Fine Estimates for the Growth of $\boldsymbol{e}_{\boldsymbol{n}}$ in $\boldsymbol{Z}_{\boldsymbol{p}}^{\boldsymbol{d}}$-Extensions

P. Monsky

For Professor Kenkichi Iwasawa on his seventieth birthday

Introduction

Fix a prime p and a positive integer d. Suppose that $k=k_{0} \subset k_{1}$ $\subset \cdots$ is a tower of number fields and that k_{n} is Galois over k with Galois group a product of d copies of Z / p^{n}. Let L be the union of the k_{n}; it is a " Z_{p}^{d}-extension of k ". We denote the exponent to which p appears in the class number of k_{n} by $e_{n}(L / k)$, or more briefly by e_{n}.

When $d=1$ we have Iwasawa's celebrated formula: $e_{n}=\mu p^{n}+\lambda n$ $+\nu, n \gg 0$, where μ and λ are integers attached to the Iwasawa module of L / k. Suppose that $d>1$. Then in place of the Iwasawa module we have the Greenberg-Iwasawa module, X, a finitely generated torsion module over $\Lambda=Z_{p}\left[X_{1}, \cdots, X_{d} \rrbracket\right.$, and progress towards proving analogues of Iwasawa's formula has been made by studying such modules. (See for example [1], [2], [3], [4]). The analysis started with [2], in which Cuoco treated the case $d=2$, attaching integers m_{0} and l_{0} to X and showing that $e_{n}=m_{0} p^{2 n}+l_{0} n p^{n}+O\left(p^{n}\right)$. This result was generalized to arbitrary d in [1]. In that paper integers $m_{0}=m_{0}(F)$ and $l_{0}=l_{0}(F)$ were attached to a non-zero $F \in \Lambda$ as follows. Let $\bar{\Lambda}=\Lambda / p \Lambda$ and \bar{E} be the closed multiplicative subgroup of $\bar{\Lambda}$ generated by the $1+X_{j}$; it is a free rank $d Z_{p}$-module. Write $F=p^{s} G$ where the image, \bar{G}, of G in $\bar{\Lambda}$ is non-zero and write \bar{G} as the product of irreducible G_{i}. Then $m_{0}(F)=s$ and $l_{0}(F)$ is the number of indices i for which $\left(G_{i}\right)$ is the image of $\left(X_{1}\right)$ under an automorphism of $\bar{\Lambda}$ transforming \bar{E} to itself. The fundamental Theorem I of [1] states the following. Let $F \in \Lambda$ be the "characteristic power series" of the Greenberg-Iwasawa Λ-module, X, attached to L / k; set $m_{0}=m_{0}(F)$ and $l_{0}=l_{0}(F)$. Then $e_{n}(L / k)=\left(m_{0} p^{n}+l_{0} n+O(1)\right) p^{(d-1) n}$.

Our goal in this paper is to refine the above Theorem I by proving that $e_{n}=\left(m_{0} p^{n}+l_{0} n+\alpha^{*}\right) p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$ for some real α^{*}. There is no easy description of α^{*} and in particular we do not know if it is always rational. We shall show however that it is rational if either $d=2$ or if X

[^0]contains no pseudo-null submodule other than (0).
Remark. Our refinement gives an almost complete answer to the question of the growth of e_{n} when $d=2$. For if m_{0}, l_{0} and α^{*} are not all zero we have the excellent estimate $e_{n}=m_{0} p^{2 n}+l_{0} n p^{n}+\alpha^{*} p^{n}+O(n)$. Suppose on the other hand that $m_{0}=l_{0}=\alpha^{*}=0$. Then it follows easily from [6] that X is finite over $Z_{p} . \quad\left(e_{n}(L / k)=O(n)\right.$; consequently the p-rank of the ideal class group of k_{n} is $O(n)$ and Theorem 1.9 of [6] tells us that $X / p X$ is a finite group). We conclude from Theorem II of [1] that e_{n} is an eventually linear function of n in this case.

We now give an outline of the paper. Until the very end we are concerned only with Λ-modules and eschew all number theory. Throughout, $\Lambda=Z_{p} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ and $E \subset \Lambda$ is the closed multiplicative group generated by the $1+X_{j}$ - it is a free rank $d Z_{p}$-module. In section 1 we fix an integer $r \geq 0$ and a finite subset S of $E-E^{p}$, and use r and S to define a sequence of ideals, J_{n}, of Λ. Fix a finitely generated Λ-module M such that the $M / J_{n} M$ are finite groups and denote the length of $\operatorname{Tor}_{i}^{\Lambda}\left(M, \Lambda / J_{n}\right)$ by $l_{i, n}$. We show that the Serre intersection number $E_{n}(M)=\Sigma(-1)^{i} i_{i, n}$ of M and Λ / J_{n} may be expressed as an 'Iwasawa sum" attached to the characteristic power series, F, of M. Such sums have been evaluated in [5], but for the convenience of the reader we calculate these sums by a simpler method. Our conclusion is that $E_{n}(M)$ $=\left(m_{0} p^{n}+l_{0} n+\nu^{*}\right) p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$, where $m_{0}=m_{0}(F), l_{0}=l_{0}(F)$ and ν^{*}. is rational.

In section 2 we bound the horizontal growth of the $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ for a fixed $i \geq 1$. Let $r_{i, n}$ be the minimal number of generators of this finitely generated Z_{p}-module. We show that for each $i \geq 2$ the estimate $r_{i, n}=O\left(p^{(d-2) n}\right)$ holds. Furthermore if $M *$ denotes the largest submodule of M annihilated both by a power of p and by some $h \notin(p)$ then $r_{1, n}\left(M / M^{*}\right)=O\left(p^{(d-2) n}\right)$. We combine these bounds with bounds for the vertical growth of the $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ and conclude that $l\left(M / J_{n} M\right)$, the length of $M / J_{n} M$, is equal to $E_{n}(M)+l\left(M^{*} / J_{n} M^{*}\right)+O\left(n p^{(d-2) n}\right)$. The deep results of [3] and [4] allow us to estimate $l\left(M^{*} / J_{n} M^{*}\right)$, and we wind up with a good estimate for $l\left(M / J_{n} M\right)$.

In section 3 we consider a related but more complicated problem. To each $\sigma \in S$ we attach a Λ-submodule M_{σ} of M, and we use the M_{σ} to construct a sequence of submodules A_{n}^{\prime} of M. Then $G_{n}=M / A_{n}^{\prime}$ is finite over Z_{p}; we denote its Z_{p}-rank by $r\left(G_{n}\right)$ and the length of its torsion subgroup by $e\left(G_{n}\right)$. Assuming that $r\left(G_{n}\right)$ does not grow too rapidly with n we obtain (with an error term that is $O\left(n p^{(d-2) n}\right)$) an expression for $e\left(G_{n}\right)$ as a sum of three contributions. The first contribution is an

Iwasawa sum attached to F, the second is connected to M^{*}, and the third is a fixed integer multiple of $p^{(d-1) n}$. The results of sections 1 and 2 then tell us that $e\left(G_{n}\right)=\left(m_{0} p^{n}+l_{0} n+\alpha^{*}\right) p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$ for some real α^{*}. We conclude the paper by using the methods of [1] to deduce from this algebraic result a corresponding result for the growth of $e_{n}(L / k)$.

To summarize, Theorem I of [1] was based on the crude estimate $e\left(G_{n}\right)=$ (Iwasawa sum) $+O\left(p^{(d-1) n}\right)$. Our homological argument, expressing $e\left(G_{n}\right)$ as the sum of three contributions, together with the estimate for the M^{*}-contribution coming from [3] and [4] is what underlies the improvements of this paper.

§ 1. Calculation of $E_{n}(M)$ via Iwasawa sums

Unless otherwise indicated d is an integer $\geq 0, \Lambda$ is the d-variable power series ring over the p-adic integers and E is the closed multiplicative subgroup of Λ generated by the $1+X_{j} . \quad E$ is a free rank $d Z_{p}$-module and we write the action of Z_{p} on E exponentially. We fix an integer $r \geq 0$ and a finite subset S of $E-E^{p}$.

Definition 1.1. I_{n} is the ideal of Λ generated by the $\sigma-1, \sigma \in E^{p^{n}}$. (Or alternatively by the $\left.\left(1+X_{j}\right)^{p^{n}}-1\right)$. For $n \geq r, J_{n}$ is the ideal of Λ generated by I_{n} together with the $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right), \sigma \in S$.

Remark. When $d=0, J_{n}=(0)$. When $d=1$, set $\sigma=1+X_{1}$. Then J_{n} is principal, generated by $\sigma^{p^{n}}-1$ when S is empty and by $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)$ otherwise. When $d>1$ the situation is more complicated. J_{n} need not be generated by a regular sequence and Λ / J_{n} may have p-torsion.

Definition 1.2 W is the group of $p^{\text {th }}$-power roots of unity in a fixed algebraic closure of Q_{p}.

Definition 1.3. If ε is in W with $\varepsilon^{p^{r}}=1$ and $\sigma=\prod\left(1+X_{i}\right)^{l_{i}}$ is an element of S then $T_{\sigma, \varepsilon}$ is the subset of W^{d} consisting of all $\zeta=\left(\zeta_{1}, \cdots, \zeta_{d}\right)$ with $\prod \zeta_{i}^{l_{i}}=\varepsilon$. \quad Set $X=\bigcup_{\sigma, \varepsilon} T_{\sigma, \varepsilon}$ and $U=W^{d}-X$.

Definition 1.4. R_{n} is the discrete valuation ring obtained from Z_{p} by adjoining the ε in W with $\varepsilon^{p^{n}}=1$. If $\zeta \in W^{d}$ with $\zeta^{p^{n}}=1$ then Q_{ζ} is the prime ideal of $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ generated by the $X_{i}-\left(\zeta_{i}-1\right)$.

Remark. If ζ is as above then each $\zeta_{j}-1$ is in the maximal ideal of R_{n}. So it makes sense to speak of $F(\zeta-1)=F\left(\zeta_{1}-1, \cdots, \zeta_{d}-1\right)$. Note that Q_{ζ} is the kernel of the evaluation homomorphism $F \rightarrow F(\zeta-1)$.

We shall frequently abuse language by writing I_{n} and J_{n} for the ideals generated by I_{n} and J_{n} in $R_{n}\left[X_{1}, \cdots, X_{d} \rrbracket\right.$.

Lemma 1.5. In $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket, I_{n}$ is the intersection of the ideals $Q_{\zeta}, \zeta \in W^{d}, \zeta^{p^{n}}=1$.

Proof. Consider the map $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n} \rightarrow \prod_{\zeta}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket\right.$ $\left./ Q_{\zeta}\right)$. Using the fact that the image of $\left.\prod_{i}\left(\left(1+X_{i}\right)^{p^{n}}-1\right) / X_{i}-\left(\zeta_{i}-1\right)\right)$ is nonzero in precisely one factor we find that the cokernel is annihilated by a power of p. Since $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}$ can be generated as R_{n}-module by $p^{d n}$ elements while $\prod_{\zeta}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)$ has rank $p^{d n}$ over R_{n}, we conclude that $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}$ is free of rank $p^{d n}$ over R_{n}. At the same time we find that the above map is injective, i.e. that $I_{n}=\cap Q_{\zeta}$.

Lemma 1.6. In $R \llbracket X_{1}, \cdots, X_{d} \rrbracket$ the prime ideals containing J_{n} other than the maximal ideal are just the $Q_{\zeta}, \zeta \in U, \zeta^{p^{n}}=1$. For each such ζ, J_{n} generates the maximal ideal in the localization of $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ at Q_{ζ}.

Proof. Since $J_{n} \supset I_{n}$, Lemma 1.5 shows that the only primes other than m that can contain J_{n} are the $Q_{\zeta}, \zeta \in W^{d}, \zeta^{p^{n}}=1$. But such a Q_{ζ} contains J_{n} if and only if the image of each $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right), \sigma \in S$, under the evaluation map $F \rightarrow F(\zeta-1)$ is zero. Since the evaluation map sends $\sigma=\Pi\left(1+X_{i}\right)^{l_{i}}$ to $\Pi \zeta_{i}^{l_{i}}$ it annihilates each $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)$ if and only if each $\left(\prod \zeta_{i}^{l_{i}}\right)^{p r} \neq 1$; that is to say if and only if ζ is not in any $T_{\sigma, \varepsilon}$. Finally for any such ζ, Lemma 1.5 shows that I_{n} generates the maximal ideal in the localization of $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ at Q_{ξ}; the same is necessarily true of the larger ideal J_{n}.

Remark. Take a filtration of $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / J_{n}$ whose quotients are cyclic with prime annihilator. It follows from Lemma 1.6 that each $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}, \zeta \in U, \zeta^{p^{n}}=1$, appears once as a quotient and that the remaining quotients are of finite length.

Definition 1.7. Fix a finitely generated torsion Λ-module M such that the groups $M / J_{n} M$ are finite. Let $l_{i, n}$ be the length of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ and $E_{n}(M)=\sum(-)^{i} l_{i, n}$ be the "Serre intersection number" of M and Λ / J_{n}. (Note that the $l_{i, n}$ are finite and vanish for $i>d+1$).

Using the exact sequence of Tor we see that E_{n} is an additive function of M in exact sequences.

Lemma 1.8. Let $F \in \Lambda$ be the characteristic power series of the Λ module M. Then $E_{n}(M)=E_{n}(\Lambda / F)$.

Proof. Take a filtration of M with quotients Λ / P_{i}, with P_{i} prime. Then $E_{n}(M)=\sum E_{n}\left(\Lambda / P_{i}\right)$. Furthermore, $E_{n}(\Lambda / F)=\sum E_{n}\left(\Lambda / P_{i}\right)$, the sum extending over those indices i for which P_{i} is principal. So it suffices to
show that $E_{n}\left(\Lambda / P_{i}\right)=0$ whenever P_{i} is non-principal. Now for such an i the sum of the Krull dimensions of Λ / P_{i} and Λ / J_{n} is $\leq(d-1)+1<$ Krull dimension 1 . The lemma on page 139 of [8] shows that the Serre intersection number of Λ / P_{i} and Λ / J_{n} vanishes for each such P_{i}.

Since $\operatorname{Tor}_{i}^{\Lambda}\left(\Lambda / F, \Lambda / J_{n}\right)=(0)$ for $i>1$, Lemma 1.8 gives:
Lemma 1.9. $\quad E_{n}(M)=l(\operatorname{cok} F)-l(\operatorname{ker} F)$ where F denotes the multiplication by F map $\Lambda / J_{n} \rightarrow \Lambda / J_{n}$.

If we continue to let l denote length as Λ-module then Lemma 1.9 tells us that $E_{n}(M)=\left(\phi\left(p^{n}\right)\right)^{-1}(l(\operatorname{cok} F)-l($ ker $F))$ where F now denotes the multiplication by F map on $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / J_{n}$. The remark after Lemma 1.6 shows that $E_{n}(M)$ is the sum of local factors $\left(\phi\left(p^{n}\right)\right)^{-1}(l(\operatorname{cok} F)$ $-l($ ker $F)$), where F denotes the multiplication by F map on $R \llbracket X_{1}, \cdots$, $X_{d} \rrbracket / Q_{\zeta}$ and ζ runs over all $\zeta \in U$ with $\zeta^{p^{n}}=1$.

Theorem 1.10. Let $U(n)$ consists of all $\zeta \in U$ with $\zeta^{p^{n}}=1$, and let ord be the order function attached to the p-adic valuation on $Q_{p}[W]$, normalized so that ord $p=1$. Then if $\zeta \in U, F(\zeta-1) \neq 0$. Furthermore $E_{n}(M)$ is the "Iwasawa sum" $\sum_{\zeta \in U(n)}$ ord $F(\zeta-1)$.

Proof. $\quad R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}$ identifies with R_{n}, and under this identification the multiplication by F map corresponds to multiplication by $F(\zeta-1)$. Since the cokernel of this map is finite, $F(\zeta-1) \neq 0$. The local contribution to $E_{n}(M)$ coming from ζ is then $\left(\phi\left(p^{n}\right)\right)^{-1} l\left(R_{n} / F(\zeta-1)\right)$ and this is precisely ord $F(\zeta-1)$.

The explicit evaluation of Iwasawa sums was carried out in [5]; for the convenience of the reader we recall (and simplify) a portion of that article. There is a Noetherian topology on W^{d} in which the irreducible closed sets are the sets defined by $d-s$ equations $\phi_{j}(\zeta)=\varepsilon_{j}$, where the ϕ_{j} are part of a basis of the free rank $d Z_{p}$-module $\operatorname{Hom}\left(W^{d}, W\right)$ and the ε_{j} are in W. Such a set is called a " Z_{p}-flat" of dimension s.

Definition 1.11. If $\varepsilon \in W, o(\varepsilon)$ is the smallest integer n such that $\varepsilon^{p n}=1$. Suppose that $d>0$ and let m be an integer ≥ 0. Then Γ_{m} is the subset of W^{d} consisting of all $\left(\zeta_{1}, \cdots, \zeta_{d}\right)$ satisfying the conditions $o\left(\zeta_{1}\right)$ $\geq m, o\left(\zeta_{2}\right) \geq o\left(\zeta_{1}\right)+m, \cdots, o\left(\zeta_{d}\right) \geq o\left(\zeta_{d-1}\right)+m$.

More generally suppose that $A=\left(\phi_{1}, \cdots, \phi_{d}\right)$ is an ordered basis of Hom $\left(W^{d}, W\right)$. We define $\Gamma(A, m)$ to be the set of ζ satisfying the conditions $o\left(\phi_{1}(\zeta)\right) \geq m, o\left(\phi_{2}(\zeta)\right) \geq o\left(\phi_{1}(\zeta)\right)+m, \cdots$. The following fundamental compactness theorem was proved in section 1 of [5]. Suppose that for each ordered basis A of $\operatorname{Hom}\left(W^{d}, W\right)$ an integer $m_{A} \geq 0$ is given. Then
W^{d} is covered by finitely many of the $\Gamma\left(A, m_{A}\right)$ together with a proper closed subset of W^{d}. An immediate consequence of this is:

Lemma 1.12. Let Y be a subset of W^{d}. Suppose that for each invertible $T \in \operatorname{Hom}\left(W^{d}, W^{d}\right)$ there exists an integer m such that $T(Y) \cap \Gamma_{m}$ is empty. Then Y is contained in a proper closed subset of W^{d}.

Lemma 1.13. Suppose $F \in R_{j} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ for some j and that $F \neq 0$. Let $Y=\left\{\zeta \in W^{d}: F(\zeta-1)=0\right\}$. Then Y is contained in a proper closed subset of W^{a}.

Proof. We may assume $d>0$. Of all the monomials $G=a \cdot \prod X_{j}^{c_{j}}$ appearing in F choose the one for which ord a is as small as possible; in case of a tie choose that G for which $\left(c_{1}, \cdots, c_{d}\right)$ comes first in lexicographic order. Choose $m>0$ so large that $\phi\left(p^{m}\right)>\phi\left(p^{i}\right) \cdot \sum c_{i}$ and $p^{m}>$ $\sum c_{i}$. Suppose that $\zeta \in \Gamma_{m}$ and that H is a monomial other than G appearing in F. An easy calculation shows that ord $H(\zeta-1)>$ ord $G(\zeta-1)$. Thus ord $F(\zeta-1)=$ ord $G(\zeta-1), F(\zeta-1) \neq 0$, and $Y \cap \Gamma_{m}$ is empty. Suppose more generally that T is an invertible element of Hom (W^{a}, W^{d}). Then there exists an $F^{\prime} \neq 0$ in $R_{j}\left[X_{1}, \cdots, X_{d}\right]$ such that $F^{\prime}(\zeta-1)=$ $F\left(T^{-1}(\zeta)-1\right)$ for all ζ in W^{d}. Clearly $F^{\prime}(\zeta-1)=0$ if and only if $\zeta \in T(Y)$. The argument given above, applied to F^{\prime}, shows that $T(Y) \cap \Gamma_{m}$ is empty for some m and we invoke Lemma 1.12.

Theorem 1.14. Let M be a finitely generated torsion Λ-module. Then it is possible to choose r and S so that if the J_{n} are as in Definition 1.1 then the groups $M / J_{n} M$ are finite.

Proof. Choose $F \neq 0$ annihilating M and let $Y=\left\{\zeta \in W^{d}: F(\zeta-1)\right.$ $=0\}$. If $\sigma \in E-E^{p}$ is $\Pi\left(1+X_{i}\right)^{l_{i}}$ and $\varepsilon \in W$ then the subset of W^{a} defined by $\sigma(\zeta-1)=\varepsilon$ is just the $d-1$ dimensional Z_{p}-flat $\prod \zeta_{i}^{l_{i}}=\varepsilon$, and every $d-1$ dimensional Z_{p}-flat in W^{d} arises from some σ and ε. It follows from Lemma 1.13 that there are finitely many $\sigma_{i} \in E-E^{p}$ and $\varepsilon_{i} \in W$ such that Y is contained in the union of the Z_{p}-flats $\sigma_{i}(\zeta-1)=\varepsilon_{i}$. Now choose r so that each $\varepsilon_{i}^{p r}=1$ and let S consist of the σ_{i}. Then, in the notation of Definition 1.3, $F(\zeta-1) \neq 0$ whenever $\zeta \in U=W^{d}-\bigcup_{\sigma, \varepsilon} T_{\sigma, \varepsilon}$. Now $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / J_{n}$ admits a filtration with quotients that are either of finite length or of the form $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}$ with $\zeta \in U$. Since $F(\zeta-1) \neq 0$, multiplication by F has cokernel and kernel of finite length on each quotient of the filtration, and hence on $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / J_{n}$ and on Λ / J_{n}. Thus $\Lambda /\left(J_{n}, F\right)$ is finite. Since $\left(J_{n}, F\right)$ annihilates $M / J_{n} M$ the theorem follows.

The proof of the following result (being entirely analogous to that of Lemma 1.13) is left to the reader. We shall use the result to simplify the evaluation of Iwasawa sums carried out in [5].

Lemma 1.15. Suppose $G \in R_{j}\left[X_{1}, \cdots, X_{d}\right]$ for some j, and that there is a co-efficient of G that is a unit in R_{j}. Let Y consist of all $\zeta \in W^{d}$ for which either $G(\zeta-1)=0, G\left(\zeta^{p}-1\right)=0$ or ord $G\left(\zeta^{p}-1\right) \neq p \operatorname{ord} G(\zeta-1)$. Then Y is contained in a proper closed subset of W^{d}.

Definition 1.16. \mathscr{S}_{d} is the Q-vector space of functions spanned by the $p^{a x}, 0 \leq a \leq d$, and the $x p^{a x}, 0 \leq a \leq d-1 . \quad \mathscr{S}_{d}^{*}$ is the Q-vector space spanned by the $p^{a x}$ and the $x p^{a x}, 0 \leq a \leq d-1$.

Note that $\mathscr{S}_{d} \supset \mathscr{S}_{d}^{*} \supset \mathscr{S}_{d-1}$. Furthermore if $f(x) \in \mathscr{S}_{d}^{*}$ then $f(x+1)$ $-p^{d-1} f(x)$ is in \mathscr{S}_{d-1}. Indeed $f \rightarrow f(x+1)-p^{d-1} f(x)$ maps \mathscr{S}_{d}^{*} onto \mathscr{S}_{d-1} with kernel consisting of rational multiples of $p^{(d-1) x}$.

Definition 1.17. If $U \subset W^{d}, U(n)$ consists of all $\zeta \in U$ with $\zeta^{p^{n}}=1$. Suppose that $F \in R_{j} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ for some j, and that U is a subset of W^{d} such that $F(\zeta-1) \neq 0$ for each $\zeta \in U$. The "Iwasawa sum", $\sum(F, U, n)$, is $\sum_{\zeta \in U(n)}$ ord $F(\zeta-1)$. Let $g \in \mathscr{S}_{d}$. We shall say that $\sum(F, U, n)$ is "eventually equal to g " if $\sum(F, U, n)=g(n)$ for $n \gg 0$. Furthermore by the co-efficient of $p^{a n}$ (or $n p^{a n}$) in $\sum(F, U, n)$ we mean the co-efficient of $p^{a x}\left(\right.$ or $\left.x p^{a x}\right)$ in g.

Lemma 1.18. Let Y be a closed subset of $W^{d}, Y \neq W^{d}$. Then there are integers c_{i} such that the cardinality of $Y(n)$ is $\sum_{0}^{d-1} c_{i} p^{i n}$ for $n \gg 0$.

Proof. Suppose first that Y is irreducible. We may assume without loss of generality that it is defined by $\zeta_{i}=\varepsilon_{i}(1 \leq i \leq d-s)$; then the cardinality of $Y(n)$ is $p^{s n}$ for large n. Suppose now that Y is the union of two smaller closed subsets Y_{1} and Y_{2}. By Noetherian induction we may assume the result holds for Y_{1}, Y_{2} and $Y_{1} \cap Y_{2}$; it then evidently holds for Y.

Theorem 1.19. Suppose that $F \in R_{j}\left[X_{1}, \cdots, X_{d} \rrbracket\right.$ and that U is an open subset of W^{d} such that $F(\zeta-1) \neq 0$ for each $\zeta \in U$. Then $\sum(F, U, n)$ is eventually equal to some $f \in \mathscr{S}_{d}$.

Proof. We argue by induction on d, the case $d=0$ being trivial. Suppose $d>0$. We make the following observation. Suppose that V and V^{\prime} are non-empty open subsets of W^{d} such that $F(\zeta-1) \neq 0$ for each ζ in V and each ζ in V^{\prime}. Then $\Sigma(F, V, n)-\Sigma\left(F, V^{\prime}, n\right)$ is eventually equal to an element of \mathscr{S}_{d-1}. It suffices to establish the observation
when $V \supset V^{\prime}$, and this amounts to showing that $\sum(F, \mathscr{Z} \cap V, n)$ is eventually equal to an element of \mathscr{S}_{d-1} where $\mathscr{Z}=W^{d}-V^{\prime}$. We shall show that this in fact is true of an arbitrary closed $\mathscr{Z} \neq W^{d}$ in W^{d}, arguing by Noetherian induction on \mathscr{Z}. Suppose first that \mathscr{Z} is irreducible. We may assume without loss of generality that it is defined by $\zeta_{i}=\varepsilon_{i}$, $s+1 \leq i \leq d$ where $s \leq d-1$. Let F^{*} be the s-variable power series obtained from F by substituting $\varepsilon_{i}-1$ for X_{i} whenever $i>s$; note that F^{*} has coefficients in some R_{k}. Projection on the first s co-ordinates identifies \mathscr{Z} with W^{s} and $\mathscr{Z} \cap V$ with an open subset V^{*} of W^{s}. Then for n large, $\sum(F, \mathscr{Z} \cap V, n)=\sum\left(F^{*}, V^{*}, n\right)$ - by the induction hypothesis it is eventually equal to an element of \mathscr{S}_{s}. But $\mathscr{S}_{s} \subset \mathscr{S}_{d-1}$. Finally if \mathscr{Z} is a union of two smaller closed subsets we argue as in the proof of Lemma 1.18.

To prove the theorem we may assume U is non-empty. Then $F \neq 0$ and we write $F=\alpha G$ where $\alpha \in R_{j}$ and some co-efficient of G is a unit in R_{j}. Lemma 1.18 shows that there are integers c_{i} such that $\sum(F, U, n)-$ $\sum(G, U, n)=(\operatorname{ord} \alpha)\left(p^{d n}-\sum_{0}^{d-1} c_{i} p^{i n}\right)$ for $n \gg 0$. So it suffices to show that $\sum(G, U, n)$ is eventually equal to an element of \mathscr{S}_{d}^{*}. Now let Y be the set of Lemma 1.15; choose finitely many $\sigma_{i} \in E-E^{p}$ and $\varepsilon_{i} \in W$ such that Y is contained in the union of the Z_{p}-flats $\sigma_{i}(\zeta-1)=\varepsilon_{i}$. Choose r so that each $\varepsilon_{i}^{p r}=1$. Set $V^{*}=\left\{\zeta \in W^{d} ; \operatorname{no}\left(\sigma_{i}(\zeta-1)\right)^{p r}=1\right\}$ and $U^{*}=$ $\left\{\zeta \in W^{d}: \operatorname{no}\left(\sigma_{i}(\zeta-1)\right)^{p^{r+1}}=1\right\}$. Then for each $\zeta \in U^{*}, G(\zeta-1) \neq 0$, $G\left(\zeta^{p}-1\right) \neq 0$ and ord $G\left(\zeta^{p}-1\right)=p$ ord $G(\zeta-1)$. We wish to show that $\sum(G, U, n)$ is eventually equal to an element of \mathscr{S}_{d}^{*}; in light of the observation it suffices to prove this result for $\sum\left(G, U^{*}, n\right)$.

Now $\zeta \rightarrow \zeta^{p}$ maps W^{d} onto itself with fibers of cardinality p^{d}, and the complete inverse image of V^{*} is U^{*}. Thus $\zeta \rightarrow \zeta^{p}$ maps $U^{*}(n+1)$ onto $V^{*}(n)$ with each fiber of cardinality p^{d}. Now

$$
\sum\left(G, U^{*}, n+1\right)=\sum_{\zeta \in U^{*}(n+1)} p^{-1} \operatorname{ord} G\left(\zeta^{p}-1\right)
$$

It follows that $\sum\left(G, U^{*}, n+1\right)=p^{d-1} \sum\left(G, V^{*}, n\right)$. The observation now shows that there is an $h \in \mathscr{S}_{d-1}$ such that $\sum\left(G, U^{*}, n+1\right)-p^{d-1} \sum\left(G, U^{*}, n\right)$ $=h(n)$ for all $n \geq$ some fixed N. Choose g in \mathscr{S}_{d}^{*} such that $g(x+1)-$ $p^{d-1} g(x)=h(x)$. Modifying g by a rational multiple of $p^{(d-1) x}$ we may also assume that $g(N)=\sum\left(G, U^{*}, N\right)$. Then $g(n)=\sum\left(G, U^{*}, n\right)$ for all $n \geq N$, completing the proof.

Theorem 1.20. Suppose that $F \neq 0$ is in $Z_{p} \llbracket X_{1}, \cdots, X_{d} \rrbracket, d \geq 1$, and that U is a non-empty open subset of W^{d} such that $F(\zeta-1) \neq 0$ for each $\zeta \in U$. Then the co-efficients of $p^{d n}$ and $n p^{(d-1) n}$ in $\Sigma(F, U, n)$ are the nonnegative integers $m_{0}(F)$ and $l_{0}(F)$ described in the second paragraph of the introduction.

Proof. The observation made in the course of the proof of Theorem 1.19 shows that these co-efficients are independent of the choice of U. Now $F=p^{m_{0}} G$ where $m_{0}=m_{0}(F)$ and the image, \bar{G}, of G in $\Lambda / p \Lambda$ is non-zero. Then $\sum(F, U, n)=m_{0}\left(p^{d n}-\sum_{0}^{d-1} c_{i} p^{i n}\right)+\sum(G, U, n)$ for $n \gg 0$. Since the co-efficient of $p^{d n}$ in $\sum(G, U, n)$ is zero, (see the proof of Theorem 1.19), the co-efficient of $p^{d n}$ in $\sum(F, U, n)$ is m_{0}. At the same time we see that $n p^{(d-1) n}$ has the same co-efficient in $\sum(F, U, n)$ that it does in $\sum(G, U, n)$.

To evaluate this co-efficient we take σ_{i}, r, U^{*} and V^{*} as in the proof of Theorem 1.19. We may assume that no two σ_{i} generate the same Z_{p} submodule of E; at the same time we may assume that if $\sigma \in E-E^{p}$ with $\overline{\sigma-1}$ dividing \bar{G} in $\bar{\Lambda}$ then σ generates the same Z_{p}-submodule of E as does one of the σ_{i}. Let S be the set consisting of the σ_{i} and define $T_{\sigma, \varepsilon}$, $\sigma \in S, \varepsilon \in W$ as in definition 1.3. By our hypotheses the $T_{\sigma, \varepsilon}$ are distinct Z_{p}-flats. Furthermore, $V^{*}=W^{d}-\cup T_{\sigma, \varepsilon},\left(\sigma \in S, \varepsilon^{p^{r}}=1\right)$, while $U^{*}=$ $W^{d}-\cup T_{\sigma, \varepsilon}\left(\sigma \in S, \varepsilon^{p r+1}=1\right)$. For $\sigma \in S$ let l_{σ} be the exponent to which $\overline{\sigma-1}$ appears in the factorization of \bar{G}. Then $l_{0}(F)=l_{0}(G)=\sum l_{\sigma}$ and we are reduced to showing that the co-efficient of $n p^{(d-1) n}$ in $\sum\left(G, U^{*}, n\right)$ is $\sum l_{\sigma}$.

The proof of Theorem 1.19 shows that

$$
\sum\left(G, U^{*}, n+1\right)-p^{d-1} \sum\left(G, U^{*}, n\right)=p^{d-1} \sum\left(G, V^{*}-U^{*}, n\right)
$$

It follows easily that the co-efficient of $n p^{(d-1) n}$ in $\sum\left(G, U^{*}, n\right)$ is equal to the co-efficient of $p^{(d-1) n}$ in $\sum\left(G, V^{*}-U^{*}, n\right)$. Now $V^{*}-U^{*}=\mathscr{Z} \cap V^{*}$ where \mathscr{Z} is the union of the $T_{\sigma, \lambda}(\sigma \in S, o(\lambda)=r+1)$. Since these $T_{\sigma, \lambda}$ are distinct the co-efficient of $p^{(d-1) n}$ in $\sum\left(G, \mathscr{Z} \cap V^{*}, n\right)$ is just the sum of the co-efficients of $p^{(d-1) n}$ in the various $\sum\left(G, T_{\sigma, \lambda} \cap V^{*}, n\right),(\sigma \in S, o(\lambda)=r+1)$. So if we can show that the contribution from each such pair (σ, λ) is $\left(\phi\left(p^{r+1}\right)\right)^{-1} . \quad l_{\sigma}$ we'll be done.

We may assume without loss of generality that r is large and that $\sigma=1+X_{d}$, so that $T_{\sigma, \lambda}$ consists of all $\zeta \in W^{d}$ with last co-ordinate λ. Set $G^{\prime}=G\left(X_{1}, \cdots, X_{d-1}, \lambda-1\right)$ and let V^{\prime} be the image of $T_{\sigma, \lambda} \cap V^{*}$ under the projection map $\left(\zeta_{1}, \cdots, \zeta_{d}\right) \rightarrow\left(\zeta_{1}, \cdots, \zeta_{d-1}\right)$. Then the co-efficient of $p^{(d-1) n}$ in $\sum\left(G, T_{\sigma, 2} \cap V^{*}, n\right)$ is equal to the co-efficient of $p^{(d-1) n}$ in $\sum\left(G^{\prime}, V^{\prime}, n\right)$. Now V^{\prime} is a non-empty open subset of W^{d-1}. Furthermore using the fact that $r+1=o(\lambda)$ is large we see easily that $G=G\left(X_{1}, \cdots\right.$, $\left.X_{d-1}, \lambda-1\right)=(\lambda-1)^{a} \cdot H$, where a is the exponent to which X_{d} appears in the factorization of \bar{G}, and some co-efficient of H is a unit in R_{r+1}. It follows that the co-efficient of $p^{(d-1) n}$ in $\sum\left(G^{\prime}, V^{\prime}, n\right)$ is $\operatorname{ord}\left((\lambda-1)^{a}\right)=$ $l_{1+x_{d}} \cdot\left(\phi\left(p^{r+1}\right)\right)^{-1}$, establishing the theorem.

Theorem 1.21. Suppose $d \geq 2$ and let M be a finitely generated torsion Λ-module such that the groups $M / J_{n} M$ are finite. Let F be the characteristic power series of $M, m_{0}=m_{0}(F)$ and $l_{0}=l_{0}(F)$. Then there is a rational ν^{*} such that $E_{n}(M)=\left(m_{0} p^{n}+l_{0} n+\nu^{*}\right) p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$.

Proof. By Theorem 1.10 there is a non-empty open subset U of W^{d} such that $E_{n}(M)=\Sigma(F, U, n)$. Now apply Theorems 1.19 and 1.20.

\S 2. Estimates for $\boldsymbol{l}\left(\boldsymbol{M} / \boldsymbol{J}_{n} \boldsymbol{M}\right)$

Unless otherwise indicated we assume for the rest of the paper that no two elements of S generate the same Z_{p}-submodule of E, and that $d \geq 2$. By the p-rank of a finitely generated Z_{p}-module G we mean the minimal number of generators of G over Z_{p}. (This is not to be confused with the Z_{p}-rank which is the dimension of $G \otimes_{z_{p}} Q_{p}$ over Q_{p}).

Definition 2.1. Let M be a finitely generated Λ-module. $r_{i, n}(M)$ is the p-rank of $\operatorname{Tor}_{i}^{\Lambda}\left(M, \Lambda / J_{n}\right)$.

In particular $r_{1, n}(\Lambda / p)$ is just the Z / p-dimension of the p-torsion subgroup of Λ / J_{n}. In order to bound $r_{i, n}(M)$ for $i \geq 1$ and arbitrary M we first bound $r_{1, n}(\Lambda / p)$.

Lemma 2.2. Fix an integer $r \geq 0$ and elements $\sigma_{1}, \cdots, \sigma_{s}$ and τ of E, not in E^{p}, \quad Let \bar{I}_{n} be the image of I_{n} in $\bar{\Lambda}=\Lambda / p$, and \bar{J}_{n}^{*} be the ideal of $\bar{\Lambda}$ generated by \bar{I}_{n} and the $\left(\overline{\sigma_{i}-1}\right)^{p^{n}-p^{r}}$. Suppose that the Z_{p}-submodule of E generated by τ is not equal to the submodule generated by any σ_{i}. Then the cokernel of the multiplication by $(\overline{\tau-1})^{p^{r}} \operatorname{map} \bar{J}_{n}^{*} / \bar{I}_{n} \rightarrow \bar{J}_{n}^{*} / \bar{I}_{n}$ has Z / p dimension that is $O\left(p^{(d-2) n}\right)$, and the same is true of the kernel.

Proof. We shall prove the result for the cokernel—note that cokernel and kernel have the same dimension. Set $\overline{\mathcal{O}}=\bar{\Lambda} /\left((\overline{\tau-1})^{p^{r}}, \Pi\left(\overline{\sigma_{i}-1}\right)^{p^{r}}\right)$. Our hypotheses tell us that each $\bar{\Lambda} /\left(\overline{\tau-1}, \overline{\sigma_{i}-1}\right)$ has Krull dimension $\leq d-2$; the same is therefore true of $\overline{\mathcal{O}}$. Now the cokernel of our map is an $\overline{\mathcal{O}}$-module that is annihilated by \bar{I}_{n} and can be generated by s elements. Thus its Z / p-dimension is $\leq s \cdot \operatorname{dim}\left(\overline{\mathcal{O}} / \bar{I}_{n} \overline{\mathcal{O}}\right)$. Now $\bar{I}_{n}=$ $\left(X_{1}^{p^{n}}, \cdots, X_{d}^{p^{n}}\right) \supset\left(X_{1}, \cdots, X_{d}\right)^{d p^{n}}$. The theory of the Hilbert polynomial then tells us that the Z / p-dimension of $\overline{\mathcal{O}} / \bar{I}_{n} \overline{\mathcal{O}}$ is $O\left(p^{(\alpha-2) n}\right)$.

Lemma 2.3. Let \bar{I}_{n} and \bar{J}_{n} be the images of I_{n} and J_{n} in $\bar{\Lambda}$. Then the Z / p-dimension of $\bar{J}_{n} / \bar{I}_{n}$ is $|S| \cdot p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$ where $|S|$ is the cardinality of S.

Proof. We argue by induction on $|S|$. We may assume that $S=$ $\left\{\sigma_{1}, \cdots, \sigma_{s}, \tau\right\}$; let $S^{*}=\left\{\sigma_{1}, \cdots, \sigma_{s}\right\}$ and J_{n}^{*} be the ideal generated by I_{n} and
the $\left(\sigma_{i}^{p^{n}}-1\right) /\left(\sigma_{i}^{p r}-1\right)$. It will suffice to show that the Z / p-dimension of $\bar{J}_{n} / \bar{J}_{n}^{*}$ is $p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$. Consider the multiplication by $\left.\overline{(\tau-1}\right)^{p^{r}}$ map $\bar{\Lambda} / \bar{I}_{n} \rightarrow \bar{\Lambda} / \bar{I}_{n} . \quad$ It is easily seen that the kernel of this map is generated by $(\overline{\tau-1})^{p^{n}-p^{r}}$ and has Z / p-dimension equal to $p^{r} \cdot p^{(d-1) n}$.

Let $Q_{n}^{\prime \prime}, Q_{n}$ and Q_{n}^{\prime} be the kernels of the multiplication by $(\overline{\tau-1})^{p r}$ map on $\bar{J}_{n}^{*} / I_{n}, \Lambda / \bar{I}_{n}$ and $\Lambda / \bar{J}_{n}^{*}$, and let $C_{n}^{\prime \prime}, C_{n}$ and C_{n}^{\prime} be the corresponding cokernels. Then the exact sequence (0) $\rightarrow \bar{J}_{n}^{*} / \bar{I}_{n} \rightarrow \bar{\Lambda} / \bar{I}_{n} \rightarrow \bar{\Lambda} / \bar{J}_{n}^{*} \rightarrow(0)$ gives rise to an exact sequence (0) $\rightarrow Q_{n}^{\prime \prime} \rightarrow Q_{n} \rightarrow Q_{n}^{\prime} \rightarrow C_{n}^{\prime \prime} \rightarrow C_{n} \rightarrow C_{n}^{\prime} \rightarrow(0)$. It follows from Lemma 2.2 that the kernel and cokernel of $Q_{n} \rightarrow Q_{n}^{\prime}$ have Z / p-dimensions that are $O\left(p^{(d-2) n}\right)$. The remark at the end of the last paragraph then tells us that the Z / p-dimension of the image of Q_{n} in Q_{n}^{\prime} is $p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$, and that this image identifies with $(\overline{(\tau-1})^{p^{n}-p^{r}}$, $\left.\bar{J}_{n}^{*}\right) / \bar{J}_{n}^{*}$ - that is to say with $\bar{J}_{n} / \bar{J}_{n}^{*}$.

Theorem 2.4.

(a) The Z_{p}-rank of J_{n} / I_{n} is $|S| \cdot p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$.
(b) $r_{1, n}(\Lambda / p)$ is $O\left(p^{(d-2) n}\right)$.

Proof. The Z_{p}-rank of Λ / J_{n} is equal to the R_{n}-rank of $R_{n} \llbracket X_{1}, \cdots$, $\left.X_{d}\right] / J_{n}$. The remark after Lemma 1.6 shows that this is the cardinality of $U(n)$ where $U=W^{d}-X$, and X is the union of the $T_{\sigma, \varepsilon}, \sigma \in S, \varepsilon^{p r}=1$. Thus the Z_{p}-rank of J_{n} / I_{n} is the cardinality of $X(n)$. Since the elements of S generate distinct Z_{p}-submodules of E, the $T_{\sigma, \varepsilon}$ are distinct $d-1$ dimensional Z_{p}-flats and there are precisely $|S| \cdot p^{r}$ of them. The proof of Lemma 1.18 shows that $T_{\sigma, \varepsilon}(n)$ has cardinality $p^{(d-1) n}$ for $n \gg 0$; (a) follows easily. To prove (b) note that we have just shown that the Z_{p}-rank of Λ / J_{n} is $p^{d n}-|S| \cdot p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$. On the other hand Lemma 2.3 shows that the Z / p-dimension of the $\bmod p$ reduction, $\bar{\Lambda} / \bar{J}_{n}$, of Λ / J_{n} is also $p^{d n}-|S| \cdot p^{r} \cdot p^{(d-1) n}+O\left(p^{(d-2) n}\right)$. Thus the dimension of the p-torsion subgroup of Λ / J_{n} is $O\left(p^{(d-2) n}\right)$.

The following two lemmas, whose proof uses the Frobenius functor, are the key to bounding the growth of $r_{i, n}(M)$ for a fixed $i \geq 2$. They do not require $d \geq 2$.

Lemma 2.5. Let N be a finitely generated $\bar{\Lambda}$-module of Krull dimension $\leq a$ and \bar{I}_{n} be the ideal of $\bar{\Lambda}$ generated by the $X_{i}^{p^{n}}$. Then the $Z / p-$ dimension of $\operatorname{Tor}_{i}^{\bar{T}}\left(N, \bar{\Lambda} / \bar{I}_{n}\right)$ is $O\left(p^{a n}\right)$.

Proof. Let $N_{(n)}$ be the $\bar{\Lambda}$-module that is N as additive group but with $\bar{\Lambda}$ acting via the endomorphism $x \rightarrow x^{p^{n}}$ of $\bar{\Lambda}$. $\operatorname{Tor}_{i}^{\bar{\lambda}}\left(N, \bar{\Lambda} / \bar{I}_{n}\right)$ is just the $i^{\text {th }}$ homology group of the Koszul complex on N built from the multiplication by $X_{j}^{p^{n}}$ operators. As vector space over Z / p this identifies
with the $i^{\text {th }}$ homology group of the Koszul complex on $N_{(n)}$ built from the multiplication by X_{j} operators; that is to say with $\operatorname{Tor}_{i}^{\lambda}\left(N_{(n)}, Z / p\right)$. We prove that the dimension of this last space is $O\left(p^{a n}\right)$ by induction on a. By dévissage we may assume that N is cyclic with prime annihilator P of coheight a. The case $a=0$ is trivial. If $a>0, N_{(1)}$ is annihilated by P and has rank p^{a} as $\bar{\Lambda} / P$-module. It follows that $N_{(1)}$ has a filtration in which p^{a} of the quotients are isomorphic to N, and each remaining quotient has Krull dimension $\leq a-1$. Applying the exact functor $M \rightarrow$ $M_{(n)}$ to this filtration and using the induction assumption we find that $\operatorname{dim}\left(\operatorname{Tor}_{i}^{\bar{I}}\left(N_{(n+1)}, Z / p\right)\right) \leq p^{a} \operatorname{dim}\left(\operatorname{Tor}_{i}^{\overline{1}}\left(N_{(n)}, Z / p\right)\right)+c p^{(a-1) n}$ for some fixed c. The rest is easy.

Remark. Seibert [7] proves more precise results in a more general setting.

Lemma 2.6. Let N be as in Lemma 2.5, and r be a fixed integer ≥ 0. Then the Z / p-dimension of $\operatorname{Tor}_{i}^{\bar{A}}\left(N, \bar{\Lambda} /\left(X_{1}^{p^{n}}, X_{2}^{p^{n}}, \cdots, X_{d}^{p^{r}}\right)\right)$ is $O\left(p^{a n}\right)$.

Proof. By dévissage we may assume that $r=0$ and that either X_{d} is not a zero-divisor on N or that X_{d} annihilates N. Set $\bar{\Lambda}^{\prime}=\bar{\Lambda} / X_{d}$. In the first case the group we are studying identifies with $\operatorname{Tor}_{i}^{\pi^{\lambda^{\prime}}}\left(N / X_{d} N\right.$, $\left.\bar{\Lambda}^{\prime} /\left(X_{1}^{p^{n}}, \cdots, X_{d-1}^{p^{n}}\right)\right)$, while in the second case it is an extension of $\operatorname{Tor}_{i-1}^{1^{\prime}}\left(N, \bar{\Lambda} /\left(X_{1}^{p^{n}}, \cdots, X_{d-1}^{p^{n}}\right)\right) \quad$ by $\quad \operatorname{Tor}_{i}^{\lambda^{\prime}}\left(N, \bar{\Lambda}^{\prime} /\left(X_{1}^{p^{n}}, \cdots, X_{d-1}^{p^{n}}\right)\right)$. Now apply Lemma 2.5 with $\bar{\Lambda}$ replaced by $\bar{\Lambda}^{\prime}$.

Theorem 2.7. Let M be a finitely generated 1 -module and i an integer ≥ 0.
(a) If M has Krull dimension $\leq d-2$ and $p M=(0)$ then $r_{i, n}(M)=$ $O\left(p^{(d-2) n}\right)$.
(b) The same estimate holds if M is Z_{p}-flat with characteristic power series 1 .
(c) The same estimate holds if M is arbitrary, provided $i \geq 2$.

Proof. To prove (a) we need to show that the Z / p-dimension of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ is $O\left(p^{(d-2) n}\right)$. It suffices to prove this result with Λ / J_{n} replaced by Λ / I_{n} and by J_{n} / I_{n}. Now $\operatorname{Tor}_{i}^{\Lambda}\left(M, \Lambda / I_{n}\right)$ is the $i^{\text {th }}$ homology group of a Koszul complex on M built from the multiplication by $X_{j}^{p^{n}}$ operators. It follows that it identifies with $\operatorname{Tor}_{i}^{\lambda}\left(M, \bar{\Lambda} / \bar{I}_{n}\right)$ and Lemma 2.5 with $a=d-2$ bounds the dimension of this space.

Let S_{n} be the product of the $\Lambda /\left(I_{n}, \sigma^{p^{r}}-1\right), \sigma \in S$. There is a map of S_{n} onto J_{n} / I_{n} whose restriction to $\Lambda /\left(I_{n}, \sigma^{p^{r}}-1\right)$ is multiplication by $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right) . S_{n}$ is a free Z_{p}-module of rank $|S| \cdot p^{r} \cdot p^{(d-1) n}$; it follows from Theorem 2.4 that the kernel, K_{n}, of $S_{n} \rightarrow J_{n} / I_{n}$ is free over Z_{p} of
rank $O\left(p^{(d-2) n}\right)$. To bound the dimension of $\operatorname{Tor}_{i}^{1}\left(M, J_{n} / I_{n}\right)$ it suffices to bound the dimensions of $\operatorname{Tor}_{i-1}^{4}\left(M, K_{n}\right)$ and $\operatorname{Tor}_{i}^{\Lambda}\left(M, S_{n}\right)$. Now using the exact sequence $0 \rightarrow K_{n} \xrightarrow{p} K_{n} \rightarrow K_{n} / p K_{n} \rightarrow 0$ we find that $\operatorname{Tor}_{i-1}^{A}\left(M, K_{n}\right)$ embeds in $\operatorname{Tor}_{i-1}^{1}\left(M, K_{n} / p K_{n}\right)$. Since $K_{n} / p K_{n}$ admits a filtration of $O\left(p^{(d-2) n}\right)$ steps with quotients isomorphic to Z / p the length of this last module is $O\left(p^{(d-2) n}\right)$. To conclude the proof of (a) it suffices to show that for each $\sigma \in S$ the dimension of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda /\left(I_{n}, \sigma^{p^{r}}-1\right)\right)$ is $O\left(p^{(d-2) n}\right)$. We may assume that $n \geq r$ and that $\sigma=1+X_{d}$. Then $\left(I_{n}, \sigma^{p^{r}}-1\right)$ is generated by the $\left(1+X_{i}\right)^{p^{n}}-1, i<d$, together with $\left(1+X_{d}\right)^{p r}-1$. So the group $\operatorname{Tor}_{i}^{1}\left(M, \Lambda /\left(I_{n}, \sigma^{p r}-1\right)\right)$ is just the $i^{\text {th }}$ homology group of the Koszul complex on M built from the operators $X_{1}^{p^{n}}, X_{2}^{p^{n}}, \cdots$ and $X_{d}^{p^{r}}$. Now apply Lemma 2.6.

Suppose that M satisfies the hypotheses of (b). Using the exact sequence $0 \rightarrow M \xrightarrow{p} M \rightarrow M / p M \rightarrow 0$ we see that the reduction $\bmod p$ of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ embeds in $\operatorname{Tor}_{i}^{\Lambda}\left(M / p M, \Lambda / J_{n}\right)$. So it suffices to show that the Z / p-dimension of this last space is $O\left(p^{(d-2) n}\right)$. By the hypotheses of (b) M has Krull dimension $\leq d-1$. As p is not a zero-divisor on M it is in no minimal prime of Ann M, and the Krull dimension of $M / p M$ is $\leq d-2$. The desired bound then follows from (a).

By dévissage it suffices to prove (c) when M is cyclic with prime annihilator P. We may assume that P is non-principal since otherwise $r_{i, n}(M)=0$ for $i \geq 2$. Suppose first that $p \in P$. If M has Krull dimension $d-1$ then $P=(p, g)$ for some g with $\bar{g} \neq 0$. Then the $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ are the homology groups of the Koszul complex on Λ / J_{n} built from multiplication by p and by g. Thus $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ vanishes for $i>2$ while $\operatorname{Tor}_{2}^{1}\left(M, \Lambda / J_{n}\right)$ is contained in the p-torsion subgroup of Λ / J_{n} and so has dimension that is $O\left(p^{(d-2) n}\right)$. Suppose next that $p \in P$ but that M has Krull dimension $<d-1$. Then (a) gives the desired result. Finally if $p \notin P$ we may apply (b).

Definition 2.8. If M is a finitely generated Λ-module then M^{*} is the largest submodule of M annihilated both by a power of p and by some $h \notin(p)$.

Theorem 2.9. Let M be a finitely generated torsion 1-module. Suppose that $M^{*}=(0)$ and the $M / J_{n} M$ are finite groups. Then $r_{1, n}(M)$ is $O\left(p^{(d-2) n}\right)$.

Proof. There exist cyclic Λ-modules M_{i} with prime annihilators $\left(f_{i}\right)$ and a map $\phi: M \rightarrow \prod M_{i}$ whose kernel and cokernel have trivial characteristic power series. Then the characteristic power series of M is $\prod f_{i}$;
it follows that each $M_{i} / J_{n} M_{i}$ is finite. Let K, M^{\prime} and C denote the kernel, image and cokernel of ϕ, so that we have exact sequences (0) $\rightarrow K$ $\rightarrow M \rightarrow M^{\prime} \rightarrow(0)$ and $(0) \rightarrow M^{\prime} \rightarrow \prod M_{i} \rightarrow C \rightarrow(0)$. Then $r_{1, n}(M) \leq r_{1, n}(K)$ $+r_{1, n}\left(M^{\prime}\right) \leq r_{1, n}(K)+r_{2, n}(C)+\sum_{i} r_{1, n}\left(M_{i}\right)$. Since K has characteristic power series (1) it is annihilated by some $h \notin(p)$. Thus the p-torsion subgroup of K is contained in M^{*}. But $M^{*}=(0)$. So K is flat over Z_{p} and Theorem 2.7 (b) shows that $r_{1, n}(K)$ is $O\left(p^{(d-2) n}\right)$. Theorem 2.7 (c) gives the same estimate for $r_{2, n}(C)$. Finally $\operatorname{Tor}_{1}^{1}\left(M_{i}, \Lambda / J_{n}\right)$ identifies with the kernel of the multiplication by f_{i} map $\Lambda / J_{n} \rightarrow \Lambda / J_{n}$. But since $M_{i} / J_{n} M_{i}$ which is the cokernel of this map is finite, the same is true of the kernel. So $\operatorname{Tor}_{1}^{1}\left(M_{i}, \Lambda / J_{n}\right)$ identifies with a finite subgroup of Λ / J_{n}-we conclude from Theorem 2.4 that $r_{1, n}\left(M_{i}\right)$ is $O\left(p^{(d-2) n}\right)$.

We next wish to show that the exponent of the p-power torsion subgroup of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ is $O(n)$. Essential to this are the following lemmas from [5] whose proofs we repeat. The lemmas do not require $d \geq 2$.

Lemma 2.10. Suppose $\left.F \in R_{j} \llbracket X_{1}, \cdots, X_{d}\right], F \neq 0$. Then there is a non-empty open subset of W^{d} on which the function $\zeta \rightarrow \operatorname{ord} F(\zeta-1)$ is bounded.

Proof. We may assume that some co-efficient of F is a unit. Let $Y=\left\{\zeta \in W^{d}: F(\zeta-1)=0\right.$ or ord $\left.F(\zeta-1) \geq 1\right\}$. Arguing as in the proof of Lemma 1.13 we find that Y is contained in a proper closed subset of W^{d}.

Lemma 2.11. Suppose $F \in R_{j} \llbracket X_{1}, \cdots, X_{d} \rrbracket$. Make the convention that ord $0=0$. Then the function $\zeta \rightarrow \operatorname{ord} F(\zeta-1)$ is bounded on W^{d}.

Proof. By induction on d, the case $d=0$ being trivial. By Lemma 2.10 the function $\zeta \rightarrow \operatorname{ord} F(\zeta-1)$ is bounded on the complement of a union of finitely many $d-1$ dimensional Z_{p}-flats. So it suffices to show that $\zeta \rightarrow$ ord $F(\zeta-1)$ is bounded on any such Z_{p}-flat, T. We may assume that T is defined by $\zeta_{d}=\varepsilon$. Set $F^{*}=F\left(X_{1}, \cdots, X_{d-1}, \varepsilon-1\right)$ so that F^{*} has co-efficients in some R_{k}. By the induction assumption $\zeta \rightarrow \operatorname{ord} F^{*}(\zeta-1)$ is bounded on W^{d-1}, and we conclude that $\zeta \rightarrow \operatorname{ord} F(\zeta-1)$ is bounded on T.

Theorem 2.12. Let M be a finitely generated Λ-module. Then there is a constant c such that for each n the p-power torsion subgroup of $M / J_{n} M$ is annihilated by $p^{d n+n+c}$.

Proof. A detailed proof of a somewhat more general result is given in section 4 of [1]. We briefly sketch the specialization of that proof to
our case. In Lemma 1.5 we constructed an imbedding of

$$
R_{n} \llbracket X_{1}, \cdots, X_{a} \rrbracket / I_{n} \quad \text { into } \quad \prod\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)
$$

the product extending over all $\zeta \in W^{d}(n)$. It's easy to see that the cokernel C_{n} of the imbedding is annihilated by $p^{d n}$. Consider the map

$$
\left(M / J_{n} M\right) \otimes_{A}^{\otimes}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}\right) \rightarrow \prod\left(\left(M / J_{n} M\right) \otimes_{\Delta}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)\right) .
$$

The kernel of this map is a homomorphic image of $\operatorname{Tor}_{1}^{1}\left(M / J_{n} M, C_{n}\right)$ and so is annihilated by $p^{d n}$.

Now let $X=\bigcup_{\sigma, \varepsilon} T_{\sigma, \varepsilon}$ and $U=W^{d}-X$ be as in Definition 1.3. We make the following claims. First, if $\zeta \in X(n)$ then $\left(M / J_{n} M\right) \otimes_{A}\left(R_{n} \llbracket X_{1}\right.$, $\left.\cdots, X_{d} \rrbracket / Q_{\zeta}\right)$ is annihilated by p^{n-r}. Second, if $\zeta \in U(n)$ then the p-power torsion subgroup of $\left(M / J_{n} M\right) \otimes_{1}\left(R_{n}\left[X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)\right.$ is annihilated by some p^{a}, independent both of n and of $\zeta \in U(n)$. Suppose we grant the claims. Then it follows from the paragraph above that the p-power torsion subgroup of $\left(M / J_{n} M\right) \otimes_{A}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}\right)$ is annihilated by $p^{d n+n-r}$ for large n. But as I_{n} annihilates $M / J_{n} M$ this tensor product identifies with $\left(M / J_{n} M\right) \otimes_{R_{n}} Z_{p}$, a product of copies of $M / J_{n} M$.

It remains to establish the claims. The first is easy. If $\zeta \in T_{\sigma, \varepsilon}(n)$ then $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p r}-1\right)$ annihilates $M / J_{n} M$ while $\sigma^{p^{r}}-1$ annihilates $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}$. Since the tensor product is annihilated by each of these elements it is annihilated by p^{n-r}. Suppose now that $\zeta \in U(n)$. As we have seen in Lemma 1.6, $Q_{\zeta} \supset J_{n}$. Thus the tensor product identifies with $M \otimes_{\Lambda}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)$. Now choose a presentation $\Lambda^{s} \rightarrow \Lambda^{t} \rightarrow$ $M \rightarrow(0)$ of M with matrix $\left|F_{i j}\right|$, and let $\left\{H_{\alpha}\right\}$ be the set of determinants of the finitely many square submatrices of $\left|F_{i j}\right|$. Then $M \otimes_{1}\left(R_{n}\left[X_{1}, \cdots, X_{d}\right]\right.$ $\left.\mid Q_{\xi}\right)$ is the cokernel of a mapping $\left(R_{n}\right)^{s} \rightarrow\left(R_{n}\right)^{t}$ whose matrix is $\left|F_{i j}(\zeta-1)\right|$. It follows from this that the p-power torsion subgroup of the cokernel is annihilated by some non-zero $H_{\alpha}(\zeta-1)$. By Lemma 2.11 all the ord $H_{\alpha}(\zeta-1)$ are bounded by some integer a independent of α and ζ. We conclude that p^{a} annihilates the p-power torsion subgroup of each $M \otimes_{\Lambda}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}\right)$.

Corollary 2.13. Let M be a finitely generated Λ-module and $i \geq 0$ an integer. Then there is a constant c such that for each n the p-power torsion subgroup of $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ is annihilated by $p^{d n+n+c}$.

Proof. For $i=0$ this Theorem 2.12. For $i>0$ map a finite free Λ-module onto M with kernel K, note $\operatorname{Tor}_{i}^{1}\left(M, \Lambda / J_{n}\right)$ embeds in $\operatorname{Tor}_{i-1}^{\Lambda}\left(K, \Lambda / J_{n}\right)$, and argue by induction.

Combining the above corollary with Theorems 2.7 and 2.9 we get:
Theorem 2.14. Let M be a finitely generated torsion Λ-module such that the $M / J_{n} M$ are finite. Suppose that $M^{*}=(0)$. Then for each $i \geq 1$, $l_{i, n}(M)=O\left(n p^{(d-2) n}\right)$. In particular $l\left(M / J_{n} M\right)=E_{n}(M)+O\left(n p^{(d-2) n}\right)$.

We next study what happens when the assumption $M^{*}=(0)$ is dropped. First we show that $l\left(J_{n} M^{*} / I_{n} M^{*}\right)$ is $O\left(p^{(d-2) n}\right)$.

Lemma 2.15. Let N be a Λ-module annihilated both by some p^{t} and some $h \notin(p)$. Suppose $\sigma \in S$. Then there exists $a G \in \Lambda$, with $\overline{\sigma-1}$ not dividing \bar{G}, such that G annihilates $\left(\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)\right) N$ for large n.

Proof. Modulo $p, h \equiv(\sigma-1)^{\lambda} g$ where $\overline{\sigma-1}$ does not divide \bar{g}. Set $G=g^{t}$. Since $g \cdot(\sigma-1)^{\lambda}$ annihilates $N / p N, G \cdot(\sigma-1)^{t \lambda}$ annihilates N. Now $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)$ is in the ideal $(\sigma-1, p)^{n-r}$. So for n large it's in the ideal $\left((\sigma-1)^{t \lambda}, p^{t}\right)$ - the lemma follows.

Lemma 2.16. Let N be a finitely generated 1 -module annihilated both by some p^{t} and some $h \notin(p)$. Then $l\left(J_{n} N / I_{n} N\right)$ is $O\left(p^{(d-2) n}\right)$.

Proof. It suffices to show that $l\left(\left(I_{n},\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)\right) N / I_{n} N\right)$ is $O\left(p^{(d-2) n}\right)$ for each $\sigma \in S$. Choose G as in Lemma 2.15 and set $\mathcal{O}=$ $\Lambda /\left(G, \sigma^{p r}-1, p^{t}\right)$. Then $\overline{\mathcal{O}}=\bar{\Lambda} /\left(\bar{G}, \overline{\sigma-1^{p r}}\right)$ has Krull dimension $\leq d-2$. The argument of Lemma 2.2 shows that $l\left(\overline{\mathcal{O}} / \bar{I}_{n} \overline{\mathcal{O}}\right)$ is $O\left(p^{(d-2) n}\right)$, and since $l\left(\mathcal{O} \mid I_{n} \mathcal{O}\right) \leq t \cdot l\left(\overline{\mathcal{O}} / \bar{I}_{n} \overline{\mathcal{O}}\right)$, the same estimate holds for $l\left(\mathcal{O} \mid I_{n} \mathcal{O}\right)$. Now for large $n,\left(\left(I_{n},\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p r}-1\right)\right) N\right) / I_{n} N$ is an \mathcal{O}-module annihilated by I_{n}. Since the number of generators of this module is independent of n we get the lemma.

Theorem 2.17. Let M be a finitely generated torsion 1 -module such that the $M / J_{n} M$ are finite, and let $M^{*} \subset M$ be as in Definition 2.8. Then $l\left(M / J_{n} M\right)=E_{n}(M)+l\left(M^{*} / I_{n} M^{*}\right)+O\left(n p^{(d-2) n}\right)$.

Proof. Set $M^{\prime}=M / M^{*}$. There is an exact sequence $\operatorname{Tor}_{1}^{1}\left(M^{\prime}, \Lambda / J_{n}\right)$ $\rightarrow M^{*} / J_{n} M^{*} \rightarrow M / J_{n} M \rightarrow M^{\prime} / J_{n} M^{\prime} \rightarrow(0)$. Theorem 2.14 tells us that $l_{1, n}\left(M^{\prime}\right)=O\left(n p^{(d-2) n}\right)$ while $l\left(M^{\prime} / J_{n} M^{\prime}\right)=E_{n}\left(M^{\prime}\right)+O\left(n p^{(d-2) n}\right)$. Since M and M^{\prime} have the same characteristic power series, $E_{n}\left(M^{\prime}\right)=E_{n}(M)$. We conclude that $l\left(M / J_{n} M\right)=E_{n}(M)+l\left(M^{*} / J_{n} M^{*}\right)+O\left(n p^{(d-2) n}\right)$; Lemma 2.16 applied to M^{*} completes the proof.

To apply Theorem 2.17 we need good estimates both for $E_{n}(M)$ and $l\left(M * / I_{n} M^{*}\right)$. The first is provided by Theorem 1.21. For the second we use the following deep results from [3] and [4].

Theorem 2.18. Let N be a finitely generated 1 -module of Krull dimension $\leq a$ annihilated by p^{t+1} for some t. Then:
(1) If $a=1$ there is an $\alpha \in p^{-t} Z$ such that $l\left(N / I_{n} N\right)=\alpha p^{n}+O(1)$.
(2) In general there is a real α such that $l\left(N / I_{n} N\right)=\alpha p^{a n}+$ $\left.O\left(p^{(a-1) n}\right)\right)$.

Remarks. For the first result see Theorems 8.1 and 8.3 of [3]; the precise definition of α is given in Definition 2.3 of that paper. We shall only need (1) in the case $d=2$, which allows the unpleasant calculations of sections $4-6$ of [3] to be simplified, but the proof is still messy.

The second result makes heavy use of the Frobenius functor; see Theorem 3.9 of [4]. In [4] we produce α as the limit of a Cauchy sequence; we do not know if it is always rational.

Corollary 2.19. $l\left(M^{*} / I_{n} M^{*}\right)=\alpha p^{(d-1) n}+O\left(p^{(d-2) n}\right)$ for some real α. When $d=2, \alpha \in Z[1 / p]$.

Proof. Since M^{*} is annihilated by some $h \notin(p), M^{*} / p M^{*}$ is a torsion module over $\bar{\Lambda}$ and so has Krull dimension $\leq d-1$. So the same is true of M^{*}, and we may apply Theorem 2.18 with $N=M^{*}$ and $a=$ $d-1$.

\S 3. Estimates for $\boldsymbol{e}\left(\boldsymbol{G}_{n}\right)$ and $\boldsymbol{e}_{n}(L / k)$

If G is a finitely generated Z_{p}-module denote the Z_{p}-rank of G by $r(G)$ and the length of the p-power torsion subgroup of G by $e(G)$. We wish to generalize Theorem 2.17 by estimating the growth of $e\left(G_{n}\right)$ for a sequence, G_{n}, defined as follows:
(1) M is a finitely generated torsion Λ-module; for each $\sigma \in S, M_{\sigma}$ is a submodule of M containing $\left(\sigma^{p^{r}}-1\right) M$.
(2) For $n \geq r, A_{n}^{\prime}=I_{n} M+\sum_{\sigma \in S}\left(\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)\right) M_{\sigma}$, and $G_{n}=$ M / A_{n}^{\prime}.

Throughout we shall assume that $r\left(G_{n}\right)=O\left(p^{(d-2) n}\right)$. We begin the calculation of $e\left(G_{n}\right)$ by showing that for an appropriate λ the replacement of each M_{σ} by $M_{\sigma}+p^{\lambda} M$ changes $e\left(G_{n}\right)$ by at most $O\left(n p^{(d-2) n}\right)$. This requires several lemmas.

Lemma 3.1. $r\left(M /\left(M_{\sigma}+I_{n} M\right)\right)$ is $O\left(p^{(d-2) n}\right)$.
Proof. Because $r\left(M / A_{n}^{\prime}\right)$ is $O\left(p^{(d-2) n}\right)$ it's enough to show that $r\left(\left(M_{\sigma}+A_{n}^{\prime}\right) /\left(M_{\sigma}+I_{n} M\right)\right)$ is $O\left(p^{(d-2) n}\right)$. This reduces to showing that the Z_{p}-rank of $\left(M_{\sigma}+I_{n} M+\left(\left(\tau^{p^{n}}-1\right) /\left(\tau^{p^{r}}-1\right)\right) M_{\tau}\right) /\left(M_{\sigma}+I_{n} M\right)$ is $O\left(p^{(d-2) n}\right)$ for each $\tau \in S$. We may assume $\tau \neq \sigma$. Since $M_{\sigma} \supset\left(\sigma^{p r}-1\right) M$, the
module we're studying is annihilated by $\sigma^{p^{r}}-1$ as well as by $\tau^{p^{r}}-1$ and by I_{n}. Set $\mathcal{O}=\Lambda /\left(\sigma^{p^{r}}-1, \tau^{p^{r}}-1\right)$. Since no two elements of S generate the same Z_{p}-submodule of E the argument of Lemma 2.2 shows that the Z / p-dimension of $\overline{\mathcal{O}} / \bar{I}_{n} \overline{\mathcal{O}}$ is $O\left(p^{(d-2) n}\right)$; the same estimate then holds for $r\left(\mathcal{O} \mid I_{n} \mathcal{O}\right)$. But the $\mathcal{O} / I_{n} \mathcal{O}$-module we're studying is generated by a fixed number of elements, independent of n.

Lemma 3.2. The characteristic power series, g, of M / M_{σ} is trivial.
Proof. By Lemma 3.1 the R_{n}-rank of $\left(M / M_{\sigma}\right) \otimes_{A}\left(R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}\right)$ is $O\left(p^{(d-2) n}\right)$. Suppose that $(g) \neq(1)$. We shall derive a contradiction by showing that for $n \geq r$ the above R_{n}-rank is $\geq p^{(d-1) n}$. Note first that $\sigma^{p r}-1$ annihilates M / M_{σ}. It follows that g factors in $R_{r} \llbracket X_{1}, \cdots, X_{d} \rrbracket$ into a product of linear factors of the form $\sigma-\varepsilon$ with $\varepsilon^{p r}=1$. Fix one such factor, $\sigma-\varepsilon$, and suppose that $\zeta \in W^{a}(n)$ with $\sigma(\zeta-1)$ equal to this ε. The characteristic power series of the $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket$-module $\left(M / M_{\sigma}\right) \otimes_{A} R_{n}\left[X_{1}, \cdots, X_{d}\right]$ is g. Thus the prime ideal $(\sigma-\varepsilon)$ is in the support of this module, and since $Q_{\zeta} \supset(\sigma-\varepsilon)$ the same is true of Q_{ζ}. Now $Q_{\zeta} \supset I_{n}$ as well and so is in the support of $\left(M / M_{\sigma}\right) \otimes_{\Lambda}\left(R \llbracket X_{1}, \cdots, X_{d} \rrbracket / I_{n}\right)$. So if we take a filtration of this last module in which the quotients are cyclic with prime annihilator, then each $R_{n} \llbracket X_{1}, \cdots, X_{d} \rrbracket / Q_{\zeta}$ for which $\zeta^{p^{n}}=1$ and $\sigma(\zeta-1)=\varepsilon$ occurs at least once as a quotient. Since the number of such ζ is $p^{(d-1) n}$ we have the desired contradiction.

Lemma 3.3. Choose λ so large that p^{2} annihilates the p-power torsion in each M / M_{σ}. Then the Z_{p}-module $\left(A_{n}^{\prime}+p^{\lambda} J_{n} M\right) / A_{n}^{\prime}$ can be generated by $O\left(p^{(d-2) n}\right)$ elements.

Proof. Set $D_{\sigma}=p^{2}\left(M / M_{\sigma}\right)$. Then D_{σ} is flat over Z_{p}; by Lemma 3.2 it has Krull dimension $\leq d-1$. So $D_{\sigma} / p D_{\sigma}$ has Krull dimension $\leq d-2$, and an argument familiar by now shows that $D_{\sigma} / I_{n} D_{\sigma}$ can be generated by $O\left(p^{(d-2) n}\right)$ elements as Z_{p}-module. Now $D_{\sigma} / I_{n} D_{\sigma}$ identifies with $\left(p^{\lambda} M+M_{\sigma}\right) /\left(p^{\lambda} I_{n} M+M_{\sigma}\right)$. Thus we get a map from $\prod_{\sigma}\left(D_{\sigma} / I_{n} D_{\sigma}\right)$ to M / A_{n}^{\prime} whose restriction to $D_{\sigma} / I_{n} D_{\sigma}$ is induced by multiplication by $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)$. The image of this map is evidently $\left(A_{n}^{\prime}+p^{2} J_{n} M\right) / A_{n}^{\prime}$, giving the lemma.

Lemma 3.4. There is a constant c such that for each n both the p-power torsion subgroup of M / A_{n}^{\prime} and the p-power torsion subgroup of $M /\left(A_{n}^{\prime}+p^{\lambda} J_{n} M\right)$ are annihilated by $p^{a n+n+c}$.

Proof. For M / A_{n}^{\prime} this slight generalization of Theorem 2.12 may be proved by a similar technique; for details see section 4 of [1]. The
result for $M /\left(A_{n}^{\prime}+p^{2} J_{n} M\right)$ follows on replacing each M_{σ} by $M_{\sigma}+p^{2} M$; this has the effect of replacing A_{n}^{\prime} by $A_{n}^{\prime}+p^{2} J_{n} M$.

Theorem 3.5. Choose λ as in Lemma 3.3 and set $H_{n}=M /\left(A_{n}^{\prime}+p^{\lambda} J_{n} M\right)$. Then $\left|e\left(G_{n}\right)-e\left(H_{n}\right)\right|$ is $O\left(n p^{(d-2) n}\right)$.

Proof. Suppose we have an onto map $\phi: G \rightarrow H$ of finitely generated Z_{p}-modules with the following properties: the p-power torsion subgroups of G and H are each annihilated by p^{4} and the kernel K of ϕ can be generated by B elements over Z_{p}. We claim that $|e(G)-e(H)| \leq$ $A B$. To see this note the exact sequence

$$
(0) \rightarrow{ }^{t} K \rightarrow{ }^{t} G \rightarrow{ }^{t} H \rightarrow K / p^{A} K \rightarrow G / p^{A} G \rightarrow H / p^{A} H \rightarrow(0)
$$

where ${ }^{t} K,{ }^{t} G$ and ${ }^{t} H$ are the torsion subgroups of K, G and H. The sequence shows that both the kernel and cokernel of ${ }^{t} G \rightarrow{ }^{t} H$ are annihilated by p^{A} and generated by B or fewer elements over Z_{p}, establishing the claim. Now apply this result to the projection map $G_{n} \rightarrow H_{n}$ with kernel $\left(A_{n}^{\prime}+p^{2} J_{n} M\right) / A_{n}^{\prime}$. Since Lemma 3.3 shows that this kernel can be generated by $O\left(p^{(d-2) n}\right)$ elements, and Lemma 3.4 that both ${ }^{t} G_{n}$ and ${ }^{t} H_{n}$ are annihilated by $p^{d n+n+c}$, the theorem follows.

We now proceed to estimate $e\left(G_{n}\right)$ with an error term no worse than $O\left(n p^{(d-2) n}\right)$. We assume in the following definition and lemmas that the $M / J_{n} M$ are finite groups-this restriction is very easy to get rid of. In view of Theorem 3.5 we may replace each M_{σ} by $M_{\sigma}+p^{2} M$. So we shall assume that $M_{\sigma} \supset p^{\lambda} M$ for some λ. Then p^{2} annihilates $J_{n} M / A_{n}^{\prime}$, the M / A_{n}^{\prime} are finite groups, and $e\left(G_{n}\right)$ is just $l\left(G_{n}\right)$.

Definition 3.6.

(1) $X_{\sigma}=M /\left(\sigma^{p r}-1, p^{\lambda}\right) M, Y_{\sigma}=M_{\sigma} /\left(\sigma^{p^{r}}-1, p^{\lambda}\right) M$.
(2) $N_{\sigma}=X_{\sigma} / Y_{\sigma}=M / M_{\sigma}$.
(3) J_{n}^{\prime} is the ideal $I_{n}+p^{2} J_{n}$ of Λ.

Besides the obvious maps $\prod_{\alpha}\left(Y_{\sigma} / I_{n} Y_{\sigma}\right) \rightarrow \prod_{\sigma}\left(X_{\sigma} / I_{n} X_{\sigma}\right)$ we have for each $n \geq r$ a map $\prod_{\sigma}\left(X_{\sigma} / I_{n} X_{\sigma}\right) \rightarrow M / J_{n}^{\prime} M$ whose restriction to $X_{\sigma} / I_{n} X_{\sigma}$ is induced by multiplication by $\left(\sigma^{p^{n}}-1\right) /\left(\sigma^{p^{r}}-1\right)$. Composing, we get maps $\prod_{\sigma}\left(Y_{\sigma} / I_{n} Y_{\sigma}\right) \rightarrow M / J_{n}^{\prime} M$. The following observation is clear.

Lemma 3.7. The cokernels of the maps $\Pi\left(Y_{\sigma} / I_{n} Y_{\sigma}\right) \rightarrow \Pi\left(X_{\sigma} / I_{n} X_{\sigma}\right)$, $\Pi\left(X_{\sigma} / I_{n} X_{\sigma}\right) \rightarrow M / J_{n}^{\prime} M$, and $\Pi\left(Y_{\sigma} / I_{n} Y_{\sigma}\right) \rightarrow M / J_{n}^{\prime} M$ identify respectively with $\prod\left(N_{\sigma} / I_{n} N_{\sigma}\right), M / J_{n} M$ and M / A_{n}^{\prime}.

Lemma 3.8. Let N be a finitely generated Λ-module annihilated by $\left(\sigma^{p r}-1, p^{\lambda}\right)$ for some $\sigma \in S$. Then there is an integer $\alpha=\alpha(N)$ such that
$l\left(N / I_{n} N\right)=\alpha p^{(d-1) n}+O\left(p^{(d-2) n}\right)$. In particular, $l\left(N_{\sigma} / I_{n} N_{\sigma}\right)=\alpha\left(N_{\sigma}\right) p^{(d-1) n}$ $+O\left(p^{(d-2) n}\right)$.

Proof. Without loss of generality we may assume that $\sigma=1+X_{d}$. Set $\Lambda^{\prime}=Z_{p}\left[X_{1}, \cdots, X_{d-1} \rrbracket\right.$ and let I_{n}^{\prime} be the ideal of Λ^{\prime} generated by the $\left(1+X_{j}\right)^{p^{n}}-1$ for $j<d$. Then N is a finitely generated Λ^{\prime}-module annihilated by p^{2} : let p^{α} be its characteristic power series as Λ^{\prime}-module. For $n \geq r, N / I_{n} N=N / I_{n}^{\prime} N$. We can now argue as in sections 1 and 2 with d replaced by $d-1$ to conclude that $l\left(N / I_{n}^{\prime} N\right)=\alpha p^{(d-1) n}+O\left(p^{(d-2) n}\right)$. Or more simply we can proceed as follows. There exist cyclic Λ^{\prime}-modules N_{i} with annihilators $\left(p^{n_{i}}\right), \sum n_{i}=\alpha$, and maps $\phi: N \rightarrow \prod N_{i}, \phi^{*}: \prod N_{i} \rightarrow N$ whose cokernels C and C^{*} are annihilated by some $h \notin(p)$. Then $C / I_{n}^{\prime} C$ and $C^{*} / I_{n}^{\prime} C^{*}$ are modules over $\Lambda^{\prime} /\left(h, p^{2}\right)$, a local ring of Krull dimension $\leq d-2$. It follows in the usual way that $l\left(C / I_{n}^{\prime} C\right)$ and $l\left(C^{*} / I_{n}^{\prime} C^{*}\right)$ are each $O\left(p^{(d-2) n}\right)$, and consequently that $l\left(N / I_{n}^{\prime} N\right)$ and $\sum l\left(N_{i} / I_{n}^{\prime} N_{i}\right)$ differ by $O\left(p^{(d-2) n}\right)$. But since $\Lambda^{\prime} / I_{n}^{\prime}$ is a free Z_{p}-module of rank $p^{(d-1) n}$, the length of $N_{i} / I_{n}^{\prime} N_{i}$ is $n_{i} p^{(d-1) n}$. Now use the fact that $\sum n_{i}=\alpha$.

Lemma 3.9. Suppose that $M^{*}=(0)$. Then each of the maps of Lemma 3.7 has kernel of length $O\left(p^{(d-2) n}\right)$.

Proof. To prove the result for the first map it suffices to show that the length of the kernel of $Y_{\sigma} / I_{n} Y_{\sigma} \rightarrow X_{\sigma} / I_{n} X_{\sigma}$ is $O\left(p^{(d-2) n}\right)$; this is in fact true without the restriction $M^{*}=(0)$. We may assume that $\sigma=1+X_{d}$. There is an exact sequence $Y_{\sigma} / I_{n} Y_{\sigma} \rightarrow X_{\sigma} / I_{n} X_{\sigma} \rightarrow N_{\sigma} / I_{n} N_{\sigma} \rightarrow(0)$. Up to an error term of $O\left(p^{(d-2) n}\right)$ the lengths of $Y_{\sigma} / I_{n} Y_{\sigma}, X_{\sigma} / I_{n} X_{\sigma}$ and $N_{\sigma} / I_{n} N_{\sigma}$ are given by $\alpha\left(Y_{\sigma}\right) p^{(d-1) n}, \alpha\left(X_{\sigma}\right) p^{(d-1) n}$ and $\alpha\left(N_{\sigma}\right) p^{(d-1) n}$. But the explicit description of α given in the proof of Lemma 3.8 shows that $\alpha\left(X_{\sigma}\right)=$ $\alpha\left(Y_{\sigma}\right)+\alpha\left(N_{\sigma}\right)$-the desired estimate follows.

It remains to prove the result for the map $\prod\left(X_{\sigma} / I_{n} X_{\sigma}\right) \rightarrow M / J_{n}^{\prime} M$, under the assumption that $M^{*}=(0)$. Take $S_{n}=\prod_{\sigma} \Lambda /\left(\sigma^{p^{r}}-1, I_{n}\right)$ as in the proof of Theorem 2.7. Note that $\Pi\left(X_{\sigma} / I_{n} X_{\sigma}\right)=\Pi\left(M /\left(\sigma^{p^{r}}-1, I_{n}, p^{\lambda}\right) M\right)$ $=M \otimes_{\Lambda}\left(S_{n} / p^{2} S_{n}\right)$. Now the exact sequence (0) $\rightarrow K_{n} \rightarrow S_{n} \rightarrow J_{n} / I_{n} \rightarrow(0)$ of the proof of Theorem 2.7 yields, on reduction modulo p^{2}, an exact sequence $K_{n} / p^{2} K_{n} \rightarrow S_{n} / p^{2} S_{n} \rightarrow J_{n} / J_{n}^{\prime} \rightarrow(0)$. Thus the kernel of the map $M \otimes_{\Lambda}\left(S_{n} / p^{2} S_{n}\right) \rightarrow M \otimes_{A}\left(J_{n} / J_{n}^{\prime}\right)$ is a homomorphic image of $M \otimes_{A}\left(K_{n} / p^{2} K_{n}\right)$ and so has length that is $O\left(p^{(d-2) n}\right)$. Furthermore the kernel of the map $M \otimes_{\Lambda}\left(J_{n} / J_{n}^{\prime}\right) \rightarrow M / J_{n}^{\prime} M$ is a homomorphic image of $\operatorname{Tor}_{1}^{\Lambda}\left(M, \Lambda / J_{n}\right)$, and is annihilated by p. Under the assumption $M^{*}=(0)$, Theorem 2.9 shows that the length of this kernel is $O\left(p^{(d-2) n}\right)$. So the length of the kernel of the composite map $M \otimes_{\Lambda}\left(S_{n} / p^{2} S_{n}\right) \rightarrow M / J_{n}^{\prime} M$ is also $O\left(p^{(d-2) n}\right)$, establishing the lemma.

Lemma 3.10. Suppose that $M^{*}=(0)$. Then there is an integer β such that $l\left(G_{n}\right)=l\left(M / J_{n} M\right)+\beta p^{(d-1) n}+O\left(p^{(d-2) n}\right)$.

Proof. By Lemmas 3.7 and 3.9, $l\left(M / A_{n}^{\prime}\right)-l\left(M / J_{n} M\right)-\sum l\left(N_{\sigma} / I_{n} N_{\sigma}\right)$ is"' $O\left(p^{(d-2) n}\right)$. Now apply Lemma 3.8.

Theorem 3.11. Let F be the characteristic power series of M. Suppose that the G_{n} are defined as at the beginning of this section and that $r\left(G_{n}\right)=$ $O\left(p^{(d-2) n}\right)$. The there is a non-empty open subset U of W^{d} and an integer β_{*}^{*} "such that $e\left(G_{n}\right)=\sum(F, U, n)+l\left(M^{*} / I_{n} M^{*}\right)+\beta p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$.

Proof. We first prove the theorem under the hypothesis that the $M / J_{n} M$ are finite. Then Theorem 3.5 allows us to assume that $M_{\sigma} \supset p^{2} M$ for some fixed integer λ. Replacing M by $M^{\prime}=M / M^{*}$ and each M_{σ} by its image in M / M^{*}, and applying Lemma 3.10 we find that $l\left(M /\left(M^{*}+A_{n}^{\prime}\right)\right)$ $=l\left(M^{\prime} / J_{n} M^{\prime}\right)+\beta p^{(d-1) n}+O\left(p^{(d-2) n}\right)$ for some integer β. If we take U as in Definition 1.3, then Theorems 1.10 and 2.14 applied to M^{\prime} tell us that $l\left(M^{\prime} / J_{n} M^{\prime}\right)=\sum(F, U, n)+O\left(n p^{(d-2) n}\right)$. It remains to show that $l\left(M / A_{n}^{\prime}\right)$ $=l\left(M /\left(M^{*}+A_{n}^{\prime}\right)\right)+l\left(M^{*} / I_{n} M^{*}\right)+O\left(p^{(d-2) n}\right)$. Since the cokernel of the map $M^{*} / I_{n} M^{*} \rightarrow M / A_{n}^{\prime}$ identifies with $M^{*} /\left(M^{*}+A_{n}^{\prime}\right)$ it's enough to show that the length of the kernel is $O\left(p^{(d-2) n}\right)$. As M / A_{n}^{\prime} maps onto $M / J_{n} M$ it suffices to prove this result for the kernel of $M^{*} / I_{n} M * \rightarrow M / J_{n} M$. But this last map factors through $M^{*} / J_{n} M^{*}$. Since the kernel of $M^{*} / J_{n} M^{*}$ $\rightarrow M / J_{n} M$ is a homomorphic image of $\operatorname{Tor}_{1}^{\Lambda}\left(M / M^{*}, \Lambda / J_{n}\right)$, and is annihilated by a fixed power of p, Theorem 2.9 shows that its length is $O\left(p^{(d-2) n}\right)$. Finally we see from Lemma 2.16 that the length of the kernel of $M^{*} / I_{n} M^{*} \rightarrow M^{*} / J_{n} M^{*}$ is also $O\left(p^{(d-2) n}\right)$.

We now show how to remove the assumption that the $M / J_{n} M$ are finite. In view of Theorem 1.14 we can find an $r^{\prime} \geq r$ and an $S^{\prime} \supset S$ so that if we use r^{\prime} and S^{\prime} to define ideals $J_{n}^{\prime}, n \geq r^{\prime}$, as in Definition 1.1 then the $M / J_{n}^{\prime} M$ are finite. For each $\sigma \in S^{\prime}$ we define a submodule M_{σ}^{\prime} of M as follows. If $\sigma \in S, M_{\sigma}^{\prime}=\left(\left(\sigma^{p^{\prime \prime}}-1\right) /\left(\sigma^{p^{r}}-1\right)\right) M_{\sigma}$, while if $\sigma \notin S$ then $M_{\sigma}^{\prime}=\left(\sigma^{p^{\prime}}-1\right) M$. Then for $n \geq r^{\prime}$ the A_{n}^{\prime} defined from r^{\prime}, S^{\prime} and the M_{σ}^{\prime} is the same as the A_{n}^{\prime} defined from r, S, and the M_{σ}. So $e\left(G_{n}\right)$ is unchanged when r, S and M_{σ} are replaced by r^{\prime}, S^{\prime} and M_{σ}^{\prime}, and we may apply the result of the last paragraph.

Using Theorems 1.19 and 1.20 to estimate $\sum(F, U, n)$ and Corollary 2.19 to handle $l\left(M^{*} / I_{n} M^{*}\right)$ we get:

Theorem 3.12. Situation as in as in Theorem 3.11. Let $m_{0}=m_{0}(F)$ and $l_{0}=l_{0}(F)$. Then there is a real number α^{*} such that $e\left(G_{n}\right)=m_{0} p^{d n}+$ $l_{0} n p^{(d-1) n}+\alpha^{*} p^{(d-1) n}+O\left(n p^{(d-2) n}\right)$. If either $M^{*}=(0)$ or $d=2$ then α^{*} is rational.

We now use the method of [1] to deduce the number-theoretic results of the introduction from Theorem 3.12. Namely let L / k be a Z_{p}^{d}-extension with $d \geq 2$, let M_{L} be the maximal unramified abelian pro- p extension of L and set $X=G\left(M_{L} / L\right)$. Then the free rank $d Z_{p}$-module $G(L / k)$ acts on X by conjugation. Let Λ and E be as in section 1 and fix an isomorphism between $G(L / k)$ and E. Then E acts on X and we may use this action to make X into a Λ-module, the "Greenberg-Iwasawa" module of L / k. As in the case $d=1$, treated by Iwasawa, X is finitely generated and torsion over Λ, and one can essentially recover the Galois group of the maximal unramified abelian p-extension of k_{n}, and hence $e_{n}(L / k)$, from X together with its Λ-module structure.

To be precise, the following result is proved in Theorems 5.11 and 5.12 of [1]. There is an integer $r \geq 0$ and a finite set of pairs $\left(\tau_{i}, M_{i}\right)$, $\tau_{i} \in E-E^{p}, M_{i}$ a 亿-submodule of X, such that if we set $A_{n}^{\prime}=I_{n} X+$ $\sum_{i}\left(\left(\tau_{i}^{p^{n}}-1\right) /\left(\tau_{i}^{p^{r}}-1\right)\right) M_{i}$ then the $\left.r\left(X / A_{n}^{\prime}\right)\right)$ are bounded and $\mid e_{n}(L / k)-$ $e\left(X \mid A_{n}^{\prime}\right) \mid=O(n)$. Now without changing the A_{n}^{\prime} we may assume that $M_{i} \supset\left(\tau_{i}^{p^{r}}-1\right) X$ and that the τ_{i} generate distinct Z_{p}-submodules of E. But we are now in precisely the algebraic situation treated in this section, and Theorem 3.12 gives:

Theorem 3.13. Let L / k be a Z_{p}^{d}-extension of a number field, $d \geq 2, X$ the Greenberg-Iwasawa module of the extension, and F the characteristic power series of $X . \quad$ Set $m_{0}=m_{0}(F), l_{0}=l_{0}(F)$. Then there is a real number α^{*} such that $e_{n}(L / k)=\left(m_{0} p^{n}+l_{0} n+\alpha^{*}\right) p^{(d-1) n}+O\left(n p^{(d-2) n}\right) . \quad$ When $d=2$, α^{*} is rational.

References

[1] Cuoco, A., Monsky, P., Class numbers in Z_{p}^{d}-extensions, Math. Ann., 255 (1981), 235-258.
[2] -, Some contributions to the theory of Z_{p}^{2}-extensions, Brandeis University thesis (1979).
[3] Monsky, P., Class numbers in Z_{p}^{d}-extensions, III, Math. Z., 193 (1986), 491-514.
[4] -, Class numbers in Z_{p}^{d}-extensions, IV, Math. Z., 196 (1987), 547-572.
[5] -, On p-adic power series, Math. Ann., 255 (1981), 217-227.
[6] -, p-Ranks of class groups in Z_{p}^{d}-extensions, Math. Ann., 263 (1983), 509-514.
[7] Seibert, G., Complexes with homology of finite length and Frobenius functors, J. Algebra, to appear.
[8] Serre, J. P., Algèbre Locale Multiplicités. Lecture Notes in Mathematics 11, p. 139. Berlin Heidelberg New York: Springer 1975.

Department of Mathematics
Brandeis University
Waltham, MA 02254
U.S.A.

[^0]: Received July 26, 1987.

