Chapter 1

Topological vector spaces

In the first two sections of this chapter we collect some necessary facts from
functional analysis about topological vector spaces and their operator theory
to make this book as self-contained as possible. Although we have provided
all the proofs, the only exception being the proof of the spectral decompo-
sition theorem, these two sections are not intended as an introduction to
functional analysis for the beginner. We refer the reader who is interested
in a more detailed treatment to standard textbooks on this topic such as
Conway [5], Reed and Simon [47], Yosida [61].

In Section 3 we treat a special class of topological vector spaces: count-
able Hilbertian nuclear space and their dual spaces. As we shall see in later
chapters, these spaces are very convenient for some practical problems and
will play a major role in the course of this book. Most of the material in
this section is taken from Kallianpur [23]. ‘

1.1 Topological vector spaces.

In this section we introduce the definition of a topological vector space (TVS)
and state some basic properties of special classes of topological vector spaces
such as Fréchet, Banach and Hilbert spaces for later use.

Definition 1.1.1 A non-empty set X is called a topological vector space
if it is a vector space with a topology compatible with the space structure, i.e.,
the following two maps

(z,y)eXxX—z+yeX (1.1.1)

(,z) ERX X —oaze X (1.1.2)

are continuous.
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Next we introduce seminorms on vector spaces and the topology deter-
mined by them.

Definition 1.1.2 A real valued function p on a linear space X is called a
semi-norm if

o) p(z +y) < p(z) +p(y) Va,y€ X,

b) p(az) = |a|p(z) Ve e X and a € R.

Further, p is called a norm on X if, in addition to a) and b), we have
c) p(z) = 0 implies z = 0.

Theorem 1.1.1 If p is a semi-norm on X, then
i) p(0) =0,
i) p(z —y) > |p(z) — p(y)|, Yz,y € X. In particular, p(z) > 0, Vz € X.

Proof: i) It follows from b) that
p(0) =p(0-2) = 0-p(z) = 0.

i) Without loss of generality, we assume that p(z) > p(y). By a), we have

p(z) = p(y + (z — v)) < p(y) + p(z — ). n

Definition 1.1.3 a) Let I' be an indezx set and let G = {p, : v € T'} be a
family of semi-norms on X. A set U C X is said to be a neighborhood of
zo € X if there evist n € N,v; €T and ¢; > 0,7 =1,2,---,n such that

Uz{a:EX:p,,j(a:—wo)<ej,j=1,2,---,n}. (1.1.3)

b) A set G C X is said to be open if, for any zo € G, there ezxists a
neighborhood U of zg such that U C G. Let T be the collection of all open
subsets of X. T is called the topology of X determined by G.

Theorem 1.1.2 i) Let G = {p, : v € T'} be a family of semi-norms on X
and let T be given as above. Then (X, T) is a topological space.

i) (X, 7) is a Hausdorff topological space if G satisfies the following separat-
ing condition: For any zo # 0, there exists vg € I' such that py,(zo) > 0.

Proof: i) It is easy to see that
a) 0 € 7 and X € 7, where ) is the empty set.
b) For any family {G4 : @ € A} of open sets, we have UqcaGa € T.

c) For any finite family {G; : j = 1,2,---,n} of open sets, we have N7_,G; €
T.
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Hence, (X, 7) is a topological space.
ii) We only need to show that, for any z; # z,, there exist two disjoint open
sets G1 and G5 such that z; € G; and z; € Gs.

Without loss of generality, we assume that z; = 0 and z; # 0. It follows
from the separating condition that there exists a seminorm p, such that
Po(z2) = o > 0. Let

G’lz{weX:pv(:v)< g—} and G, =z, + Gj.

For any y € G3, there exists y; € Gy such that y = z; + y;. Hence
a «

Po(y) = pu(e2 1) 2 pu(22) —po(-t1) 2@ -5 =5

and so G; and G, are disjoint. |

Definition 1.1.4 A topological vector space (X,T) is called a pre-Fréchet
space if T is given by a countable family of seminorms which satisfies the
separating condition given in Theorem 1.1.2. It is called a pre-Banach
space if T is given by a norm. It is called a pre-Hilbert space if T is
given by a Hilbertian norm || - || in the following sense: For any z,y € X

lz+yll* + llz — ylI* = 2(ll=lI* + llyl]*).- (1.1.4)

We shall show in Theorem 1.1.8 that a Hilbertian norm is uniquely deter-
mined by an inner product < -,- >, i.e., a continuous symmetric bilinear
form on X X X such that < z,z >> 0 and < z,z >=0 iffz = 0.

Definition 1.1.5 a) A sequence {z,} in the topological vector space (X, )
is called a Cauchy sequence if z, — 2, — 0 as n,m — co. A topological
vector space (X, T) is said to be sequentially complete if every Cauchy
sequence converges in X.

b) A complete pre-Fréchet (resp. Banach, Hilbert) space is called a Fréchet
(resp. Banach, Hilbert) space.

Theorem 1.1.3 Under the conditions of Theorem 1.1.2 we have the follow-
ing:

a) (X, ) is a topological vector space.

b) A sequence {z,} converges to an element ¢, in X if and only if

Po(Tn — Too) — 0 as m— oo for any v €T,
{zn} is a Cauchy sequence in X iff
Po(Tn — Tm) — 0 as n,m — 0o for any wveT.

c¢) If T is countable, then (X,T) is a metric space, i.e., there exists d :
X x X — R such that
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i) d(z1,z2) > 0 and d(z1,z2) = 0 iff 21 = z2,
22) d(:l:l, :222) = d(mg, iL'l),
i1) d(zy, z3) < d(z1, z2) + d(z2, 23), for any z1, 23,23 € X,

and &, — To in T-topology iff d(Tn, o) — 0. The map d satisfying i)-ii1)
above is called a metric on X and (X,d) is called a metric space.

Proof: a) Let (zo,¥0) € X x X. For any neighborhood U of zg + yo € X we
have

U:{weX:Puj(m——:co—yo)<ej,j=1,2,...,n}.
Let

UI:{meX:pvj(z)< %,j:l,z,...,n}.

Then 2z + U’ (resp. yo + U’) is a neighborhood of zg (resp. yo). For any
z € 2o+ U’ and y € yo + U’, we have

t+y=zo+yo+z' +y

where z/,y’ € U’. Then
Py, (2" +9') < po; (2') + 20, (V) < 5.

i.e. z+y € U and hence (1.1.1) holds. Similarly we can prove (1.1.2) and
therefore (X, 7) is a topological vector space.
b) If 2, — z in X and v € T, then for a neighborhood

U={z€ X :py(z— ) < €}

of £, there exists N such that n > N implies z, € U. Hence py(zn—2x) —
0.

On the other hand, if p,(z,— 2o ) — 0 for any v € T then for any positive
€ there exists N (¢, v) such that n > N(e,v) implies that p,(z, — o) < €.
For any neighborhood

U:{xeX:p,,j(a;—:coo)<ej,j=1,2,...’m}

of zo, letting N = maz{N(vj,¢;) : j = 1,2,---,m}, we have z,, € U for
n > N, l.e. z, — ¢ in X. The second statement can be proved by similar
arguments.

c)Let G={p;:7=1,2,---} and

d(z,y) = i2_j(pj(:c —-y)A1l), Vz,y € X. (1.1.5)
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Then d(z,y) = d(y,z) > 0. By the separating condition, z = y iff p;(z—y) =
0 for all j > 1 and hence, it is equivalent to d(z,y) = 0. The condition iii)
can be verified easily.

It follows from b) that z, — 2o in X if and only if pj(zn — o) — 0 for
any j > 1. This is equivalent to d(z,, o) — 0 by the definition of d. [

Theorem 1.1.4 Suppose that (X, ||-||) is @ pre-Banach space. There ezists a
unique (in the sense of isometric isomorphism) Banach space (X, ||-||") such
that X is isometrically isomorphic to a dense subspace X¢o of X. Further, if X

is a pre-Hilbert space, then X is a Hilbert space. X is called the completion
of X.

Proof: (Uniqueness) If we have Xo and X with the same property, then Xg
is isometrically isomorphic to Xo. Hence, by denseness of Xy and X, it is
easy to show that X is isometrically isomorphic to X.

(Existence) Let Y be the collection of all Cauchy sequences in X. For
{zn},{yn} € Y, we say that {z,} ~ {yn} f 2p —yp > 0 asn — 0. It is
easy to show that Y is a vector space and ” ~ ” is an equivalence relationship
in Y. Let X be the quotient space Y/ ~, i.e. the collection of all equivalence
classes.

For each & € X, let

[2]]"= lim_[lz4]|.
It can be shown that || - || “is a well-defined norm on X.

Let Xy = {{z,z,--} € X : z € X}and 1 : X — X be given by
w ={z,z,---}. For any & = {z,} € X, let &, = {Zm, Tm, -} € Xo. Then

lim ||&, — &||"= lim lim ||z, — 2,/ =0.
m—00 m—00 N—00

Hence X is dense in X. It follows directly from the construction that X is
isometrically isomorphic to Xo.

Finally, we prove that X is complete. Let {Zr}e>1 = {{a:n In>1}e>1
be a Cauchy sequence in X. For each k, there exists nj such that for any
m > ng

o8 — 2 < k7.

Let Z = {:c } Then

|2 — z{m)||
= {z®,2®), ..} — {2{™),2{™), - 3|

I|{w5,ﬁ),$$i, <} = Bl "+ 1Bk — Bl T+ 1B — {257, 20, I

k4 |Zk — Em|| "+ m~!

IN A
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Hence {mﬁ,’?} is a Cauchy sequence and therefore, # € X. Note that

loe =&l < 12k = {28, 0, I+ (=), ), -} - all-
-1 : k
< k7 Jim [Jef) - o))
< BT lim (k7T 4 (|86 - &l 27

21+ lim [|3 &)

As {#} is a Cauchy sequence, &, — % in X.
The second statement follows from the definition directly. |

Definition 1.1.6 Let M be a subset of the topological space X. If the closure
of M does not contain any non-empty open set, we say M is a nowhere
dense set. If M can be represented as the union of countable many nowhere
dense sets, we say it is in Baire’s first category; otherwise it is in Baire’s
second category.

Theorem 1.1.5 A complete metric space is in Baire’s second category.

Proof: Suppose that X is a complete metric space and is in Baire’s first
category, i.e., there exists a sequence of nowhere dense closed sets M,, such
that X = U, M,,.

As MF is a non-empty open set, there exists a closed sphere S; = {z €
X :d(z,z1) < r} such that 0 < ry < % and Sy C Mf, where M5 is
the complement of M;. As M, is nowhere dense, M5NSY is a non-empty
open set, where S is the interior of S;. Hence there exists a closed sphere
Sy = {z € X : d(z,z;) < ro} such that 0 < 7y < 2% and S, C M5NSY. By
induction, we can find a sequence of closed spheres S, = {z € X : d(z, z,) <
rn} such that

0<rp < 2—11; and S, C MENS2_,, Vn>1,

where, by convention, Sp = X. Note that for any n < m, d(Zn, Zm) < Tn — 0
so that {z,} is a Cauchy sequence. By the completeness of X, there exists
ZToo € X such that d(zp,Ze) — 0. As

d(zn, woo) < d(:l)n, zm) + d(xm; a’oo) <rn+ d(mm’ a’oo)y

we have that d(z,, To) < 7y by taking m — oo, i.e., Too € Sn C My, for any
n > 1. Therefore zo, ¢ U,M,. This contradicts the fact that X = Up M. |
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Corollary 1.1.1 If X is a Fréchet space, then X is in Baire’s second cate-
gory.

Next we define the dual space of a topological vector space X whose
topology is given by a family of seminorms and introduce the strong topology
on this space.

Definition 1.1.7 a) A subset B of X is said to be bounded if it can be
absorbed by any neighborhood of 0 € X, i.e., for any neighborhood U of
0 € X there erists a constant o > 0 such that 1B C U.

b) Let X' be the collection of all continuous linear maps from X to R. Then
X' is called the dual space of X.

c¢) For any bounded subset B of X, let

gs(f) =sup|flz]l, feX'
T€EB

Then {gg} is a family of seminorms on X' and gives X' a strong topology
7'. (X, 7') is called the strong dual of X.

Theorem 1.1.6 a) If f € X', then fis a bounded functional in the sense
that f maps bounded subsets of X to bounded subsets of R.

b) For any bounded subset B of X, qp is a seminorm on X'.

¢) If X is a pre-Banach space and f is a bounded linear functional on X, then
f € X'. Further, X' is a Banach space with norm

Ifllx = sup |f[z]].
llefl<2

Proof: a) As f is continuous at 0 € X, there exists a neighborhood U of
0 € X such that ¢ € U implies |f[z]| < 1. For any bounded set B, let & > 0
such that « !B C U. Hence for any z € B

|f[z]] = el fla” 2] < e,
b) It follows from a) that gg(f) < oo for any f € X'. Note that for any
frgeX'anda€eR
ga(f + 9) = sup | f[z] + g[=]| < sup|flz]| + sup |g[z]| = gB(f) + aB(9)
z€EB z€B z€B

and
gg(af) = sup leef[z]| = |elgB(f),

i.e., ¢p is a seminorm.
c) As {z € X : ||z|| < 1} is a bounded set and f is a bounded functional,
there exists M such that ||z|| < 1 implies |f[z]| < M. Hence for any z € X

|f [ﬂ” <M, ie. |flz]l < Mlal].
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The continuity of f follows directly.

It is easy to show that || - ||x/ is a norm in X’. Let ¥ be the topology
of X' given by || - ||x+. Let B be a bounded subset of X. Then there exists
a > 0 such that a™1B C {z € X : ||z|| < 1}. Hence for any f € X’

g8(f) < sup |f[z]| = sup |fley]| = | fllx-

||| <ex llll<1

On the other hand, as S = {z € X : ||z|| < 1} is a bounded subset of X,
we see that || - ||x» = ¢s. Hence two topologies 7 and 7’ are equivalent and
therefore, X’ is a pre-Banach space.

Further, if {f,} is a Cauchy sequence in X', lim,_,, fn[z] exists for any
z € X since

|fnlz] = fm[2]l < (| fa = fmllx/ll2]l = O, as m,m — oo. (1.1.6)

Denoting it by f(x), it is obvious that f is a linear functional. Further as the
limit exists uniformly for z € S, we see that f € X'. As {f,} is a Cauchy
sequence, Ve > 0, 3N, s.t. Vn,m > N, ||z|| < 1,

|fn[$] - fm{ib” <e

Taking m — oo, we have
|falz] = flz]| <&, ¥R 2> N, [jz]| < 1.

Therefore, || fn, — f||x* — 0 as n — oco. Hence X' is a Banach space. n

Theorem 1.1.7 (Hahn-Banach) If Xo is a subspace of the pre-Banach

space X and f € X, then there exists f € X' such that flx, = f and

I fllxr = | fllx:. In particular, for any zo € X,z0 # 0, there exists f € X'
0

such that f[zo] # 0.

Proof: Let M be the collection of all subspaces X, containing X such that
there exists f, € X, with

falxo=F and  |lfallxs = Iflly;. (11.7)

Then M is a set with the partial order: X, < Xp if Xo C X and fg is an
extension of f,,i.e. fg|x, = fa- For any ordered subset Mg = {X, : @ € A}
of M, let

XMO = UaeAXa.

Then X a4, is a subspace containing Xj. Define

fmolz) = falz],  if @ € X
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It is easy to see that faq, is well-defined on X g, and faq,|x, = f. Note
that

Ilf”xé < “f‘M°”X5w
0
= sup{|fm,[z]| : [|z|| < 1 and z € Mo}
< sup{|falz]| 1 ||z|| <1,z € X4 and o € A}
< sup{[fallx, s o€ A} = I fllx.
Hence
fm, € Xpq,  with IIfMOHX'M0 = I £llx:-

It is easy to see that faq, is an extension of f, for all & € A. Therefore
X M, is a maximum element of M. By Zorn’s lemma, there exists a local
maximum X; (with linear functional f;) of M.

If X; # X, there exists m € X \ X;. Let

Xo={z=z1+Im:2,€X; and X€R}
and

falz] = filz1] + Ac

where c is a real constant to be determined later such that

I fallx; < N1 fllx:- (1.1.8)

Then X, is a subspace containing X; and f; is an extension of f; such
that (1.1.7) holds. This contradicts the fact that X; is a local maximum
of M. Therefore X; = X and taking f = f; we have the first assertion
of the theorem. The second part of the theorem follows directly by taking
Xo={Xzo: X € R} and f[Azg] = A.

To finish the proof we have to find c. (1.1.8) is equivalent to

filza] + Ae < Hfllxéllccl + Am|| forany z; € X; and X€R,

A3 el m+ S oray A>o0
and
A5 -y |-m+ 2] foraw a<o

We only need to choose c to lie between

sup {fl[m] - ||f||x(’,||"3 —-m|:ze Xl}
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and

inf {[|llx:lle + ml - filz] 12 € X1}
This is possible as for any z,y € X;,

Alel+ Al = A+ <l +ul
1l ll (@ — m) + (v + m)]
1l lle = mll + 11 £l lly + il "

IN

Corollary 1.1.2 Let X be a Banach space. Then there exists an isometric
isomorphism ¢ from X onto a closed subspace X} of X". If X = X", we
call X a reflexive space.

Proof: For any zo € X, let wzp € X" be such that (vzo)[f] = f[zo] for all
f e X' Let XJ =.X. Note that

| fTzo]l < |l Fllxllzollx,

Hence ||czo||x» < ||Zo|x-
Define a continuous linear functional f on a one-dimensional subspace

Xo={azo:a € R}
of X by
flazo] = allzo||x-
Then || f|| x! = 1. It follows from the Hahn-Banach theorem that there exist

f € X' such that ||fllx = 1 and flzo] = ||lzol|x, .., (tzo)[f] = [|zollx-
Therefore ||zo||x < ||¢@ol|x#. The linearity of ¢ follows from the definition
directly. [ |

In the rest of this section, it will be assumed that (X, || - ||) is a Hilbert
space.

Theorem 1.1.8 The relations
1
<z, y>= Z(Ilw +y|? - Iz - y|*), Vz,y € X (1.1.9)

and
lz||? =< z,z >, Vz € X, (1.1.10)

define < -,- > as an inner product in X.
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Proof: First suppose we have a Hilbertian norm || - || and define < -,- > in
terms of (1.1.9). It is easy to see that < -,- > is symmetric and continuous
with respect to the topology given by || - ||. It follows from (1.1.4) that

<z, 2>+<Y,z>
1
= etz = llz = 2* +[ly + 2I1* = lly — 2*)
1
= gllz+y+220" + o - yl*) - (lz +y - 22[° + ]2 - I|*))
1 1
= —8-(||:c +y+2z|P - ||z +y—-22|) = 5<® +y,22>. (1.1.11)
Letting £ = 0 in (1.1.9), we see that < 0,y >= 0, Vy € X. Let y = 0 in
(1.1.11). Then
1
<z, z>==-<1z,22>. (1.1.12)

2
Hence, by (1.1.11) and (1.1.12), we have

<z,z2>+<y,z>=<z+y,z>, Vr,y,z€ X. (1.1.13)
Now we prove that for any € R and z,y € X, we have
<ar,y>=a<z,y>. (1.1.14)

It follows from (1.1.13) that (1.1.14) holds for &« = n € N. By (1.1.12),
z z 1 1
G- (o) =} <nzm} <>

Therefore we see that (1.1.14) holds for o = awM,m € N. By the
continuity of < -,- > we have that (1.1.14) holds for any & € R. Hence
< -,- > is a continuous symmetric bilinear form on X x X. The other
conditions follow from the definition and the properties of the norm.

Now we assume we have a continuous symmetric bilinear form < -,- >
on X X X such that < z,z >> 0 and < z,z >=0iff z = 0. Define || - || by
(1.1.10).

Foranyt € R

0< flz+tyl® =<z +ty,z +ty >= |lz||* + 2t < 2,y > +£2[|y]]%,
therefore we have the following Schwartz inequality
| <z, y>|<|zll-llyl, forany z,yeX.
Hence

lz+yl* = <z+y,z+y>
lzl|>+2 < z,y > +|yl
(]l + llwl)?,

IN
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this prove the condition (a) of the Definition 1.1.2. The conditions (b) and
(c) of that definition are immediate. Therefore || - || is a norm on X.
Finally, we note that

le+yl’ +lle-yl> = <etyety>+<z-yz-y>
= 2([lel” + llyll*),
i.e., || || is a Hilbertian norm on X. |

Definition 1.1.8 a) Let z,y € X. If < z,y >= 0, we say = is orthogonal
to y. For a subset M of X, let

M*={ze X :<z,m>=0, Yme M}.

b) A subset S of X is called an orthogonal system if for any z,y € S we
have ¢ # 0, y # 0 and < z,y >= 0. S is called a complete orthogonal
system (COS) if there ezists no other orthogonal system which strictly con-
tains S. S is called a complete orthonormal system (CONS) if S is a
COS and, for any z € S, ||z|| = 1.

Theorem 1.1.9 If M is a closed subspace of X, then Mt is a closed subspace
of X and is called the orthogonal complement of M. For any z € X, there
exists a unique decomposition

t=m+n meM and ne ML

We denote m by Ppyz and call it the orthogonal projection of z. The
operator Pys from X to X is called the orthogonal projection operator
with range M.

Proof: From the properties of the inner product we see that M~ is a closed
subspace. Suppose we have two decompositions, i.e.,

m:m+n=m’-|—n'.
Then
m—-m'=n'—ne MNM*'.
Hence
<m-m'm-m'>=0,

i.e., m = m' and therefore, n = n’. This proves the uniqueness.
For the existence, we may assume that M # X and z ¢ M. As M is
closed
d=inf{||]z —m| :m e M} > 0.
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Let m, € M be such that ||z — my,|| — d. Then, by (1.1.4),

[ = mil? = [|(mn — 2) = (e ~ )|

Mo + Mk _
2

< 2llmp — 2| + 2||mi — z||? —4d® - 0, asm, k — .

2
= 2l|mp — o|? + 2l — 2> — 4|

Therefore {m,} is a Cauchy sequence and hence, there exists m € M such
that m, — m as n — oo. Further, we have ||z — m|| = d.
Let n =2 — m. Then forany m' € M and a € R

d? < ||z —m—am|? = |n||2 - 2a < n,m’ > +a¥||m||%.
Hence
2a < n,m' >< &?||m'||?, Va €R.
This implies < n,m’ >=0, i.e., n € M*. [ |

Theorem 1.1.10 If X is a separable (i.e. X has a countable dense subset)
Hilbert space, then there exists a CONS of X which contains only countably
many elements. Further, for any CONS {e,}, we have

@)
(oo}
z=) <ze>e, VzeX, (1.1.15)
i=1
b) (Parseval equation)

lel? = 3 < 2,60 >2, Va € X,
n

¢)

<zy >=Z<w,en >< y,en >, Vz,y € X. (1.1.16)

Proof: Let S = {z,} be a countable dense subset of X. Without loss of
generality, assume that 0 ¢ S. We define a sequence {y,} inductively by

n—1
Yn=Tn— D < Tp,Uj > Uj, n=1,2,- (1.1.17)
=1

where u; = y;/||y;]| if y; # 0 and u; = 0 otherwise.
Let S’ be the collection of all non-zero elements of u;. Now we show that
S’ is a CONS by induction. Note that

<ypaur > = (zo— < T2, > U, U)
= < To,U > — < IT2Uu >< U, U >
0.
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We assume that for any j < k¥ < n, < yg,u; >=0. Then for k <n+1,

n
< Yntl, Uk > = <$n+1 — Z < Zpy1,Uj > u]‘,Uk>
Jj=1

n
= < Tp41, Uk > —Z < Tpt1, U; >< Uj, Uk >
Jj=1
= < Tpg1y Uk > — < Tpg1, U >< Uk, Uk >
0.

Hence for any j # k we have < u;,ux >= 0. Therefore S’ is an orthogonal
system.

If S’ is not a CONS, there exists an 0 # z¢ € (S’)*. Hence < zg, yn >= 0,
Vn > 1. It follows from (1.1.17) that < zg,zn, >= 0, Vn > 1. As {z,} is
dense in X, there exists a sequence {z,, } such that z,, — . Therefore
< g, zo >= 0 which contradicts zo # 0 and hence S’ is a CONS.

Let {e,} be a countable CONS of X. For any z € X, let

n
2™ = Z <z, e > e

Jj=1
Note that
n n
|z —2™|? = <a: - Z <z, 5> e5,T— Z <z, e > ej>
Jj=1 7j=1
n
= |lel* =) <z, >%. (1.1.18)
Jj=1
Hence

n
Z < z,e; >2< ||z))
7=1

Letting n — oo, we have the following Bessel inequality:

[ee]
Y <z, e >*< |z||? < oo. (1.1.19)
J=1
Hence for any m < n
n
||m(”) - a:("‘)“2 = Z <z,6;>2=0 as n,m — o00.
j=m+1

As X is a Hilbert space, there exists ' € X such that z(") = z/. But Vk > 1

n
<z-—1a e >=,~.li—>néo $—2<$,ej>€j,€k>=0.
Jj=1
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It then follows from the completeness of {ex} that z = z’. This proves
(1.1.15). By (1.1.18) we see that the Parseval equation holds. (1.1.16) follows
from (1.1.9) and the Parseval equation. i

Remark 1.1.1 The procedure of constructing an orthogonal system {y,}
(resp. {un}) in the proof of the last Theorem is called Hilbert-Schmidt
orthogonalization (resp. orthonormalization). Further, the denseness
of {zn} guarantees the completeness of the system. More generally, if the
collection of all finite linear combinations of z,’s is dense in X, then {u,}
is a CONS of X.

Finally we give the Riesz representation theorem which allows a Hilbert
space to be identified with its dual space.

Theorem 1.1.11 (Riesz representation theorem) Let X be a Hilbert
space. Then there exists an isometric isomorphism ¢ from X onto X'. In
particular, X' is a Hilbert space.

Proof: For any y € X, let
()z] =< z,y >, Vz € X.

It follows from the Schwartz inequality that cy € X’ and |ley||x’ < ||y]l-

For any f € X', wesearchfory € X such that f=1y. Let N={z € X :
fle]=0}. f N = X, then f = 0. If N # X, it follows from the continuity
of f that N is a closed subspace of X. Let 0 # yo € N*t. Defining

y = (£lvol/Ilvoll*)wo,

we prove that
< z,y >= flz], Vz € X. (1.1.20)

If z € N, both sides of (1.1.19) are equal to 0. If z = ayo, then
< @,y >=< ayo, (f[yol/llvol*)vo >= aflyo] = flz].

For any z € X, since
o= (o L) 4 12,

flyl flyl
and f1a]
f [ - '}-—[ay] =0,

(1.1.19) holds. Note that
y
levllr = sup 1()lall > (o) | 2] = Dl
<1 1yl

Then ¢ is an isometry from X onto X’. The linearity of ¢ is immediate. N



16 CHAPTER 1. TOPOLOGICAL VECTOR SPACES

1.2 Linear operators on topological vector spaces

First we study linear maps between topological vector spaces.

Definition 1.2.1 Let X, Y be two topological vector spaces. T is called a
linear operator from X to Y if T is a linear map defined on a subspace
D(T) of X with values in Y. D(T) is called the domain of T. If D(T) s
dense in X, we define the dual operator T' of T from Y' to X' as follows:

DT =4y €Y':3z' € X' s.t. y[Tz] = 2'[z], V= € D(T)}

and
Ty =2/, Vy' € D(T").

Remark 1.2.1 We will mostly be considering operators with dense domains.
If D(T) is dense, T'y' is well-defined for y' € D(T'). It is obvious that T’ is
a linear operator.

Definition 1.2.2 Let X, Y be two Hilbert spaces and let T be a linear op-
erator from X to Y.

a) A linear operator T* from D(T*) C Y to X is said to be the adjoint
operator of T if

<T*y,z >x=<y,Tz >y, Yz € D(T) and y € D(T™).

b) If X =Y, D(T) C D(T*) and T*|p(ry = T, then we call T a symmetric
operator on X. If in addition, D(T) = D(T*), then T is called a self-
adjoint operator on X.

Definition 1.2.3 Let X, Y be two topological vector spaces. We denote the
collection of all continuous linear maps T from X to Y with D(T) = X by
L(X,Y).

It is easy to see that L(X,Y) is a linear space. If both X and Y are
Fréchet spaces, then similar to Definition 1.1.7 and Theorem 1.1.6 we have
the following theorem.

Theorem 1.2.1 Suppose that both X and Y are Fréchet spaces whose topolo-
gies are given by seminorms {p, : v € I'} and {p : v’ € I} respectively.

a) If T € L(X,Y), then T is a bounded operator in the sense that the
image of any bounded subset of X is bounded in Y.

b) For any bounded subset B of X and v' € I, let

g (T) = sggﬁvl (Tz), VT € L(X,Y).
T
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Then qp, 1s a family of seminorms on L(X,Y). The topology of L(X,Y)
given by this family of seminorms is called the strong topology of L(X,Y).
c) If X, Y are pre-Banach spaces and T is a bounded linear operator from X
to Y, thenT € L(X,Y). Further L(X,Y) is a Banach space with norm

IT|lox,yy= sup |Tz|y.
[lzllx<1

Now we introduce three classes of linear operators: compact operator,
nuclear operator and Hilbert-Schmidt operator. These important classes of
operators possess many interesting properties which will be used in this book
frequently.

Definition 1.2.4 T € L(X,Y) is said to be a compact operator if the
image of any bounded subset of X is pre-compact in Y. We denote the class
of all compact operators by L.(X,Y).

Theorem 1.2.2 Suppose that X, Y, Z are three Banach spaces.

a) L(X,Y) is a closed subspace of the Banach space L(X,Y).

b) If T € L(X,Y),S € L(Y,Z) or T € L(X,Y),S € LY, Z), then the
composition ST € L.(X,Z).

Proof: Part b) follows directly from the definition and Theorem 1.2.1.
a) It is easy to see that L.(X,Y) is a subspace. We only need to prove that
it is closed. Let T, € L.(X,Y) and T, — T with respect to the norm given
by Theorem 1.2.1 (c). Let {z,} be a sequence such that ||z,||x < M,Vn > 1
where M is a finite constant.

By the compactness of each T,, we can choose a subsequence {Z} of
{z,} by making use of the diagonalization argument such that, for each n
fixed, {T,,&} converges in Y as k — co. Hence

T2k — TEmlly
“Tik - Tn:ik”Y + ”T,ﬁi?k - Tni’m“Y + ”Tnim - Tim”Y
2M||T — Tollox,y) + 1 TnZk — Tn@mlly -

VAN VAN

Therefore
limsup [|T&x — TZml|ly < 2M||T - Tullp(x,v)-

k,m—o0

Letting n — oo, we see that

lim ||T% — Témlly =0,
o0

m—

i.e., {T#} is a Cauchy sequence in Y. By the completeness of Y, {T}
converges. Hence the image of {z € X : ||z||x < M} is pre-compact and
then, T € L.(X,Y). |
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Let X, Y be two separable Hilbert spaces and T € L(X,Y). For any
CONS {en} of X and CONS {f,,} of Y, note that

Yo Tenll¥ = 30 1T fmll-
n=1 m=1
Therefore
o 1/2
1Tl = (Z IlTenllfr) :
n=1
does not depend on the choice of the CONS {e,} of X and ||T[|%2) = ||T*||%2).

Definition 1.2.5 Let X, Y be two separable Hilbert spaces. T € L(X,Y) is
said to be Hilbert-Schmidt if ||T||2) < co. || - [|(2) s called the Hilbert-
Schmidt norm of T. We denote the class all of Hilbert-Schmidt operators
from X to Y by L5)(X,Y).

Theorem 1.2.3 Let X, Y be two separable Hilbert spaces.
a) (Lz)(X,Y), ||T||%2)) is a separable Hilbert space with inner product given
by

<T,8>@=), <Ten,Sen >y, VT,S€ Ly (X,Y). (1.2.1)

n=1

b) L(g)(X, Y) C LC(X, Y).

c) Let Z be another separable Hilbert space. Suppose that T € L5)(X,Y),
S eLY,Z)orT € L(X,Y), S € L3(Y,Z), then the composition ST €
L(2)(.X, Z).

Proof: a) It is easy to see that L(3)(X,Y) is a linear space and < -, >(y) is
an inner product on L(y)(X,Y).

Now we prove the completeness of (L(2)(X,Y), ||T||%2)) For any z € X
and T € L(3)(X,Y), we have

2

oo
“Tm”%’ = Z <Z,ep>Xx Ten
n=1 Y
[*) 2
< (Z | <z en>x “ITen”Y)
n=1
<

[o.e] o0
(Z <z e, >§() (Z ||Ten||%f)
n=1 n=1

= ek ITIIy)-
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Hence
ITllxvy < T2y, VT € L(X,Y). (1.2.2)

Let {Th} C L(3)(X,Y) be a Cauchy sequence. By (1.2.2), {T} is a Cauchy
sequence in the Banach space L(X,Y) and hence, there exists T € L(X,Y)
such that |7, — T||z(x,y) — 0. Making use of Fatou’s lemma, we have

oo o]
> et} < lmint 3 ITueily < sup Tully <o (129)
7= 5=
Therefore T € L(3)(X,Y). As {T,.} is a Cauchy sequence in L(3)(X,Y),
Ve > 0, there exists N such that

J
Y Tn—Tm)ejlly <¢, Va,m>N and J>1.
=1

Letting m — oo and then J — oo, we have

[0 0]
D I(Tn = T)ejlly <€ ¥n 2 N,
J=1
i.e., Tn — T in L(3)(X,Y) and hence, L(3)(X,Y) is a Hilbert space.
Finally, for a CONS {e;} in X and a CONS {f;} in Y, it is easy to see
that

T = Z < T, Tij >(2) Ti]‘
iJ
where the summation converges in L(5)(X,Y) and T35 € L(5)(X,Y),4,5 > 1,
is given by
Tija: =< e€;,T >x fj, Vz € X.
Hence L(3)(X,Y) is separable.
b) Let T € L(3)(X,Y) and let {z,,} be a bounded sequence in X. As

| < Taw, fi >v | < IIT*f;llx sup flealx, (1.2.4)
n

it follows from the diagonalization arguments that there exists a subsequence
{Z,} of {z,} such that < Tz, f; >y — a; as n — oo for each j. Similar to
(1.2.3), we have 3, a? < 00. By (1.2.4) it is easy to see that

Tz, — Zajfj.
3

Hence T is a compact operator.
c) Suppose that T' € L(3)(X,Y) and S € L(Y, Z), then

00 o0
> ISTenllZ < 1Sl (v,2) 2 ITenlly < oo

n=1 n=1
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Therefore ST € L(3)(X,Y). |

Definition 1.2.6 Let X, Y be two separable Hilbert spaces. T € L(X,Y) is
said to be a nuclear operator if there exists a CONS {e,} of X such that

o0
Z [ITen|ly < 0.

n=1

We denote by L1)(X,Y) the class of all nuclear operators from X to Y.
For T € L(;)(X,Y), we define

7|1y = inf {Z |Ten|ly : {en} is a CONS of X} . (1.2.5)
n=1

Then (L)(X,Y), - ll(1)) is a Banach space.
If X =Y is a separable Hilbert space and T € L(;)(X, X ), we define the
trace of T as follows:

Trace(T) =Y < Tej,e; >
3

where {e;} is a CONS of X. It is easy to verify that the definition does not
depend on the choice of the CONS of X.

The following theorem can be proved by similar arguments as in the
previous theorem, we omit its proof.

Theorem 1.2.4 Let X, Y, Z be three Hilbert spaces. Then

a) L(l)(X, Y)cC L(g)(X, Y).

b) If T € Lyy(X,Y),S € LY, Z), then ST € L(l)(X, Z).

¢) IfT € L)(X,Y),S€ L(Y,Z) or T € L(X,Y),S € L1)(Y,Z), then the
composition ST € L(1)(X, Z).

Now we study self-adjoint operators in more details. The easiest self-
adjoint operators are the projection operators introduced in Theorem 1.1.9.
In fact, if P is a projection operator on X, it is easy to show that P is a
bounded self-adjoint operator and P? = P. We will show that each self-
adjoint operator corresponds to a family of projection operators.

Definition 1.2.7 A family of projection operators {Ex : A € R} on a
Hilbert space X is called a spectral family if
a) ExE, = Exayu, where A A p = min(A, p).
b) E_oo =0 and E,, = I, where I is the identity operator on X,
E_.z = lim Exz and Eoz = lim E)z, Vz € X.
A A—o00

—00

¢) Ex;y = E), where Exyz = limycuy Erz.
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Let {E»} be a spectral family and z € X. Then F,()\) =< E)z,z >x is
a bounded nondecreasing function on R. In fact, for A < u, we have

0 < <(By-E)\z,(Eyu— E\)z>x
< (Ey— BEx)’z,z >x
< (Ey —2E)+ E))z,z >x
= < E,z,z>x — < E),z >y, (1.2.6)

and
< Bxz,z ><< Epz,z >x= ||z||%-

Let f be a simple function on R given by

n-—1

f)= Z a’jl(Aj,Aj‘Fl](A)"

i=1

where —00 < A1 < +++ < Ay < 00, a; € R. We define I(f) = [ f(A)dExz €
X as follows:

n—1
I(f) = Z a’J(E)\J.H EAJ-Q)). (127)
=1
Then
n—1 n—1
HNI% = <Z 0;(Bxyy — B)z, ) ar(Boy,, — Exk)$>
j=1 k=1 X
= 2 Z ajar < (E')\H_1 — E)\k)(E)‘j_H — E)‘j):v,:l: >x
1<j<k<n-1
n—1
+ Z a,? < (E,\J-+1 - E,\j)2a:,a: >x
j=1
n—1
= Za?(( Ex 12,2 >x — < Eyjz,z >x)
J=1
_ / FOVE(N). (1.2.8)

Therefore I is an isometrical mapping from the collection of all simple func-
tions (as a subspace of L%(R, F;)) to X. Hence for contmuous function
f € LY R, F), [ f(A)dE)z is well-defined.

Theorem 1.2.5 Let f be a continuous function on R and {E\} be a spectral
family. Define

D(T) = {a: €X: /f(A)Zd < Brz,z >x< oo}
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and

To = / F(\dBxe, Ve € D(T).
Then T is a self-adjoint operator on X.
Proof: For any z € X, by Definition 1.2.7 we have
Eupz = Epz — Eaz — 2 as a— —o0, f— 0.

Further, we have

B
/ fN)2d < ByEg gz, ¢ >x= / FO)?d < Bxz,z >x< oo

a

and hence E(, gz € D(T') and D(T) is dense in X.
Similar to the proof of (1.2.8) we can show that

</f(’\)dEw»y>X = /f(/\)d < Exz,y >x, (1.2.9)

Ve € D(T)and y € X. If y € D(T), then
<Tz,y>x= /f(}\)d< z, By >x=< 2, Ty >x, V2 € D(T)

and hence y € D(T*) and T*y = Ty, i.e. T is a symmetric operator.
On the other hand, for any y € D(T™*), we have

< E(a,ﬁ]T*y,.’L' >x = < y,TE(aﬁ]:L‘ >x

- /Bf()\)d< Ext,y >x

o

= < TE@gy: T >x,

ie. Bp ™y =TE@4gy- As EqpT"y — T"y, we have

0o > lin}; - ||E(a’B]T*y||§( = /f(A)Zd < Exy,y >x .

a——00,8—

Therefore y € D(T') and hence, T is a self-adjoint operator. |

Theorem 1.2.6 (Spectral decomposition theorem) Let T be a self-
adjoint operator on X. Then there exists a unique spectral family {Ex} such
that

D(T) = {:c € X:/A2d< Exz,z >x< oo}
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and
Tz = /AdEA:z:, Vz € D(T).

As a consequence, for a self-adjoint operator T on X and a continuous func-
tion f on R, we can define a self-adjoint operator f(T) as follows

D(F(T)) = {a: €X: /f(A)2d < Exa,z >x< oo}

and

f(T)e = / F(NdExe, Ve € D(F(T)).

For self-adjoint compact operators, the corresponding spectral families
can be given by a simpler form.

Theorem 1.2.7 If T is a self-adjoint compact operator, then there exists a
CONS {emn : m = 0,1,2,---,me;n = 1,2,---, 0} of X and a sequence
{dm:m=1,2,---,my} of real numbers such that

i) Am # A for any m #m/,

i) |Am| decreasing and Ay, — 0 if Mmoo, = 00,

i) nm < 00 if m#0,

iv)

Tz = Z Am Z < T,emn > €mn, VT € X. (1.2.10)
m=1 n=1

Proof: Let {E»} be the spectral family of T. For a < 8 such that o > 0, if
the range of E(, g is of infinite dimension, then there exists a CONS {z;}
with infinite many elements. It follows from the Bessel inequality (1.1.19)
that < z;,2 >— 0,Vz € X as j — oo.

As T is a compact operator and {z;} is bounded, there exists a subse-
quence {Z,} such that TZ; — 2. Hence for any z € X

< Too, € >=lim < TEj,z >=lim < §;,T'z >=0,
j 3

i.e. Zoo = 0. But for any x in the range of E(, g, we have

B
1Tz = / 22| Bxelf? = /a 24| Bxe|)? (1.2.11)

min(o?, B7)]| E(e,gll? = min(o?, 62l

v

Then
0 < min(e?, 8%) < [|TZ;]* — o,

a contradiction. Hence the range of E(4 g] is of finite dimension whenever

0 ¢ [a, B].
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Further, by (1.2.11), if min(a?, 82) > “T”%(X,Y)’ then E(, g) = 0. There-
fore there exist
AL <A <--<0< -+ < AT <]

such that 0 is the only possible limit point for either sequence {);'} or
sequence {A;"} and

¢ if A < AT
M) X e D, A7)
X if A > A}

M()) =

where M () is the range of E). Rearrange the two sequences into A; such
that |);| decreasing. Let M; = M(X;) © M(X;—), j > 1 and My = M(0) &
M(0-). Then

[o.e]
X = ®520M; and Tz = Z AiPuz, Ve e X.

=1

The conclusion of the theorem then follows easily. ||

Corollary 1.2.1 a) If T is a self-adjoint nuclear operator from X to X, then
(1.2.10) holds with

1Ty = D_ Pmlnm < 00

m=1

and

Trace(T) = Z Amfm -
m=1

b) If T is a self-adjoint Hilbert-Schmidt operator from X to X, then (1.2.10)
holds with

“T”é) = Z A > < 00.

m=1

Finally we study the semigroup theory of linear operators which will be
useful in solving some stochastic evolution equations.

Definition 1.2.8 Let X be a Banach space. A family {T; : t > 0} C
L(X,X) is said to be a strongly continuous semigroup on X if

a) Teys = TiTs, Vs, t >0,

b) To=1

c) ||Tiz — Tyyz|| — 0, Vo € X ast — to.
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Theorem 1.2.8 For a strongly continuous semigroup {T;} on a Banach
space X, there exist M > 1 and B € R such that

| Tellzx) < MePt, vt > 0. (1.2.12)
Proof: Let
M= sup ”Tt”L(X) and ﬂ = 1n(||T1HL(X))
0<t<1
Then
ITel|zex) = I Tigee—tgllzix) = 1(T)ET_gllnx) < MePH < MePt, ]

Definition 1.2.9 Let X be a Banach space. Let {T; : t > 0} be a strongly
continuous semigroup on X. Define

D(A) = {:1; € X : the limit Thzh— z in X exists as h — O—I—}
and T
Az = lim —22= a:, Ve € D(A).
h—0+ h

A s called the generator of the semigroup.

Theorem 1.2.9 Let A be the generator of a strongly continuous semigroup
{T:} on a Banach space X. Then
a) For anyt >0 andz € X,

t t
/ Tszds € D(A) and T —z = A/ Tszds. (1.2.13)
0 0
b) If ¢ € D(A), then Tix € D(A) and ATz = T;Az. Further
t t
T -o= [ AT.ads = [ T,Azds.
0 0

Proof: a) It follows from the definition that

t t
. -1 _ — . -1 _
Jim AN (Th - 1) /0 Toods = \lim h™" [ (Tesn T ods
t+h h
= lim A7! Tsmds—] Tszds
h—0+ t 0
= Tz —z.
b) As

hl—i+r(1)1+ R YTy — Tyz = hl_i,%l+ Ty(h™ (Th — I)z) = T Az,
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Tiz € D(A) and (£)*Tiz = ATz = T, Az.
On the other hand, fort > 0

1
IZe-hlzx) | 5 The - o) - 4o

_Lh(Tt_hw - Ttw) - TtA.’E

X

Ti_n (%(Thm —-z) - A:c) + T pAz — T Az

X

IA

+ || T;-pAz — Tt Az||x — 0.
X

Hence 4Tz = AT,z = T;Az. This proves (1.2.13). i

Corollary 1.2.2 If A is the generator of a strongly continuous semigroup
{T:} on a Banach space X, then A is a linear operator from the dense sub-
space D(A) C X to X.

Proof: It is easy to see that D(A) is a subspace of X and A is a linear
operator. For any z € X and t > 0, note that

t t
t1 / T.zds € D(A) and ¢t / Tszds — z, as t—0+.
0 0

Hence D(A) is a dense subspace of X. n

Definition 1.2.10 A is called a closed operator if for {z,} C D(A) such
that z,, — z, Az, — y in X we have z € D(A) and y = Az.

Corollary 1.2.3 If A is the generator of a strongly continuous semigroup
{T:} on a Banach space X, then A is a closed operator.

Proof: By (1.2.13), we have
t
Tiz, — p = ] TsAz,ds.
0

Hence .
Tix —z = / Tsyds.
0

This proves that ¢ € D(A) and y = Az. [

Definition 1.2.11 Let A be a closed operator on X. The resolvent set
p(A) of A is the collection of all X € R such that X\ — A is invertible, R(A —
A) =X and Ry = (A — A)™! € L(X). For each X € p(A), Ry is called the
resolvent of A at ).
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Theorem 1.2.10 Let A be the generator of a strongly continuous semigroup
{T;} on a Banach space X. Let M and 8 be given by Theorem 1.2.8. Then

(8, 0) C p(4), N
Ry = /0 e MTydt (1.2.14)

and
I(RA)™| < M(A-pB)"", n=12,---, A>B. (1.2.15)

Proof: From the proof of Corollary 1.1.2 we see that, Vz € X there exists
¢’ € X' such that ||z'||x» = 1 and z'[z] = ||z||x. Note that for any z € D(A)
and A > 8,

%az'[Tt:n] = 2'[T,As] = o[Ti(A — \)a] + Ae'[Tic]. (1.2.16)
Hence
2'[Tye] = e Ma'[z] + /Ot A=)/ [T, (A — \)z]ds.
Therefore
lellx = o'[e] = e [T.a] - /O Ce Mg T, (A - N)alds

< MeB VY a|x + M(A - B)7H|(A - A)z|x-
Letting ¢ — 00 we have
M7 (A - Bllzllx < (A - A)z]|x. (1.2.17)

Hence A — A is invertible and R(X — A) is a closed subspace of X.

If R(A— A) # X, it follows from the proof of Corollary 1.1.2 that there
exists ' € X' such that ||2’||x» = 1 and 2'[(A — A)z] = 0, Vz € D(A). By
Theorem 1.2.9 (b) we have z'[T,(A — X)z] = 0, Vs > 0. It follows from
(1.2.16) that

d

am’[Tta:] = \z'[Tiz].

At

Hence z'[T}z] = z/[z]e? and

[@'lz]l < Mlle[lxe®* -0 ast— oo,

i.e., z'[z] = 0, Vz € D(A). This contradicts the denseness of D(A). Therefore
R(A — A) = X. It follows from (1.2.17) that Ry € L(X). Hence X €
p(4), YA > B.
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Let y = Ryz. Then y € D(A) and ¢ = Ay — Ay. Hence
/ e MTyzdt = / e MTy(\y — Ay)dt
0 0
(o) o0
= A/ e MTydt — / e_Atil—Ttydt
0 0 dt
o0 (ee]
= )\/ e MTyydt — / e MdTyy
0 0
o0 o0
= A/ e MTyydt +y — A/ e MTydt = y.
0 0
This proves (1.2.14). Making use of (1.2.14) repeatedly, we have

(R)\)n = A . A C—A(t1+m+t")Tt1+...+tndt1 - dty,.

Hence

I(BA)™llz(x)

IN

(o] o0
/ .. / e~ MbrHttn) preBlttttn) ge L gp
0 0

= M-8 N

Theorem 1.2.11 Let A be a densely-defined closed linear operator on a
Banach space X such that (8, 00) C p(A) and

“(A_A)—n” < M(}‘_ﬂ)_nan: 1a25"'1)‘ >,3'

Then there ezists a unique strongly continuous semigroup {T;} with generator
A such that (1.2.12) holds.

Proof: First we assume that 8 = 0. Let I, = n(n — A)~!. Then for any
z € D(A)
le = Lallx = lle = n(n— A)"2|x = [I(n — 4)" Asllx
< Mn7lAz||x — 0, (1.2.18)
as n — 00. As ||I,||z(x) < M and D(A) is dense in X, we see that for any

zeX
|z — Inz||x — O, asn — 0.

Let A, = n(I, — I). Then A, = AI, = I, A. Hence for any ¢ € D(A) we
have A,z — Az in X. Let

n a _ tn)? .
T(Mg = entetnIn — ¢t E (—;%(In)’m, Vz € X. (1.2.19)
J
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It is easy to show that (1.2.19) is well-defined, “Tt(n)”L(X) < M and, VYn >

1, {Tt(")} C L(X) is a strongly continuous semigroup with generator 4,,.
For any z € D(A) we obtain

17 -7Malx = |- [ 2@z,

” / T(ZLT,("*)(A,, — A,)eds
0 X

IN

M?||(A, — Apm)z||xt — 0. (1.2.20)

By the uniform boundedness of ”Tt(n)”L(X)a (1.2.20) holds for any z € X
uniformly for t in any bounded intervals. Therefore {T}} is a strongly con-

tinuous semigroup if we define T;z as the limit of Tt("):c.
Let A be the generator of {T;}. By Theorem 1.2.9 (b) we have

(n) ¢
T(Mg _ g = / T(™ A, zds, ¥z € X.
0

Then for z € D(4)
t
Tiz — z :/ T,Azds,
0

and hence z € D(A) and Az = Az. On the other hand, for any z € D(A), set
y=(1— A)z. As 1 € p(A), there exists z € D(A) such that y = (1 — A)z =
(1 — A)z. Hence ¢ = z € D(A). Therefore A = A. As ||Tt(n)nL(X) < M,
(1.2.12) holds with 8 = 0.

For general case, let A4; = A — 3. We obtain a strongly continuous
semigroup {S;} with generator A; such that [|S¢||(x) < M. Let Ty = ePts;.
Then {T}} satisfies the condition of the theorem.

Let {U:} be another strongly continuous semigroup with generator A.
Then for any = € D(A)

%(Tf;_sUs(E) = —ATt_sUs(E + Tt_,AUs(E =0.

Hence Tz = Uzz. This proves the uniqueness. [ |

1.3 Countably Hilbertian nuclear spaces.

In this section we introduce countably Hilbertian nuclear spaces (CHNS)
and give some typical examples.
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Definition 1.3.1 Let X be a vector space. A family of norms {||-||, : v € I'}
on X is called compatible if Vp,q € T, {z,} in X is a Cauchy sequence
with respect to both norms and tends to 0 with respect to one norm, then
{zn} tends to 0 with respect to another norm.

Remark 1.8.1 Suppose ||-||; and ||-||2 are two compatible norms on X such
that ||z||1 < ||z||2 for any ¢ € X. Let X; be the completion of X with respect
to|l-|l;;7=1,2. For & € Xy, let 1& = &. Then v is a well-defined map from
X5 to Xy. We call it the canonical injection from X5 to X;.

Proof: Let £ € X, with a representation {z,} C X which is a Cauchy
sequence with respect to || - ||2 (cf. Theorem 1.1.4). As || - ||1 < || - |l2, {2~}
is a Cauchy sequence with respect to || - ||;. Further if {y,} is another
representation of & in Xy, i.e., ||2n — Yn||]2 — 0. Then ||z, — yn|l1 — 0 and
hence, {z,} and {y,} are equivalent in X;. Therefore Z € X;.

Now we only need to prove that, for any & = {z,} and § = {yn} in
Xy, if & = §in X; then £ = § in X,. In fact, # = ¥ in X; implies that
|Zn — Ynlls — 0. It is obvious that {z, — y,} is Cauchy with respect to both
norms. Therefore, by the compatibility of the norms we have ||z, —yn||2 — 0
and hence & = § in X,.

Definition 1.3.2 A separable Fréchet space ® is called a countably Hil-
bertian space if its topology T is given by an increasing sequence || ||n, 7 >
0, of compatible Hilbertian norms. A countably Hilbertian space ® is called
nuclear if for each n > 0 there exists m > n such that the canonical injection
from ®,, into ®,, is Hilbert-Schmidt, where ®, is the completion of ® with
respect to || - ||n-

The following Baire category argument will be used frequently in this
book.

Lemma 1.3.1 Let V(-): ® — [0, 00) satisfy the following conditions:
(1) V is lower semicontinuous, i.e.

bn— ¢ implies  V(¢) < linnl) inf V(én)-

(2) V($+9) < V(#)+V(¥), V,9 € &.

(3) V(¢) = V(—9) and limneo V(2) = 0, Vo € &.

Then V is continuous. Further, if (3) is replaced by the following stronger
condition

(3) V(ag) = |alV(¢4), VYa€R,$€ &,

then V(¢) is a continuous function in ¢ and there exist § > 0 and r > 0
such that

V(g) <fllgll-, Voeo.
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Proof: For any € > 0, let E. = {¢ € ® : V(¢) < €}. By (1), E; is a closed
subset of ®. It follows from (3) that

@ - U:'o=1 nEe .

Then by Theorem 1.1.5 and Theorem 1.1.3 (c) E, is not a nowhere dense
set. Therefore there exists a nonempty open set U C E. Let V = {¢p — 9 :
¢,% € U}. For any ¢g € ®,¢0 + V is a neighborhood of ¢y and for any
do+ ¢ — P € ¢o+ V we have

[V(do+¢—9)—Vigo)| S V(¢ —%) <V($)+V(-9) < 2

Hence V is continuous.

By the continuity of V at 0, there exists a neighborhood Uy of 0 such
that

Uo={pe®:|llr; < 8,5 =1,2,++,m} C Ee,.
Let r = max{r;,5 = 1,2,---,m} and § = min{d;,j = 1,2,---,m}.

Then we may assume that

Up ={p € ®:|¢ll- < o}

For any ¢ € ®,¢ # 0, we have % € Up and hence, V(Tsl‘fl’l—r) < g. If (3)
holds, then
V($)<Oldll., Voed

by taking 8 = 2€q/do. [ |

Theorem 1.3.1 a) {®,},>0 is a sequence of decreasing Hilbert spaces and
3 = N2, 3, . (1.3.1)

b) Identifying <I>€) with ®q by Riesz’s representation theorem, we denote ~1>'r
by ®_, with norm ||-||_,,r > 0. Then {®_,},>0 is a sequence of increasing
Hilbert spaces, ®' is sequentially complete and

& = U2, B, (1.3.2)

Proof: a) It follows from Remark 1.3.1 that {®,},>0 is a sequence of de-
creasing Hilbert spaces. It is obvious that & C N2, ®,.

Let ¢ € N2,®,. For any r > 0, there exists {¢£f)} C @ such that

QRN ¢ in ®, as n — oo. Without loss of generality, we assume that
||¢:('r) — @|l» < r~1. Then for any n,m > r

l90) — g, 68 — 8|l + (| — @I
185 — Bl|n + (|65 — B||m
nl+m™L (1.3.3)

A N IA



32 CHAPTER 1. TOPOLOGICAL VECTOR SPACES

Hence {qbs.")} is a Cauchy sequence in ®, with limit ¢. It follows from The-
orem 1.1.3 (b) that {¢£;")} is a Cauchy sequence in ®. By the completeness
of ®, there exists ¢ € ® such that gbs.n) — 1 in ®. By Theorem 1.1.3 (b)
again, ||¢$1n) — %||» — 0. Therefore ¢ = 4 € ® and hence (1.3.1) holds.

b) It follows from Theorem 1.1.11 that {®_,},>0 is a sequence of Hilbert
spaces. Let 0 <» < 7' and f € $_,.. Then for any ¢ € ®,» C P,

IF18]l < I fll-+llle < Al ll ]l

Hence f € ®_,/, i.e.,, ®_, C ®_,s. Similarly we have UX ,®_, C &'

For any f € ¥/, we define amap V : & — [0,00) by V(¢) = | f[]|, V¢ €
®. It is easy to verify the conditions of Lemma 1.3.1 for V and hence, there
exist » > 0 and € > 0 such that

Iflell < 0|l¢ll-, Vo€ .

Therefore f can be regarded as a bounded linear functional in ®,. This
proves (1.3.2).

Finally we prove that @’ is sequentially complete. Let {f,} be a Cauchy
sequence in ®'. Then by Theorem 1.1.3 (b) and Definition 1.1.7 (c) that for
any bounded subset B of

sup{|fal¢] — fm[d)|: ¢ € B} -0 asn, m — . (1.3.4)

For any ¢ € ®, as {¢} is a bounded subset of ®, we see that the limit of
fn[®) exists in R and we denote it by f(&).

It is easy to see that f is a linear functional on ®. If f ¢ ®’, then there
exists g > 0 such that, for any neighborhood U of 0 in ®, d¢y € U such
that | f[¢y]| > €. Let d be the metric on ® given by (1.1.5). Then for each
k>1,

Up={¢ € ®:d(¢,0) < k?}
is a neighborhood of 0 in ® and therefore, there exists ¢, € Ui such that
| fl#]| > €0- Note that

d(ker, 0) = 3277 (|lkxll; A 1)

=1
m . w .
= kD27 Nkl Ly <k + D227 gy mk
i=1 =1
w .
< kY 277(lIdkll A 1)1g, <k
j=1
w . w .
+k Y277 (lI6kll A Dlispiguyze— + D227 Ljgyg>1
Jj=1 7=1
< kd(¢x,0)+ d(¢x, 0) < k_z(k +1)—0.
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Hence k¢ — 0 in ®. Therefore B = {k¢y : k > 1} is a bounded subset of
$. But

00 > sup g8(fa) > ¢8(f) = sup | flled] > sup keg = oco.

This contradiction implies that f € &' [ |

Definition 1.8.83 Suppose there is an inner product < -,- >g on ® which
is continuous in the T-topology of ®. Let H be the Hilbert space completion
of ® with respect to < -,- >g. Then the triplet

®—~ H— 9
is called a rigged Hilbert space or ¢ Gel’fand triplet.

Remark 1.3.2 The Hilbert space H may be one of the Hilbert space @,
defining the topology of ® but this is not always the case as we shall illustrate

later on.
Example 1.3.1 Schwartz space

Let
S(R)={p € C°R) : ||¢]|ag < 0, Vo, € N}

where
[ ¢llag = sup [2*¢®)(z)]
zeR

and ¢(8)(z) is the B-order derivative of ¢.

Lemma 1.3.2 S(R) is a Fréchet space whose topology is given by the family
{ll * lla,g : @, B € N} of seminorms.

Proof: It is easy to see that for any o, # € N, || - ||a,8 is a seminorm and
S(R) is a vector space. We only need to prove the completeness of S(R).
Let {¢,} be a Cauchy sequence in S(R). Then for any o, 8 € N

|pn — Imllag— 0 as n,m— oo.

As Cy(R) is a Banach space with supremum norm, there exists 1,5 €
Cy(R), Vo, € N such that

sup |2°¢P)(2) — Yap(z)] =0 as n— . (1.3.5)

Let ¢(z) = 9o,0(z). Then ¢ € C*(R) and
Ya,8(2) = 2P (2). (1.3.6)
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In fact it follows from the definition of ¢ that (1.3.6) is true for & = 0 and
B = 0. We assume that (1.3.6) is true for a = 0 and 8 < k. Note that

#0@) - 690 = [ o+ w)ay

and letting n — oo

Pok(z) — dox(0) = /(:c Po,k+1(¥)dy,
i.e. -
#9(@) - 490 = [ b0 vy,

Hence ¢ € C**1(R) and ¢*+t1)(z) = v x41(z). This proves that (1.3.6)
holds for «a = 0 and B € N.
Foranya € N and z € R

2% (z) — 2o (e) = %) (2).

Hence (1.3.6) holds for any a,3 € N. Therefore ¢ € S(R) and ¢, — ¢ in
S(R). Hence S(R) is a Fréchet space. |

The space S(R) can also be defined using a sequence of Hilbertian norms.
Let

9(z) = \/2—7;6_:”2/2
and
(o) = 0@ () s@h =01 D)

Then the Hermite polynomials {h,(z) : » > 0} forms a CONS of the
Hilbert space L?(R, g(z)dz) and

Vhn(2) = 2hy_1(z) — h,,_,(2) (1.3.8)
and
h,(z) = Vnhn_1(z), n > 1. (1.3.9)
Now we define the sequence of Hermite functions {¢n}n>1:
ny1(z) = y/g(z)hn(z), n > 0. (1.3.10)

Then {¢,} is a CONS of L*(R).
For p € R and ¢ € ®, define

o0

1\
||¢II§'= Z <n+ 5) < ¢, bn >%2(R) .

n=1
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Lemma 1.8.3 For any p € R there ezxist k € N and C > 0 such that

¢l <€) mAX lllla.s- (1.3.11)

Proof: It follows from (1.3.9) and integration by part that
<tbacpm = [H@01@hn(0)de
= a2 / $(2)\/9(2)dhn(z)

Y. / (¢(z)\/g_(; ) ho(2)de.

Repeating the argument above, we have

(<14 ] ($@)Va@) " hnsiorde
Va(n+1)---(n+k-1) '

< &b >2R)=

Note that by (1.3.7)

(¢(z)\/;(5)(k) _ Z(’;>¢(k—j)($) ( m)(a’)

0

k .
= 2 (f) $* D (2)(-1Y275V/jlh (;%) Vo).

<

.
o

It is easy to see that

C; = 2"%\/ﬁsup h

Hence

()"

§ 14 [P+t / (k=3)
< JX:;)(]) J 1+|| |¢k (a:)l |

k
3> ( ) /o @)L+ 1al) (I8llosems + 16ll5416-s)
<

2 {f (’j) cz-} (o max  I19les) 1+ la)/o(a).

7=0
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Therefore

IN

< ¢) ¢n >%2(R)
7=0

[ nsica(@Pg(@)de [+ 1al)2da

k (K ’ 1\~*
(L O] o

=0

(n+§)'k4{§; <§)Cj}2(°< max  [1412,s)

IN

Taking k such that 2p — k < —1 we have

k k 2 00 1 2p—k
1412 < 8 z(j)cj > (n+3)  gmax, 16l "

7=0 n=1

Lemma 1.3.4 For any o, 3 € N there ezxist M > 0 and p € N such that

[#llass < Ml|¢ll (1.3.12)

for any ¢ which can be written as a linear combination of finite many ¢, ’s.
Proof: By (1.3.8) and (1.3.9), we have

#a(@) = hoa(@)y/9(@) = Fhnt (2)y/9(2)

n2— - - 44”11-{-1(‘1:)

and
2¢n(z) = Vn — 1¢n-1(2) + vVnnt1(2).

By induction on a and f it is easy to show that

a+p
2*¢®)(@)= D Cinasbnti(z)

j=—a-p

where
ICjmapl < (n+a+ B)(etB)/2

and we define ¢p(z) =0 Vk < 1. Let

¢= Z < ¢,¢n >12(R) $n-

n=1
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Then
16126 = [ le*6®)(2) Pde

N 2

= / Y < ¢ >r2(w) %P (z)| da
n=1
N a+p 2

= / Z < ¢1 ¢n >L2(R) Z C',n,a,ﬂ¢n+j($) dm
n=1 j=—a-8

N a+p

= Z Z < ¢v ¢‘n >< ¢a ¢m > Cj,n,a,ﬁCk,m,a,Bln+j=m+k
nm=1jk=—a—B

N a+pB

Y Y (aVmtat+B)P < 4,60 >< 6,6m > [lnpjmmik
nm=1 jk=—a-B

N

> (2a+28+1)*(nvm+a+p)th

nm=1

I < ¢, Pn >< ¢, Im > |1|n—m|§2o¢+2[3

IA

INA

N
2@+ B+1)?2 > (nVm+a+ )P

nm=1

(< ¢’ ¢n >2 + < ¢1 ¢m >2)1]n—m|§2a+2ﬂ

IA

N
< 16(a+B+1)°Y (n+3a+36)* < ¢, ¢, >7

n=1

< KY$lrp) (1.3.13)

where K = 20t8+4(q + B + 1)2+8+3,
Finally, as

(2°¢(2))' = az>190)(a) + 2=$F+V (2),
we have

8]l

IN

[1aa160)(z) 42245+ (2) | da

a\//(l + wz)lza—lqﬁ(ﬁ)(z)I?dm\//(l +z?)"ldz

+\/ Ja+ x2>|ma¢<ﬁ+l><z)|2dz\/ (1422)"1de

o([|glla-1,82 + 1Blla,,2) + [ lla,+1,2 + [|Bllact1,8+1,2
2K (a+ 1)|19ll(a+8+2)/2- (1.3.14)

IN

IN A
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(1.3.12) then follows by taking p = a—t‘gﬁ and M = 2K(a+1). i

Theorem 1.3.2 q)
S(R) = {¢ € L*(R) : ||¢|lp < oo, Vp € R}. (1.3.15)

Further the topology of S(R) is given by the family {|| - ||, : p € R} or
equivalently, by a sequence {|| - ||p : p € N} of increasing Hilbertian norms.
b) S(R) is a CHNS.
c) S; =8_p.
d) If H = L*(R), then

S(R) = H — S(R)

is a rigged Hilbert space.
Proof: a) It follows from Lemma 1.3.3 that
S(R) C{g € L*(R): [|¢ll < o0, ¥p € R},
Let ¢ € L*(R) be such that ||¢|l, < oo, Vp € R. Let
oM(z) =" < 6,05 >12(R) b5-
J=1

Then ¢ — ¢ with respect to any || - ||p- Hence, by Lemma 1.3.4, {¢™}is
a Cauchy sequence with respect to each || - ||o,8. Therefore it follows from
Theorem 1.1.3 (b) and the completeness of S(R) proved in Lemma 1.3.2
that there exists 9 € S(R) such that ¢(® — 4 in S(R). By Lemma 1.3.3
again, ¢(™ — 4 with respect to any || - |lp- Hence ¢ =1 € S(R) i.e.

{p€ L*(R) : [|¢llp < 00, Vp € R} C S(R).

This proves (1.3.15). The equivalence of the topologies follows similarly from
the above arguments.

b) We first prove that {|| - ||, : p € R} is a family of compatible norms. In
fact, let p < ¢ and let {f,} C ® be a Cauchy sequence with respect to both
norms and || fn||[p — 0. Then

1\
(k + 5) < fry @k >%2(R)S ”fn“g -0 foreach k2> 1.
ie.

< fay & >12R)— 0 foreach >1 as n— oo. (1.3.16)
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As {f,} is a Cauchy sequence with respect to norm || - ||4, Ve > 0, 3N, s.t.
Vn,m > N we have

K 1 2q
Z (k + 5) < fo— fm) Pk >%2(R)< €, forany K > 1.
k=1

Taking m — oo, it follows from (1.3.16) that

K

1\
Z (k+ 5) < fr, O >%2(R)S €, forany K>1 and =n> N.
k=1

Letting K — oo, we have

[e0}

1\%
Z (k+§) < fn Pk >22(R)§ €, Vn > N.
k=1

This proves || fn||q — 0 and hence the norms are compatible.
For any p € R, {(n + 3)™P¢,} is a CONS for S,. If p > g+ 2, then

2
00 1\ ~P o0 1\ —2(p—9)
;::1 (n—i—E) ¢nq—;<n+§) < 00.

Hence the canonical injection from S, into S is Hilbert-Schmidt for p > q+%.
Therefore S(R) is a CHNS.
c) Let f,g € S, thenforallp e R

2

1£g)1* =D < fr8n >0< g,%n >0
n=1
0 1 —2p o 1 2p
S + <f7¢'n>2)( + - < )¢n 2)
(,;(" 2) 0 :L;(” 2) 91 %n >0
= |If1%,llgll3

which shows that S_j, is the dual of S,,.
d) As the inner product < -,- >g=< -, >¢ is continuous in S(R) x S(R),
(d) follows directly from the Definition 1.3.3.

Definition 1.3.4 S(R) is called the space of rapidly decreasing func-
tions on R. S(R)’ is called the space of tempered distributions.

The following model is useful in solving some evolution equations.
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Definition 1.3.5 Given a rigged Hilbert space ® — H — ¥’ a strongly
continuous semigroup {T;}+>0 on H is said to be compatible with (&, H, ®)
or equivalently we will refer to (®, H,T;) as a compatible family if

a) i® CPVt>0.

b) The restriction Tyl : ® — ® is T-continuous for any t > 0.

c) t — Ty is continuous for any ¢ € ®.

d) Let A be the generator of Ty on H. Then Alg : ® — ® is continuous.

Remark 1.3.3 If ®, H,®' are already given, (a)-(d) is a restriction on the
type of {Tt} that can be considered. However, it is important to observe
that in practical problems, physical considerations usually give no idea of the
rigged Hilbert space ® — H — &' to be used and only the Hilbert space
H and the semigroup {T;} are naturally given in the problem, so that the
Schwartz space cannot be chosen in advance.

The following example gives a method of choosing ® and &’ when T} is
given and satisfies certain conditions.

Example 1.3.2 A class of ezamples of (2, H,®', {T:})

Let H be a real separable Hilbert space and A = —L be a closed densely
defined self-adjoint operator on H such that (—L¢, ¢); < 0 for ¢ € Dom(L),
the domain of L. Let {T}} be the semigroup on H determined by A. Further
assume that some power of the resolvent of L is a Hilbert-Schmidt operator
ie.

37y suchthat (A4 L)™™ is Hilbert-Schmidt. (1.3.17)

This condition enables us to find an appropriate CHNS & for the model,
as we shall now indicate: it follows from Corollary 1.2.1 that there exist
{r;} C R and {¢;};>1 C H such that

(AI+ L) ¢; = p;dj, for any j > 1.

As L is a nonnegative-definite self-adjoint operator, we see that {u,} is a
decreasing sequence with lower bound A > 0 and hence, {$,};>1 is a CONS
of H. Let A\, be such that (A+X;)™™ =p;,7> 1. Then 0 < Ay < Ap < -+
and, by Theorem 1.2.6

L¢; = A9, for any j > 1.
Letting A = 1, define
& = {peH:|(I+L) ¢} < oo, Vr e R} (1.3.18)

= {¢€H:§:(1+Aj)2'<¢,¢j >2 < 00, VrGR}.

=1
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Define the inner product < -, >, on @ by

<P >=> (1+X)" < ¢,¢; >SH< ¥,¢; >n

7=1
and
1117 =< 8, ¢ > .
Let @, be the || - ||,-completion of $. We then have

®=n,9%, & =u,2,

and for r < s,¢ € ®,||4||» < ||¢||s and so &, C &, with $; = H. Condition

(1.3.17) implies that the canonical injection from &, into &, is Hilbert-
Schmidt for p > ¢ + 1 and therefore ® is a CHNS.
For each » > 0, ®_, and ®, are in duality under the pairing

nel=Y <ne;>r<$d;j>, NES_,, €&, (1.3.19)

=1

and therefore ®_, = ®,. We also have that {#;}i>1 is a COS (not normal)
in @, for all » € R.

From now on we will write < -, >o=<-,- >g. For ¢ € H and t > 0, let

Tip=) e < ¢,¢; >0 ¢; € H.

3=1

Then {T}i}¢>0 is a strongly continuous semigroup on H with generator —L.
Now we shall prove that the semigroup {T}} satisfies conditions (a)-(d) in
Definition 1.3.5:

If g € &,then Vre R

o [oe]
ST<Tip, ¢ >EA+X)T = Y < ¢,¢5 >E L+ A,) e 2N

7=1 1=1
o0

< )< é¢i >5 (14 25)% < oo,
=1

i.e. T;¢ € ® which implies (a). Next for ¢ € @ and t > 0

ITegll? = Y e 21+ 2,)* < ¢,¢; >4

=1

< S A+HXNT < ¢, >5
=1

= llgll7-
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It follows from Theorem 1.1.3 (b) that T} : & — & is continuous and therefore
condition (b) is satisfied.
Now for s,t > 0 and ¢ € @

1Tep — Too||2 = Y (e7 — ™M) (1 + A))¥ < ¢, 8 >¢
=1

and for each j > 1

(7 — e X)L+ M) < ¢, ¢; >E< AL+ X% < ¢, 5 >5 .
Since e~** is continuous in t for all § > 1, then by the dominated
convergence theorem,

lim |Tep - Togll- =0 Vo€ @,reR

which implies (c).
Now to prove (d) let ¢ € ® and define ¥, = 337 < #,¢; >0 ¢;. Then
%n — ¢ on P,

Lpn=> < ¢,¢; >0 Ldj =D X < ¢,¢; >0 &;

7=1 7=1

andform>nandreR

2
= Y MA+X)T" < ¢, >5—0

Jj=n+1

:Z: Aj'< ¢,¢H >0 ¢j

j=n+1

r

as n, m — oo. Hence
(o0}
Lpp—9p=)> X <¢¢j>¢; ind.
=1
But since L is closed in H and || - ||z is $-continuous, then ¢ € Dom(L) and
P =L@, t.e. L|p : @ — ® is given by
o0
Lé=> X< ¢,¢j >0 b5
=1
It is obvious that L is linear and

LI < l|glI2,, Yo € @, € R. (1.3.20)

Hence L is continuous in @ which implies (d).
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Remark 1.3.4 A compatible family (®, H,T;) or (®,H, L) is called a spe-
cial compatible family if the generator L satisfies condition (1.3.17) and
® is constructed as in Example 1.3.2, i.e. ® is given by (1.3.18).

Remark 1.3.5 The Schwartz space S(R) of Ezample 1.3.1 may be obtained
in the framework of the last example by taking

d2 2
L =——

z .1
= dz? Z, H:L2(R), Ajzj— —2-, VJ 2 1

and {¢;} the Hermite functions given by (1.3.10). In fact for r > %
o0 (e 9] o0 1 —2r
SIT+D =0+ =3 (i+3) <o
j=1 j=1 j:l

Hence L satisfies condition (1.8.17) for ry > % and (S(R), L*(R),L) is a
special compatible family.








