
Chapter 1

Topological vector spaces

In the first two sections of this chapter we collect some necessary facts from
functional analysis about topological vector spaces and their operator theory
to make this book as self-contained as possible. Although we have provided
all the proofs, the only exception being the proof of the spectral decompo-
sition theorem, these two sections are not intended as an introduction to
functional analysis for the beginner. We refer the reader who is interested
in a more detailed treatment to standard textbooks on this topic such as
Conway [5], Reed and Simon [47], Yosida [61].

In Section 3 we treat a special class of topological vector spaces: count-
able Hilbertian nuclear space and their dual spaces. As we shall see in later
chapters, these spaces are very convenient for some practical problems and
will play a major role in the course of this book. Most of the material in
this section is taken from Kallianpur [23].

1.1 Topological vector spaces.

In this section we introduce the definition of a topological vector space (TVS)

and state some basic properties of special classes of topological vector spaces

such as Frechet, Banach and Hubert spaces for later use.

Definition 1.1.1 A non-empty set X is called a topological vector space
if it is a vector space with a topology compatible with the space structure, i.e.,

the following two maps

(xiy)eXxX^χ + yeX (l.l.l)

(a,x)eΈLxX^axeX (1.1.2)

are continuous.



2 CHAPTER 1. TOPOLOGICAL VECTOR SPACES

Next we introduce seminorms on vector spaces and the topology deter-
mined by them.

Definition 1.1.2 A real valued function p on a linear space X is called a
semi-norm if
a) p{x + y) < p{x) + p(y) Vz, y G X,

b) p(ax) = \a\p(x) Mx G X and a G R.

Further, p is called a norm on X if in addition to a) and b), we have

c) p{x) = 0 implies x — 0.

Theorem 1.1.1 If p is a semi-norm on X, then

i) P(O) = 0,
ii) p{x — y) > \p(x) — p(y)\, Vx, y G X. In particular, p{x) > 0, Mx G X.

Proof: i) It follows from b) that

p(0) =p(0 χ) = 0 p(χ) = 0.

ii) Without loss of generality, we assume that p[x) > p(y). By a), we have

p{χ) = p(y + (x- y)) < p(y) +p(x-y). •

Definition 1.1.3 a) Let Γ be an index set and let Q = {pυ : v G Γ} be a

family of semi-norms on X. A set U C X is said to be a neighborhood of
XQ G X if there exist n G N, Vj G Γ and βj > 0, j = 1, 2, , n such that

U = {x eX :pVj(x-x0) <Cj, j = l,2, - , n } . (1.1.3)

b) A set G C X is said to be open if for any XQ G G, there exists a
neighborhood U of XQ such that U C G. Let τ be the collection of all open
subsets of X. T is called the topology of X determined by Q.

Theorem 1.1.2 i) Let Q = {pv : υ G Γ} be a family of semi-norms on X

and let τ be given as above. Then (X, r) is a topological space,

ii) (X, r ) is a Hausdorff topological space if Q satisfies the following separat-

ing condition: For any XQ φ 0, there exists VQ G Γ such that pVo(xo) > 0.

Proof: i) It is easy to see that

a) 0 G T and X G r, where 0 is the empty set.

b) For any family {Ga ' & G A} of open sets, we have U^AGC* G T.

c) For any finite family {Gj : j = 1,2, , n} of open sets, we have Π^= 1Gj G
r.
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Hence, (X, r ) is a topological space.
ii) We only need to show that, for any x\ φ x2, there exist two disjoint open
sets G\ and G2 such that x\ G G\ and x2 G G2.

Without loss of generality, we assume that xι — 0 and x2 Φ 0. It follows
from the separating condition that there exists a seminorm pv such that
pv(x2) = a > 0. Let

For any y € G2, there exists y\ G Gi such that y = x2 + y\. Hence

() >Pυ(y)=Pυ(V2+yi)>Pυ(-*j rn ,1; - - ^ ^

and so G\ and G2 are disjoint. I

Definition 1.1.4 A topological vector space (X, r) zs called a pre-Frechet
space if r is given by a countable family of seminorms which satisfies the
separating condition given in Theorem 1.1.2. It is called a pre-Banach
space if τ is given by a norm. It is called a pre-Hilbert space if τ is
given by a Hilbertian norm || || in the following sense: For any x,y G X

We shall show in Theorem 1.1.8 that a Hilbertian norm is uniquely deter-
mined by an inner product < , >, i.e., a continuous symmetric bilinear
form on X X X such that < x,x > > 0 and < x,x >= 0 iffx = 0.

Definition 1.1.5 a) A sequence {xn} in the topological vector space (X, r )
is called a Cauchy sequence if xn — Xm —> 0 as n, ra —> oo. A topological
vector space (X, r) is said to be sequentially complete if every Cauchy
sequence converges in X.

b) A complete pre-Frechet (resp. Banach, Hilbert) space is called a Frechet
(resp. Banach, Hubert^ space.

Theorem 1.1.3 Under the conditions of Theorem 1.1.2 we have the follow-
ing:
a) (X, τ) is a topological vector space.

b) A sequence {xn} converges to an element Xoo in X if and only if

Pv(%n ~ ̂ oo) -* 0 as n —• oo for any v G Γ;

{xn} is a Cauchy sequence in X iff

Pv(χn - Vrn) —> 0 as 7i, 77i —• oo for any v G Γ.

c) If Γ is countable, then (X, r ) is a metric space, i.e., there exists d :
X x X -» R such that
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i) d(xι,x2) > 0 and d(xι1x2) = 0 iff Xι = x2,

ii) d(xι,x2) = d(x2,x1),

in) d(xu x3) < d(xι, x2) + d(x2, z 3 ) , for any a?i, x2, 23 £ X,

and xn —> XQO in τ-topology iff d[xn) x^) —> 0. The map d satisfying i)-iii)
above is called a metric on X and (X,d) is called a metric space.

Proof: a) Let (zo, 2/o) G X X X- For any neighborhood U of x0 + y0 G X we
have

U = {ίc G l : p V i ( E - 3 o - y o ) < €j,j = l ,2 , - , n } .

Let

Then Xo + Ϊ7; (resp. yo + i7;) is a neighborhood of XQ (resp. t/o) For
a; G xo + ί/' and y G yo + U\ we have

a; + y = z 0 + 2/o + x' + y ;

where x',y' <ΞUf. Then

VJ{yf) < %.

i.e. x + y £ U and hence (1.1.1) holds. Similarly we can prove (1.1.2) and
therefore (X, r ) is a topological vector space.
b) If xn —> Zoo in X and v £ Γ, then for a neighborhood

£7 = {z £ X : pυ(x - Zoo) < e}

of #00, there exists N such that n> N implies xn £ U. Hence pv(xn — ^oo) —>
0.

On the other hand, Ίΐpυ(xn — xoo) —> 0 for any υ £ Γ then for any positive
e there exists N(e1υ) such that n > N(e}υ) implies that pv(xn — #oo) < €-
For any neighborhood

U = [x £ X :pVj (x-a?oo) < €j,j = 1,2,

of Zoo, letting iV = 77iααj{iV(υj, ê  ) : j = 1,2, •• ,7n}, we have xn £ U for
n > N, i.e. xn —>• Zoo in X. The second statement can be proved by similar
arguments.
c) Let Q — {pj : j = 1, 2, •} and

00

d(ί, y) = Σ 2" J '(Pi(i - y) Λ 1), Vaj, y € X. (1.1.5)
3=1
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Then d(x, y) = d{y) x) > 0. By the separating condition, x = y iff Pj(x — y) =
0 for all j > 1 and hence, it is equivalent to d(x}y) = 0. The condition iii)
can be verified easily.

It follows from b) that xn —> x^ in X if and only if Pj{xn - #oo) —• 0 for
a nY J > l This is equivalent to d(xn} CCQO) —> 0 by the definition of d. I

Theorem 1.1.4 Suppose that (X, || ||) is a pre-Banach space. There exists a
unique (in the sense of isometric isomorphism) Banach space (X, || || *) such
that X is isometrically isomorphic to a dense subspace XQ of X. Further, if X
is a pre-Hilbert space, then X is a Hilbert space. X is called the completion
ofX.

Proof: (Uniqueness) If we have XQ and X with the same property, then XQ

is isometrically isomorphic to XQ. Hence, by denseness of XQ and XQ} it is

easy to show that X is isometrically isomorphic to X.

(Existence) Let Y be the collection of all Cauchy sequences in X. For
{ccn}, {yn} G Yj we say that {xn} ~ {Vn} if #n — Vn —> 0 as n -+ oo. It is
easy to show that Y is a vector space and " ~ " is an equivalence relationship
in Y. Let X be the quotient space Yj ~, i.e. the collection of all equivalence
classes.

For each x G X, let

11511'"= lim | |ίc n | | .
11 " n—> oo "

It can be shown that || || ~is a well-defined norm on X.

Let XQ = {{aϊ,a;, •••} G X : x G X} and i : X —> X be given by

LX = {x, x, •}. For any x = {xn} G X} let xm = {zm, xm, •} G -XΌ Then

lim | | 5 m - 5 | | ~ = lim lim ||a;m - xn\\ = 0.
m—» o o n—> oo

Hence Xo is dense in X. It follows directly from the construction that X is

isometrically isomorphic to XQ.

Finally, we prove that X is complete. Let {ίk}k>i = {{χn }n>i}fc>i

be a Cauchy sequence in X. For each k, there exists n*. such that for any

m > Πk

Let x = {x{n,j}. Then

<
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Hence {x\k'} is a Cauchy sequence and therefore, x e X. Note that

= 2k'1 + lim Hi* - ί J Γ .

As {£k} is a Cauchy sequence, ί& —• ί in X.

The second statement follows from the definition directly. I

Definition 1.1.6 Let M be a subset of the topological space X. If the closure
of M does not contain any non-empty open set, we say M is a nowhere
dense set. If M can be represented as the union of countable many nowhere
dense sets, we say it is in Baire's first category; otherwise it is in Baire's
second category.

Theorem 1.1.5 A complete metric space is in Baire's second category.

Proof: Suppose that X is a complete metric space and is in Baire's first
category, i.e., there exists a sequence of nowhere dense closed sets Mn such
that X = U n M n .

As M-f is a non-empty open set, there exists a closed sphere Si = {x G
X : d(x,xι) < r i} such that 0 < r\ < \ and S\ C Mf, where M{ is
the complement of M\. As M2 is nowhere dense, M2Γ\Sι is a non-empty
open set, where 5° is the interior of S\. Hence there exists a closed sphere
S2 = {x G X : d(x, x2) < r2} such that 0 < r2 < ^ and S2 C M%ΠS%. By
induction, we can find a sequence of closed spheres Sn = {x G X : d(x, xn) <
rn} such that

0 < rn < — and Sn C M^Γ\S^_ι, ^n ^ 1J

where, by convention, So = X. Note that for any n < m, d(xni xm) < rn —• 0

so that {xn} is a Cauchy sequence. By the completeness of X, there exists

Zoo G X such that d(xn, Zoo) —• 0. As

AI rn rn \ < ^ /If rn rn \ I Wί Λi rn \ ^ ηn I ft I rn /Y» ]

we have that d(x n i Zoo) < r n by taking m —• oo, i.e., a ^ G 5 n C M£ for any
n > 1. Therefore ίc^ ^ U n M n . This contradicts the fact that X = U n M n

n .
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Corollary 1.1.1 If X is a Frechet space, then X is in Baire's second cate-
gory.

Next we define the dual space of a topological vector space X whose
topology is given by a family of seminorms and introduce the strong topology
on this space.

Definition 1.1.7 a) A subset B of X is said to be bounded if it can be
absorbed by any neighborhood of 0 G X, i.e., for any neighborhood U of
0 G X there exists a constant a > 0 such that a~λB C U.
b) Let X1 be the collection of all continuous linear maps from X to R. Then
Xf is called the dual space of X.

c) For any bounded subset B of X, let

ΪB(/) = sup I/HI, fex'.
xeB

Then {qβ} is a family of seminorms on X' and gives X' a strong topology
r!. (X,τf) is called the strong dual of X.

T h e o r e m 1.1.6 a) Iff G X'r, then f is a bounded functional in the sense
that f maps bounded subsets of X to bounded subsets of R.
b) For any bounded subset B of X, qs is a seminorm on X'.
c) If X is a pre-Banach space and f is a bounded linear functional on X, then
f G Xf. Further, X1 is a Banach space with norm

ll/lki = sup |/[*]|.
Nl<i

Proof: a) As f is continuous at 0 G X, there exists a neighborhood U of
0 G X such that x G U implies |/[aj]| < 1. For any bounded set B, let a > 0
such that orλB C U. Hence for any x G B

\f[x]\ = a\f[a-1x]\<a.

b) It follows from a) that qβ{f) < °° for a nY / € X'. Note that for any
/ , g G Xf and a G R

flO = sup \f[x] + g[x]\ < sup \f[x]\ + sup \g[x]\ = qB(f)
xeB xeB xeB

and

ϊ a ( α f ) = S U P \<*f[*]\ = MίsCf).
xeB

i.e., qs is a seminorm.
c) As {x G X : | |z | | < 1} is a bounded set and f is a bounded functional,
there exists M such that ||g|| < 1 implies |/[x]| < M. Hence for any x G X

/ [ | R ί ] | - M > Le'l/[x]l - M"s"'
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The continuity of f follows directly.
It is easy to show that || \\χt is a norm in X1. Let f be the topology

of X' given by || ||χ/. Let B be a bounded subset of X. Then there exists
a > 0 such that a~λB C {x G X : \\x\\ < 1}. Hence for any / G Xf

< sup !/[*]!= sup \f[ay]\ = a\\f\\χ,.
IMI IMI

On the other hand, as S = {x G X : | |z|| < 1} is a bounded subset of X,
we see that || \\χ> = q$. Hence two topologies f and r ' are equivalent and
therefore, X' is a pre-Banach space.

Further, if {/n} is a Cauchy sequence in Xf, limn_,oo fn[x] exists for any
x £ X since

| / n H - / m M | < | |/n-/m|U'| | ίc | | "^ 0, as 71, TΠ -> 00. (1.1.6)

Denoting it by f(x), it is obvious that f is a linear functional. Further as the
limit exists uniformly for x G 5, we see that / G X' As {/n} is a Cauchy
sequence, Vβ > 0, ΞiV, s.t. Vn,m> AT, | |z | | < 1,

\fn[x]-fm[x]\<e.

Taking m —> oo, we have

\fn[x]-f[x]\<€, Vn>AΓ, | | x | | < l .

Therefore, | |/ n — f\\χ' —> 0 as n —> oo. Hence X1 is a Banach space. I

Theorem 1.1.7 (Hahn-Banach) If Xo is a subspace of the pre-Banach

space X and f G Xo, then there exists f G X' such that f\χ0 = f and

\\f\\x' = Il/Ilχ; In particular, for any x0 G X, Xo Φ 0, there exists f G X'

such that f[xo] φ 0.

Proof: Let λΛ be the collection of all subspaces Xa containing XQ such that
there exists fa G Xa with

fa\xo = f and \\fa\\χ, =\\f\\χl. (1.1.7)
0

Then M is a set with the partial order: Xa -< X^ if Xa C Xβ and /^ is an
extension of/α, i.e. fβ\χa = fa For any ordered subset Mo = {-X"α : Oί e A}
of Λί, let

Then X>ίo ^s a subspace containing Xo. Define

fM0[x] = fa[x], if X £ Xot
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It is easy to see that /M0 is well-defined on XM0

 a n d fM0\x0

 = /• Note
that

= sup{\fMo[x]\:\\x\\<l*ndxeMo}
< sup{|/«[as]j : ||a;|| < l,x G Xa and a e A}

Hence

fMoeX'Mo With WfMoWx' =\\f\\χ'
ΛΛQ 0

It is easy to see that /M0 is an extension of /α for all a G A. Therefore
XMQ is a maximum element of MQ. By Zorn's lemma, there exists a local
maximum X\ (with linear functional /i) of M.

lΐXλφX, there exists m G X \ X\. Let

X2 = {x = x\ + Am : Xi G -X\ and λ G R}

and

where c is a real constant to be determined later such that

Then X2 is a subspace containing X\ and fc is an extension of j \ such
that (1.1.7) holds. This contradicts the fact that X\ is a local maximum
of M. Therefore X\ — X and taking / = /1 we have the first assertion
of the theorem. The second part of the theorem follows directly by taking
Xo - {\XQ : λ G R} and f[λx0] = λ.

To finish the proof we have to find c. (1.1.8) is equivalent to

/i[#i] + λc < ll/ll xr'll^i + ^ m l l f°Γ a n y ^ I ̂  -X"i a n < i λ G R,
Λ o

i.e.

/1 — + c < ||/||^/ ? n + — for any λ > 0

and

m + — M for any λ < 0.

We only need to choose c to lie between

sups/ijV] - ll/llx> \\x - m\\ : x G ^
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and

This is possible as for any x, y E -XΊ,

Λ[*] + h[y) "= Λ[* + y] <

Corollary 1.1.2 Let X be a Banach space. Then there exists an isometric
isomorphism i from X onto a closed subspace XQ of X". If XQ = Xn', we
call X a reflexive space.

Proof: For any XQ G X, let LXQ £ X" be such that (txo)[/] = f[χo] f°r all
/ 6 X'. Let X" = LX. Note that

I/Ml <

Hence | | ^ 0 | | χ " < \\M\x

Define a continuous linear functional f on a one-dimensional subspace

XQ = {ax0 : a G R}

of Xby

f[ax0] = a\\xo\\x
Then \\f\\x> = 1. It follows from the Hahn-Banach theorem that there exist

/ 6 Xf such that 11/11*, = 1 and f[x0] = \\xo\\x,i^(Lxo)[f] = \\xQ\\χ.
Therefore ||xo||x ^ H^OIIJC"- The linearity of t follows from the definition
directly. I

In the rest of this section, it will be assumed that (X, || ||) is a Hubert
space.

Theorem 1.1.8 The relations

<x,y>= ±(\\x + y||2 - ||x - y| |2), V«,y € X (1.1.9)

and

\\x\\2=<x,x >, Vxex, (l.i.io)

define < , > as an inner product in X.
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Proof: First suppose we have a Hilbertian norm || - || and define < , > in
terms of (1.1.9). It is easy to see that < , > is symmetric and continuous
with respect to the topology given by || ||. It follows from (1.1.4) that

< x,z> + <y,z>

= ±(\\χ + z\\*-\\X-z\\* + \\y + z\\*-\\y-z\\*)

= ±(( | |* + y + 2z\\2 + ||* - y||2) - (||* + y - 2z\\2 + \\x - y||2))

= i ( | | s + y + 2z\\2 - \\x + y - 2z\\2) = ± < x + y } 2 z > . ( 1 . 1 . 1 1 )

Letting x = 0 in (1.1.9), we see t h a t < 0,y > = 0, Vy G X. Let y = 0 in
(1.1.11). Then

< χjZ > = - < xy2z > . (1.1.12)

Hence, by (1.1.11) and (1.1.12), we have

< z,z > + < y,z >=< x + y,z >, Vx,y,zGX. (1.1.13)

Now we prove that for any a G R and x, y G X, we have

< αz,y > = α < x}y > . (1.1.14)

It follows from (1.1.13) that (1.1.14) holds for a = n G N. By (1.1.12),

Therefore we see that (1.1.14) holds for a = ψz,n,m G N. By the
continuity of < , > we have that (1.1.14) holds for any a G R. Hence
< , > is a continuous symmetric bilinear form on X x X. The other
conditions follow from the definition and the properties of the norm.

Now we assume we have a continuous symmetric bilinear form < , >
on X x X such that < x, x >> 0 and < x, x >= 0 iff x = 0. Define || || by
(1.1.10).

For any t G R

0 < ||z + £y||2 = < x + ty,x + ty > = | |z | | 2 + 2ί < x,y> +

therefore we have the following Schwartz inequality

I < χ,y > I < Ikll ||y||, for any χ,yeX.

Hence

l k + y | | 2 = <χ + y , χ + y >
= ||x||2 + 2 < ί r , y > + | | y | | 2

< (IMI +IMI)2,
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this prove the condition (a) of the Definition 1.1.2. The conditions (b) and
(c) of that definition are immediate. Therefore || || is a norm on X.

Finally, we note that

\\x + y\\2 + \\x - y\\2 = < x + y , x + y > + < x - y , x - y >

= 2(| |x| |2 + | |y| |2),

i.e., || || is a Hilbertian norm on X. I

Definit ion 1.1.8 a) Let x,y G X. If < x,y >— 0, we say x is or thogonal
to y. For a subset M of X, let

ML = {x G X :< x, m >= 0, Vra € M}.

b) A subset S of X is called an orthogonal system if for any x,y G S we
have x φ 0, y φ 0 and < x,y >= 0. S is called a complete or thogonal
system (COS) if there exists no other orthogonal system which strictly con-
tains S. S is called a complete ort ho normal system (CONS) if S is a
COS and, for any x G 5, | |z | | = 1.

T h e o r e m 1.1.9 If M is a closed subspace of X, then M 1 is a closed subspace
of X and is called the orthogonal complement of M. For any x G X, there
exists a unique decomposition

x = m-\-n, 7 T I G M and n£ML.

We denote m by PM% and call it the orthogonal projection of x. The
operator PM from X to X is called the orthogonal projection operator
with range M.

Proof: From the properties of the inner product we see that ML is a closed
subspace. Suppose we have two decompositions, i.e.,

CC = 77i + 7l = 77l + 7 1 .

Then
m - m' = n' -n G MΓ\ML.

Hence
< m — m!, m— vnl >= 0,

i.e., m = w! and therefore, n — n'. This proves the uniqueness.
For the existence, we may assume that M φ X and x £ M. As M is

closed
d = Ίni{\\x - m|| : m G M} > 0.
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Let m n 6 M be such that | |z - mn\\ —> d. Then, by (1.1.4),

\\mn - m f c | |
2 = | | (m n - x) - (mfe - x) | | 2

x | | 4 | |
II

< 2||ran - z | | 2 + 2||rafc - x\\2 - Ad2 ̂  0, as n} k -+ oo.

Therefore {ran} is a Cauchy sequence and hence, there exists m e M such

that m n —• 77i as n —» oo. Further, we have ||a; — ra|| = d.

Let n = x — m. Then for any w! £ M and α £ R

<f2 < ||x - m - αm'H2 = | |n | | 2 - 2α < n, ml > + α 2 | | m / | | 2 .

Hence

2a <n,m'>< c*2 | |m'||2, Vα £ R.

This implies < n,m' >= 0, i.e., n £ M 1 . I

Theorem 1.1.10 If X is a separable (i.e. X has a countable dense subset)
Hilbert space, then there exists a CONS of X which contains only countably
many elements. Further, for any CONS {en}, we have
a)

x = ] Γ < x, βj > ej, Mx £ X, (1.1.15)

i=i

b) (ΐarseval equation,)

H 2 = Σ < a : > e » > 2 > VXGX,
n

c)
<x,y>=Σ<x,en >< y, en >, Vx, y e X. (1.1.16)

n

Proof: Let 5 = {xn} be a countable dense subset of X. Without loss of
generality, assume that 0 ^ 5 . We define a sequence {yn} inductively by

n-l

Vn = Xn - Σ < ίCn, Uj > Uj, Π = 1, 2, (1.1.17)
3=1

where UJ = 2/j/||2/j|| if Vj φ 0 and Uj = 0 otherwise.

Let 5 ' be the collection of all non-zero elements of Uj. Now we show that

Sf is a CONS by induction. Note that

< !/2, ui > = (x2- < X2, ux > uuuχ)

= < X2,Uι > - < X2,Uι X Uι,Uι >

= 0.
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We assume that for any j < k < n, < yk,Uj >= 0. Then for k < n + 1,

^ - / _ V ^ -^ \
^ 2/n+l j Uk > — {Xn+ι J ^ < Xn^.-L)Uj > Uj)UkJ

- Xn+11 Uj ><C Uj, ΊLk >

— \ xn+li uk -s ^ £n+li ak ^ ^ ak) ak <^

= 0.

Hence for any j φ k we have < tij,Ufc >= 0. Therefore 5' is an orthogonal
system.

If 5' is not a CONS, there exists an 0 ψ x0 G (S') 1 . Hence < z0, J/n >= 0,
Vn > 1. It follows from (1.1.17) that < xo}xn >= 0, Vn > 1. As {xn} is
dense in X, there exists a sequence {xnk} such that xnk —> xo. Therefore
< xoj xo >= 0 which contradicts ajo / 0 and hence S' is a CONS.

Let {en} be a countable CONS of X. For any x G X, let

Note that
n n

||x-χ(n)||2 = (x~Σ<x,ej> ej,x-Σ<x,ej> ej}

n

= I M I 2 - Σ < a : > e ; > 2 <

Hence

Σ <: ίϋ e > 2 < Ibll2

3=1

Letting n —* oo, we have the following Bessel inequality:

< a : , e i >
2 < ||a;||2 < oo. (1.1.19)

Hence for any m < n

^ <x,ea>
2^>Q as

jf=m+l

As X is a Hubert space, there exists x1 G X such that ajW —• ίc'. But Vfc > 1

n

< x — x\ ek >= lim ( z - J ^ < α;, ej > βj, ekj = 0.
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It then follows from the completeness of {ej.} that x = x1. This proves
(1.1.15). By (1.1.18) we see that the Parseval equation holds. (1.1.16) follows
from (1.1.9) and the Parseval equation. I

Remark 1.1.1 The procedure of constructing an orthogonal system {yn}
(resp. {un}) in the proof of the last Theorem is called Hilbert-Schmidt
orthogonalization (resp. orthonormalization^. Further, the denseness
of {xn} guarantees the completeness of the system. More generally, if the
collection of all finite linear combinations of xn 's is dense in X, then {un}
is a CONS of X.

Finally we give the Riesz representation theorem which allows a Hubert
space to be identified with its dual space.

Theorem 1.1.11 (Riesz representation theorem) Let X be a Hilbert
space. Then there exists an isometric isomorphism L from X onto X1. In
particular, Xr is a Hilbert space.

Proof: For any y G X, let

(ty)[χ]=< χ , y > , Mx e X.

It follows from the Schwartz inequality that uy G Xf and | | ty | |χ' < ||y||.
For any / G X', we search for y G X such that / = ty. Let N = {x G X :

f[x] = 0}. If N = X, then / = tO. If N φ X, it follows from the continuity
of f that N is a closed subspace of X. Let 0 φ j/o € NL. Defining

y = (/M/IMI2)yo,
we prove that

< x , y > = / [ s ] , Vz GX. (1.1.20)

If x G iV, both sides of (1.1.19) are equal to 0. If x = αyo» then

< x,y >=< αy0, (/[yo]/IM|2)yo > = α/[y0] = f[x].

For any x G X, since

f[yV
and

= ίx - & U
V f[y] )

f[y]
(1.1.19) holds. Note that

\\ιy\\χ.= sup \(ιy)[x]\>(iy) \τξτ\ = \\y\\.
\\x\\<i L | | 2 / | | J

Then i is an isometry from X onto X'. The linearity of i is immediate.
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1.2 Linear operators on topological vector spaces

First we study linear maps between topological vector spaces.

Definition 1.2.1 Let X, Y be two topological vector spaces. T is called a
linear operator from X to Y if T is a linear map defined on a subspace
V{T) of X with values in Y. V{T) is called the domain of T. If V(T) is
dense in X, we define the dual operator Tf of T from Y' to X' as follows:

V(T') = {y' G Y1 : 3a/ G X' sA. y'[Tx] = x'[x], Vz G V(T)}

and
T'y' = xf, My1 eV{T').

Remark 1.2.1 We will mostly be considering operators with dense domains.
IfV(T) is dense, T'y1 is well-defined for yf G V(Tf). It is obvious that T' is
a linear operator.

Definition 1.2.2 Let X, Y be two Hilbert spaces and let T be a linear op-
erator from X to Y.
a) A linear operator T* from V{T*) C Y to X is said to be the adjoint
operator of T if

< T*y,x >χ=< y,Tx >γ, Vz G V(T) and y G X>(T*).

b)IfX = y, V(T) C X>(T*) and T*|χ>(T) = T, then we call T a symmetric
operator on X. // in addition, V(T) = X>(Γ*), then T is called a self-
adjoint operator on X.

Definition 1.2.3 Let X, Y be two topological vector spaces. We denote the
collection of all continuous linear maps T from X to Y with V(T) = X by
L(X,Y).

It is easy to see that L(X, Y) is a linear space. If both X and Y are
Frechet spaces, then similar to Definition 1.1.7 and Theorem 1.1.6 we have
the following theorem.

Theorem 1.2.1 Suppose that both X and Y are Frechet spaces whose topolo-
gies are given by seminorms {pυ : υ G Γ} and {pυt : v' G Γ'} respectively.
a)IfTe L(X,Y), then T is a bounded operator in the sense that the
image of any bounded subset of X is bounded in Y.
b) For any bounded subset B of X and v1 G Γ;, let

qBy{T) = snppυl(Tx), WeL(X,Y).
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Then qsy is a family of seminorms on L(X,Y). The topology of L(X,Y)
given by this family of seminorms is called the strong topology of L(X, Y).
c) If X, Y are pre-Banach spaces and T is a bounded linear operator from X
to Y, then T G L(X} Y). Further L(X, Y) is a Banach space with norm

\\T\\L(x,Y)= sup
INk<

Now we introduce three classes of linear operators: compact operator,
nuclear operator and Hilbert-Schmidt operator. These important classes of
operators possess many interesting properties which will be used in this book
frequently.

Definition 1.2.4 T G L(X,Y) is said to be a compact operator if the
image of any bounded subset of X is pre-compact in Y. We denote the class
of all compact operators by LC(X,Y).

Theorem 1.2.2 Suppose that X, Y, Z are three Banach spaces.
a) LC(X, Y) is a closed subspace of the Banach space L(X, Y).

b) IfT e LC(X,Y),S G L(Y,Z) orT G L{X,Y),S G LC(Y,Z), then the
composition ST G LC{X, Z).

Proof: Part b) follows directly from the definition and Theorem 1.2.1.
a) It is easy to see that LC(X, Y) is a subspace. We only need to prove that
it is closed. Let Tn G LC(X,Y) and Tn —> T with respect to the norm given
by Theorem 1.2.1 (c). Let {xn} be a sequence such that ||ajn||x < M, Vπ > 1
where M is a finite constant.

By the compactness of each Tn, we can choose a subsequence {ϊk} of

{χn} by making use of the diagonalization argument such that, for each n

fixed, {Tn£k} converges in Y as k —+ oo. Hence

< \\Txk - Tnxk\\γ + \\Tnxk - Tnxm\\γ + \\Tnxm - Txm\\γ

< 2M\\T - Tn\\L(xχ) + | |Γnδ f c - Tnxm\\γ.

Therefore
limsup||Γίfe - Txm\\γ < 2M\\T - Tn\\L(χ>γ).
fc,m—> oo

Letting n —> oo, we see that

fcUmJ|Tίfc-Tίm||y = 0,

i.e., {Txk} is a Cauchy sequence in Y. By the completeness of Y, {Tίfc}

converges. Hence the image of {x G X : \\x\\x < M} is pre-compact and

then, TeLc(X,Y). •
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Let X, Y be two separable Hubert spaces and T G L(X,Y). For any
CONS {en} of X and CONS {/m} of Y, note that

π = l m = l

Therefore
1/2

\n=l

does not depend on the choice of the CONS {en} of X and \\T\\2

(2) = ||T*||J2).

Definition 1.2.5 Let X, Y be two separable Hilbert spaces. T G L(X,Y) is
said to be Hilbert-Schmidt if ||Γ||(2) < oo. || ||(2) is called the Hilbert-
Schmidt norm of T. We denote the class all of Hilbert-Schmidt operators
from X to YbyL{2)(X,Y).

Theorem 1.2.3 Let X, Y be two separable Hilbert spaces.
a) (L(2)(X, Y)} 11̂ 11(2)) Z5 a separable Hilbert space with inner product given
by

> ( 2 )= £ < Γen,5en >y, VΓ,5 G
n=l

(1.2.1)

b)L{2)(X}Y)cLc(X}Y).
c) Let Z be another separable Hilbert space. Suppose that T G L(2)(X)Y),
S G L(Y,Z) orTe L(X,Y), S G L(2)(Y}Z), then the composition ST G

)

Proof: a) It is easy to see that L(2){X,Y) is a linear space and < , >(2) is
an inner product on Lί2\(X,Y).

Now we prove the completeness of (L(2)(X, Y)} ||r||?2x). For any x G X
and T G L ( 2 )(X,y), we have

!,en>xTer

n=l

f oo

< (Σl<»,en>χ|||Γ«n | |H
Vn=l
/ co

\n=l \n=l
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Hence
). (1.2.2)

Let {Γn} C L(2)(X, Y) be a Cauchy sequence. By (1.2.2), {Tn} is a Cauchy
sequence in the Banach space L(X,Y) and hence, there exists T G L(X)Y)
such that \\Tn — T\\^χtγ^ —» 0. Making use of Fatou's lemma, we have

CO

. ll^ < liminf £ \\Tneά\\l < sup ||Tn||f2) < oo. (1.2.3)
j=l j = l n

Therefore T G L(2)(X,Y). As {Tn} is a Cauchy sequence in £ (

Ve > 0, there exists N such that

J

- T ^ l l ^ < 6, Vn,m>N and J > 1.

Letting m -> oo and then J -> oo, we have

CO

i.e., Tn —>• Γ in L(2)(^>^0 a n d hence, L(2)(-^)^r) i s a Hubert space.
Finally, for a CONS {eά} in X and a CONS {/,} in Y, it is easy to see

that

where the summation converges in L(2)(X, Y) and Tίj G L(2)(X, Y),i, j > 1,
is given by

Tiix=<ei,x>χ /j, Vic G l

Hence L(2)(X, y) is separable.
b) Let T G L(2)(X,y) and let {ccn} be a bounded sequence in X. As

I < Txn, fi >γ I < ||Γ*/il|jί sup \\xn\\x, (1.2.4)
n

it follows from the diagonalization arguments that there exists a subsequence
{xn} of {xn} such that < Txn} fj >γ-+ otj as n —• oo for each j . Similar to
(1.2.3), we have ^ a2- < oo. By (1.2.4) it is easy to see that

Hence T is a compact operator.
c) Suppose that T G £ (2)(X,Y) and 5 G L(Y,Z), then

CO CO

Σ | |5Γe n | | | < | |5 | | i ( r > z ) ^ ||Ten | |^ < oo.
n=l n=l
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Therefore ST G L{2) (X, Y). I

Definition 1.2.6 Let X, Y be two separable Hilbert spaces. T G L(X,Y) is
said to be a nuclear operator if there exists a CONS {en} of X such that

CO

Σ \\Ten\\γ < oo.
n=l

We denote by LH\(X, Y) the class of all nuclear operators from X to Y.

For T G L (i)(X,y), we define

= i n f ( f ; | | Γ € n | | y : {en} is a CONS of χ l . (1.2.5)
ln=l J

Then (L(!)(X, y), || \\(\)) is a Banach space.
If X = Y is a separable Hilbert space and T G L^(X, X), we define the

trace of T as follows:

Trace(T) =

where {ej} is a CONS of X. It is easy to verify that the definition does not
depend on the choice of the CONS of X.

The following theorem can be proved by similar arguments as in the
previous theorem, we omit its proof.

Theorem 1.2.4 Let X, Y, Z be three Hilbert spaces. Then
a)L{1)(X,Y)cL(2)(X,Y).

b) IfT G L (2)(X, Y),S G L{2){Y,Z), then ST G L{1){X,Z).
c) IfT G L(1)(X,Y),Se L{Y,Z) orT G L{X,Y),S G L(1)(Y,Z), then the
composition ST G £(i)(X, Z).

Now we study self-adjoint operators in more details. The easiest self-
adjoint operators are the projection operators introduced in Theorem 1.1.9.
In fact, if P is a projection operator on X, it is easy to show that P is a
bounded self-adjoint operator and P2 — P. We will show that each self-
adjoint operator corresponds to a family of projection operators.

Definition 1.2.7 A family of projection operators {Eχ : λ G R} on a
Hilbert space X is called a spectral family if

a) E\Eμ = E\Aμ, where λ Λ μ = min(λ, μ).
b) E-oo — 0 and E^ = I, where I is the identity operator on X}

E-OQX = lim E\x and E^x = lim E\x, Mx G X.
λ—+oo λ—ί-oo

c) Eχ+ = Eχ} where E\+x = limλ<μ-+λ #λ£.
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Let {Eχ} be a spectral family and x € X. Then FX(X) =< E\x, x >χ is
a bounded nondecreasing function on R. In fact, for λ < μ, we have

0 < <{Eμ- Eχ)x, (Eμ - Eχ)x >x

= <(Eμ-Eχ)2x,x>χ

= <(Eμ-2Eχ + Eχ)x,x>χ

= < Eμx, x >χ - < Ex, x >χ, (1.2.6)

and
< Exx, x ><< EooX, x >x= \\x\\x.

Let f be a simple function on R given by

where -oo < λi < < λ n < CXD, a,j G R. We define /(/) = J f(λ)dEχx G
X as follows:

I(f) = Σ,aΛEχJ+1x-Eχ3x). (1.2.7)

Then

\\I(f)\\2χ = ( Σ ^ E )

= 2 X;

n - 1

3=1

n-1

3=1

= j f(λ)2dFx(\). (1.2.8)

Therefore / is an isometrical mapping from the collection of all simple func-
tions (as a subspace of L2(R, Fx)) to X. Hence for continuous function
/ G L2(R, F x ), / f{X)dExx is well-defined.

Theorem 1.2.5 Let f be a continuous function on R and {E\} be a spectral
family. Define

V(T) = L G X : j f(λ)2d < Eλx,x>χ< 00}
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and

Tx = f f(\)dEχx, \/x G V(T).

Then T is a self-adjoint operator on X.

Proof: For any x G X, by Definition 1.2.7 we have

Er^βλX == EβX — Eax —> x as α: —>• — oo, 3̂ —>• oo.

Further, we have

J f{\)2d < EχE{(xβ]x, x >x= J f(λ)2d < Exx, x>χ< oo

and hence E(aβ]X G V(T) and V(T) is dense in X.

Similar to the proof of (1.2.8) we can show that

j f(X)dEχx, y)χ = j f(λ)d < Exx, y >x, (1.2.9)

Va; e V(T) and y e X. If y G V(T), then

< Tx, y >χ= J f(λ)d < x, Eλy >χ=< x,Ty>x, V x G V(T)

and hence y G V(T*) and T*y = Ty, i.e. T is a symmetric operator.

On the other hand, for any y G 2?(Γ*), we have

< E(aβ]T*y, x>χ = <y, TE{aβ]x >χ

rβ
= / f(λ)d<Eχx,y>χ

JOL

= <TE(aβ]y,x>χ,

i.e. E(aβ]T*y = TE{aβ]y. As E(aβ]T*y -> T*y, we have

oo > lim \\E{aβ]T*y\\x = ί f(λ)2d < Exy,y>χ .
a—•—oo,/3—»ΌO v J J

Therefore y G 2?(Γ) and hence, T is a self-adjoint operator. I

Theorem 1.2.6 (Spectral decomposition theorem) Let T be a self-
adjoint operator on X. Then there exists a unique spectral family {E\} such
that

V(T) = Ix G X : ί X2d< E\x,x >χ< ool
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and

Tx= ί XdExx, Vz eV(T).

As a consequence, for a self-adjoint operator T on X and a continuous func-
tion f on R, we can define a self-adjoint operator f(T) as follows

V(f(T)) = j s € X : f f(λ)2d < Eχx,x>x< ooJ

and

f(T)x = Jf(λ)dExx, \fx

For self-adjoint compact operators, the corresponding spectral families
can be given by a simpler form.

Theorem 1.2.7 If T is a self-adjoint compact operator, then there exists a

CONS {em n : m = 0,1,2, ,moo^n = 1, 2, , nm} of X and a sequence
{λm : m = 1, 2, , moo} of real numbers such that

i) λ m φ λm/ for any m φ m',

H) | λ m | decreasing and λ m —» 0 if TΠQQ = oo,
Hi) rim < oo if mφ 0,
iv)

Tx = Σ λm Σ < x, e m n > e m n , Vx G X. (1.2.10)
m=l n=l

Proof: Let {Eχ} be the spectral family of T. For a < β such that aβ > 0, if
the range of E(aβ \ is of infinite dimension, then there exists a CONS {XJ}
with infinite many elements. It follows from the Bessel inequality (1.1.19)
that < Xj,x >—» 0, Vz G X as j —> oo.

As T is a compact operator and {XJ} is bounded, there exists a subse-
quence {XJ} such that TXJ —> Zoo- Hence for any x e X

< Zoo, z > = lim < TXJ, x >= lim < ί- , T'ίr > = 0,
j J

i.e. Zoo = 0. But for any x in the range of #(α,/3]> w e have

| |Tz| |2 = ί X2d\\Exx\\2 = ίβ λ2d\\Exx\\2 (1.2.11)

> min(α2,/32)||ί; ( α j / 3]ίc||2 = min(α 2,/3 2)| |z | | 2.

Then

0 < min(α2,/?2) < | | r x j | | 2 -^ 0,

a contradiction. Hence the range of i£(α,/3] ι s °f finite dimension whenever
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Further, by (1.2.11), if min(α2,/32) > | | T | | 2 ( x y ) , then E{aβ] = 0. There-
fore there exist

λΓ < λ2~ < """ < ° < ''' < λ ί < λϊ"
such that 0 is the only possible limit point for either sequence {λ~} or

sequence {λ+} and

M(λ) =

φ if λ < λx

M(λj) ifλ€[λj,λ-+ 1)
M(λt+1) if λ € [λt+1, λt) j = 1,2,
X if λ > λf

where M(λ) is the range of E\. Rearrange the two sequences into λj such
that |λj | decreasing. Let Mj = M(λj) θ M(Xj-), j > 1 and Mo = M(0) θ
M(O-). Then

X = @%0Mά and Tx = Σ λάpM3x, Vz G X.

The conclusion of the theorem then follows easily.

Corollary 1.2.1 a) If T is a self-adjoint nuclear operator from X to X, then
(1.2.10) holds with

\\Tkl) = Σ \Xm^m < OO
m=l

and
rrioo

Trace{T) = Σ λm^m.
m=l

b) If T is a self-adjoint Hilbert-Schmidt operator from X to X, then (1.2.10)
holds with

m=l

Finally we study the semigroup theory of linear operators which will be
useful in solving some stochastic evolution equations.

Definition 1.2.8 Let X be a Banach space. A family {Tt : t > 0} C
Γ, X) is said to be a strongly continuous semigroup on X if

)
b) To = I
c) \\Ttx - Ttox\\ -• 0, Vz G X as t -> t 0 .
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Theorem 1.2.8 For a strongly continuous semigroup {Tt} on a Banach
space X, there exist M > 1 and β G R such that

\\Tth(X) < Me?', Vί > 0. (1.2.12)

Proof: Let

M= sup | |Γ t | | L ( x ) and /3 = ln(| |Γi| |L ( j r )).

Then

\\Tt\\L(X) = | | Γ W + . - W H L W = \\(Tύίt]Tt-lt]\\L(x) < MeM < Me?*. I

Definition 1.2.9 Let X be a Banach space. Let {Tt : t > 0} be a strongly
continuous semigroup on X. Define

V{A) = (x
ThX - x

G X : the limit in X exists as h —» 0+
h

and

Ax= lim ThX~x \/χeV(A).

A is called the generator of the semigroup.

Theorem 1.2.9 Let A be the generator of a strongly continuous semigroup
{Tt} on a Banach space X. Then
a) For any t > 0 and x e X,

ft ft

/ Tsxds G VIA) and Ttx - x = A Tsxds. (1.2.13)
Jo Jo

b)Ifxe V(A), then Ttx G V(A) and ATtx = TtAx. Further

Ttx-x= I ATsxds = I TsAxds.
Jo Jo

Proof: a) It follows from the definition that

ft ft
lim h^CΓh-I) / Tsxds = lim hΓ1 I (Ts+h-Ts)xds

h-+o+ Jo h-+o+ Jo
( ft+h fh \

= lim hΓ1 I Tsxds - I Tsxds
h-+0+ \Jt Jo J

= Ttx - x.

b) As
lim h-1(Th-I)Ttx= lim Tt{h~λ (Th - I)x) = TtAx,

h—>-0+ h—» 04-
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Ttx £ V{A) and {Jι)+Ttx = ATtx = TtAx.
On the other hand, for t > 0

\{Tt_hx-Ttx)-TtAx\
-h \x

Tt-h [τ{Thx -x)- Ax) + Tt-hAx - TtAx\
>• * IIX

h Y

Hence ftTtx = ATtίr = ΓtAa;. This proves (1.2.13). I

Corollary 1.2.2 If A is the generator of a strongly continuous semigroup
{Tt} on a Banach space X, then A is a linear operator from the dense sub-
space V(A) C X to X.

Proof: It is easy to see that V(A) is a subspace of X and A is a linear
operator. For any x £ X and t > 0, note that

t'1 / Tsxds £ V{A) and ί"1 / Tsxds -> x, as t -> 0 + .
Jo Jo

Hence V(A) is a dense subspace of X. I

Definition 1.2.10 A is called a closed operator if for {xn} C Ώ(A) such
that xn —* x, Axn —• y in X we have x £ V(A) and y = Ax.

Corollary 1.2.3 If A is the generator of a strongly continuous semigroup

{Tt} on a Banach space X, then A is a closed operator.

Proof: By (1.2.13), we have

Hence

~ xn = / TsAxnds.
Jo

Ttx - x = / Tsyds.
Jo

This proves that x £ V(A) and y = Ax.

Definition 1.2.11 Let A be a closed operator on X. The resolvent set
p(A) of A is the collection of all λ £ R such that λ — A is inυertible, 7Z(λ —
A) = X and Rχ = (λ - A)'1 £ L(X). For each λ £ p(A), Rχ is called the
resolvent of A at λ.



1.2. LINEAR OPERATORS 27

Theorem 1.2.10 Let A be the generator of a strongly continuous semigroup

{Tt} on a Banach space X. Let M and β be given by Theorem 1.2.8. Then

(β,cx>)Cp(A),

Rχ= / e~XtTtdt (1.2.14)
Jo

and

\\(Rλ)
n\\<M(X-β)-n, n = l , 2 , , \>β. (1.2.15)

Proof: From the proof of Corollary 1.1.2 we see that, V# G X there exists

x' G Xf such that \\xf\\χ> = 1 and x'[x] = \\x\\χ. Note that for any x G V(A)

and λ > /3,

ή-x'[Ttx] = x'[TtAx] = x'[Tt(A - λ)x] + \x'[Ttx], (1.2.16)
at

Hence

Therefore

x'[Ttx\ = eλtx'[x] + /* eλ( ί-5)χ /[T s(A - \)x]ds.
Jo

e~xtx f[Ttx\- f e-Xsxf[Ts{A-\)x]di
Jo

\\X\\X — x lx]

< Me(β-χ)t\\x\\χ + M(λ - β^Wiλ - A)x\\χ.

Letting ί^oowe have

M~X(A - β)\\x\\x < ||(λ - A)x\\χ. (1.2.17)

Hence λ - A is invertible and TZ(X - A) is a closed subspace of X.

If TZ{\ - A) φ X, it follows from the proof of Corollary 1.1.2 that there

exists x' G X' such that | |£'| |χ/ = 1 and x'[(\ - A)x] — 0, Mx G Ώ(A). By

Theorem 1.2.9 (b) we have x'[Ts(A - λ)x] = 0, Vs > 0. It follows from

(1.2.16) that

Hence x'[Ttx] = x'[x\eXt and

cc \x\\ ^ iVcί a? Lx"β —^ u a s t —^ o o ,

i.e., x'[x] = 0, Vx € ΐ>(A). This contradicts the denseness of V{A). Therefore

TZ(λ - A) = X. It follows from (1.2.17) that Rχ G L(X). Hence λ G

p(A), Vλ > β.
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Let y = Rχx. Then y e T>(A) and x = Xy - Ay. Hence

pOO pOO

/ e-χtTtxdt = / e~XtTt{\y - Ay)dt
Jo Jo

Γ°° ί°° d
= λ / e-λtTtydt- / e-λt-Ttydt

Jo Jo dt
pOO /ΌO

= λ / e-χtTtydt - / e-χtdTty
Jo Jo

poo poo
= λ / e-χtTtydt + y - λ e~XtTtydt = y .

Jo Jo

This proves (1.2.14). Making use of (1.2.14) repeatedly, we have

/ΌO ΛOO

(i2λ)n = / / e- λ ( t l +- + t ")T t l + . . . + t n <iί 1 dtn.
Jo Jo

Hence

/»OO

< / •

- M(λ-

Theorem 1.2.11 Lei A be a densely-defined closed linear operator on a
Banach space X such that (/?, oo) C p(A) and

\\(\-A)-n\\<M(λ-β)-n,n=l,2)---)λ>β.

Then there exists a unique strongly continuous semigroup {Tt} with generator
A such that (1.2.12) holds.

Proof: First we assume that β = 0. Let In = n(n — A)~ι. Then for any
x G V(A)

||z - Inx\\x = \\x - n(n - A^xWx = \\(n - A)~1Ax\\χ

< Mn-1\\Ax\\χ-+0, (1.2.18)

as n —> oo. As ||/n||i,(X) < M and V(A) is dense in X, we see that for any
x eX

\\x — In%\\x —• 0, a s n —> oo.

Let An = n(In - I). Then An = AIn = InA. Hence for any x € V{A) we
have Anx -^ Ax in X. Let

Tln)x = e~ntetnI" - e~nt V) ^ ( / n ) ^ , Vs G X. (1.2.19)

Y '
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It is easy to show that (1.2.19) is well-defined, | | T t

( n ) | | L ( x ) < M and, Vτι >

1, {Tt} C L{X) is a strongly continuous semigroup with generator An.

For any x G T^(A) we obtain

< M2\\(An-Am)x\\xt->0. (1.2.20)

By the uniform boundedness of | |Γ t^| |χ,(χ), (1.2.20) holds for any x G X

uniformly for t in any bounded intervals. Therefore {Tt} is a strongly con-

tinuous semigroup if we define Ttx as the limit of T^x.

Let A be the generator of {?*}. By Theorem 1.2.9 (b) we have

Tίn)x - x = [ T^Anxds, Mx e X.
Jo

Then for x € V(A)

Ttx-x= I TsAxds,
Jo

and hence x G V(A) and Ax = Ax, On the other hand, for any x G T^{A)} set
y = (1 — A)x. As 1 G p(A), there exists z G Ώ(A) such that y = (1 — A)z =
(1 - i ) z . Hence x = z G X>(A). Therefore A = A. As | | Γ t

( n ) | | L ( x ) < M,
(1.2.12) holds with /3 = 0.

For general case, let A\ = A — β. We obtain a strongly continuous
semigroup {St} with generator A\ such that HStHiΛ n < M. Let Tt = e^St

Then {Tt} satisfies the condition of the theorem.
Let {Ut} be another strongly continuous semigroup with generator A.

Then for any x eV(A)

^-{Tt-sU8x) = -ATt.sUsx + Tt_sAUsx = 0.
as

Hence Ttx = Utx. This proves the uniqueness. I

1.3 Countably Hubertian nuclear spaces.

In this section we introduce countably Hilbertian nuclear spaces (CHNS)
and give some typical examples.



30 CHAPTER 1. TOPOLOGICAL VECTOR SPACES

Definition 1.3.1 Let X be a vector space. A family of norms {|| | | v : v G Γ}
on X is called compatible if Vp, q G Γ, {xn} in X is a Cauchy sequence
with respect to both norms and tends to 0 with respect to one norm, then
{xn} tends to 0 with respect to another norm.

Remark 1.3.1 Suppose || ||χ and || ||2 are two compatible norms on X such
that \\x\\ι < ||a;||2 for any x G X. Let Xj be the completion of X with respect
to || \\j,j = 1, 2. For x G X2, let ix — x. Then 1 is a well-defined map from
X2 to X\. We call it the canonical injection from X2 to X\.

Proof: Let x G X2 with a representation {xn} C X which is a Cauchy
sequence with respect to || H2 (cf. Theorem 1.1.4). As || | |i < || l ^ ί ^ n }
is a Cauchy sequence with respect to || | | i . Further if {yn} is another
representation of x in X2, i.e., | | z n - y n | | 2 —> 0. Then | | z n - y n | | i —> 0 and
hence, {xn} and {yn} are equivalent in X\. Therefore x G X\.

Now we only need to prove that, for any x = {xn} and y = {yn}
 ιτί

X21 if x = y in X\ then x = y m X2. In fact, x = y in X\ implies that
\\xn - VnWi —> 0. It is obvious that {xn - yn} is Cauchy with respect to both
norms. Therefore, by the compatibility of the norms we have ||&n —!/n||2 —> 0
and hence x = y in X2. I

Definition 1.3.2 A separable Frechet space Φ is called a countably Hu-
bert ian space if its topology τ is given by an increasing sequence || | | n , n >
0, of compatible Hilbertian norms. A countably Hilbertian space Φ is called
nuclear if for each n > 0 there exists m > n such that the canonical injection
from Φ m into Φ n is Hilbert-Schmidt, where Φ n is the completion of Φ with
respect to \\ \\n.

The following Baire category argument will be used frequently in this

book.

Lemma 1.3.1 Let V(-) : Φ —> [0, 00) satisfy the following conditions:

(1) V is lower semicontinuous, i.e.

Φn —> Φ implies V(φ) < liminf V(φn).

(2) V{φ + <ψ)< V{φ)
(3) V{φ) = V(-φ) and Um^oo Vφ = 0, Vψ G Φ.
Then V is continuous. Further, if (3) is replaced by the following stronger
condition
(3)7 V(aφ) = \a\V(φ), Vα G R, φ G Φ,

then V(φ) is a continuous function in φ and there exist θ > 0 and r > 0

such that

V(φ) < θ\\φ\\r, Vφ € Φ.
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Proof: For any e > 0, let Ee = {φ G Φ : V(φ) < e). By (1), Ee is a closed
subset of Φ. It follows from (3) that

Φ = U~ = 1 n£ e .

Then by Theorem 1.1.5 and Theorem 1.1.3 (c) Ee is not a nowhere dense
set. Therefore there exists a nonempty open set U C Ee. Let V = {φ — ψ :
φ, Ψ £ {/}. For any φo G Φ, φo + V is a neighborhood of </>0 and for any
φo + Φ - Ψ € Φo + V we have

|^(0o + ^ - VO ~ ^(<£o)| < V(φ -φ)< V(φ) + V(-ψ) < 2e.

Hence V is continuous.

By the continuity of V at 0, there exists a neighborhood Ho of 0 such

that

Uo = {φ e Φ : \\φ\\rj < δά)j = 1 , 2 , . . . , m } C Eeo.

Let r = maxlr j j j = 1,2,-..,m} and δ0 — min{ίj,j = 1,2, ,ra}.
Then we may assume that

For any φ G Φ, φ φ 0, we have ^ G ^o and hence, ^(jpfj;) < eo If (3)'
holds, then

V(φ)<θ\\φ\\r, V<£€Φ

by taking θ =

T h e o r e m 1.3.1 α̂ ) {Φr}r>o *5 α sequence of decreasing Hubert spaces and

Φ = n r ° i 0 *r. (1.3.1)

b) Identifying Φ o with Φo 6y Riesz's representation theorem, we denote Φ r

6y Φ_ r with norm || | | _ r ,^ > 0. TΛen {Φ_ r} r>0 is a sequence of increasing
Hilbert spaces, Φ7 is sequentially complete and

Φ' = U r°i0Φ_ r. (1.3.2)

Proof: a) It follows from Remark 1.3.1 that {Φ r}»o is a sequence of de-
creasing Hilbert spaces. It is obvious that Φ C Π^. 0 Φ r .

Let φ G Π£L0Φr. For any r > 0, there exists {φn } C Φ such that

φn —• Φ in Φ r as n —> oo. Without loss of generality, we assume that

||<^r) - φ\\r < r " 1 . Then for any n,m>r

l l 4 n ) - 4 m ) H r < \\Φ(n} ~ Φ\\r + \\Φt] ~ Φ\\r
< μW-^||n + | | ^ )-^ | | m

< n^ + πΓ1. (1.3.3)
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Hence {φn } is a Cauchy sequence in Φ r with limit φ. It follows from The-

orem 1.1.3 (b) that {φn } is a Cauchy sequence in Φ. By the completeness

of Φ, there exists φ G Φ such that φh -> ψ in Φ. By Theorem 1.1.3 (b)

again, | |<^n ) - φ\\r -> 0. Therefore φ = φ G Φ and hence (1.3.1) holds,

b) It follows from Theorem 1.1.11 that {Φ_r}r>o is a sequence of Hubert

spaces. Let 0 < r < rι and / G Φ - r Then for any φ e Φrt C Φ r

I/Ml < 11/ll-rlMlr < ll/||-r||^|μ.

Hence / G Φ_ r ' , i e., Φ_ r C Φ_ r/. Similarly we have U£L0Φ_r C Φ'.
For any / G Φ', we define a map V : Φ -> [0, oo) by V(φ) - | / [^] | , ^Φ G

Φ. It is easy to verify the conditions of Lemma 1.3.1 for V and hence, there
exist r > 0 and θ > 0 such that

\f[Φ]\<θ\\Φ\\r, V ^ G Φ .

Therefore / can be regarded as a bounded linear functional in Φ r . This
proves (1.3.2).

Finally we prove that Φ7 is sequentially complete. Let {/n} be a Cauchy
sequence in Φ'. Then by Theorem 1.1.3 (b) and Definition 1.1.7 (c) that for
any bounded subset B of Φ

*M\fn[Φ]-fm[Φ]\:φ£B}^Q asn, m^oo. (1.3.4)

For any φ G Φ, as {φ} is a bounded subset of Φ, we see that the limit of
fn[Φ] exists in R and we denote it by f(φ).

It is easy to see that / is a linear functional on Φ. If / ^ Φ7, then there
exists 6o > 0 such that, for any neighborhood U of 0 in Φ, 3φu G U such
that |/[<fo/]| ^ eo Let d be the metric on Φ given by (1.1.5). Then for each
k > 1,

Uk = {φeΦ:d(φ,0)<k-2}

is a neighborhood of 0 in Φ and therefore, there exists φk G Uk such that

fc] I > €0. Note that

3=1

3=1 3=1
oo

i Λ

3=1 3=1
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Hence kφk —• 0 in Φ. Therefore B = {kφk : k > 1} is a bounded subset of
Φ. But

oo > sup ?B(/Π) > ?s(/) = S U P l/[*&] > supA βo = oo.
n A; A:

This contradiction implies that / G Φ7.

Definition 1.3.3 Suppose there is an inner product < , > # on Φ which
is continuous in the τ-topology of Φ. Lei ϋΓ 6e the Hilbert space completion
of Φ ιt?2Ϊft respect to < , > # . ΓΛen Λ̂e triplet

is called a rigged Hilbert space or a GePfand triplet.

Remark 1.3.2 The Hilbert space H may be one of the Hilbert space Φr

defining the topology of Φ but this is not always the case as we shall illustrate
later on.

Example 1.3.1 Schwartz space

Let
: \\φ\\aβ < oo, Vα,/? G N}

where
\aβ = sup \xaφW(x)\

R

and φ^\x) is the /3-order derivative of φ.

Lemma 1.3.2 <S(R) is a Frechet space whose topology is given by the family
{\\ \\<xβ - θί,β £ N} of seminorms.

Proof: It is easy to see that for any α, β G N, || \\aβ is a seminorm and
<S(R) is a vector space. We only need to prove the completeness of <5>(R).

Let {φn} be a Cauchy sequence in 5(R) . Then for any a,β G N

n - ΦmWoc β -+ 0 as n,m-^ oo.

As Cfe(R) is a Banach space with supremum norm, there exists ψaβ G
Cί>(R), \/ayβ G N such that

sup |xαψ(f )(a;) - ^ ( x ) ! -• 0 as n ^ oo. (1.3.5)
X

Let φ(x) = Vo,o(a;) Then <?ί> € C°°(R) and

\ . (1.3.6)
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In fact it follows from the definition of φ that (1.3.6) is true for a = 0 and
β = 0. We assume that (1.3.6) is true for a = 0 and β < k. Note that

Jo

and letting n —> oo

V>o,fc(z) - ^o,fc(0) = / ψoiJo

i.e.

= Γ φ0Mi(y)dy.
Jo

Hence <£ G C f c + 1 (R) and ̂ (*+1)(aϊ) = ^o,fc+i(^). This proves that (1.3.6)
holds for a — 0 and β G N.

For any α G N and ίc G R

Hence (1.3.6) holds for any α,/3 G N. Therefore 0 G «S(R) and ̂ n -> φ in
). Hence <S(R) is a Frechet space. I

The space <S(R) can also be defined using a sequence of Hilbertian norms.
Let

and

hn(x) = ^ΎJ=-g(x)-1 ( - f - ) g(x), n = 0 , l , . (1.3.7)

Then the Hermite polynomials {hn{x) : n > 0} forms a CONS of the
Hubert space £ 2 ( R , g(x)dx) and

y/ΰhn(x) = xhn-ι(x) - h'^^x) (1.3.8)

and

h'n(x) = y/nhn-ii*), n>\. (1.3.9)

Now we define the sequence of Hermite functions {φn}n>\\

φn+i(x) - yjφήhnix), n > 0. (1.3.10)

Then {φn} is a CONS of L 2 (R).
For p G R and φ G Φ, define

2 ^2 . / 1 \ 2 P
Ip

0 0 / 1 \

n = l V 7
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Lemma 1.3.3 For any p £ R there exist k £ N and C > 0 sucΛ

(1.3.11)

Proof: It follows from (1.3.9) and integration by part that

<Φ,Φn>L*(R) = I Φ(x)yg(x)hn.1(x)dx

= n~ ' I φ(x)yg(x)dhn(x)

= —u ' I I φ\X)\lg{x) I hn(x)dx.
J \ v /

Repeating the argument above, we have

< Φ,Φn >Z,2(R) =

Note that by (1.3.7)

(k)

==
+ 1) (n + k - 1)

(i)

= Σ (j
It is easy to see that

C, S 2-ί V?! ft, ( ^ , Vj- > o.

Hence

(#ov5(*j)
(*)

έsw ! + N

< Σ (*
j=o V
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Therefore

{}
J Λn+fc-i (x)2g(x)dx J{1 + \x\)-2dx

l ) k max \\φ\\2

a2/ o<«,/9<fc+iιmiβ

Taking k such that 2p — k < — 1 we have

« < 8 < y " | )cΛ V l n + - ] max
P ~ \ Z-^ \ A \ 3 i £^ \ 2/ 0<α,/3<fc+l

Lemma 1.3.4 For any a,β G N there exist M > 0 and p G N such that

WΦWaβ < M\\φ\\p (1.3.12)

for any φ which can be written as a linear combination of finite many φn's.

Proof: By (1.3.8) and (1.3.9), we have

Φn(x) = C-l( 3

= τ~(

and

xφnix) = yjn- lφn-ι(x) + Λ/nφn+ι(x).

By induction on a and β it is easy to show that

*aΦlβ)(χ)= Σ cά>n,aβ
j=-ot-β

where

|Cj,n,α,/3| ^ (n ~\- OL-\- βpa

and we define φk{x) = 0 V& < 1. Let

Φ = Σ < Φ,Φn >L2(R)
n=l



1.3. COUNTABLY HILBERTIAN NUCLEAR SPACES. 37

Then

iβί2 = J \x»φW\x)\2dx

-I
-I

N

n=l

N a+β

Φ,Φn >L2(R)
n=l

N a+β

j=-oc-β

Φ,Φn>< Φ,Φm>

dx

n,m=l j}k=-ot-β

N ot+β

^ Σ Σ (
n,m=l jik=—ot—β

N

a + β)a+β\ <φ,φn><Φ,Φm>

n,m=l

I < ΦiΦn >< Φ,Φm > |l|n-m|<2α+2/3
N

71,171=1

2 + < φφ >2)φ,φn > 2 + < φ,φm > 2 ) l | n _ m |< 2 θ ί + 2 i 3
N

where K = 2α

Finally, as
α + β +

(1.3.13)

we have

α,/: < f\axa-1

< aJ / (1 + x2)\xa-^W(x)\2dxJ / (1 +

+J / (1 + x2)\xaφi^ι){x)\2dxJ / (1 + x2)~ιdx

\aβ,2) + \\Φ\\aβ+i,2

< 2K(a+l)\\φ\\(a+β+2)/2. (1.3.14)
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(1.3.12) then follows by taking p = ^±f±^ and M = 2K(a + 1). I

Theorem 1.3.2 a)

S(R) = {φe L2(R) : \\φ\\p < oo, Vp G R}. (1.3.15)

Further the topology of <S(R) is given by the family {|| | | p : p G R } or

equivalently, by a sequence {|| | | p : p G N} of increasing Hilbertian norms.

b) <S(R) is a CHNS.

c) S'p = S.p.

d)IfH = L2(R), then

S(R) *-* H ^ S(R)'

is a rigged Hilbert space.

Proof: a) It follows from Lemma 1.3.3 that

5(R) C {φ G L2(R) : \\φ\\p < oo, Vp G R},

Let φ G L2(ΈL) be such that | | ^ | | p < oo, Vp G R. Let

n

φ{n)(x) = Σ < Φ'Φi >L*(R) Φj

Then φ(n) —>• φ with respect to any || | |p. Hence, by Lemma 1.3.4, {φ^} is

a Cauchy sequence with respect to each || | |α>0. Therefore it follows from

Theorem 1.1.3 (b) and the completeness of <S(R) proved in Lemma 1.3.2

that there exists ψ G S(R) such that φ^ ->- ψ in 5 ( R ) . By Lemma 1.3.3

again, φv1' —> i/> with respect to any || | | p . Hence φ — ψ G <S(R) i e.

{φ e L2(R) : ll^llp < OO, Vp G R} C «S(R).

This proves (1.3.15). The equivalence of the topologies follows similarly from
the above arguments.
b) We first prove that {|| | | p : p G R} is a family of compatible norms. In
fact, let p < q and let {/n} C Φ b e a Cauchy sequence with respect to both
norms and | | / n | | P —• 0. Then

(k+\)P < /n. Φk >h(R)< li/nllp - 0 for each k > 1.

i.e.

< fn,Φk >L2(R)-> 0 f°Γ e a c h AJ > 1 as n —> oo. (1.3.16)
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As {/n} is a Cauchy sequence with respect to norm || \\q, Ve > 0, 3N} s.t.
Vn, m > N we have

Σ < fn ~ /m, Φk >L 2 (R) < €> f θ Γ

Taking m —> oo, it follows from (1.3.16) that

k=i
< fnjφk f o r a n d n> N.

Letting K —> oo, we have

f 2
fc=l

This proves ||/n | |q —̂  0 and hence the norms are compatible.
For any p e R, {(n + | )" p ^n} is a CONS for Sp. lfp>q+ | , then

Σ
n=l

< OO.

Hence the canonical injection from Sp into <Sq is Hilbert-Schmidt forp > q+\.
Therefore 5(R) is a CHNS.
c) Let /, g G <S, then for all p G R

Σ</'^
n=l

which shows that S-p is the dual of Sp.

ϊ^n >0

\n=l

d) As the inner product < , >ff=< , > 0 is continuous in <S(R) X <S(R),
(d) follows directly from the Definition 1.3.3. I

Definition 1.3.4 <S(R) is called the space of rapidly decreasing func-
tions on R. <S(Ry is called the space of tempered distributions.

The following model is useful in solving some evolution equations.
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Definition 1.3.5 Given a rigged Hilbert space Φ <-» H <-> Φ', a strongly
continuous semigroup {Tt}t>o on H is said to be compatible with (Φ, H, Φ')
or equivalently we will refer to (Φ, iϊ, Tt) as a compatible family if

a) TtΦ C Φ Vί > 0.
b) The restriction Tt\φ : Φ —• Φ is r-continuous for any t > 0.
c) t —> Ttφ is continuous for any φ G Φ.
d) Let A be the generator ofTt on H. Then A\φ : Φ —>- Φ is continuous.

Remark 1.3.3 //Φ,iϊ, Φ' are already given, (a)-(d) is a restriction on the
type of {Tt} that can be considered. However, it is important to observe
that in practical problems, physical considerations usually give no idea of the
rigged Hilbert space Φ ^ H c-> Φ' to be used and only the Hilbert space
H and the semigroup {Tt} are naturally given in the problem, so that the
Schwartz space cannot be chosen in advance.

The following example gives a method of choosing Φ and Φ' when Tt is

given and satisfies certain conditions.

Example 1.3.2 A class of examples of (Φ, iϊ, Φ', {T*})

Let H be a real separable Hilbert space and A = — L be a closed densely-
defined self-adjoint operator on H such that (—Lφ, φ)H < 0 for φ G Dom(L)}

the domain of L. Let {Tt} be the semigroup on H determined by A. Further
assume that some power of the resolvent of L is a Hilbert-Schmidt operator
i.e.

3 r i such that (XI + L)~ri is Hilbert-Schmidt. (1.3.17)

This condition enables us to find an appropriate CHNS Φ for the model,

as we shall now indicate: it follows from Corollary 1.2.1 that there exist

{μj} C R and {φj}j>i C H such that

(λ l + L)~T1 φj = μjφj, for any j > 1.

As L is a nonnegative-definite self-adjoint operator, we see that {μj} is a
decreasing sequence with lower bound λ > 0 and hence, {φj}j>i is a CONS
of H. Let λj be such that (λ + λj)-ri = μά,j > 1. Then 0 < λx < λ2 < •
and, by Theorem 1.2.6

Lφj = λjφj, for any j > 1.

Letting λ = 1, define

Φ = {φeH:\\(I+L)rφ\\2

H<oo,VreΈL} (1.3.18)

, VrGR|
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Define the inner product < , > r on Φ by

oo

< Φ, Ψ >r= Σ ( l + λά)
2r < φ, φά >H< <ψ, φά >H

i=i

and

\\φ\\ϊ=<φ,φ>r.
Let Φ r be the || ||r-completion of Φ. We then have

Φ = n r Φ r , Φ' = U r Φ r

and for r < s, φ G Φ, \\φ\\r < \\Φ\\s and so Φ5 C Φ r with Φ o = H. Condition
(1.3.17) implies that the canonical injection from Φ p into Φq is Hilbert-
Schmidt for p > q + r\ and therefore Φ is a CHNS.

For each r > 0, Φ_ r and Φ r are in duality under the pairing

oo

V[Φ] = Σ < r ! ' Φi >~r< Φ> Φά >r, V € Φ - r , φ G Φ r (1.3.19)

and therefore Φ_ r = Φ .̂. We also have that {φj}j>i is a COS (not normal)
in Φ r for all r G R.

From now on we will write < , >o=< , > H F ° Γ Φ € H and t > 0, let

Then {Tt}t>o is a strongly continuous semigroup on H with generator -L.
Now we shall prove that the semigroup {Tt} satisfies conditions (a)-(d) in
Definition 1.3.5:

If φ G Φ, then Vr G R

3=1

i.e. Ttφ G Φ which implies (a). Next for φ G Φ and ί > 0

oo
2 V^

= Z
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It follows from Theorem 1.1.3 (b) that Tt : Φ -» Φ is continuous and therefore
condition (b) is satisfied.

Now for 5, t > 0 and φ G Φ

3=1

,)2" < *, fc > 2 < 4(1 + A,)2' < φ, φό >
2 .

and for each jf > 1

Since e ί λJ is continuous in t for all j > 1, then by the dominated
convergence theorem,

lim \\Ttφ - Tsφ\\r = 0 Mφ G Φ, r G R

which implies (c).

Now to prove (d) let φ G Φ and define ψn = Σ?=i < φ, φj >o Φj- Then

Ψn —> Φ on Φ,

i >o j > 0 φj

and for m> n and r G R

Xj < φ, φj >o

as n, m —>- oo. Hence

J=n+1

i > 0 ^i i n

But since L is closed in H and || \\H is Φ-continuous, then φ G Dom(L) and
ψ = Lφ, i.e. L|φ : Φ —• Φ is given by

j <̂ i >o

It is obvious that L is linear and

\\Lφ\\2

r<\\φ\\2

r+1\/φeΦ,r£R.

Hence L is continuous in Φ which implies (d).

(1.3.20)
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Remark 1.3.4 A compatible family (Φ,H,Tt) or (Φ,i/, L) is called a spe-
cial compatible family if the generator L satisfies condition (1.3.17) and
Φ is constructed as in Example 1.3.2, i.e. Φ is given by (1.3.18).

Remark 1.3.5 The Schwartz space <S(R) of Example 1.3.1 may be obtained
in the framework of the last example by taking

i ,v;>i

and {φj} the Hermite functions given by (1.3.10). In fact for r > |

~2 r

3=1

Hence L satisfies condition (1.3.17) for ri > \ and (S(ΈL),L2(R),L) is a
special compatible family.






