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Let X be a primitive Dirichlet character with conductor f, let z(X) be
the Gaussian sum for X, and let L (s, X) be the p-adic L-function associated
with . Then, by the results of Brumer [3] and Leopoldt [8], the value
L,(1, %) of this function at s=1 is not zero, and is given by the following
formula:

1,01, == (1-H2) =8 5230 tog (12,

Since this value is related to the class numbers of cyclotomic fields, it is
important to obtain a lower bound of L (1, X).

Since the above formula expresses L, (1, X) in a linear form of p-adic
logarithms of algebraic numbers, it is natural to study lower bounds of
linear forms of p-adic logarithms of algebraic numbers by Baker’s method.
There are several results in this direction (cf. Spindzhuk [10], Kaufman [6],
van der Poorten [9], etc.). But some results are not explicit enough for us,
and some paper has (minor) mistakes so that the resulting constants must
be modified (cf. Remark in 2-1). Since the values of the constants are
essential for our purpose, we first study this problem. Then, calculating
the relevant constants, we obtain a lower bound of L,(1, %).

In §1, we improve a result of Gel’fond [4] on p-adic interpolations
of p-adic normal functions by polynomials. In §2, we calculate lower
bounds of linear forms in p-adic logarithms of algebraic numbers by the
method of Baker [2]. In §3, we use the explicit formula of L (1, %) and,
by calculating the relevant constants, obtain a lower bound of L(1, X).

The author first studied this problem by the method of Kaufman [6].
Then he heard the existence of van der Poorten [6] from M. Waldschmidt.
So he used the method of Baker [2] and improved the lower bound. After
writing this paper, the author met A. Baker and heard that Waldschmidt
improved Baker’s result in [11], and that a Chinese mathematician also
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studied our problem (cf. [12]).

We note that our lower bound is not best possible. It seems that we
can improve the bound if we use the method of Waldschmidt [11] and
calculate the relevant constants more carefully. But it seems very difficult
to improve our lower bound by this method so much as examples show.
Maybe, we must use the theory of Z -extensions to get an essentially bet-
ter lower bound.

§ 1. An improvement of a result of Gel’fond book

Let Q be the rational number field, let R be the real number field,
and let C be the complex number field. We denote the standard valua-
tion (the absolute value) of C by | |... Let p be a prime number, let Z,
be the ring of p-adic integers, let Q, be the p-adic number field, and let
C, be the completion of the algebraic closure of (Q,. We extend the
standard p-adic valuation | |, of Q, to C,, and denote the extended
valuation by the same symbol | |,. We fix embeddings of the algebraic

closure Q of Q into C and C,, and regard algebraic numbers as elements
of C and C,.

We say that a formal power series f(z2)=>m_.fn.2" € C,llz]] is a
normal function if the coefficients f,, satisfy | f,,|,<1 for any m and f,,—0
(m—o0) (cf. Gel’fond [4], p. 119). Then f(z) defines an analytic function
on the unit disc {ze C,; |z|,<1}. Further, for any point z, of the unit
disk, f(z—z,) is also a normal function. Furthermore, if f(z) is a normal
function, and if f(z) vanishes of order k at a point z, of the unit disk,
then f(2)/(z— z,)* is also a normal function (cf. ibid, for the properties of
normal functions).

Let r, and r, be positive integers, let x, (0<k<r,—1) and a,,
(0<s<r,—1, 0<k<r,—1) be elements of C,. Then Gel’fond has shown
that the unique polynomial P(z) e C,[z] of degree r,r,—1 such that

{<7d‘)sp}(xk)=as,k O<s<r—1, 0<k<Lr,—1)
zZ

is given by the following formula:

re—=1lr1—=1n a mei
P@)= 3 3 51 dna
k=0 n=0

=0 (r,—n—1)! (n—ys)!

Let 4 be a positive rational number. We assume
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x,=p’k O<k<r,—1).

Then we have (cf. ibid. p. 122, (82))

(rl—n—ll)! (n—s)! [<—ddz_)n_szl;lk (Z—xk)_“] 2=ws

S T o At e 2 )L
T (r,—n—1! {Bnss {kt(r,— k=D (r,—1)1y,!
% (ry4v,—2)! (i, =D 1

(r,— D! (v, — D! (r— D!yl k(k—1)2- - -(k—ry+ 1)y
Since binomial numbers are integers, and since the inequality

[/, < ] < mp|p 0,
holds, it is easy to study the normality of this function. Further, if zis a

positive integer greater than r,, then we have

. r,—1\? re—1)/(p~
LTI (z—-z)lpglk!(rz_k_l)!lp_é(?T)pz‘p( Do)

0<izrs-1
Hence we obtain the following result (cf. ibid. p. 121, (80)):

Proposition 1. Let the notation and assumption be as above. Let m
be a rational number. We assume that

las,/sY, <1 p™

holds for any s and k. Then the interpolation polynomial P(z) is normal if
the inequality

ri(r,— {0+ 1/(p— D} +(r,— 1) log, (r,—1)/log, p<m
holds.  Further, we have
| P(2)],<| =i ra= D10+ 1/ (=0} = (ra=Dloge(ra=1/1ogep|
Sor |z|,<1, and
lP(Z) |p£le—srlloge(rz—l)/logep—7'1(‘Z+1/(p—1)) 0

foranyzeZ,.

Let F(z) be a p-adic normal function. Let R and S be positive inte-
gers, and let m and @ be positive rational numbers. Let Q(Z) be the
unique polynomial of degree RS—1 such that
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(Y ojon={(-L) Flen  ©<r<r—102s<5—.

We assume that
1 d )3 } ’
—\—) F
5! {< &) £y

holds for 0<r<R—1, 0<s< S—1. Then it follows from Proposition 1
that Q(z) is normal if the inequality

pélp’"lp

(R—1)S{o+1/(p—1}+Slog, (R—1)/log, p<m

holds. Further, if we write
F@)=0@)+ [l (—p’r)’G(2),
0<r<R-1

then the function G(z) is also a normal function. Hence, if z is a p-adic
integer, and if Q(z) is a normal function, then we have

‘F(Z) lp< Max {I p‘m—38108e(R-1)llogep- S{2+1/(p-1)} lp’

R-1)S{0+1/(p-1)} - Slog.(R~1)/logep—28
Ip( )8 { } e )/loge. lp}'
Hence we haVe the fOllOWing:

Proposition 2. Let F(z) be a normal function, let m and 6 be positive
rational numbers, and let R and S be positive integers. We assume that
the following two inequalities hold:

1((d\ .\
() Flen
R—-DS{e+1/(p— D} + Slog, (R—1)/log, p< 7.

Then, for any z e 7, we have

<[p™,
4

|F(2)],< | pR-D510 +1/ (=1} -2510ge (R 1)/logep-15|

§ 2. Lower bounds of linear forms in p-adic logarithms of algebraic
numbers

2-1. Notation and assumption. Let p be a prime number, and let

Q. Q,Q, C,C, etc. be as in §1. Leta, (i=1,2, - - -, n) be algebraic
numbers. We assume that
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l—1,<|2],  (fp=2)
lai_llpélp‘p (lfp23)

holds for any i. Then it follows that |a,—1|,<|p¥®-"|,. Hence the p-
adic logarithmic function log (z)= > ,-,(—1)"*'(z—1)"/n converges at
z=u,, and satisfies

|log (ers) |, =, — 1], <[ P77,

Further, for |z|,<1, the function («,)*=exp {zlog («,)} is well-defined and
satisfies |(«,)* —1|,=|z],|log («;)|,=]|zl,|a; —1|,, where exp (z) denote the
p-adic exponential function exp (2)=>;,2"/k!.

Let B, (i=0, 1, - - -, n) be algebraic numbers. We assume that each
B, satisfies |§;],<1. Let

<
A=‘30+ﬂl 10g 0‘1'*" e +‘8n IOg (228

If |B,|,>|p"®"|,, then |A],=|B,|, holds. Hence we assume |B,],<
|p1/(P—1) Ip'

Let K be the field generated over () by the «; (i=1, ---, n) and §,
(i=0,1, ---,n). We assume that the height of each «; is at most 4,
(4,>4), and the height of each 8, (=0, 1, - - -, n) is at most B (B>4), and
that the degree [K: Q] is at most d. Let 4A=Max,_,., 4,, and let

Q= TJ] log,4, and 2= [] log, 4,.
1<i<n 1<i<n-1
We understand that £’ and log, 2’ denote 1 if n=1.
In this section, we obtain a lower bound of ||, of the form
(BQ)—CQlogeﬂ’logep.

Remark. In [2], Baker studied linear forms in logarithms of algebraic
numbers of the form 4. He obtained a lower bound of | 4], in the fol-
lowing form:

I A‘w >(BQ)- (16m2)2007 Q2 Jog, !2"

Further, van der Poorten has claimed in [9] that the same result holds
over the field C, under the conditions |, —1],<1 (i=1, ---,n), |8|,<1
(i=0,1, ---,n) and |B,|,=1. The arguments of [9] are essentially cor-
rect, but the result seems to be corrected.

In [9], the argument from p. 35, line 23 to p. 36, line 2 is not correct,
because £ is not contained in K. Hence the resulting constant C seems
to be modified so that C depends on p. Further, it seems that the
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normalities of the interpolation polynomials are not checked (cf. [9], p. 44,
line 11-29). Since the value of the constant C is vitally important for
us, we give an outline of the proof. Our constant depends on p, and it
is bigger than Baker’s constant.

2-2. Results under an assumption on [K(a¥? o3¢, - - -, a¥9): K]
We use the method of Baker [2], and use the result of §1 to get estimates
of interpolation functions.

Letn, &, B A, K, d, A;, A, B, 2,log, £, etc. be as in 2-1. We
assume that 8,=—1. Let k ¢ Z be a parameter which depends on n and
d. We assume that (1) k>30n*d)*" if n>>2 and p>3, (2) k>(50n*d)" if
n>2 and p=2, (3) k>(60d)°, B>log, A>>6, and d>6 if n=1 and p>3,
and (4) k>(100d)°, B>log, A>6 and d>6if n=1 and p=2.

For any real number x, let [x] denote the largest integer satisfying
[x]<x. Pute=1/(3n), L=kQlog, &', h=L_,+1=[log, (BA)], L,=[k'-*£],
L,=[k*Lflog, A,] 1<i<n).

Let g be a prime number satisfying g=#p and 7<<g<k'¢, and let J
be a non-negative integer such that ¢7 <k’ log, 2’. This implies ¢’ <k
if n=1. Let LY=L _,, L{"=L,, and LY’ =[L,/q’] (1<j<n). Let v(h)
be the least common multiple of 1, 2, .- -, A, and, for any integers /, m
>0, let

d

s tm=— (LY @)@+ Erhmy.

Let m,, m,, - - -, m,_; be non-negative integers, let L’ denote the set
of n4-2-tuples 2=(A_,, 4, 4, - - -, 4,) of integers satisfying 1<i_,<
LR 1< AL L, 1<A <L, -+, 1<, < LY. For any element 1 of
L, put 7,=2,+ 2,8, 1<i<n—1),

mo

D=5 (M)t A Z 2 b dot L JGa 7B
0

#o=0

Let p(A)=p“Q) e ZNC,. We define two functions f(z) and g(z) on
{ze C,; |2z],<1} by
J@=1"zmy, my, -+, m, )

= Zu,l’(")(l)«!r(‘”(l, P L SR At S Y G
AL

8(2)=g"(z; myy my, - - -, m,_y)
= > PR, D)ol - o YT Y m

FyAL)

Then we can prove the following proposition (cf. Baker [2], p. 16):
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Proposition 3. Let the notation and assumption be as above. We

assume
h .
C>073x —— k¥ log, ifn>2,
log, (BQ) &P 7
and
h .
C>0.6Tx ———k**log, if n=1.
iog, (80) " el ¥

Then there exist integers p(2)= p”(2) e LY such that (i) the p(2) are not
all zero, (ii) the absolute value of each p(3) is at most exp (10-°Lh) if
n>2, and is at most exp (107°Lh) if n=1, and (iii)

g(J)(l; My, My, -+ -, mn—1)=0

holds for any integer | with 1<I<hk**q’ and for any n-tuple (m,, m,, - - -,
m,_,) of non-negative integers with my+m,+ - - - +m,_<Lq~7.

An outline of the proof. Let k be as in the beginning of 2-2. If
n>2 and p>3 (resp. if n>>2 and p=2, resp. if n=1 and p>3, resp. if
n=1 and p=2), then k>(30n’d)"*>(120)"*, h>>[log, {4 X (120)"* X (log, 4)*
Xlog, log, 4}] = 58, hk*/* > 58 X 120=6.96 X 10%, hk'/*>> 58 X (120)° >1.73
X 10" (resp. k > (50n°d)"* > (200)%, h > [log, {4 X (200)* X (log,4)*X
log, log, 4}]1=163, hk**> 63X 200=1.26 X 10%, hk'* > 63 X (200)® > 4.03 X
10", resp. k> (60d)° > (360)°, h > [log, {6 X (360)° X 6}] = 38, hk** > 38 X
360>1.36x 10%, hk'*>38 % (360)* > 1.77 X 10°, resp. k > (100d)° > (600)°,
h>[log, {6 X (600)° X 6}]=41, hk**>41 X 600=2.46 X 10*, hk'*> 41 X
(600)* > 8.85x 10°). We note 1/log, 4=0.72134...<0.73 and 2/3 =
0.66666- . . < 0.67.

We use these estimates of constants, and use the following inequality
also:

x/log, x>y/log, y (x=y>e).

Then, following the arguments of Baker [2], Lemma 7, and using also the
estimate of the constant M/(N— M) in Siegel’s lemma, we can prove the
following lemma.

Lemma 1. Proposition 3 holds for J=0.

Now, following the arguments of Baker [2], pp. 11-17, and using
Proposition 2, we can prove Proposition 3 by induction on J. Namely,
we assume that Proposition 3 holds for J. Then we can prove the fol-
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lowing two lemmas:

Lemma 2. Let the notation and assumption be as above. Then, for
any integer I with 0< 1< 3n, we have g(I; my, my, - - -, m,_)=0 for any
integer 1 with 1<I<hk*De2q7 and for any n-tuple (my, m,, - - -, m,_,) of
non-negative integers with my+m,+ - - - +m,_, < L(1—¢)lq~".

Lemma 3. Let the notation and assumption be as above. Then, for
any integer 1 with 1<I<hk**q’*' and for any n-tuple (my, my, - - -, m,_,)
of non-negative integers with my+m,+---m,_ < (1/6)Lqg~7, we have
g(J)(l/q; mos My, - -+, mn-l)zo'

We assume that Proposition 3 holds for J. Then using Proposition 2
instead of using the complex contour integrals, we can prove Lemma 2.
Since (1—e)*">e~'>1/3, g“2(I: my, my, - - -, m,_,)=0 holds for any integer
I with 1<I<hk®*®/?q7 and for any non-negative integers m,, m,, - - -, m,,_,
with my+m, 4 ---4+m,_<(1/6)Lg-’. Since ¢>7>6, Proposition 3
follows easily from these two lemmas.

Note that in Proposition 2, there are two inequalities. The condition
on C comes from the normality of the interpolation polynomials, and the
condition on k comes from the other condition in Proposition 2.

Now we have proved Proposition 3. Hence, following the arguments
of Baker [2], pp. 17-19, we can obtain a lower bound of |4],.

Let the notation and assumption be as in Proposition 3. Hence we
assume (1) k> (30n*d)" if n>2 and p>3, (2) k> (50n*d)" if n>2
and p=2, (3) k>(60d)®, B>log, A>6, and d>6 if n=1 and p>3, and
4) k>(100d)*, B>log, A>6 and d>6 if n=1 and p=2. We also
assume

h .
C>073x —— X< klog, if n>2,
log, (BD) &P =

and

h

C>0.67TX ———
log, (BQ)

k¥*log, p ifn=1.

Then we have the following theorem:

Theorem 1. Let g=7 or g=11 according as p+7 or p=71. If
[K(ale, o/, - - -, a¥Y): Kl=q", and if A0, then we have

I/Ilp2 (BQ)- 0910 2",

Let the notation and assumption be as in Theorem 1. Then
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hjlog, (B2)<log, (BkR log, 2)/log, (BY)
<{log (k)+log, (B2 log, )}/log, (BR)< 2+ log, (k)/log.(BR).

If n>>2 and p>3, then log, (B2)>log, (4 (log, 4)))>2.03 and log, k> 12
log, 120>57.4. Hence it is enough to have

0.73 ( 2x%2.03
T 203\ 574

+ 1)k3/2 log, k log, p.
Hence it is enough to have
C>0.386k** log,k log, p.

Put k=30n*d)*". Then log, k< 12n log, (6nd)<72n’d(log, 12)/12<
15.0 (30n°d). Hence it is enough to have

C>5.80 (30n*d)*"*! log, p.
Similarly, if #2>2 and p=2, then it is enough to have
C>0.383k**log, k log, p.
Put k=(50n*d)*". Then it is enough to have
C>6.40(50n°d)"** log, p.
If n=1 and p>3, then it is enough to have
C>0.226k**logk log, p.
Put k=(60d)°. Then it is enough to have
C>2.22x 107%(60d)" log, p.
If n=1 and p=2, then it is enough to have
C>0.223k**log, k log, p.
Put k=(1004)®. Then it is enough to have
C>1.43x 1072 (100d)* log, p.

2-3. Lower bounds of linear forms. Now we obtain a lower bound
of the linear form A=p4,-+p, loga,+ - - - + B, log &, without the assump-
tion on [K(a¥/%, a9, - - -, @¥?): K]. Namely, we modify the arguments of
Baker [2], pp. 19-21, and prove the following theorem:
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Theorem 2. Let the notation and assumption be as in 2-1. We assume
that A,=Min,_,_, A; and "= Q[log, A,. Then we have

lAlpZ(BQ)—2"3/6(300nd)10"+7!210g,!)’log¢p
for n>2 and p>3,
IA|p2(BQ)—2"3/6(500nd)1°"+7910ge 92'loge p
for n>2 and p=2,
|41, (BQ)~ oo rser
for n=1 and p>3,
lAlp2 (BQ)— (100d)17 2 loge p

for n=1and p=2. Further, if n>2 and if a,, ay, - - -, a, are multiplica-
tively independent, then we have

IA lpZ (BQ)_zn('n+ 1)/2(300nd)107+7Q loge 2’ loge D

Jor n>2 and p>3, and
lAIPZ(BQ)_zn(n+1)/2(500nd)10n+79103e{J']ogep
for n>2 and p=2.

Remark. If K contains exp (2zi/q) (g=7 or 11, and g=p), then the
constants 300, 500 in the above formulas can be reduced to 30, 50, re-
spectively.

Proof. Let 4, (i=1, ---,n), A,B,K,d, 2, 2, etc. be as in 2-1. We
note that, by our assumption 4,=Min,_,_, 4;, 2’ is the largest of the
Qlog, 4, (1<i<n).

If B<log, 4, then put B,=log, A. Then

~CQloge 2 -2CQ1log 2
(B.2) >(B2)

holds. Hence, replacing the constant C by 2C, we may assume B>log, 4.
If log, A<nd, then log, A,<nd. Put B,=Max (B, nd), Q,=(nd)" and

5= (nd)"~'. We have (BQ)?>4%(log,4)"*>nd. Since Q>1 and
0 log, 2'>1/2, we have

(Bz.Qg)-ZC'OZ loge 24 > B2—2C(n2—1) (nd)n+1 >(B‘Q)—4'ﬂ(nd)"+20!)logg gr.

Hence, replacing the constant C by 4n(nd)"**C, we may assume B>log, 4
>nd.
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Let g=7 or 11 according as p=+7 or p=7. Let K,=K (exp 2zi/q)).
Then K, contains «, (i=1, ---,n), 8, (=0, 1, ---,n), and exp(2xi/q).
Further, the degree [K,: Q] is at most [Q (exp (2ri/g): Q] X [K: Q] <
(g— 1)d<d,=10d. Hence, replacing d by 10d if necessary, we may assume
that K contains exp (2zi/g). We note that this reduction is not necessary
ifn=1.

Now we rearrange the order of the indices of the 4,, and assume
that 4,<A4,< ---<4,. We assume that [K(a¥9, - - -, a/9): K]=¢™ but
aY?, does not generate an extension of K(a¥?, ..., a¥?) of degree q.
Then, by the Kummer theory, there exists an element 7 of K such that

A =0y - o T? 0<Lr,<g).

By our assumption, |7¢—1],<|p|, if p>3 and |7?—1],<|p|, if p=2.
Since g=~p, the equation X?—1=0 is separable over a field of character-
istic p. Hence the discriminant of this equation is not zero, and only one
7 e K can satisfy X?=7? and |r—1|,<<1. Hence we take such an element
7. Then the condition |7 —1[,<|p|, (p=3), |1 —1|,<|p|, (p=2) is satis-
fied.

As far as possible, we construct a sequence ¥'=17,, 7y, 73 - - - Of ele-
ments of K such that 7, =ajuaj®- - -a7t"r¢,, (0<r;<g) and express 7; as

11 — 14 — 13
Ti=aplarsn/et. . mie 0L s, <gh).

Since the height of «, is at most 4,, the absolute value of any conjugate
of o, or a;! is at most 4,4 1. Hence the absolute value of any conjugate
of 7, or 1r;7tis at most (4,4+1)---(4, + 14, ., +D<L2™"4,-- - A, A1
<(24)". Since the height of «, is at most A4,, the denominator of «,; or
a;'is at most 4,. Hence the denominator of 7, or 7;'is at most 4, - -
A A,

Put

H={4"*(10d)" log, (24)*"}¢=*H?,
By our assumption B>>log, A>nd,
H£{2(2n2+9n+1)d2n loge A}(Z"“)géBaln‘_

If the above sequence terminates with ¢'< H, then we substitute 7,
for a,,,,. Then A is expressed as

Azﬁo+(ﬁ1+sz1) loga,- - - - +(‘Bm‘1’slm) log e,y
+ql 10g7’l+ ot +‘Bn IOg Ay
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The coefficients of this linear form are in K with heights at most
{2B(B+H)}*¢. We repeat this substitution at most n-times until the con-
dition [K((a})"?, - - -, (a%)/9): K]=g" is satisfied with respect to the new
of, or the above sequence does not terminate with g*< H. Then the co-
efficients 8} of the resulting linear form

A=g+ptlogal+ - -+ 6 log

are in K with heights at most {2B(B+nH)}*?<{2B*(1 4 B*")}**< B*=
B#ma_ Further, the heights of the of, af, af, - - -, &f are at most
{2(A1_}_ I)Al}wdé {22A%}10d é AixlOd,
{204, + 1) (44 D4, A4,}°0 < {22450 < AP,
{204+ D((4, 4 DAz + D)4+ 1) A4,(A, A) A} {2 A < A0,
{204, 4 D((A; 4+ D(A 4 D)4, + D(A4, 4+ D)4, + DA+ D) (A, + 1)
>< AI(AIAZ)(AIAIAZAB)A4}lOdé{291416}“”: cen, {2l+2n—1A"21n}10d~<_ A2n+110d.
After these substitutions, 2=(log, 4,) (log, 4,)- - -(log, 4,) is replaced by
QAL 27025 20d2 and Q' is replaced by Q%< 2122040,
If the condition [K((af)/4, - - -, (at)",): K]=g¢" is satisfied after these

substitutions, then we use Theorem 1. We rearrange the order of index
and assume that | 8%],>| 5|, holds for any . We consider

— A= (— 84/ 8+ (— /7)) log af+ - - - —log ar;.

Since the denominators of the 8% and (5f)~' are at most B, the denomi-

nators of the g#/g% are at most B>. Hence the heights of the gf/s are at

most (2B%(B* 4 1)) < (BB < B2 Since
{(B1684n4d2)2’ﬂ(n+1)2OdQ}2"(”+1’”20(1.@]0&;(2‘“*"1’"”20(19’)

< (B]690n4dﬂg)2"("+1’1210d9(n +1)nloge (40d427)

< (B,Q)Z"("‘L 1)/2(30n23)42 log, Q',

Theorem 2 follows from the results of 2-2 in this case. Note that, in this
case, the lower bound can be taken as in the second part of the theorem.

If the above sequence does not terminate with ¢g'<C H, let [ denote the
least integer such that g > H. Then, by Lemma 6 of Baker [2], there exist
integers b’, b, « - -, b, ., not all zero, with absolute value at most H such
that

b{ 10g6(1+ +bm+1 10gam+l+b, logrl=0‘

Hence we obtain
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by loga,+ - - - +b, loga,,+b, ., log ety 1 =0
(b =q'b;—b's;;, by, .y =q' b}y 1+ D).

Here the coefficients b}’ are integers with absolute values at most 2gH®.
Furthermore, we can write

b;r:+1/1:‘86+‘@{ loge al"" cet +[B;L Ioge (249
(ﬂo:b%nﬁo: ﬁz,"—_b;ri+lﬂi—b£,‘8m+l)'

Here §;, B1, - - -, B, are elements of K with heights at most
(4(2qHZ)(B+ I)B)lodg (24qB2X5407L4dB162‘n4)10d§_ B21(30ﬂ2d)2’

and 3,,,,=0.

If b, .0, then {b, .1 A],<|A4],. Hence we consider this new linear
form &), 4 which does not contain «,,,,. Then the first part of the theo-
rem follows by induction on », because

{321(30n2d)22n<n+ 1)2OdQ/\}zm<m+1>/zzOdg A log, (2(R—1)7/2204027 A)

< (BQ)Z”'—17"126(30n2d)4910g¢ o

and > ;.. ((—1)i2=nr*/6—n/3. Here Q" and 2’" are constructed from
2 and 2’ by deleting log, 4,,,,, and we have used estimates B< B*"*¢,
QAL 2mmAIDE0G0, Q<2004 () because we must use this induction
also after the above substitutions.

If b],,,=0, then »'=0 because ¢'> H. Hence b0 for some j<m,
and, eliminating log «,, the first part of the theorem can be proved by in-
duction on n. Note that, if oy, ey, - - -, a,, are multiplicatively independent,
then we have proved that the sequence terminates with ¢*<{ H. Hence the
second part of the theorem also holds. Therefore we have completed the
proof of Theorem 2. Note also that the remark after the theorem is clear
from what we have seen.

§ 3. Calculation of constants

Let p be a prime number, and let (O, be the p-adic number field, and
let C, be the completion of the algebraic closure of Q,. Let X be a non-
trivial primitive Dirichlet character with conductor f, and let f=f p®
(f, e € Z, (f;, p)=1) be the decomposition of the conductor f of X. Since
x is primitive, e is either 0 or >2 if p=2. We assume X(—1)=1.
Let L,(s, X) be the p-adic L-function associated with %.

Let &=exp (2i/f) be the primitive fth root of unity, let z(X)=
2. X(a)é* be the Gaussian sum associated with X, and let log: {ze C,;
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|z—1],<1}—>C, be the p-adic logarithmic function >}, ,...(—1)""'X
(z—1Dr/n. We extend the function log to a function on {ze C,; |z|,=1}
by the functional equation log(z™)=m log(z). Then the function L,(s, X)
does not vanish at s=1, and the value L (1, X) is given by the following
formula (cf. Brumer [3], Leopoldt [8]):

Lp(l,x)=_(1_"_;@)ﬂ > a)log (1—£79).

1<a<f

Since ¥ is not trivial, >;._,%(a)=0. Further, since X(—1)=1,
D i<a<spX(@)=0. Hence

Let E(a)=(1—¢ %)/(1—¢") for any integer a. Since { is a root of
unity, log {=0. Since X(a)=0 for (g, /)1, it is enough to consider only
E(a) for 1<a<f]2, (a,f)=1. Then it is well-known that the E(a) are
units of the field Q(¢), and that they are multiplicatively independent.
Since E(a)={*"'E(a), the E(a)E(a) for 1 <a< f/2, (a, f)=1 are also
multiplicatively independent.

Let

L(0)=13 1(a) log (E(@)E(a)),

where a runs over all integers satisfying 1 <<a<f]2, (a,f)=1. Then we
have

L, 0)=— (1—%),7%)“;().

If fis prime to p, then |1—((p)/p)l,=|p~'|,=p. Otherwise,
[1—@(p)p)],=1. Since (@)@ =, |c®)/f],=[E@)"|,> 1. Hence
|L,(1,7)|,>|L(X)|,- Hence, to obtain a lower bound of L,(1,X), it is
enough to obtain a lower bound of L(X).

Let o: N——>IN be the Euler function, and let a be an integer satisfy-
ing 1<a<f/2, (a,f)=1. Since any conjugate of 1—{ % has the form
1—¢~? with a positive integer b, the absolute value of any conjugate of
1—¢-@is at most two. Since any conjugate of {~* is also a primitive f~th
root of unity, the absolute value of any conjugate of 1—¢-!is at least
2 sin (7 f)>4;f. Hence the height of E(a)E(a) is at most

{2272 sin (x/ )DL (f]273).
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Let K be the totally real subfield Q (sin (2z/f)) of Q(). Then
[K: Ql=¢(f)/2< f]2. Letp be a prime ideal of K which divides p, and
let x4 and v be the residue degree of p and the ramification index of p, re-
spectively. Then p, v<o(f)/2< f]2, and the norm N(p) of p is given by
p*. Further, since K is the totally real subfield of the cyclotomic field
Q (exp (2z/f,p°)), the ramification index v is equal to p°~? if p=2 and
fo=1, and y is equal to p°~'(p—1) otherwise.

Let ¢ be a unit of K. Then, by Fermat’s theorem, ="~ is con-
gruent to 1 modulo p. Hence |yp— 1], <|p"*|,<|p"?**@=V| . Hence
777 = 1],<|p¥®->],  Hence |77 —1],<| p"#"],, and <|p],

Let a,=(EG)EQ@))®* -9 (1<i< fJ2, (i, f)=1). Then the «, are units
of the fields Q (sin (2z/f)). Further, the height of each «, is at most

(2712 sin (z] f)) - @m0 (f2MR) 7,

Let 8,=12(i) for any integer i with (i, /)=1. Then the 8, are ¢(f)/2-th
root of unity. Hence the height of each 8, is at most 2¢¢¢/¥D < 2772

Let g=7if p#7,and let g=11if p=7. Let K=Q(a,, 8;; 1<i< f12,
(i, )H)=1). Then [K: Q1< ()2 X o(p(D< 14

Let d=f?/4, let n=(p(f)—2)/2< f]2, let B=27", and let A=A,=
(fj21»7*2'2 Then we have Q< (f*p’”log, (fJ29)2. If f+3,4,5, 8,
12, then n>>2 and f>7. Hence 2Q<(f*p?/%)/ P p!BloseD/(Tloged) +1/2111/2
p’®. Hence

2 £2f/2 1/2Y) /21 =2¢F12) C(F +2)/2)/2{500(f/2) (f2/4)}10(fI2)+7
{2f/(fp/ loge(ﬂzl))/} {500(f/2) (f2/4)}
X (f2pS 1210 (f/2112))S12(f/2) loge (f2pS 12108, (f/2112)) logep
>p_2r<1/3)fﬁ+(121/4)f+42)f(15/+25)pf2 (logep)?2

>p_p(m/s)f2+(121/4)j+44)f(15f+25)
>p_p7.2f2+4o.sf+44

Therefore, by the second assertion of Theorem 2, we obtain the following
theorem:

Theorem 3. Let the notation and assumption be as above. We assume
Sfurther that f+3, 4,5, 8, 12. Then we have

~92((1/8) f2+ (121/4) f +42) (15{+25)pf2 (logep) 2
IL,(1, D= p ! :

Zp_p1.2f3+4o,sf+u‘
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