathcal{Y})=-S_{c_{1}^{m+1}}\left(\nu\left(\text { Fol }_{\mathcal{Y}}\right)\right)\left[M \times S^{1}\right] \quad \bmod \mathbb{Z}
$$

where $S_{c_{1}^{m+1}}\left(\nu\left(\operatorname{Fol}_{\mathcal{Y}}\right)\right) \in H^{2 m+1}\left(M \times S^{1} ; \mathbb{C} / \mathbb{Z}\right)$ is the Simons character of c_{1}^{m+1} for the normal bundle $\nu\left(\mathrm{Fol}_{\mathcal{y}}\right)$ of $\mathrm{Fol}_{\mathcal{y}}$ with any basic connection.

Note that our notation of \mathcal{F} differs from f in [FMo] by $i / 2 \pi$. For $g \in G$, let M_{g} be the mapping torus $M_{g}=M \times[0,1] / \sim$ where $(p, 0) \sim$ $(g(p), 1)$. Let Fol_{g} be the complex foliation defined by the $[0,1]$-directed vector field. Then, by definition,

$$
\widehat{\mathcal{F}}(g)=S_{c_{1}^{m+1}}\left(\nu\left(\mathrm{Fol}_{g}\right)\right)\left[M_{g}\right]
$$

where $S_{c_{1}^{m+1}}\left(\nu\left(\right.\right.$ Fol $\left.\left._{g}\right)\right)$ is the Simons character for the normal bundle $\nu\left(\mathrm{Fol}_{g}\right)$ with any Bott connection. As is seen in [F2] (see also [FMaS]), $\widehat{\mathcal{F}}: G \rightarrow \mathbb{C} / \mathbb{Z}$ is a Lie group homomorphism. The above theorem further shows that its infinitesimal Lie algebra homomorphism is equal to \mathcal{F} up to a constant multiple.

Remark 3.1. Let $g=\exp (2 \operatorname{Re} \mathcal{Y})$. Since $\left(M_{g}\right.$, Fol $\left._{g}\right)$ is isomorphic to $\left(M \times S^{1}\right.$, Fol_y $\left._{-y}\right)$, it follows from the above theorem that

$$
\widehat{\mathcal{F}}(\exp (2 \operatorname{Re} \mathcal{Y})=-\mathcal{F}(\mathcal{Y}) \quad \bmod \mathbb{Z}
$$

Remark 3.2. If $g^{p}=1$, then $p \widehat{\mathcal{F}}(g)=\widehat{\mathcal{F}}\left(g^{p}\right)=\widehat{\mathcal{F}}(1)=0$. Hence $\widehat{\mathcal{F}}(g)$ is of the form q / p for some integer q.

We assume for the rest of this paper that K is a cyclic subgroup of G generated by an element g of order p. Let $X=M \times D^{2}$ and
$Y=\partial X=M \times S^{1}$, and let $q_{M}: X \rightarrow M, q_{D^{2}}: X \rightarrow D^{2}$ and $q_{Y}: Y \rightarrow M$ be the projections. We consider the. following action of K on X :

$$
g\left(z, r e^{i \theta}\right)=\left(g(z), r e^{i(\theta+2 \pi / p)}\right)
$$

for $\left(z, r e^{i \theta}\right) \in X=M \times D^{2} ; 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. The next lemma is obvious.

Lemma 3.3. The fixed point set $\Omega_{X} \subset X$ of the $a=g^{k}$-action on X for $a \in K$ coincides with the fixed point set $\Omega_{M} \subset M=M \times\{0\} \subset X$ of the a-action on M.

Since M and D^{2} carry the complex structures, we may regard $T M$, $T D^{2}$ and $T X=q_{M}^{*} T M \oplus q_{D^{2}}^{*} T D^{2}$ as holomorphic tangent bundles, i.e. the tangent bundles of type $(1,0)$. We first give a rotationally symmetric Hermitian metric on D^{2} such that it is a product metric of $S^{1} \times[0, \varepsilon)$ near the boundary $\partial D^{2}=S^{1}$. We then give a Hermitian metric on X which is the product of a given K-invariant Hermitian metric on M and the Hermitian metric on D^{2}. This metric on X is obviously product near the boundary Y and invariant under the K-action on X defined above. Let ∇ be the Hermitian connection of $T X$, which is uniquely determined under the conditions that the connection form of ∇ is of type $(1,0)$ and that ∇ preserves the Hermitian metric of $T X$. Note that ∇ is not necessarily torsion free. It is obvious that ∇ is the direct sum connection of the Hermitian connections of $T M$ and $T D^{2}$ and that ∇ is K-invariant. Since the K-action is free near the boundary of $X, X / K$ carries a complex structure and a Hermitian metric near the boundary. The connection ∇, which is K-invariant, descends to the Hermitian connection of $T(X / K)$. By restriction we obtain a connection, which we also denote by ∇, on $\left.T(X / K)\right|_{Y / K}$.

Note that Y / K is diffeomorphic to the mapping torus M_{g} and that $\left.T(X / K)\right|_{M_{g}}$ is orthogonally decomposed into $\left.T(X / K)\right|_{M_{g}}=\nu\left(\operatorname{Fol}_{g}\right) \oplus \mathcal{E}$ where \mathcal{E} denotes the trivial complex line bundle consisting of all Fol_{g} directed vectors. Under this decomposition ∇ splits as

$$
\nabla=\left.\nabla\right|_{\nu\left(\mathrm{Fol}_{g}\right)} \oplus \nabla^{0}
$$

where ∇^{0} is the globally flat connection of \mathcal{E}. Note that $\left.\nabla\right|_{\nu\left(\mathrm{Fol}_{g}\right)}$ is a basic connection for the foliation Fol_{g}. From this decomposition and 4.18 in [S] we obtain:

Proposition 3.4. $\quad S_{c_{1}^{m+1}}\left(\nu\left(\operatorname{Fol}_{g}\right)\right)=S_{c_{1}^{m+1}}\left(\left.T(X / K)\right|_{M_{g}}, \nabla\right)$.

Definition 3.5. Let ξ be a virtual K-vector bundle over X defined by

$$
\xi=\bigotimes^{m+1}\left(q_{M}^{*} T M-\mathcal{E}^{m}\right)
$$

where \mathcal{E}^{m} denotes a trivial K-vector bundle over X. Namely,

$$
\begin{aligned}
& \xi=\bigoplus_{k: \text { even }}\binom{m+1}{k} m k q_{M}^{*}\left(\bigotimes^{m+1-k} T M\right) \\
&-\bigoplus_{k: \text { odd }}\binom{m+1}{k} m k q_{M}^{*}\left(\bigotimes^{m+1-k} T M\right)
\end{aligned}
$$

Let $\tilde{\xi}$ be a virtual K-vector bundle over Y defined by $\tilde{\xi}=\left.\xi\right|_{Y}=$ $\bigotimes^{m+1}\left(q_{Y}^{*} T M-\mathcal{E}^{m}\right)$, and $\widehat{\xi}$ a virtual complex vector bundle over $M_{g}=$ Y / K defined by

$$
\widehat{\xi}=\tilde{\xi} / K=\bigotimes^{m+1}\left(\nu\left(\mathrm{Fol}_{g}\right)-\mathcal{E}^{m}\right)
$$

We endow connections of $\xi, \tilde{\xi}$ and $\widehat{\xi}$ which are induced from the Hermitian connection of $T \dot{M}$ and $\left.\nabla\right|_{\nu\left(\mathrm{Fol}_{g}\right)}$.

Definition 3.6. Let $\eta_{\widehat{\xi}}(1)$ be the eta invariant defined as in Definitions 2.8 and 2.10 for the virtual bundle $\widehat{\xi}$ over M_{g}.

Our first main result is:
Theorem 3.7. $\quad 2^{m+1} \widehat{\mathcal{F}}(g)=\eta_{\widehat{\xi}}(1) \quad \bmod \mathbb{Z}$.
Proof. Since M_{g} is a stably almost complex manifold there exists a compact $(2 m+2)$-dimensional almost complex manifold W such that $\partial W=M_{g}$, see $[\mathrm{Mo}]$. Let ξ^{W} be a virtual bundle over W defined by

$$
\xi^{W}=\bigotimes^{m+1}\left(T W-\mathcal{E}^{m+1}\right)
$$

We may assume that W is isomorphic to X / K near the boundary M_{g} as an almost complex manifold together with a Hermitian metric; hence the metric is product near M_{g}. Let ∇^{W} be the Hermitian connection of $T W$ which coincides with ∇ of $T(X / K)$ near M_{g}. Let $c(T W), \operatorname{ch}(T W)$ and $\operatorname{ch}\left(\xi^{W}\right)$ be the Chern and the Chern character forms with respect
to ∇^{W}. Since $\operatorname{sign}\left(W, \xi^{W}\right)$ is an integer, we then obtain from 2.6 and 2.11

$$
\eta_{\bar{\xi}}(1)=2^{m+1} \int_{W} \operatorname{ch}\left(\xi^{W}\right) \mathcal{L}(W) \quad \bmod \mathbb{Z}
$$

where $\bar{\xi}=\left.\xi^{W}\right|_{M_{g}}$. From the properties of the Chern character forms we have

$$
\begin{aligned}
\operatorname{ch}\left(\xi^{W}\right) & =\left\{\operatorname{ch}(T W)-\operatorname{ch}\left(\mathcal{E}^{m+1}\right)\right\}^{m+1} \\
& =\left\{c_{1}(T W)\right\}^{m+1}+\text { higher terms }
\end{aligned}
$$

Since the leading term of \mathcal{L} is equal to 1 ,

$$
\int_{W} \operatorname{ch}\left(\xi^{W}\right) \mathcal{L}(W)=\int_{W}\left\{c_{1}(T W)\right\}^{m+1}
$$

Hence it follows from this, the definition of $\widehat{\mathcal{F}}$, Propositions 3.4 and 5.15 in [S] that

$$
\begin{aligned}
\widehat{\mathcal{F}}(g) & =S_{c_{1}^{m+1}}\left(\nu\left(\mathrm{Fol}_{g}\right)\right)\left[M_{g}\right] \\
& =S_{c_{1}^{m+1}}\left(\left.T(X / K)\right|_{M_{g}}, \nabla\right)\left[M_{g}\right] \\
& =S_{c_{1}^{m+1}}\left(T W, \nabla^{W}\right)[\partial W] \\
& =\int_{W} \operatorname{ch}\left(\xi^{W}\right) \mathcal{L}(W) \quad \bmod \mathbb{Z} .
\end{aligned}
$$

On the other hand, since $\left.T W\right|_{M_{g}}=\nu\left(\mathrm{Fol}_{g}\right) \oplus \mathcal{E}^{1}$ we have

$$
\begin{aligned}
\bar{\xi} & =\left.\xi^{W}\right|_{M_{g}} \\
& =\bigotimes^{m+1}\left(\nu\left(\text { Fol }_{g}\right) \oplus \mathcal{E}^{1}-\mathcal{E}^{m+1}\right)=\overline{\xi_{1}}-\overline{\xi_{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \overline{\xi_{1}}=\bigoplus_{k: \text { even }}\binom{m+1}{k}(m+1) k \bigotimes^{m+1-k}\left(\nu\left(\mathrm{Fol}_{g}\right) \oplus \mathcal{E}^{1}\right) \\
& \overline{\xi_{2}}=\bigoplus_{k: \mathrm{odd}}\binom{m+1}{k}(m+1) k \bigotimes^{m+1-k}\left(\nu\left(\mathrm{Fol}_{g}\right) \oplus \mathcal{E}^{1}\right)
\end{aligned}
$$

Since there exists a complex vector bundle ξ_{3} over M_{g} such that $\overline{\xi_{1}}=$ $\widehat{\xi}_{1} \oplus \xi_{3}$ and $\bar{\xi}_{2}=\widehat{\xi}_{2} \oplus \xi_{3}$ where

$$
\widehat{\xi}_{1}-\widehat{\xi}_{2}=\widehat{\xi}=\bigotimes^{m+1}\left(\nu\left(\mathrm{Fol}_{g}\right)-\mathcal{E}^{m}\right)
$$

it follows from the property of eta invariants (see 2.4) that

$$
\begin{aligned}
\eta_{\bar{\xi}}(1) & =\eta_{\bar{\xi}_{1}}(1)-\eta_{\bar{\xi}_{2}}(1) \\
& =\eta_{\widehat{\xi}_{1}}(1)+\eta_{\xi_{3}}(1)-\eta_{\widehat{\xi_{2}}}(1)-\eta_{\xi_{3}}(1) \\
& =\eta_{\widehat{\xi}_{1}}(1)-\eta_{\widehat{\xi}_{2}}(1)=\eta_{\widehat{\xi}}(1) .
\end{aligned}
$$

This completes the proof.
Corollary 3.8. If p is odd, then $\widehat{\mathcal{F}}(g)$ vanishes if and only if $\eta_{\widehat{\xi}}(1)$ is an integer.

Proof. In view of Remark 3.2 it is clear that $\widehat{\mathcal{F}}(g)=0$ if and only if $2^{m+1} \widehat{\mathcal{F}}(g)=0$. This completes the proof.

Now, for $1 \leq k \leq p-1$, we apply 2.7 to the case where $a=g^{k}$, $X=M \times D^{2}$ and $\xi=\bigotimes^{m+1}\left(q_{M}^{*} T M-\mathcal{E}^{m}\right)$. Let $\Omega(k)$ be the fixed point set of the g^{k}-action on X. Note that $\Omega(k)$ coincides with the fixed point set of the g^{k}-action on M (cf. Lemma 3.3) and is the disjoint union of connected closed complex submanifolds N of M. Let $T N^{\perp}$ be the normal bundle of N in M, and

$$
T N^{\perp}=T N^{\perp}(-1) \oplus T N^{\perp}\left(\theta_{1}\right) \oplus \cdots \oplus T N^{\perp}\left(\theta_{s}\right)
$$

the decomposition into the Whitney sum of complex subbundles where g^{k} acts on $T N^{\perp}(-1)$ via multiplication by -1 and on $T N^{\perp}\left(\theta_{j}\right)$ via multiplication by $e^{i \theta_{j}}, \theta_{j} \neq \pi$. The normal bundle of N in X is the Whitney sum of $T N^{\perp}$ and a trivial complex line bundle \mathcal{E} where g^{k} acts on \mathcal{E} via multiplication by $e^{2 \pi k i / p}$. Hence it follows from 2.7 that

$$
\begin{equation*}
\eta_{\widetilde{\xi}}\left(g^{k}\right)=2^{n-d} \sum_{N \subset \Omega(k)} \operatorname{ch} \cdot \mathcal{L}\left(g^{k}\right)[N]-\operatorname{sign}\left(g^{k}, X, \xi\right) \tag{3.9}
\end{equation*}
$$

where $\operatorname{ch} \cdot \mathcal{L}\left(g^{k}\right) \in \prod_{q=0}^{\infty} H^{2 q}(N ; \mathbb{C})$ is defined as in 2.7 for the normal
bundle $T N^{\perp} \oplus \mathcal{E}$ of N in X, namely,

$$
\begin{aligned}
\operatorname{ch} \cdot \mathcal{L}\left(g^{k}\right)= & \operatorname{ch}\left(\left.\xi\right|_{N}, g^{k}\right)\left(-i \cot \frac{\pi k}{p}\right) \prod_{j}\left(-i \cot \frac{\theta_{j}}{2}\right)^{c\left(\theta_{j}\right)} \\
& \mathcal{L}(N) \mathcal{L}\left(T N^{\perp}(-1)\right)^{-1} e\left(T N^{\perp}(-1)\right) \prod_{j} \mathcal{M}^{\theta_{j}}\left(T N^{\perp}\left(\theta_{j}\right)\right)
\end{aligned}
$$

where $\left.\xi\right|_{N}=\bigotimes^{m+1}\left(\left.T M\right|_{N}-\mathcal{E}^{m}\right)$.
Our second theorem is
Theorem 3.10. With the notations as above we have

$$
2^{m+1} \widehat{\mathcal{F}}(g)=\frac{1}{p} \sum_{k=1}^{p-1} 2^{n-d} \sum_{N \subset \Omega(k)} \operatorname{ch} \cdot \mathcal{L}\left(g^{k}\right)[N] \quad \bmod \mathbb{Z}
$$

Proof. By 2.6, 3.9, Proposition 2.9 and Theorem 3.7 we have

$$
\begin{aligned}
2^{m+1} \widehat{\mathcal{F}}(g)= & \frac{1}{p} \sum_{k=1}^{p} \eta_{\widetilde{\xi}}\left(g^{k}\right) \bmod \mathbb{Z} \\
= & \frac{1}{p}\left[\sum_{k=1}^{p-1} 2^{n-d} \sum_{N \subset \Omega(k)} \operatorname{ch} \cdot \mathcal{L}\left(g^{k}\right)[N]+\int_{X} \operatorname{ch}(\xi) \mathcal{L}(X)\right. \\
& \left.-\sum_{k=1}^{p} \operatorname{sign}\left(g^{k}, X, \xi\right)\right] \bmod \mathbb{Z} .
\end{aligned}
$$

So the theorem follows from Lemma 3.11 and Lemma 3.12 below.
Lemma 3.11. $\quad \int_{X} \operatorname{ch}(\xi) \mathcal{L}(X)=0$.
Proof. Since the connection in ξ is induced from the connection in $T M$, it follows from the property of Chern character form that

$$
\begin{aligned}
\operatorname{ch}(\xi) & =\operatorname{ch}\left(\bigotimes^{m+1}\left(q_{M}^{*} T M-\mathcal{E}^{m}\right)\right) \\
& =\left(q_{M}^{*} \operatorname{ch}(T M)-m\right)^{m+1} \\
& =\left(q_{M}^{*} c_{1}(T M)+\text { higher terms }\right)^{m+1} \\
& =q_{M}^{*} c_{1}(T M)^{m+1}
\end{aligned}
$$

Since $\operatorname{dim} M=m, c_{1}(T M)^{m+1}$ vanishes identically. This completes the proof.

Lemma 3.12. $\quad \sum_{k=1}^{p} \operatorname{sign}\left(g^{k}, X, \xi\right)=0 \bmod p$.
Proof. From the definition of $\operatorname{sign}\left(g^{k}, X, \xi\right)$ (cf. 2.1 and 2.10), it suffices to show the following simple lemma.

Lemma 3.13. For any finite dimensional $K\left(=\mathbb{Z}_{p}\right)$-module V,

$$
\sum_{k=1}^{p} \operatorname{tr}\left(\left.g^{k}\right|_{V}\right)=0 \quad \bmod p
$$

Proof. Apply the next (3.14) to the eigenvalues $\lambda_{1}, \ldots, \lambda_{\operatorname{dim} V}$ of $\left.g\right|_{V}$.

$$
\begin{equation*}
\text { If } \lambda^{p}=1, \text { then } \quad \sum_{k=1}^{p} \lambda^{k}=0 \quad \bmod p \tag{3.14}
\end{equation*}
$$

This completes the proof.
When p is odd and $\Omega(k)$ is independent of k, we have a slightly simpler formula. Note that this situation occurs if p is an odd prime integer. Suppose that the fixed point set $\Omega:=\Omega(k) \subset M$ is a disjoint sum of connected closed complex submanifolds N. Let $\bigoplus_{j} T N_{j}^{\perp}$ be the decomposition of the normal bundle of N in M where g acts on the complex vector bundle $T N_{j}^{\perp}$ via multiplication by $e^{i \tau_{j}}$. We define σ_{k} by

$$
\begin{aligned}
\sigma_{k}= & \sum_{N \subset \Omega} 2^{n}\left(-i \cot \frac{\pi k}{p}\right) \prod_{j}\left(-i \cot \frac{k \tau_{j}}{2}\right)^{c_{j}} \\
& \left(\operatorname{ch}(T N)+\sum_{j} e^{k \tau_{j}} \operatorname{ch}\left(T N_{j}^{\perp}\right)-m\right)^{m+1} \mathcal{L}(N) \prod_{j} \mathcal{M}^{k \tau_{j}}\left(T N_{j}^{\perp}\right)[N]
\end{aligned}
$$

where $n=\operatorname{dim}_{\mathbb{C}} N$ and $c_{j}=\operatorname{rank}_{\mathbb{C}} T N_{j}^{\perp}$.
Corollary 3.15. Assume that p is odd and $\Omega=\Omega(k)$ is independent of k. Then,

$$
2^{m+1} \widehat{\mathcal{F}}(g)=\frac{1}{p} \sum_{k=1}^{p-1} \sigma_{k} \quad \bmod \mathbb{Z}
$$

In particular, $\widehat{\mathcal{F}}(g)$ vanishes if and only if $\sum_{k=1}^{p-1} \sigma_{k}$ is a multiple of p.
Proof. The corollary follows from Theorem 3.10, Corollary 3.8 and the following facts:
(i) since p is odd, $T N^{\perp}(-1)=\{0\}$;
(ii) $\left.\xi\right|_{N}=\bigotimes^{m+1}\left(\left.T M\right|_{N}-\mathcal{E}^{m}\right)=\bigotimes^{m+1}\left(T N \oplus\left(\bigoplus_{j} T N_{j}^{\perp}\right)-\mathcal{E}^{m}\right)$
and hence, by the property of $\operatorname{ch}\left(\left.\xi\right|_{N}, g^{k}\right)$ we have

$$
\operatorname{ch}\left(\left.\xi\right|_{N}, g^{k}\right)=\left(\operatorname{ch}(T N)+\sum_{j} e^{i k \tau_{j}} \operatorname{ch}\left(T N_{j}^{\perp}\right)-m\right)^{m+1}
$$

This completes the proof.

§4. Examples

Let $\left[z_{0}: z_{1}: z_{2}\right]$ be the homogeneous coordinates on the complex projective plane \mathbb{P}^{2}, and M the surface obtained by blowing up \mathbb{P}^{2} at one point, say $[1: 0: 0]$. Note that $c_{1}(M)>0$. The Lie algebra of all holomorphic vector fields on M is not reductive, and by Matsushima's theorem M does not admit an Einstein-Kähler metric. The last statement also follows from $\mathcal{F} \neq 0$. To see this we consider the \mathbb{C}^{*}-action $\left[z_{0}: z_{1}: z_{2}\right] \rightarrow\left[z_{0}: c z_{1}: c z_{2}\right], c \neq 0$, on \mathbb{P}^{2}. This action lifts to a \mathbb{C}^{*}-action on M. Let $w_{1}=z_{1} / z_{0}, w_{2}=z_{2} / z_{0}$ be the inhomogeneous coordinates on P^{2}, and $\mathcal{X}=2 \pi i\left(w_{1} \partial / \partial w_{1}+w_{2} \partial / \partial w_{2}\right)$ be the holomorphic vector field which generates the \mathbb{C}^{*}-action. Then \mathcal{X} also lifts a holomorphic vector field on M, which we denote by \mathcal{Y}. The zero set of \mathcal{Y} consists of the line $C=p^{-1}\left(\left\{\left[0: z_{1}: z_{2}\right]\right\}\right)$ and the exceptional curve $E=p^{-1}([1: 0: 0])$ where $p: M \rightarrow \mathbb{P}^{2}$ denotes the projection. One can then apply the localization formula for \mathcal{F}, cf. Theorem 2.6 in [FMaS], to obtain

$$
\mathcal{F}(\mathcal{Y})=\frac{(1+3 a)^{3}}{(1+a)}[C]+\frac{(-1+b)^{3}}{(-1-b)}[E]=4,
$$

where a and b denote the positive generators of $H^{2}(C ; \mathbb{Z})$ and $H^{2}(E ; \mathbb{Z})$ respectively. Consider now a \mathbb{Z}_{p}-action generated by an element g defined by $g\left(\left[z_{0}: z_{1}: z_{2}\right]\right)=\left[z_{0}: e^{2 \pi i / p} z_{1}: e^{2 \pi i / p} z_{2}\right]$ with p odd prime. One sees that $g=\exp (-\mathcal{Y} / p)$, and hence by Remark 3.1

$$
\widehat{\mathcal{F}}(g)=\frac{4}{p} \quad \bmod \mathbb{Z}
$$

We can alternatively derive this using Corollary 3.15. Modulo terms
of degree higher than 2 we have

$$
\begin{gathered}
\operatorname{ch}(T C)=1+2 a, \quad \operatorname{ch}(T E)=1+2 b \\
\operatorname{ch}\left(T C^{\perp}\right)=1+a, \quad \operatorname{ch}\left(T E^{\perp}\right)=1-b \\
\mathcal{M}^{-2 \pi k / p}\left(T C^{\perp}\right)=1+i \operatorname{cosec}\left(\frac{-2 \pi k}{p}\right) a \\
\mathcal{M}^{2 \pi k / p}\left(T E^{\perp}\right)=1-i \operatorname{cosec}\left(\frac{2 \pi k}{p}\right) b
\end{gathered}
$$

Using these we can deduce by straightforward computations

$$
\begin{aligned}
\sigma_{k}=22 e^{2 \pi k i / p}+4 e^{4 \pi k i / p}- & 6 e^{6 \pi k i / p} \\
& -26 e^{-2 \pi k i / p}-20 e^{-4 \pi k i / p}-6 e^{-6 \pi k i / p}
\end{aligned}
$$

Since $\sum_{k=1}^{p-1} e^{2 \pi l k i / p} \equiv-1 \bmod p$ for any integer l, it follows that

$$
8 \widehat{\mathcal{F}}(g)=\frac{32}{p} \quad \bmod \mathbb{Z}
$$

Further, since $(p, 8)=1$, we obtain again

$$
\widehat{\mathcal{F}}(g)=\frac{4}{p} \quad \bmod \mathbb{Z}
$$

We now take p to be 3 , and consider the \mathbb{Z}_{3}-action given by

$$
g\left(\left[z_{0}: z_{1}: z_{2}\right]\right)=\left[z_{0}: \omega z_{1}: \omega z_{2}\right]
$$

where $\omega=e^{2 \pi i / 3}$. Let $q_{1}=[1: 1: 0], q_{2}=[1: 0: 1]$ and $q_{3}=[1: 1: 1]$. We further blow up M at $q_{1}, g\left(q_{1}\right), g^{2}\left(q_{1}\right), q_{2}, g\left(q_{2}\right), g^{2}\left(q_{2}\right), q_{3}, g\left(q_{3}\right)$ and $g^{2}\left(q_{3}\right)$. Since we blew up \mathbb{P}^{2} at 10 points, the resulting manifold, which we denote by \widehat{M}, does not have positive first Chern class. Obviously the action of \mathbb{Z}_{3} on M lifts to the one on \widehat{M}.

Proposition 4.1. There is no non-zero holomorphic vector field on \widehat{M}, and

$$
\widehat{\mathcal{F}}(g)=4 / 3 \quad \bmod \quad \mathbb{Z}
$$

Proof. Let a be an element in the identity component of the group of all automorphisms of \widehat{M}. Since the self-intersection of each exceptional curve is -1 , a leaves each exceptional curve invariant and descends to an automorphism of P^{2} which leaves the 10 points fixed. But
such an automorphism on P^{2} must be an identity, and thus $a=1$. This proves the first assertion. To prove the second assertion, note that the fixed point set of the g-action on \widehat{M} is equal to the one on M. So the computation of $\widehat{\mathcal{F}}$ for \widehat{M} using Corollary 3.15 reduces to quite the same computation as in the case of M. This completes the proof.

We now examine a few cases where $c_{1}(M)>0$. The following lemma is useful.

Lemma 4.2. In the situation of Definition 3.6, let g be an automorphism of M of order 2. Then $\eta_{\widehat{\xi}}(1)=0$. In particular, if H is a subgroup of the group of automorphisms generated by elements of order 2 , then $2^{m+1} \widehat{\mathcal{F}}(h)=0$ for all $h \in H$.

Proof. Consider a symmetry $\phi: M \times I \rightarrow M \times I$ defined by $\phi(z, t)=$ $(z, 1-t)$. Then ϕ descends to M_{g} since

$$
\begin{gathered}
\phi(z, 0)=(z, 1) \quad \text { and } \\
\phi(g(z), 1)=(g(z), 0) \sim\left(g^{2}(z), 1\right)=(z, 1) .
\end{gathered}
$$

Since ϕ is an orientation reversing isometry and hence anti-commutes with $A_{\widehat{\xi}}$, the eigenvalues of $A_{\widehat{\xi}}$ are symmetric with respect to 0 and therefore the eta function $\eta_{\widehat{\xi}}$ is identically zero by the definition (see Definition 2.4). This completes the proof.

This lemma may not imply that $\widehat{\mathcal{F}}(g)=0$ for an element of order 2 because of the factor 2^{m+1} in Theorem 3.7, but at least in the surface case this is true, see [FMa].

A compact complex surface with $c_{1}(M)>0$ and with no non-zero holomorphic vector field is obtained by blowing up \mathbb{P}^{2} at k-points, $4 \leq$ $k \leq 8$, in general position. When these points are in sufficiently general position it is known that the group of all automorphisms is generated by elements of order $2([\mathrm{~K}])$.

Let us consider the Fermat hypersurface M of degree m in \mathbb{P}^{m}. It is known by $\mathrm{Siu}[\mathrm{Si}]$ and Tian [T] that there exists a Kähler-Einstein metric on M. By Lemma 4.2 the eta invariants vanishes modulo \mathbb{Z} on the subgroup S_{m+1} consisting of the elements corresponding to the permutations of the $m+1$ coordinates. Consider now a $\left(\mathbb{Z}_{m}\right)^{m+1}$-action generated by

$$
g_{j}\left(\left[z_{0}: z_{1}: \cdots: z_{m}\right]\right)=\left[z_{0}: z_{1}: \cdots: \tau z_{j}: \cdots: z_{m}\right], \quad j=0, \ldots, m
$$

where $\tau=e^{2 \pi i / m}$. Since $g_{j}^{m}=1, \widehat{\mathcal{F}}\left(g_{j}\right)$ must be of the form $\widehat{\mathcal{F}}\left(g_{j}\right)=q / m$ with an integer q, and by symmetry we also have $\widehat{\mathcal{F}}\left(g_{i}\right)=\widehat{\mathcal{F}}\left(g_{j}\right)$. Hence

$$
\widehat{\mathcal{F}}\left(g_{0}\right)=\widehat{\mathcal{F}}\left(g_{1}^{-1} \ldots g_{m}^{-1}\right)=-m \widehat{\mathcal{F}}\left(g_{0}\right)=-q \equiv 0 \quad \bmod \mathbb{Z}
$$

Using Corollary 3.15 , one can check the vanishing of $\widehat{\mathcal{F}}(g)$ for the following examples which appear in the tables of classification of Fano threefolds in [MM]:

1) the blow-up of \mathbb{P}^{3} with center the intersection of two cubics,

$$
\begin{aligned}
& z_{0}^{3}+z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=0 \\
& a_{0} z_{0}^{3}+a_{1} z_{1}^{3}+a_{2} z_{2}^{3}+a_{3} z_{3}^{3}=0
\end{aligned}
$$

where $a_{i} \neq a_{j}$ for $i \neq j$, with the action

$$
g\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\omega z_{0}: z_{1}: z_{2}: z_{3}\right]
$$

2) the blow-up of P^{3} with center a twisted cubic,

$$
\left\{\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right] \mid[u: v] \in \mathbb{P}^{1}\right\}
$$

with the action

$$
g\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[z_{0}: \omega z_{1}: \omega^{2} z_{2}: z_{3}\right]
$$

3) the blowing up of P^{3} with center the disjoint union of a line, $\left\{z_{1}=z_{2}=0\right\}$, and the twisted cubic with the action defined as in 2);
4) V_{7} being the blow-up of \mathbb{P}^{3} at a point, $[1: 0: 0: 0]$, the blow-up of V_{7} with center the strict transform of a twisted cubic passing through the center of the blowing up $V_{7} \rightarrow \mathrm{P}^{3}$, with the action defined as in 2);
5) the blow-up of a cubic threefold

$$
z_{0}^{3}+z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+z_{4}^{3}=0
$$

in \mathbb{P}^{4} with center a cubic curve,

$$
z_{0}=0, \quad z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+z_{4}^{3}=0
$$

with the action

$$
g\left(\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right]\right)=\left[z_{0}: \omega z_{1}: z_{2}: z_{3}: z_{4}\right]
$$

6) V_{2}, i.e. the smooth hypersurface,

$$
z_{0}^{6}+\cdots+z_{3}^{6}+z_{4}^{2}=0
$$

of degree 6 in the weighted projective space $\mathbb{P}\left(z_{0}, \ldots, z_{4}\right)$, where $\operatorname{deg} z_{i}=$ 1 for $0 \leq i \leq 3$, and $\operatorname{deg} z_{4}=3$, with the action

$$
g\left(\left[z_{0}: \cdots: z_{4}\right]\right)=\left[\omega z_{0}: z_{1}: \cdots: z_{4}\right] .
$$

These are not at all exhaustive in the tables of [MM], but we selected them among those which do not have non-zero holomorphic vector field and have an automorphism of odd order such that no subgroup generated by elements of order 2 contains it.

References

[AS] M.F.Atiyah and I.M.Singer, The index of elliptic operators, III, Ann. of Math., 87 (1968), 546-604.
[APS] M.F.Atiyah, V.K.Patodi and I.M.Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Camb. Phil. Soc., 77 (1977), 43-69.
[BM] S.Bando and T.Mabuchi, On some integral invariants on complex manifolds, I, Proc. Japan Acad., 62 (1986), 197-200.
[D] H.Donnelly, Eta invariants for G-spaces, Indianna Math. J., 27 (1978), 889-918.
[F1] A.Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437-443.
[F2] \longrightarrow On a character of the automorphism group of a compact complex manifold, Invent. Math., 87 (1987), 655-660.
[FMa] A.Futaki and T.Mabuchi, An obstruction class and a representation holomorphic automorphisms, in "Geometry and Analysis on Manifolds \# 1339", Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988, pp. 127-140.
[FMaS] A.Futaki, T.Mabuchi and Y.Sakane, Einstein-Kähler manifolds with positive Ricci curvature, this volume.
[FMo] A.Futaki and S.Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Diff. Geom., 21 (1985), 135-142.
[KS1] N.Koiso and Y.Sakane, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, in "Curvature and topology of Riemannian manifolds", Lecture Notes in Math. \#1201, SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1986.
[KS2] \longrightarrow, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, II,, preprint.
[K] M.Koitabashi, The group of automorphisms of rational surfaces, Master Thesis, Osaka University (in Japanese).
[MM] S.Mori and S.Mukai, Classification of Fano 3-folds with $b_{2} \geq 2$, Manuscripta Math., 36 (1981), 147-162.
[Mo] S.Morita, Almost complex manifolds and Hirzebruch invariant for isolated singularities in complex spaces, Math. Ann., 211 (1974), 245-260.
[Sa] Y.Sakane, Examples of compact Kähler-Einstein manifolds with positive Ricci curvature, Osaka J. Math., 23 (1986), 585-617.
[S] J.Simons, Characteristic forms and transgression II - Characters associated to a connection, preprint.
[Si] Y.T.Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math., 127 (1988), 585-627.
[T] G.Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$, Invent. Math., 89 (1987), 225-246.
[TS] G.Tian and S.T.Yau, Kähler-Einstein metrics on complex surfaces with $C_{1}>0$, Comm. Math. Phy., 112 (1987), 175-203.
A. Futaki

Department of Mathematics
Faculty of Science
Chiba University
Yayoicho, Chiba 260
Japan
K. Tsuboi

Department of Natural Sciences
Tokyo University of Fisheries
Minato-ku, Tokyo 108
Japan

