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We develop Bayesian methods for right censored survival time data for
populations with a surviving fraction, i.e., with a positive probability of
cure. Our model, based on a two-stage process for the development of
cancer, has a proportional hazards structure with the covariates depend-
ing naturally on the cure rate. We derive several properties of the model
and physical interpretation of the model parameters. We also establish
mathematical relationships of our model with other existing survival and
cure rate models. The new model is computationally appealing, and novel
computational Markov chain Monte Carlo (MCMC) methods are devel-
oped to sample from the posterior distribution of the parameters. We
characterize the propriety of the joint posterior distribution of the param-
eters using a class of noninformative improper priors. Our model is flexible
enough for implementing parametric as well as semiparametric Bayesian
inference. We discuss novel nonparametric prior process and very practical
prior elicitation for such purposes. A multivariate extension of this model
is also possible. A real dataset from a melanoma clinical trial is presented
to illustrate our methodology.

1. Introduction. Survival models incorporating a cure fraction, often referred
to as cure rate models, have been used for modeling time-to-event data for vari-
ous types of cancers, including breast cancer, non-Hodgkins lymphoma, leukemia,
prostate cancer, melanoma, and head and neck cancer, where for these diseases, a
significant proportion of patients are "cured". Perhaps the most popular type of
cure rate model is the mixture model discussed by Berkson and Gage [1], In this
model, the survivor function for the entire population, denoted by S\(t), is given
by

(1) Si(*) = π + ( l - π ) S (*),

where a fraction π of the population are considered "cured", and the remaining
1 — π are not cured. S* (t) denotes the survivor function for the non-cured group
in the population. Popular choices for S*(t) are the exponential and Weibull dis-
tributions. We shall refer to the model in (1) as the BG model The BG model has
been extensively discussed in the statistical literature by several authors, including
recently by Taylor [21], Ewell and Ibrahim [7], Stangl and Greenhouse [19], and
Sy and Taylor [20]. We refer the reader interested in details about the frequentist
methods for the BG model to these articles and to [15] and the references therein.
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Although the BG model is attractive and widely used, it has some drawbacks.
Farewell [8, 9] and Cantor and Shuster [2] discuss the difficulties of the BG model
within the frequentist paradigm. In the presence of covariates, it cannot have a
proportional hazards structure if the covariates are modeled through π via a bino-
mial regression model. Also, when including covariates through the parameter π via
a standard binomial regression model, (1) yields improper posterior distributions
for many types of noninformative improper priors, including the uniform prior for
the regression coefficients. This is a crucial drawback of (1) since it implies that
Bayesian inference with (1) essentially requires a proper prior. Also, there is no
simple multivariate extension of the BG model. These drawbacks can be overcome
with an alternative parameterization of a cure rate model which we discuss in the
next section. Later in this paper we discuss this new model's properties, parametric
Bayesian inference under the model, associated prior elicitation and multivariate
extensions. We also find that this alternative model is also convenient for developing
an appropriate semiparametric Bayesian inference procedure for cure-rate survival
data. In the process of developing such a semiparametric Bayesian methodology,
we explore deeply the very notion of prior processes and introduce a new class of
prior processes. This class is quite different from classes such as gamma and Dirich-
let, currently popular in semiparametric Bayes. We hope that these later sections
demonstrate the obvious numerous advantages of our model over the BG model.
This problem forces us to stretch our imagination of semiparametric Bayes and
Bayesian survival analysis and survival model building. We consider this review
article as an appropriate contribution to celebrate the 70th birthday of Prof.Hall.,
as he has always inspired us to stretch our imagination in statistics, explore new
ideas and try unconventional problems in application and methodology and theory
of statistics. We begin again with a congratulation to our dear mentor.

2. An Alternative Cure Rate Model. We present a formulation of the cure
rate model discussed in [23, 22, 24, 3]. The alternative model can be derived as fol-
lows. Suppose that for an individual in the population, we let N denote the number
of metastasis-competent tumor (MCT) cells for that individual left active after the
initial treatment. A metastasis-competent tumor (MCT) cell has the potential of
metastasizing, though it is not a full-blown cancer cell yet. Further, we assume that
TV has a Poisson distribution with mean θ. We let Z\ denote the random time for the
MCT cell i to produce detectable metastatic disease. That is, Zi can be viewed as a
promotion time for the MCT cell i. Given JV, the random variables Zi, i — 1,2,...,
axe assumed to be independent and identically distributed with a common distri-
bution function F(t) = 1 — S(t) that does not depend on N. The time to relapse
of cancer can be defined by the random variable Y = min{Zi,0 <i < N}, where
P(Zo — oo) = 1. The survival function for Y, and hence the survival function for
the population, with some straightforward algebra, can be shown as

(2) Spθp(t) = P(no metastatic cancer by time t) = exp(-ΘF(t)) .

Since Spop(oo) = exp(—0) > 0, (2) is not a proper survival function. As (2) shows
explicitly the contribution to the relapse time of two distinct characteristics of tumor
growth: the initial number of MCT cells and the rate of their progression. Thus the
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model incorporates parameters bearing clear biological meaning. We emphasize here
that aside from the biological motivation, the model in (2) is suitable for any type
of survival data which has a surviving fraction. Thus, survival data which do not
"fit" the biological definition given above can still certainly be modeled by (2) as
long as the data has a surviving fraction and can be thought of as being generated
by a random unknown number (N) of latent competing risks with i.i.d. promotion
times, the Z s. Thus the model can be useful for modeling various types of survival
data, including time to relapse, time to first infection, and so forth.

We also see from (2) that the cure fraction (i.e., cure rate) is given by

(3) Spop(oo) = P(N = 0)= exp(-0).

As θ -> oo, the cure fraction tends to 0, whereas as θ -ϊ 0, the cure fraction tends
to 1. The sub-density corresponding to (2) is given by fpop(t) = θf(t) exp(—ΘF(t)),
where f(t) = £-F(t). We emphasize here that fpop(t) is not a proper probability
density since Spop(t) is not a proper survival function. However, f(t) is a proper
probability density function. The hazard function is given by

(4) hpop(t) = θf(t) .

Note that /0°° hpop(y) dy = θ < oo.
The cure rate model (2) yields an attractive form for the hazard in (4). Specifi-

cally, we see that hpop(t) has the proportional hazards structure when the covariates
x are modeled through θ = θ(x) but F(t) is modeled free of x. This form of the haz-
ard is more appealing than the one from the BG model in (1), which does not have
the proportional hazards structure if π = π(x) is modeled as a function of covari-
ates. The proportional hazards property in (4) is also computationally attractive,
as MCMC methods are relatively easy to implement.

For the model in (2), the survival function of the "non-cured" population is given
by

(5) S*(t) = P(Y > t\N > 1) = *M-ΘF(t))-eM-θ)
1 — exp(—θ)

We note that 5*(0) = 1 and £*(oo) = 0 so that S*(t) is a proper survival function.
For the non-cured population, the survival density (a proper density function) is
given by f*(t) = [exp(-0F(ί))/{l - exp(-0)}]0/(ί), and the hazard function is
given by

exp(-ΘF(t))

S*(t)
p

= {p(γ<ί\γ>t)) h>{t)

Thus (6) is magnified by the factor P(y< (^|y> t) > 1 compared to the hazard
function hpop(t) of the entire population. Now, it can be shown from (6) that h*(t\x)
does not have a proportional hazards structure for any f(t) with support on (0, oo).
Furthermore, h*(t) -ϊ ^ | as t -> oo, and thus h*(t) converges to the hazard
function of the promotion time random variable Z as y -» oo. Finally, h*(t) is an
increasing function of θ.
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There is a relationship between the model in (2) and the univariate survival
model with multiplicative frailty. Suppose we have a model with conditional hazard
hp(t\w) = wh(t) where h(t) = f{t)/S(t) is the hazard function of the promotion
time Z and w is distributed as Poisson with mean θ. Then, we get the model
in (2) when we take the unconditional hazard hp(t). Similarly, this model has a
relationship to the random-m-site model of Oakes [16]. The survival function of the
time to first event in random-m-site model is the same as (2) when the promotion
times of the sites are i.i.d. with common cdf F(t).

There is a mathematical relationship between the model in (1) and (2), as Spop(t)
is a standard cure rate model with cure rate equal to π = exp(—θ) and survival
function for the non-cured population given by S*(t) in (5). This result also implies
that every BG model corresponds to some model of the form (2) for some θ and
F(.). In model (2), we model the entire population as a proportional hazards model,
whereas in the BG model, only the non-cured group is typically modeled with a
proportional hazards structure.

In model (2), we let the covariates depend on θ through the relationship θ =
exp(#'/3), where x is a p x 1 vector of covariates and β is a p x 1 vector of regression
coefficients. Entering the covariates in this fashion corresponds to a canonical link
in a Poisson regression model. Using θ = exp(#'/3), (3), and (6), we can interpret
the role of the regression coefficients for the cured and non-cured group.

Following [3], we can now construct the likelihood function as follows. Suppose
we have n subjects, and let Ni denote the number of MCT cells for the subject i.
Further, we assume that the JVVs are i.i.d. Poisson random variables with mean θi =
θ(x.i) for i = 1,..., n. We emphasize here that the JVVs are not observed, and can be
viewed as latent variables in the model formulation. Further, suppose Z ^ , . . . , Z^N.
are the i.i.d. unobserved promotion times for the Ni MCT cells for the subject i, with
common cumulative distribution function F(.), i = l, ,n. For now, we specify
a parametric F(.) = F(.\ψ)y such as a Weibull or gamma distribution, with the
indexing parameter (possibly vector valued) ψ. For example, if F(.\ψ) corresponds
to a Weibull distribution, then ψ = (α, λ), where f(t\ψ) oc tα~1 exp(—Xt). Let yi
denote the observed survival time for subject i, which may be right censored, and
let Vi denote the censoring indicator, which equals 1 if yi is a relapse time and 0 if
it is right censored. The observed data is Dobs = (n, y, ^), where y = (yi,..., yn)',
and v — (i/ l 7..., vn)

f. Also, let N = (JVΊ,... Nn)'. The complete data is given by
D = (n,y,ί/, N), where N is an unobserved vector of latent variables. We now
assume a Weibull density for f(yi\ψ)y so that f(y\ψ) = αyα~1 exp {λ — yα exp(λ)},
where ψ = (α, λ).

Let x̂  = (xn,..., xip) denote the p x 1 vector of covariates for the subject i, and
let β = (/3i,... ,βp)' denote the corresponding vector of regression coefficients. We
relate θ to the covariates by θi = θ{xf

i) = exp(x^/3), so that the cure rate for subject
i is exp(—θi) = exp(— exp(x^)). This relationship between θi and β is equivalent to
a canonical link for θi in the setting of generalized linear models. With this relation,
we can write the complete data likelihood of (/3, ψ) as

L{β,ψ\D) = ( ή % I VO"4-" (Nif(yi I ψ)Γ) x
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(7) exp I £ [Nixtf - log(W) - exp(x^)]

where D = (n,y, X, z/,N), X is the n x p matrix of covariates, f(yi\ψ) is Weibull
density given above, and S(yi\ψ) = exp(—yf exp(λ)). If we assume independent
priors for (β,ψ), then the posterior distributions of (β,ψ) axe also independent.
Note that the part of the complete data likelihood in (7) involving β looks exactly
like a Poisson generalized linear model with a canonical link, with the JV<'s being
the observables. The likelihood given observed data Dobs = (n, y, X, v) is obtained
by summing (7) over possible values of N. The posterior distribution given the prior
π(β,ψ) is given by

(8) p(β,Ψ\Dob.) oc \TL(β,ψ\D)\ π(β,ψ).

In the next section, we investigate various methods of eliciting priors and the be-
havior of the posterior in (8) under such priors.

3. Prior Distributions. We discuss classes of noninformative priors as well
as the power priors for (β,ψ), and examine some of their properties. Consider the
joint noninformative prior π(/3, ψ) oc π(ψ) where ψ = (α, λ) are the Weibull param-
eters in f(y\ψ). This noninformative prior implies that β and ψ are independent a
priori and π(β) oc 1 is a uniform improper prior. We will assume throughout this
subsection that π(ψ) = π(α|5o,τo)π(λ), where 7r(α|<5o,τo) oc α^ 0 " 1 exp(—τoα), and
δo and To are two specified hyperparameters. With these specifications, the poste-
rior distribution of (/3, φ) based on the observed data Dobs = (n, y, X, u) is given
by

(9) p{β,-φ\Dobs) oc (ΣL(β,φ\D)) π(α|5o,τo)π(λ)

where the sum in (9) extends over all possible values of the vector N. We are led
to the following theorem concerning the propriety of the posterior distribution in
(9) using the noninformative prior π(β,ψ) oc π(t/;).

THEOREM 1. Let d = Σ<Li υ% an<^ ^ * be annxp matrix with rows ̂ x^. Then
if (i) X* is of full rank, (%%) π(λ) is proper, and (in) τ0 > 0 and δ0 > —d, the
posterior given in (9) is proper.

The proof of Theorem 3.1 is given in [3]. Note that the conditions given in the
theorem are sufficient but not necessary for the propriety of the posterior distri-
bution, and they axe quite general and typically satisfied for most data sets. A
proper prior for a is not required in order to obtain a proper posterior. Based on
condition (ii), π(λ) is required to be proper. Although several choices can be made,
we will use a normal density for π(λ). Theorem 3.1 guarantees propriety of the
posterior distribution of β using a improper uniform prior on β. This enables us
to carry out Bayesian inference with improper priors for the regression coefficients



122 D. SINHA, M.-H. CHEN , and J.G. IBRAHIM

and facilitates comparisons with maximum likelihood. However, under the improper
priors π(β,ψ) oc π(ψ), the BG model in (1) always leads to an improper posterior
distribution for β. This detailed result is stated in a theorem from [3].

We get similar results for the historical-data based power priors for (/3, ψ). Let no
denote sample size for the historical data, yo be an no x 1 of right censored failure
times for the historical data with censoring indicators v0, N o is the unobserved
vector of latent counts of metastasis-competent cells, and XQ is an no x p matrix of
covariates corresponding to y0. Let Do = (no,yo,Xo,ι/oyNo) denote the complete
historical data. Further, let πo(/3, ψ) denote the initial prior distribution for (β,ψ).
The power prior is given as

(10) π(
.No

where L(β,ψ\Do) is the complete data likelihood given in (7) with D being replaced
by the historical data Do, and A),o&* = (no,yo?^o?^o) We take a noninformative
prior for πo{β,ψ), such as πo(βiψ) oc τr0(?/>), which implies πo(β) oc 1. For ψ =
(α, λ), we take a gamma prior for α with small shape and scale parameters, and
an independent informative normal prior for λ with mean 0 and the variance Co- A
beta prior is chosen for αo leading to the joint prior distribution

1 °o

where (70, λo) axe specified prior parameters. The prior in (11) does not correspond
to any standard multivariate density, but, it has several attractive properties. First,
we note that if πo(β,ψ) is proper, then (11) is guaranteed to be proper. Further,
(11) can be proper even if π0 (/?, ψ) is improper. The following theorem characterizes
the propriety of (11) when πo(β,ψ) is improper.

THEOREM 2. Assume that

πo(β,ψ) oc πo(ψ) = τro(α|(So,τb)7Γo(λ) oc c/ 0 " 1 exp(-roα)πo(λ),

where δ0 and τ0 are specified hyperparameters. Let do = Σ 2 α z/°* an^ ^0 ^e an

no x p matrix with rows voiX.'Oi. If (i) XQ is of full rank, (ii) δo > 0 and TQ > 0, (in)
πo(λ) is proper, and (iv) 70 > p and \0 > 0, then the joint prior given in (11) is
proper.

We mention that the power prior for β based on the BG model in (1) will lead
to an improper prior as well as an improper posterior distribution. Thus, the power
priors based on (1) will not work. This result can be summarized in the following
theorem.

THEOREM 3. For the BG model given in (1), suppose we relate the cure fraction
π to the covariates via a standard binomial regression given by π(x) = exp(βx)/(1 +
exp(βx)). Assume that the survival function for the non-cured group S*(.) depends
on the parameter ψ*. Let Lι(β,ψ*\D0^obs) and L1(β,ψ*\Dobs) denote the likelihood
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Table 1: Summary of El 684 Data
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Survival Time (y)
(years)

Median 1.38
IQR 1.90

Status
(frequency)

censored 110
dead 174

Gender (#2)
(frequency)

Male 171
Female 113

Age (xi)
(years)

Mean 47.03
Std Dev 13.00

PS (x3)
(frequency)

Fully Active 253
Other 31

functions based on the observed historical and current data. Suppose we use an
improper uniform initial prior for β (i.e., πo(β) oc 1) to construct the joint prior as

(12) πiG8,^*,αo | D0tθb8) oc [LiGMΊA),o6β)P MΊΊ ^ ( l - α o ) λ ° -\

whereto andλo are specifiedhyperparameters. Then, πι(β,ψ*,ao | A),obs) is always
improper regardless of the propriety ofπo(ψ*). In addition, if we use TΓI(/3, ψ*, α0 |
Do,obs) as 0, prior, the resulting posterior, given by

(13) Pi(β,Ψ*,a0 I Dohs) oc L^^*\Dobs)n^^\a0 \ D^ohs)

is also improper.

4. Example of Melanoma Data. We consider the E1684 data discussed in
[3]. This trial, organized by Eastern Cooperative Oncology Group (ECOG), was a
two-arm Phase-IΠ clinical trial to compare high-dose interferon (IFN) group with
the control group. The response variable is the relapse-free survival, which is defined
as the time from randomization until death or relapse. See [13] for a more detailed
description of this trial. We focus here only on the comparison of the maximum
likelihood estimates and various other Bayesian estimates (under different priors) of
the parameters for the cure rate model in (2). Three covariates and an intercept are
included in the analyses. The covariates axe age (#1), gender (x2) (male, female), and
performance status (#3) (fully active, other). Performance status is abbreviated by
PS in the tables below. After deleting the observations with missing covariate values,
a total of n = 284 observations are used in the analysis. In all of the analyses, we
standardized the age covariate to stabilize the posterior computations. Table 1 gives
the summary statistics of the the E1684 data. Figure 1 shows three superimposed
plots of the survival curve based on the Kaplan-Meier method (dashed line), the BG
model (1) (dotted line), and the alternative model (2) (solid line). We see that the
three plots are nearly identical, giving essentially the same results. We now consider
several analyses with the covariates included. The maximum likelihood estimates,
their standard errors and p-values for the alternative model in (2) are computed
and the results are reported in Table 2.

Several years earlier, a similar melanoma study with the same patient population
was conducted by ECOG. This study, denoted by E1673, serves as the historical
data for our Bayesian analysis of E1684. A total of n 0 = 650 patients are used in
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Table 2: Maximum Likelihood Estimates (MLE) of the Model Parameters

Variable
intercept
age
gender
ps
a
λ

MLE

0.09
0.09

-0.12
-0.20
1.32

-1.34

Std Dev
0.11
0.07
0.16
0.26
0.09
0.12

P-value
0.38
0.21
0.44
0.44
0.00
0.00

Figure 1: Kaplan-Meier plot for El 684 data
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the historical data. Table 3 summarize the historical data E1673. Using the E1673
study as historical data, we consider an analysis with the power prior in (11). For
initial prior for /?, we take an improper uniform prior, and for τro(α|j/o,τo), w e

take ι/o = l and To = 0.01 to ensure a proper prior. We note that this choice for
πoίαkojTo) also guarantees log-concavity of the conditional posterior of β. The
parameter λ is taken to have a normal distribution with mean μ0 = 0 and variance
σo = 10,000. Table 4 gives posterior estimates of β based on several values of
(7o, λ0) using the model (2). In Table 4 we obtain, for example, E(a0\Dobs) = 0.03,
0.06, and 0.14 by taking (70, λ0) = (50,50), (100,100), (200,1) respectively. The
case α0 = 0 with probability 1 gives the Bayesian analysis of E1673 data under
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Table 3: Summary of El 673 Data
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Survival Time (y0)
(years)

Median 2.33
IQR 4.24

Status
(frequency)

censored 257
death 393

Gender (#02)
(frequency)

Male 375
Female 275

Age (αoi)
(years)

Mean 48.02
Std Dev 13.99

PS (xos)
(frequency)

Fully Active 561
Other 89

the improper prior π(β,ψ) oc πo(ψ) oc πo(a\vo,τo) x πo(λ|μo,σo). Given the above
mentioned values of z/o, ^o, μo and σo, we have chosen essentially very 'flat' or locally
non-informative priors for the parameter ψ. So, the posterior estimates for αo = 0
given in the top part of Table 4 essentially yield the MLE's of β, α, and λ given in
Table 2. This is a desirable feature of this model since it implies that we can obtain
MLE's via Gibbs sampling, without doing any analytic maximizations. That is, if
we take αo = 0 and choose vague proper priors for πo(.)> the posterior means of the
parameters are very close to the maximum likelihood estimates. But, for some of the
parameters the HPD regions are not symmetric around the corresponding posterior
means correctly reflecting the skewness of the posterior (or in turn the likelihood)
surface. For those parameters, the posterior means are not going to be same as
the posterior modes (or the MLEs). Even for these parameters the HPD intervals
provide the narrow and honest interval estimates. The rest of Table 4 indicates a
fairly robust pattern of behavior. The estimates of the posterior mean, standard
deviation, or highest posterior density (HPD) intervals of β do not change a great
deal if a low or moderate weight is given to the historical data. However, if a higher
than moderate weight is given to the historical data, these posterior summaries
can change a lot. For example, when the posterior mean of αo is less than .06, we
see that all of the HPD intervals for β include 0, and when the posterior mean
of α0 is greater than or equal to .06, some HPD intervals for β do not include 0.
The HPD interval for age does not include 0 when the posterior mean of αo is .21,
and it includes 0 when less weight is given to the historical data. This finding is
interesting, since it indicates that age is a potentially important prognostic factor
for predicting survival in melanoma.

In addition, when the historical data and the current data are equally weighted
(i.e., α0 = 1 with probability 1), the HPD intervals for age and gender both do
not include 0, thus demonstrating the importance of gender in predicting overall
survival. Another feature of Table 4 is that the posterior standard deviations of the
βj's become smaller and the HPD intervals become narrower as the posterior mean
of αo increases. This demonstrates that incorporation of historical data can yield
more precise posterior estimates of β. For example, we see that when αo = 1, the
posterior mean, standard deviation, and HPD interval for the age coefficient are .16,
.04, and (0.08,0.24), respectively, whereas when we do not incorporate any historical
data (i.e., α0 = 0), these values are .09, 0.07, and (-0.05,0.23). We see that there is
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Table 4' Melanoma Data: Posterior Estimates
a ~ Gαmmα(l,Q.Ql) and A ~

of the Model Parameters with
7V(0,10,Q00)

E(a0\Dobs,D0,obs)

0
(with prob. 1)

0.03

0.06

0.14

0.21

0.29

1
(with prob. 1)

Variable

intercept
age
gender
ps
a
λ

intercept
age
gender
ps
a
λ

intercept
age
gender
ps
α
λ

intercept
age
gender
ps
a
λ

intercept
age
gender
ps
a
λ

intercept
age
gender
ps
α
λ

intercept
age
gender
ps
a
λ

Posterior
Mean

0.09
0.09

-0.12
-0.23
1.31

-1.36

0.17
0.10

-0.14
-0.19
1.17

-1.45

0.21
0.11

-0.16
-0.16
1.12

-1.53

0.25
0.12

-0.20
-0.09
1.06

-1.62

0.26
0.13

-0.22
-0.05
1.04

-1.67

0.26
0.13

-0.24
-0.01
1.03

-1.70

0.22
0.16

-0.32
0.14
1.00

-1.82

Posterior
Std Dev

0.11
0.07
0.16
0.26
0.09
0.12

0.11
0.07
0.15
0.25
0.07
0.13

0.11
0.07
0.15
0.24
0.07
0.13

0.10
0.06
0.14
0.22
0.06
0.12

0.10
0.06
0.13
0.20
0.05
0.11

0.09
0.06
0.12
0.19
0.05
0.11

0.06
0.04
0.09
0.13
0.04
0.08

95% HPD
Interval

(-0.12, 0.30)
(-0.05, 0.23)
(-0.44, 0.19)
(-0.73, 0.28)
( 1.15, 1.48)
(-1.60,-1.11)

(-0.04, 0.38)
(-0.04, 0.24)
(-0.44, 0.15)
(-0.68, 0.28)
( 1.03, 1.32)
(-1.70,-1.20)

( 0.01, 0.43)
(-0.03, 0.24)
(-0.45, 0.13)
(-0.63, 0.29)
( 0.99, 1.25)
(-1.78,-1.28)

( 0.05, 0.45)
(-0.00, 0.24)
(-0.47, 0.07)
(-0.53, 0.31)
( 0.95, 1.17)
(-1.85,-1.39)

( 0.08, 0.45)
( 0.01, 0.24)
(-0.48, 0.03)
(-0.44, 0.34)
( 0.94, 1.15)
(-1.89,-1.45)

( 0.08, 0.43)
( 0.02, 0.24)
(-0.48, 0.00)
(-0.38, 0.35)
( 0.93, 1.13)
(-1.91,-1.50)

( 0.11, 0.35)
( 0.08, 0.24)
(-0.50,-0.15)
(-0.11, 0.39)
( 0.93, 1.07)
(-1.97,-1.67)



BAYESIAN INFERENCE FOR SURVIVAL DATA 127

Table 5: Posterior Estimates of the Model Parameters with

E(a0\Dobs,D0iObs) = 0.29, a ~ Gamma(l, 1) and λ - JV(0,10)

Variable Posterior Mean Posterior Std Dev 95% HPD Interval

intercept
age

gender
ps

α
λ

0.26
0.13

-0.24
-0.01
1.02

-1.69

0.09
0.06
0.12
0.19
0.05
0.11

( 0.07, 0.42)
( 0.02, 0.24)
(-0.48, 0.00)
(-0.38, 0.35)
( 0.93, 1.12)
(-1.90,-1.48)

a large difference in these estimates, especially in the standard deviations and the
HPD intervals. A partial explanation of these results is that the E1673 study has
had nearly 20 years of follow-up on 650 patients, and thus the potential impact of
age and gender on overall survival is much more apparent in these data than the
current data El684, which has had less than 10 years of follow-up on 284 patients,
and has about 39% censoring.

We conducted a detailed sensitivity analysis for the regression coefficients by
varying the hyper parameters for αo (i.e. (70, λ0)) and varying the hyperparameters
for φ = (α, λ). Table 4 shows that the posterior estimates of the parameters are
fairly robust as the hyperparameters (70, λo) are varied. When we vary the hyper-
parameters for φ, the posterior estimates of β are also robust for a wide range of
hyperparameters values. For example, when fixing the hyperparameters for αo so
that E(ao\D0bs) = .29 and taking a ~ #αmraα(l,l) and λ ~ iV(0,10), we ob-
tain the posterior estimates shown in Table 5. We see that these priors for (α, λ)
are fairly informative relative to those of Table 4. Other moderate to informative
choices of hyperparameters for (α, λ) also led to fairly robust posterior estimates of

β.
Finally, we mention that we used the Gibbs sampler to sample from the posterior

distribution, in the Gibbs sampler a burn-in of 1000 samples was used, with auto-
correlations disappearing after lag 5 for nearly all parameters, and we used 50,000
Gibbs iterates after the burn-in for all of the posterior computations. Further, all
HPD intervals were computed by using an efficient Monte Carlo method of Chen
and Shao [5]. In summary, we see the powerful advantages of the cure rate model
(2) and the desirable features of incorporating historical data into a Bayesian anal-
ysis. Our priors allow us to control the impact of the historical data on the overall
analysis. In addition, our proposed model is computationally attractive, requiring
only a straightforward adaptive rejection algorithm of [10] for Gibbs sampling.

5. Semiparametric Cure Rate Model. From point of view of a survival
analyst, there is a lot of interest in developing a semi-parametric version of the
parametric cure rate model in (2). The parametric assumptions about the distribu-
tions of the promotion times are often considered very restrictive and it is difficult
to justify any particular parametric distribution to model the distribution Z's. A
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crucial issue with semiparametric cure rate modeling, and semi-parametric survival
models in general, is the behavior of the model in the right tail of the survival dis-
tribution. Due to censoring and failures over time, there are typically few subjects
at risk in the tail of the survival curve after sufficient follow-up, and therefore esti-
mation of the cure rate can be quite sensitive to the choice of the semi-parametric
model [2]. Thus there is a need to carefully model the right tail of the survival curve,
and allow the model to be more parametric in the right tail, while also allowing the
model to be nonparametric in other parts of the curve. Ibrahim, Chen, and Sinha
[12] construct such a model by defining a smoothing parameter «, 0 < « < 1, which
does not depend on the data, and this K controls the degree of parametricity in the
right tail of the survival curve.

Following [12], we construct a finite partition of the time axis, 0 < αi <
... < aj, with aj > yι for all i — 1,... ,n. Thus, we have the J intervals
(0, αi], (αi, Gte],. , (αj_i, αj]. We thus assume that the hazard for F(y) (the cdf of
the promotion time) is equal to λj for the j t h interval, j = 1,..., J, leading to

F(y) = 1 - exp I -A,(y - α ^ ) - £ λg(ag - oβ_χ) j .

When J = 1, F(y) reduces to the parametric exponential model. With this assump-
tion, the complete data likelihood can be written as

L(β, λ\Dcomp) = Π Π exp I -(Ni - Vi)δij Xjiyi - o,-_i) + £ X9(ag - αfl_i) 1
»=1 j = l I L 9=1 J J

x Π Π ( W " 1 " e χ P Γ ^ k(ικ-β;-i)+Σλ«(α»"a^\ 1

(15) x exp I J2 iNiχiβ ~ l o gW ! ) " «P(s'i/?)] } >

where λ = (λi,. . ., λj) and <% = 1 if the ith subject failed or was censored in the
j t h interval, and 0 otherwise. The model in (15) is a semi-parametric version of
the model in (2). There are several attractive features of the model in (15). First,
we note the degree of the non-parametricity is controlled by J. The larger the J,
the more non-parametric the model is. However, by picking a small to moderate
J, we get more of a parametric shape for F(y). In practice, we recommend doing
analyses for several values of J to see the sensitivity of the posterior estimates of the
regression coefficients. The semiparametric cure rate model (15) is quite flexible,
as it allows us to model general shapes of the hazard function, as well as choose
the degree of parametricity in F(y) through suitable choices of J. Again, since N
is not observed, the observed data likelihood, L(/3, λ\D) is obtained by summing
out N from (15). For semiparametric Bayesian inference purposes, we now need to
put a suitable prior process of Λ = (λi, , λj). In general, this is routinely done
by using a prior process with parameters for the prior mean and prior confidence
around the mean. A popular example of such a prior process in survival analysis
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is the gamma process - see [18] for a review on semiparametric Bayesian survival
analysis. But, for this particular problem, we need to use a more innovative prior
process based on the parameter K which controls the rate at which the tail of the
survival curve under the prior process converges to a parametric function.

The important aspect of the semiparametric cure-rate model is the parameter K
controlling the degree of parametric nature of the hazard of F(y) at the right tail.
This is important to avoid the high dependence of the estimates of cure-rate and
right tail of survival population survival curve on the few failures at the right tails.
See [2] for details about the problem of high dependence of classical semiparametric
estimates of cure-rate on observations with failures at the right tails. Specifically,
the prior for λj used by us depends on «, such that the model converges to a
parametric model in the right tail of F(t) as t -> oo. Because the K is assumed
known, the degree of the parametric nature of the model in the right tail does
not depend on the data. Also, K will allow us some control over the degree of
parametric nature in the beginning and middle part of the survival distribution at
a priori as well as a posteriori A more parametric shape of the model in the right
tail facilitates more stable and precise estimates of the cure-rate parameters and
right tail of Spop(t). This approach is fundamentally very different from previous
approaches for semi-parametric Bayesian survival analysis, which primarily focus
on specifying a prior process with a mean function and possibly a prior precision
parameter, in which posterior properties of both of them depend on the data.

Let Fo(ί|λo) be the prior mean of the common cdf F(t) of the promotion times.
Note that F 0(ί |λ 0) is a known parametric function of t with some associated un-
known parameter λo Also, H0{t) denotes the corresponding cumulative baseline
hazard function of F0(t). For example, Fo(t\λo) = 1 — exp(—λoί) with Ho(t\λo) =
λof.

We take the λj's to be independent a priori, each having a gamma prior distri-
bution with mean

Πfiϊ /ι - TP(\ \\ ϊ -
(loj μj - ti{λj\λo) ,

CLj - dj-!

and variance

(17) αf=Var(λ i |λo,«) = μ J V ,

where 0 < K < 1 is the smoothing parameter. We see that as K —> 0, σ | -> 0, so
that small values of K imply a more parametric model in the right tail. In addition,
we observe that as j -ϊ oo, σ | -¥ 0, implying that the degree of parametricity
is increased at a rate governed by K as the number of intervals increases. This
property also implies that as j -» oo, the survival distribution in the right tail
becomes more parametric regardless of any fixed value of K. The properties of
this model axe attractive. For example, if Fo(.|λo) is an exponential distribution,
then F0(y\X0) = 1 - exp(-λoy), so that μj = λ0 and σ2- - Xoκ

j. If F0(.|λ0) is
a Weibull distribution, then Fo(y|λo) = 1 — exp(—7o2/c*o)> λo = (αo,7o), so that

( α ? 0 < ° ) 2 K°-°Γi) 7
= 7θ\W «

The intervals (αj_i, α/], j = 1,..., J need to be chosen so that with the combined
data sets from the historical and current data, at least one failure observation
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falls in each interval. This technique for choosing J is quite reasonable and results
in a stable Gibbs sampler. For the melanoma data, we later conduct sensitivity
analyses on the construction of the intervals, (α^ - i , aj], j = 1,..., J. Three different
constructions of (α^-i, aj] were considered. We chose the subintervals (αj_i, aj] with
(i) equal numbers of failures or censored observations; (ii) approximately equal
lengths subject to the restriction that at least one failure observation occurs in
each interval; (iii) decreasing numbers of failures or censored observations. More
specifically, in case (iii) we took aj to be the ((1 — e^~^J^)/(l — e~1))th quantile of
the 2/j's. We found that the posterior estimates were quite robust with respect to
these constructions. We now formally state several properties for this model. The
proofs axe omitted for the sake of reducing the length of the article.

Assume that °J ' + ^- 1 _> t ag a. _ a._λ _> o. Then for any j , according to this
prior process, E(λj\X0) -ϊ ho(t) as aj - αj_i ->> 0, where ho(t) = ^H0{t).

For example, when Fo(y\λo) = 1 — exp(—λoy), then E(λj|λo) = λo regardless
of our choices of αi, . . .,aj. When Fo(y|λo) = 1 — exp(—7o2/α°), then E(\J\\Q) ->>
7Oαo£α°~1 as aj —aj-ι -> 0. This assures that as j becomes large and aj —α^-i -> 0,
then this prior process approximates any prior process with prior mean ho(t) defined
on the promotion time hazard h*(t\\) corresponding to (14).

Let Sp*(y\λ) = exp(-0F*(j/|λ)), where F*(y\λ) is given by (14). Then,
Sp*(y\\) -> Sp(y\λo) as « -• 0, where Sp{y\λ0) = exp(-ΘF0(y\λ0)).

Let /*(y|λ) = ^F*(t/|λ), and Λ£(y|λ) = θf*(y\X) denote the corresponding

hazard function. Then h*(y\λ) ->• 0/o(j/|λo) as « -> 0, where /o(j/|λo) = ^F0(y\\0).
In practice, we recommend doing analyses for several values of /c, J, and Fo(.|λo)

to examine the sensitivity of the posterior estimates to various choices of these
parameters.

5.1. Prior Distributions. We give joint prior specifications for the semipara-
metric model in (16) and (17). We specify a hierarchical model and first consider
a joint (improper) noninformative prior distribution for (/?, λ, λo). We specify the
joint prior of these parameters as

(18) τr(/3, λ, λ0) = π(/3)π(λ|λo)π(λo) oc π(β) π(λ0).

As noted earlier, we take each π(λj|λo) to be independent gamma densities with
mean μj and variance σ|. If Fo(.) is an exponential distribution, then λo is a scalar,
and we specify a gamma prior for it, i.e., π(λ0) oc λQ0"1 exp(—τoλo), where Co and τ0

are specified hyperparameters. If Fo(.) is a Weibull distribution, then λ0 = (70, <̂ o)
In this case, we take a prior of the form

(19) π(λo) = π(αo,7o) oc α ^ 0 " 1 exp(-rαoα0)7o'γo~1 exp(-r7o7O),

where ζao, τao, ζΊo and r7 o are specified hyperparameters. For β, we consider a
uniform improper prior. The next theorem establishes the propriety of the joint
posterior distribution of (/3, λ, λo), when using an exponential distribution or a
Weibull distribution for Fo(.).
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THEOREM 4. Suppose (i) when vι = \,yi> 0, (ii) there exists ή , i2,..., ij such
that Vi. = 1, and aj-i < y^ < ajy j = 1,..., J, (Hi) the design matrix X* with ith

row equal to Vix\ is of full rank, iv) if FQ{.\\Q) is an exponential distribution, Co > 0
and T0 > ΣJ

j=i *r log[(V«')/((lfc; " <*;-i)/2 + l/κ% and if F0(.\λ0) is a Weibull
distribution, ζΊo > 0, τ7 o > 0? ζao > 0, and τao > —£7o log(αj). Then the posterior
distribution of(β, λ, λ0) is proper, i.e., f L(/3, \\D)π(β, λ, λ0) dβ dλ dλ0 < oo? where
L(β,λ\D) is the likelihood function based on the observed data D.

A proof of Theorem (4) is left as an exercise. Theorem (4) provides a very general
class of improper noninformative priors for (/?, λ, λ0). First we mention that in
condition (iv) of Theorem 4, TQ can be negative, thus resulting in an improper prior
for λo when Fo(.|λo) is exponential. Second, rao is also allowed to be negative,
resulting in a joint improper prior for (70,0:0) when F0(.|λ0) is Weibull.

The power prior for this model takes the form

(20) π(/3,λ,λo,αo|A)) oc LfaXlDo^o&^MloA0'1^ ~ ^)φo~\
where L(β, λ\D0) is the likelihood function based on the observed historical data,
and £0 and ψo are prespecified hyperparameters. The initial prior for (/3, λ, λo), is
given by (18) with πo(λo) taking the form given by πo(λo) oc AQ0""1 exp(—τoλo) or
by (19), depending on the form of FQ(.\\0). Following the proofs of Theorem 4 and
Theorem 3 of [3], it can be shown that the prior distribution π(/3, λ, λo, αo | A)) given
by (20) is proper under some very general conditions.

5.2. Example - Melanoma Data. We revisit the E1684 and E1690 trials dis-
cussed in the previous section. Our main purpose in this example is to examine the
tail behavior of our proposed model as /ς, α0, FOi and J are varied. Of particular in-
terest is the sensitivity of the posterior estimates of β, λ, and 5*(ί|λ) = 1 — F*(ί|λ),
as these parameters are varied, where F*(t\λ) is defined in (14). The E1690 study
is quite suitable for our purposes here since the median follow-up for E1690 (4.33
years) is considerably smaller than E1684 (6.9 years). Thus, cure rate estimation
based on the E1690 study alone, i.e., αo = 0, may be more sensitive than that of
an analysis which incorporates the historical data E1684. In our example, three
covariates were used, and an intercept was included in the model. The three co-
variates are treatment (IFN, OBS), age, which is continuous, and gender (male,
female). Let β = (/3i,/32,/?3,/34) be the regression coefficient vector corresponding
to an intercept and the three covariates, respectively.

Table 6 gives posterior means, standard deviations, and 95% Highest Posterior
Density (HPD) intervals of β for several values of K using the exponential and
Weibull models for Fo with J = 10 intervals, and when E(ao\D,Do) = 0.33. As
K is varied for a given αo using an exponential or Weibull F o, we see small to
moderate changes in the posterior estimates of β. As αo is varied, more substantial
changes occur in the posterior estimates of β across values of αo For example,
using an exponential FQ and K = 0.05, the posterior means, standard deviations,
and 95% HPD intervals for the treatment coefficient, i.e., β2, are -0.209, 0.130, and
(-0.461,0.050) when α0 = 0 with probability 1; -0.242,0.115, and (-0.469, -0.018)
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when E(ao\D,Do) = 0.33; and -0.277, 0.079, and (-0.462,-0.087) when α0 = 1
with probability 1. In general, the posterior standard deviations for E(ao\D1 Do) > 0
are smaller than those for αo = 0, therefore resulting in narrower 95% HPD intervals.
A partial explanation of this is that, by incorporating the historical data, more
precise estimates of the regression coefficients and right tail of the survival curve are
obtained. Overall, for given αo, we conclude that the estimates of β are reasonably
robust as K is varied, but change substantially as αo is varied.

Table 7 shows posterior summaries of the cure rates and survival function S* (t)
for varying K and Fo when E(CLO\D,DQ) = 0.33. For a given Fo, we see moderate
changes in the cure rates as K is varied. When αo and K remain fixed and F$ is
changed, we see that the estimates are quite robust. Also from Table 7, we can
see that a monotonic increase in the mean of the cure rate estimates occurs as K
is increased. A similar phenomenon occurs with other values of αo In summary,
Table 7 shows that small to moderate changes can occur in the cure rates as the
degree of parametricity in the right tail of the survival curve, ft, is changed. We
have also computed estimates of λ for several values of K and α0, assuming that
Fo is exponential. We observe that for a given αo, the posterior estimates of λ
can change moderately to considerably as K varies. For example, with αo = 0, the
posterior mean of λio is 0.617 for K, = 0.05, and 0.788 when K = 0.95. A Similar
phenomenon occurs when α0 = 1. These changes in λ can be summarized better by
examining the estimated survival function for the non-cured patients, denoted by
5*(t|λ). Figure 2 shows the posterior estimates of S*(t\X) for E(ao\D,Do) = 0.33
using several values of K. Figure 2 (a) corresponds to an exponential Fo and Figure
2(b) corresponds to a Weibull Fo. We see from Figure 2 that small to moderate
changes in the survival estimates occur as K is varied. The biggest changes occur
in the interval 1 < t < 5. Table 7 summarizes 5*(ί|λ) at t — 3.5 for several values
of K and Fo. We see from Table 7 that for fixed Fo and αo, moderate changes in
5*(3.5|λ) occur as K is varied. When Fo is Weibull, bigger differences are seen. Thus,
5*(f |λ) can be moderately sensitive to the choice of «. We also observe that as more
weight is given to the historical data (i.e., αo is increased), 5*(3.5|λ) increases. For
example, for a Weibull FQ with α0 = 0, 5*(3.5|λ) = 0.124 for K = 0.05 and 0.119
for K = 0.6, while from able 7 with E(ao\D,Do) = 0.33, we have 5*(3.5|λ) = 0.136
for K = 0.05 and 0.129 for K = 0.6. This phenomenon is consistent with the notion
that the cure rate decreases as more weight is given to the historical data. Finally,
we note that sensitivity analyses were also carried out using several different values
of J, and similar results were obtained.

6. Multivariate Cure Rate Models. It is often of interest to jointly model
several types of failure time random variables in survival analysis, such as time to
cancer relapse at two different organs, times to cancer relapse and time to other
adverse events, times to first and second infections, and so forth. In addition, these
random variables typically have joint and marginal survival curves that "plateau"
beyond a certain period of follow-up, and therefore it is of great importance in these
situations to develop a joint cure rate model for inference.
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Table 6: Posterior Estimates of β

K Variable Mean Std Dev 95% HPD Interval

Exponential 0.05

0.60

0.95

Weibull 0.05

0.60

0.95

intercept
treatment
age
gender

intercept
treatment
age
gender

intercept
treatment
age
gender

intercept
treatment
age
gender

intercept
treatment
age
gender

intercept
treatment
age
gender

0.183
-0.242
0.099

-0.118

0.164
-0.245
0.098

-0.115

0.157
-0.242
0.097

-0.113

0.202
-0.242
0.100

-0.118

0.180
-0.244
0.098

-0.113

0.160
-0.244
0.097

-0.115

0.096
0.115
0.058
0.120

0.094
0.115
0.058
0.120

0.098
0.116
0.058
0.121

0.102
0.115
0.057
0.121

0.098
0.115
0.058
0.120

0.097
0.116
0.058
0.120

(-0.009, 0.367)
(-0.469, -0.018)
(-0.011, 0.214)
(-0.361, 0.110)

(-0.019, 0.348)
(-0.470, -0.020)
(-0.016, 0.211)
(-0.352, 0.119)

(-0.038, 0.345)
(-0.472, -0.017)
(-0.015, 0.211)
(-0.348, 0.128)

( 0.002, 0.404)
(-0.471, -0.019)
(-0.012, 0.213)
(-0.358, 0.114)

(-0.011, 0.371)
(-0.472, -0.021)
(-0.018, 0.209)
(-0.355, 0.117)

(-0.034, 0.345)
(-0.473, -0.022)
(-0.013, 0.213)
(-0.351, 0.119)

Table 7: Posterior Summaries of Cure Rates and S*(t\λ)

Cure Rate
Mean Std Dev 5*(3.5|λ)

Exponential

Weibull

0.05
0.60
0.95

0.05
0.60
0.95

0.361
0.368
0.370

0.354
0.362
0.369

0.065
0.065
0.064

0.065
0.064
0.065

0.115
0.106
0.107

0.136
0.129
0.108
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Figure 2: Plots of Survival Function 5*(ί|λ) for non-cured patients with J = 10
and E(ao\D,Do) = 0.33, where (a) Fo(.|λo) is an exponential distribution, (b)

is a Weibull distribution, and the solid, dotted, dashed, and dot-dashed
curves correspond to K = 0.05,0.30,0.60,0.95, respectively.

tO rf=». CXs O O
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There does not appear to be a natural multivariate extension of the BG model
in (1). There does not appear to be a natural multivariate extension of the BG
model in (1). Even if such an extension was available, it appears that a multivariate
mixture model would be extremely cumbersome to work with from a theoretical
and computational perspective. As an alternative to a direct multivariate extension
of (1), [4] present a multivariate cure rate model which is a natural multivariate
extension of the univariate model in (2). This model proves to be quite useful
for modeling multivariate data in which the joint failure random variables have
a surviving fraction and each marginal failure time random variable also has a
surviving fraction. To induce the correlation structure between the failure times, a
frailty term [6, 11, 16] is used.

For clarity and ease of exposition, we will focus our discussion on the bivariate
cure rate model, as extensions to the general multivariate case are quite straight-
forward. Let Y = (Yi, Y2) be a bivariate failure time, such as Y\ = time to can-
cer relapse in location 1 and Y2 = time to cancer relapse in location 2, or YΊ =
time to first infection, and Y2 = time to second infection, and so forth. We as-
sume that (Yί, Y2) are not ordered. For an arbitrary patient in the population, let
N = (Nι,N2) denote latent (unobserved) variables for (Yi,Y2), respectively. We
assume throughout that Nk has a Poisson distribution with mean θkiv, k = 1,2,
and (iV"i, N2) are independent. The quantity w is a frailty component in the model
which induces a correlation between the latent variables (7VΊ, N2). Here we take w
to have a positive stable law distribution indexed by the parameter α, denoted by
w ~ Stable(a), where 0 < a < 1. Although several choices can be made for the
distribution of w, the positive stable law distribution is quite attractive, common,
and flexible in the multivariate survival setting. In addition, it will yield several
desirable properties.

Using the same latent promotion times arguments for both components, after
some algebra, the survival function for Y = (Yi, Y2) given w can be shown as

(21) Spop{yuy2\w) = exp(-ti7[0ii\(yi) + θ2F2(y2)}) ,

where P(Nk = 0) = P(Yk = 00) = exp(-0fe)> * = 1,2. We emphasize here that the
primary roles of N and Ẑ  is that they only facilitate the construction of the model
and need not have any physical or biological interpretation at all for the model to
be valid. They are quite useful for the computational implementation of the model
via the Gibbs sampler as discussed below and thus are defined primarily for this
purpose. The model in (21) is valid for any time-to-event data with a cure rate
structure as implied by (21) and the subsequent development. Thus the model can
be useful for modeling various types of failure time data, including time to relapse,
time to infection, time to complication, time to rejection, and so forth. In addition,
the frailty variable w serves a dual purpose in the model - it induces the correlation
between Yγ and Y2 and at the same time relaxes the Poisson assumption of 7VΊ and
N2 by adding the same extra Poisson variation through their respective means Θ\W
and θ2w.

The Stable(a) density for w (0 < a < 1) can be expressed through the Laplace
transform of w, given by E(exp(-$w)) = exp(—sa). A useful reference on stable
distributions is [17]. A straightforward derivation yields the unconditional survival
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function

(22) Spopiyuto) =exp{-[0iFi(!/i) + θ2F2(y2)}<*}.

Naturally, the marginal distribution of each component in (22) has a proportional
hazards structure if the covariates enter the model only through (θi,θ2).

The joint cure fraction implied by (22) is Spop(oo, oo) = exp(-[0i + Θ2]
a). From

(22), the marginal survival functions are

(23) Sk(y)=eM-θk(Fk(y))a), * = 1,2.

Equation (23) indicates that the marginal survival functions have a cure rate struc-
ture with probability of cure exp(—θ%) for Yfc, k = 1,2. It is important to note in
(23) that each marginal survival function has a proportional hazards structure as
long as the covariates, x, only enter through θk The marginal hazard function is
given by aθ%fk(y)(Fk{y))a~1, with attenuated covariate effect (0fc(#))α, and fk(y)
is the survival density corresponding to Fk(y).

In addition, we can express the marginal survival functions in (23) in terms of
BG models, as we can write

(24) Sk(y) = exp(-ffj) + (1 - exp(-0£))SΪ(») ,

where S*(y) - e χ p ( - ^ ( ^ ) n - e χ P ( - ^ t t ) ? k = l y 2 . Note that 5*(y) defines a proper

survivor function.
The parameter a (0 < a < 1) is a scalar parameter that is a measure of associa-

tion between (YΊ, Y2). Small values of a indicate high association between (Yi, Y2).
As a -ϊ 1, this implies less association between (Yi,Y2) which can be seen from
(22). Following [6] and [16], we can compute a local measure of association, denoted,
θ* (yι ,2/2), as a function of α. This measure of association is defined as

SPop(yu
( 2 5 ) θ (2/1 J2/2) = 7-9-^—:

For the multivaxiate cure rate model in (22), 0*(ίi,ί2) is well defined, and is given

by

(26) θ*(yi,y2) = a~ι(l - a) (βiFifoi) + θ2F2(y2)ya + 1 .

We see that θ*(tι,t2) in (26) decreases in (yi,y2). That is, the association be-
tween (Yi, Y2) is greater when (Yι,Y2) are small and the association decreases over
time. Such a property, which is due to the stable frailty distribution, is quite de-
sirable, for example, when Y\ and Y2 denote times to relapse in two locations. As
a -¥ 0, Spop{yi,y2) in (22) approaches the minimum of (Si(2/1), £2(2/2)), and thus
Spop(yi,y2) achieves the Frechet bound of maximal dependence (see [16]). Finally,
we mention that a global measure of dependence such as Kendall's r or the Pearson
correlation coefficient is not well defined for the multivariate cure rate model (22)
since no moments for cure rate models exist due to the improper survival function.

The multivariate cure rate model presented here is attractive in several respects.
First, the model has a proportional hazards structure for the population hazard,
conditionally as well as marginally, when covariates are entered through the cure
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rate parameter, and thus has an appealing interpretation. Also, the model is com-
putationally feasible. In particular, by introducing latent variables, efficient MCMC
algorithms can be developed that enable us to sample from the joint posterior dis-
tribution of the parameters. Specifically, a modified version of the collapsed Gibbs
technique of [14] can be in this case used for efficient Gibbs sampling from the
posterior distribution. See [4] for details.
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