Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 261–265

Cyclotomic Z_p -extensions of $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$

Yûji Kida

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

In the theory of Z_p -extensions of a number field, the λ -invariant has a special meaning that it is an analogue of the genus of an algebraic curve. In this point of view, one can naturally hope that there exists a uniform bound for λ_p independent of p when the base field is fixed, and this bound might be regarded as the genuine analogue of the genus for a number field. This question has been studied by Ferrero [1, 2] and Metsänkylä [5, 6].

In this paper, we refine Ferrero's results for some imaginary quadratic fields, in particular for $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$.

§1.

We describe briefly how to get the exact values of a *p*-adic measure α defined below. We follow Sinnott [7] to construct a *p*-adic *L*-function. Let θ be an odd Dirichlet character with conductor *d*. We assume *d* is not a power of *p*. Define a rational function for θ by

$$F_{\theta}(X) = \sum_{a=1}^{d} \theta(a)(1+X)^{a} / \{(1+X)^{d} - 1\}.$$

Let \mathcal{O} be the integer ring of the field generated over Q_p by the values of θ , and let π be a prime element of \mathcal{O} . Then $F_{\theta}(X)$ can be expanded into a formal power series with \mathcal{O} -coefficients. Let α be the \mathcal{O} -valued *p*-adic measure corresponding to F_{θ} . Replace the period d in F_{θ} by dp^n . Then we get the following congruence from the fundamental correspondence between measures and power series:

$$\alpha(r+(p^n))(1+X)^r \equiv \{\sum' \theta(a)(1+X)^a\}/\{(1+X)^{dp^n}-1\}$$

(mod $(1+X)^{p^n}-1$),

where r is an integer satisfying $0 \le r < p^n$, and the sum \sum' is taken over all integers a with $1 \le a < dp^n$, $a \equiv r \pmod{p^n}$. Put X = 0. Then we have

Received December 26, 1987.

$$\alpha(r+(p^n))=(\sum'\theta(a)a)/dp^n.$$

Assume further d is not divisible by p. Then we can easily get $\alpha(r+(p^n))=\theta(p)^n\{(1/d)\sum_{a=1}^d \theta(a)a+\sum_{a=1}^{s-1}\theta(a)\}$, where s is defined as the unique integer satisfying $1 \le s \le d$, $sp^n \equiv r \pmod{d}$.

We denote by α^* the restriction of α to \mathbb{Z}_p^* . That is, $\alpha^*(r+(p^n)) = \alpha(r+(p^n))$ if (r, p)=1, and $\alpha^*(r+(p^n))=0$ if $(r, p)\neq 1$.

We choose the isomorphism from $1+pZ_p$ to Z_p which sends x to $(1/p)\log(x)$, where $\log(x)$ is the usual p-adic logarithm function. Put the resulting power series as $f(\theta, X) = \sum_{n=0}^{\infty} c_n X^n$. Then we have

$$c_0 = \{1 - \theta(p)\}(1/d) \left\{ \sum_{a=1}^d \theta(a)a \right\},$$

$$c_1 = \int \frac{1}{p} \log(x) d\alpha(x),$$

where $\log(x)$ is Iwasawa's *p*-adic logarithm function.

To calculate λ_p , it is sufficient to know the π -divisibility of c_n . Therefore, we can replace $(1/p) \log (x)$ by $l(x) = (1/p)(1 - x^{p-1})$, and hence

 $c_1 \equiv \sum' l(a)\alpha(a+(p^2)) \qquad (\text{mod } p),$

where the sum is taken over all a with $0 \le a < p^2$, (a, p) = 1. This gives a criterion of the π -divisibility of c_1 . But since this formula contains essentially p^2 terms, it is not convenient to calculate it for large p. If $p \equiv 1 \pmod{d}$, we can give a criterion containing essentially p terms.

Theorem 1. If
$$p \equiv 1 \pmod{d}$$
, then $\lambda_p > 1$ if and only if

$$\sum_{x=1}^d \left\{ \sum_{z=1}^{x-1} \alpha(z+(p^2)) \right\} \{ \sum' l(y) \} \equiv 0 \pmod{\pi},$$

where the last sum is taken over all integers y satisfying $1 \le y \le p$, $y \equiv x \pmod{d}$.

Proof. For any integer x prime to p, define $y_x \in \mathbb{Z}/p\mathbb{Z}$ by $x \equiv \omega + y_x p \pmod{p^2}$, where ω is a (p-1)-st root of unity. Then we have $l(x) \equiv y_x/x \pmod{p}$. For simplicity, we denote $\alpha(x+p^2)$ by $\alpha(x)$ in the rest of this paper. Put

$$S(a) = \sum_{b=1}^{p-1} l(a+bp)\alpha(a+bp).$$

Then we have

$$S(a) \equiv \sum_{b=1}^{p-1} \{ (y_a + b)/a \} \alpha(a+b) \pmod{p}$$

$$\equiv (1/a) \sum_{b=1}^{p-1} b \alpha(a+b) \pmod{p}.$$

We assume $p \equiv 1 \pmod{d}$. Divide the sum in the right hand side by every d terms. Then we have

$$\sum_{b=1}^{d} b\alpha(a+b) = \sum_{z=1}^{a} (d+z-a)\alpha(z) + \sum_{z=a+1}^{d} (z-a)\alpha(z)$$
$$= d\sum_{z=1}^{a} \alpha(z) + \sum_{z=1}^{d} z\alpha(z) - a\sum_{z=1}^{d} \alpha(z).$$

Since $\alpha(z)$ is a periodic function of period d and $c_0 = \sum_{z=1}^{2^2} \alpha^*(z)$, the vanishing of c_0 implies the vanishing of the 3rd term. Denote the 2nd term by T. Since $\alpha(p^2-z)=\alpha(z)$, we have $\alpha(d+1-z)=\alpha(z)$. Therefore $T=\sum_{z=1}^{d} (d+1-z)\alpha(z)$. Hence $2T=(d+1)\sum_{z=1}^{d} \alpha(z)$, which is 0 by the above. Thus the 2nd term is also 0. Now we get

$$S(a) \equiv (1/a) \{ (p-1)/d \} d \sum_{z=1}^{a} \alpha(z) \pmod{p}$$
$$\equiv -(1/a) \sum_{z=1}^{a} \alpha(z) \pmod{p}.$$

Put

$$S = \sum_{a=1}^{p-1} \sum_{b=0}^{p-1} l(a+bp)\alpha(a+bp).$$

Then we have

$$S \equiv \sum_{a=1}^{p-1} l(a)\alpha(a) - \sum_{a=1}^{p-1} (1/a) \sum_{z=1}^{a} \alpha(z) \pmod{p}.$$

Since $1/a \equiv l(a) - l(p-a) \pmod{p}$, we get $S \equiv \sum l(a) \{\alpha(a) - \beta(a) + \beta(p-a)\}$ (mod *p*), where $\beta(a) = \sum_{z=0}^{a} \alpha(z)$. Since $\beta(p-a) = -\beta(a-1)$, we have

$$S \equiv -2\sum_{a=1}^{p-1} l(a)\beta(a-1) \pmod{p}.$$

Since $c_1 \equiv S \pmod{p}$, Theorem 1 is proved.

For $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$, clearly $c_0 \equiv 0 \pmod{p}$ if and only if $\theta(p) \equiv 1 \pmod{p}$, which is equivalent to $p \equiv 1 \pmod{d}$. Therefore we obtain the following criterion for $\lambda_p > 1$. Since the coefficients of l(x) are rational integers, we can write it in the product form.

Corollary (cf. Ferrero [2, p. 19]).

(1) For $Q(\sqrt{-1})$, $\lambda_p > 0$ if and only if $p \equiv 1 \pmod{4}$. Further, $\lambda_p > 1$ if and only if $p \equiv 1 \pmod{4}$ and $(\prod_1 y / \prod_2 y)^{p-1} \equiv 1 \pmod{p^2}$, where the 1st product \prod_1 is taken over all y with $1 \leq y < p$, $y \equiv 2 \pmod{4}$, and the 2nd product \prod_2 is taken over all y with $1 \leq y < p$, $y \equiv 0 \pmod{4}$.

Q.E.D.

Y. Kida

(2) For $Q(\sqrt{-3})$, $\lambda_p > 0$ if and only if $p \equiv 1 \pmod{3}$. Further, $\lambda_p > 1$ if and only if $p \equiv 1 \pmod{3}$ and $(\prod_1 y/\prod_2 y)^{p-1} \equiv 1 \pmod{p^2}$, where the 1st product \prod_1 is taken over all y with $1 \le y \le p$, $y \equiv 0 \pmod{3}$, and the 2nd product \prod_2 is taken over all y with $1 \le y \le p$, $y \equiv 2 \pmod{3}$.

Numerical examples.

For $Q(\sqrt{-1})$, the only value p < 150000 with $\lambda_p > 1$ is p = 29789.

For $Q(\sqrt{-3})$, the only values p < 150000 with $\lambda_p > 1$ are p = 13, 181, 2521, 76543.

Remark. If there were only a finite number of p with $\lambda_p > 1$, we could give an affirmative answer to the question stated in the introduction.

§ 2.

We shall use standard notation in the theory of Z_p -extensions. Let k_{∞} be the cyclotomic Z_p -extension of k and k_n its unique subfield of degree p^n over k. Let L_{∞} be the maximal unramified abelian p-extension over k_{∞} , and X(k) the Galois group Gal (L_{∞}/k_{∞}) with the action of Gal (k_{∞}/k) .

Theorem 2. Let $k = Q(\sqrt{-m})$ be an imaginary quadratic field with m=1, 2, 3, 5, 6, 7, 10, 11, 15 or 19. Then for each prime number p, we have $\lambda_p < p$.

Proof. Let θ be the nontrivial Dirichlet character attached to k. Ferrero proved ([1, p. 407]) for these fields that if $\lambda_p \ge p$ the power series $f(\theta, X)$ corresponding to the *p*-adic *L*-function for θ (cf. § 1) is divisible by $(1+X)^p-1$. Then, the theorem of Mazur-Wiles tells that the characteristic polynomial of the Iwasawa module X(k) is also divisible by $(1+X)^p-1$. This means that the *p*-rank of the Gal (k_{∞}/k_1) -invariant submodule of X(k) is at least *p*. On the other hand, formula for ambiguous class numbers (cf. [4, Lemma 1]) tells the number of the invariant classes in k_n/k_1 is equal to the product of the class number of k_1 and $p^{(n-1)}$. Therefore the *p*-rank of this submodule is 1. This contradiction proves Theorem 2.

Theorem 3. Let k be as in Theorem 2. Then for any p > 2, we have $e_{p,n} = \lambda_p \cdot n$ for all $n \ge 0$, where $e_{p,n}$ is the exponent of the maximal power of p dividing the class number of k_n .

Proof. If p does not split in k/Q, then $e_{p,n}=0$ for all $n \ge 0$. Thus the theorem holds in this case. If p splits in k/Q, then $c_0=0$ (cf. § 1). Therefore $f(\theta, X)$ is a product of X and a power series whose λ_p is less

than p-1 by Theorem 2. Applying Iwasawa's argument [3, p. 93] to each power series, we get $e_{p,n+1}-e_{p,n}=\lambda_p$ for all $n\geq 0$. Since $e_{p,0}=0$, we have Theorem 3. Q.E.D.

Remark. For $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$, Theorem 3 holds also for p=2. In fact, $e_{2,n}=0$ for all $n\geq 0$.

References

- [1] Ferrero, B., An explicit bound for Iwasawa's λ-invariant, Acta Arith., 33 (1977), 405-408.
- [2] —, Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24.
- [3] Iwasawa, K., Lectures on p-adic L-functions, Ann. of Math. Studies, 74, Princeton University Press 1972.
- [4] Kida, Y., *l*-Extensions of CM-Fields and Cyclotomic Invariants, J. Number Theory, **12** (1980), 519–528.
- [5] Metsänkylä, T., An upper bound for the λ-invariant of Imaginary abelian fields, Math. Ann., 264 (1983), 5-8.
- [6] —, A simple method for estimating the Iwasawa λ-invariant, J. Number Theory, 27 (1987), 1-6.
- [7] Sinnott, W., On the μ -invariant of the Γ -transform of a rational function, Invent. math., **75** (1984), 273-282.

Department of Mathematics Faculty of Science Kanazawa University Kanazawa 920, Japan