Cyclotomic Z_{p}-extensions of $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$

Yûji Kida

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

In the theory of \boldsymbol{Z}_{p}-extensions of a number field, the λ-invariant has a special meaning that it is an analogue of the genus of an algebraic curve. In this point of view, one can naturally hope that there exists a uniform bound for λ_{p} independent of p when the base field is fixed, and this bound might be regarded as the genuine analogue of the genus for a number field. This question has been studied by Ferrero [1,2] and Metsänkylä [5, 6].

In this paper, we refine Ferrero's results for some imaginary quadratic fields, in particular for $\boldsymbol{Q}(\sqrt{-1})$ and $\boldsymbol{Q}(\sqrt{-3})$.

§ 1.

We describe briefly how to get the exact values of a p-adic measure α defined below. We follow Sinnott [7] to construct a p-adic L-function. Let θ be an odd Dirichlet character with conductor d. We assume d is not a power of p. Define a rational function for θ by

$$
F_{0}(X)=\sum_{a=1}^{d} \theta(a)(1+X)^{a} /\left\{(1+X)^{d}-1\right\} .
$$

Let \mathcal{O} be the integer ring of the field generated over \boldsymbol{Q}_{p} by the values of θ, and let π be a prime element of \mathcal{O}. Then $F_{\theta}(X)$ can be expanded into a formal power series with \mathcal{O}-coefficients. Let α be the \mathcal{O}-valued p-adic measure corresponding to F_{θ}. Replace the period d in F_{θ} by $d p^{n}$. Then we get the following congruence from the fundamental correspondence between measures and power series:

$$
\begin{aligned}
\alpha\left(r+\left(p^{n}\right)\right)(1+X)^{r} & \equiv\left\{\sum^{\prime} \theta(a)(1+X)^{a}\right\} /\left\{(1+X)^{d p^{n}}-1\right\} \\
& \left(\bmod (1+X)^{p^{n}}-1\right),
\end{aligned}
$$

where r is an integer satisfying $0 \leq r<p^{n}$, and the sum Σ^{\prime} is taken over all integers a with $1 \leq a<d p^{n}, a \equiv r\left(\bmod p^{n}\right)$. Put $X=0$. Then we have

$$
\alpha\left(r+\left(p^{n}\right)\right)=\left(\sum^{\prime} \theta(a) a\right) / d p^{n}
$$

Assume further d is not divisible by p. Then we can easily get $\alpha\left(r+\left(p^{n}\right)\right)=\theta(p)^{n}\left\{(1 / d) \sum_{a=1}^{d} \theta(a) a+\sum_{a=1}^{s-1} \theta(a)\right\}$, where s is defined as the unique integer satisfying $1 \leq s \leq d, s p^{n} \equiv r(\bmod d)$.

We denote by α^{*} the restriction of α to \boldsymbol{Z}_{p}^{*}. That is, $\alpha^{*}\left(r+\left(p^{n}\right)\right)=$ $\alpha\left(r+\left(p^{n}\right)\right)$ if $(r, p)=1$, and $\alpha^{*}\left(r+\left(p^{n}\right)\right)=0$ if $(r, p) \neq 1$.

We choose the isomorphism from $1+p \boldsymbol{Z}_{p}$ to \boldsymbol{Z}_{p} which sends x to $(1 / p) \log (x)$, where $\log (x)$ is the usual p-adic logarithm function. Put the resulting power series as $f(\theta, X)=\sum_{n=0}^{\infty} c_{n} X^{n}$. Then we have

$$
\begin{aligned}
& c_{0}=\{1-\theta(p)\}(1 / d)\left\{\sum_{a=1}^{d} \theta(a) a\right\}, \\
& c_{1}=\int \frac{1}{p} \log (x) d \alpha(x),
\end{aligned}
$$

where $\log (x)$ is Iwasawa's p-adic logarithm function.
To calculate λ_{p}, it is sufficient to know the π-divisibility of c_{n}. Therefore, we can replace $(1 / p) \log (x)$ by $l(x)=(1 / p)\left(1-x^{p-1}\right)$, and hence

$$
c_{1} \equiv \sum^{\prime} l(a) \alpha\left(a+\left(p^{2}\right)\right) \quad(\bmod p)
$$

where the sum is taken over all a with $0 \leq a<p^{2},(a, p)=1$. This gives a criterion of the π-divisibility of c_{1}. But since this formula contains essentially p^{2} terms, it is not convenient to calculate it for large p. If $p \equiv 1$ $(\bmod d)$, we can give a criterion containing essentially p terms.

Theorem 1. If $p \equiv 1(\bmod d)$, then $\lambda_{p}>1$ if and only if

$$
\sum_{x=1}^{d}\left\{\sum_{z=1}^{x-1} \alpha\left(z+\left(p^{2}\right)\right)\right\}\left\{\sum^{\prime} l(y)\right\} \equiv 0 \quad(\bmod \pi)
$$

where the last sum is taken over all integers y satisfying $1 \leq y<p, y \equiv x$ $(\bmod d)$.

Proof. For any integer x prime to p, define $y_{x} \in \boldsymbol{Z} / p \boldsymbol{Z}$ by $x \equiv \omega+$ $y_{x} p\left(\bmod p^{2}\right)$, where ω is a $(p-1)$-st root of unity. Then we have $l(x) \equiv$ $y_{x} / x(\bmod p)$. For simplicity, we denote $\alpha\left(x+p^{2}\right)$ by $\alpha(x)$ in the rest of this paper. Put

$$
S(a)=\sum_{b=1}^{p-1} l(a+b p) \alpha(a+b p) .
$$

Then we have

$$
\begin{aligned}
S(a) & \left.\equiv \sum_{b=1}^{p-1}\left\{\left(y_{a}+b\right) / a\right)\right\} \alpha(a+b) & & (\bmod p) \\
& \equiv(1 / a) \sum_{b=1}^{p-1} b \alpha(a+b) & & (\bmod p)
\end{aligned}
$$

We assume $p \equiv 1(\bmod d)$. Divide the sum in the right hand side by every d terms. Then we have

$$
\begin{aligned}
\sum_{b=1}^{d} b \alpha(a+b) & =\sum_{z=1}^{a}(d+z-a) \alpha(z)+\sum_{z=a+1}^{d}(z-a) \alpha(z) \\
& =d \sum_{z=1}^{a} \alpha(z)+\sum_{z=1}^{d} z \alpha(z)-a \sum_{z=1}^{d} \alpha(z)
\end{aligned}
$$

Since $\alpha(z)$ is a periodic function of period d and $c_{0}=\sum_{z=1}^{p^{2}} \alpha^{*}(z)$, the vanishing of c_{0} implies the vanishing of the 3rd term. Denote the 2nd term by T. Since $\alpha\left(p^{2}-z\right)=\alpha(z)$, we have $\alpha(d+1-z)=\alpha(z)$. Therefore $T=\sum_{z=1}^{d}(d+1-z) \alpha(z)$. Hence $2 T=(d+1) \sum_{z=1}^{d} \alpha(z)$, which is 0 by the above. Thus the 2 nd term is also 0 . Now we get

$$
\begin{aligned}
S(a) & \equiv(1 / a)\{(p-1) / d\} d \sum_{z=1}^{a} \alpha(z) & & (\bmod p) \\
& \equiv-(1 / a) \sum_{z=1}^{a} \alpha(z) & & (\bmod p)
\end{aligned}
$$

Put

$$
S=\sum_{a=1}^{p-1} \sum_{b=0}^{p-1} l(a+b p) \alpha(a+b p)
$$

Then we have

$$
S \equiv \sum_{a=1}^{p-1} l(a) \alpha(a)-\sum_{a=1}^{p-1}(1 / a) \sum_{z=1}^{a} \alpha(z) \quad(\bmod p)
$$

Since $1 / a \equiv l(a)-l(p-a)(\bmod p)$, we get $S \equiv \sum l(a)\{\alpha(a)-\beta(a)+\beta(p-a)\}$ $(\bmod p)$, where $\beta(a)=\sum_{z=0}^{a} \alpha(z)$. Since $\beta(p-a)=-\beta(a-1)$, we have

$$
S \equiv-2 \sum_{a=1}^{p-1} l(a) \beta(a-1) \quad(\bmod p)
$$

Since $c_{1} \equiv S(\bmod p)$, Theorem 1 is proved.
Q.E.D.

For $\boldsymbol{Q}(\sqrt{-1})$ and $\boldsymbol{Q}(\sqrt{-3})$, clearly $c_{0} \equiv 0(\bmod p)$ if and only if $\theta(p) \equiv 1(\bmod p)$, which is equivalent to $p \equiv 1(\bmod d)$. Therefore we obtain the following criterion for $\lambda_{p}>1$. Since the coefficients of $l(x)$ are rational integers, we can write it in the product form.

Corollary (cf. Ferrero [2, p. 19]).
(1) For $Q(\sqrt{-1}), \lambda_{p}>0$ if and only if $p \equiv 1(\bmod 4)$. Further, $\lambda_{p}>1$ if and only if $p \equiv 1(\bmod 4)$ and $\left(\prod_{1} y / \prod_{2} y\right)^{p-1} \equiv 1\left(\bmod p^{2}\right)$, where the 1 st product \prod_{1} is taken over all y with $1 \leq y<p, y \equiv 2(\bmod 4)$, and the $2 n d$ product \prod_{2} is taken over all y with $1 \leq y<p, y \equiv 0(\bmod 4)$.
(2) For $Q(\sqrt{-3}), \lambda_{p}>0$ if and only if $p \equiv 1(\bmod 3)$. Further, $\lambda_{p}>1$ if and only if $p \equiv 1(\bmod 3)$ and $\left(\prod_{1} y / \prod_{2} y\right)^{p-1} \equiv 1\left(\bmod p^{2}\right)$, where the 1 st product Π_{1} is taken over all y with $1 \leq y<p, y \equiv 0(\bmod 3)$, and the 2 nd product \prod_{2} is taken over all y with $1 \leq y<p, y \equiv 2(\bmod 3)$.

Numerical examples.

For $\boldsymbol{Q}(\sqrt{-1})$, the only value $p<150000$ with $\lambda_{p}>1$ is $p=29789$.
For $\boldsymbol{Q}(\sqrt{-3})$, the only values $p<150000$ with $\lambda_{p}>1$ are $p=13$, 181, 2521, 76543.

Remark. If there were only a finite number of p with $\lambda_{p}>1$, we could give an affirmative answer to the question stated in the introduction.
§ 2.
We shall use standard notation in the theory of Z_{p}-extensions. Let k_{∞} be the cyclotomic Z_{p}-extension of k and k_{n} its unique subfield of degree p^{n} over k. Let L_{∞} be the maximal unramified abelian p-extension over k_{∞}, and $X(k)$ the Galois group $\operatorname{Gal}\left(L_{\infty} / k_{\infty}\right)$ with the action of $\operatorname{Gal}\left(k_{\infty} / k\right)$.

Theorem 2. Let $k=\boldsymbol{Q}(\sqrt{-m})$ be an imaginary quadratic field with $m=1,2,3,5,6,7,10,11,15$ or 19 . Then for each prime number p, we have $\lambda_{p}<p$.

Proof. Let θ be the nontrivial Dirichlet character attached to k. Ferrero proved ($[1, \mathrm{p} .407]$) for these fields that if $\lambda_{p} \geq p$ the power series $f(\theta, X)$ corresponding to the p-adic L-function for θ (cf. § 1) is divisible by $(1+X)^{p}-1$. Then, the theorem of Mazur-Wiles tells that the characteristic polynomial of the Iwasawa module $X(k)$ is also divisible by $(1+X)^{p}-1$. This means that the p-rank of the $\operatorname{Gal}\left(k_{\infty} / k_{1}\right)$-invariant submodule of $X(k)$ is at least p. On the other hand, formula for ambiguous class numbers (cf. [4, Lemma 1]) tells the number of the invariant classes in k_{n} / k_{1} is equal to the product of the class number of k_{1} and $p^{(n-1)}$. Therefore the p-rank of this submodule is 1 . This contradiction proves Theorem 2.
Q.E.D.

Theorem 3. Let k be as in Theorem 2. Then for any $p>2$, we have $e_{p, n}=\lambda_{p} \cdot n$ for all $n \geq 0$, where $e_{p, n}$ is the exponent of the maximal power of p dividing the class number of k_{n}.

Proof. If p does not split in k / Q, then $e_{p, n}=0$ for all $n \geq 0$. Thus the theorem holds in this case. If p splits in k / \mathbf{Q}, then $c_{0}=0$ (cf. § 1). Therefore $f(\theta, X)$ is a product of X and a power series whose λ_{p} is less
than $p-1$ by Theorem 2. Applying Iwasawa's argument [3, p. 93] to each power series, we get $e_{p, n+1}-e_{p, n}=\lambda_{p}$ for all $n \geq 0$. Since $e_{p, 0}=0$, we have Theorem 3.

Remark. For $\boldsymbol{Q}(\sqrt{-1})$ and $\boldsymbol{Q}(\sqrt{-3})$, Theorem 3 holds also for $p=2$. In fact, $e_{\Omega, n}=0$ for all $n \geq 0$.

References

[1] Ferrero, B., An explicit bound for Iwasawa's λ-invariant, Acta Arith., 33 (1977), 405-408.
[2] -, Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24.
[3] Iwasawa, K., Lectures on p-adic L-functions, Ann. of Math. Studies, 74, Princeton University Press 1972.
[4] Kida, Y., l-Extensions of $C M$-Fields and Cyclotomic Invariants, J. Number Theory, 12 (1980), 519-528.
[5] Metsänkylä, T., An upper bound for the λ-invariant of Imaginary abelian fields, Math. Ann., 264 (1983), 5-8.
[6] -, A simple method for estimating the Iwasawa λ-invariant, J. Number Theory, 27 (1987), 1-6.
[7] Sinnott, W., On the μ-invariant of the Γ-transform of a rational function, Invent. math., 75 (1984), 273-282.

Department of Mathematics
Faculty of Science
Kanazawa University
Kanazawa 920, Japan

