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Abstract

In an idealized model without transaction costs, an investor would op-
timally maintain a proportion of wealth in stock or hold a number of shares
of stock to hedge a contingent claim by trading continuously. Such con-
tinuous strategies are no longer admissible once proportional transaction
costs are introduced. The investor must then determine when the stock
position is sufficiently "out of line" to make trading worthwhile. Thus,
the problems of optimal investment and hedging become, in the presence
of transaction costs, singular stochastic control problems, characterized
by instantaneous trading at the boundaries of a "no transactions" region
whenever the stock position falls on these boundaries. In this paper, we
review various formulations of the optimal investment and hedging prob-
lems and their solutions, with particular emphasis on the derivation and
analysis of Hamilton-Jacobi-Bellman (HJB) equations using the dynamic
programming principle. A particular numerical scheme, based on weak
convergence of probability measures, is provided for the computation of
optimal strategies in the problems we consider.

1 Introduction

The problems of optimal investment and consumption and of option pricing and
hedging were initially studied in an idealized setting whereby an investor incurs
no transaction costs from trading in a market consisting of a risk-free asset
("bond") with constant rate of return and a risky asset ("stock") whose price
is a geometric Brownian motion with constant rate of return and volatility. For
example, Merton (1969, 1971) showed that, for an investor acting as a price-
taker and seeking to maximize expected utility of consumption, the optimal
strategy is to invest a constant proportion (the "Merton proportion") of wealth
in the stock and to consume at a rate proportional to wealth. In the related
problem of option pricing and hedging, arbitrage considerations of Black and
Scholes (1973) demonstrated that, by setting up a portfolio of stock and option
that is risk-free, the value of an option must equal the amount of initial capital
required for this hedging.

However, both the Merton strategy and the Black-Scholes hedging portfolio
require continuous trading and result in an infinite turnover of stock in any finite
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time interval. In the presence of transaction costs proportional to the amount
of trading, such continuous strategies are prohibitively expensive. Thus, there
must be some "no transactions" region inside which the portfolio is insufficiently
"out of line" to make trading worthwhile. In such a case, the problems of optimal
investment and consumption and of option pricing and hedging involve singular
stochastic control. As we shall see, Bellman's principle of dynamic programming
can often be used to derive (at least formally) the nonlinear partial differential
equation (PDE) satisfied by the value function of interest. The derived PDE will
then suggest methods (analytic or numerical) to solve for the optimal policies.
One such numerical scheme, based on weak convergence of probability measures,
will be particularly useful to the problems described in this paper. It turns out
that some of the resulting free boundary problems can be reduced to optimal
stopping problems in ways suggested by Karatzas and Shreve (1984, 1985),
thereby simplifying the solutions of the original optimal control problems.

We will focus on the two-asset (one bond and one stock) setting which many
authors consider. Besides simplifying the exposition, such a setting can be
justified by the so-called "mutual fund theorems" whenever lognormality of
prices is assumed; see, for example Merton (1971) in the absence of transaction
costs and Magill (1976) in the presence of transaction costs. Specifically, the
market consists of two investment instruments: a bond paying a fixed risk-free
rate r > 0 and a stock whose price is a geometric Brownian motion with mean
rate of return a > 0 and volatility σ > 0. Thus, the prices of the bond and
stock at time t > 0 are given respectively by

dBt = rBt dt and dSt = St(adt + σdWt), (1.1)

where {Wt : £ > 0} is a standard Brownian motion on a filtered probability space
(Ω, J7, {J-i}t>o,P) with Wo = 0 a.s. The investor's position will be denoted by
(Xt,Yt) (in Section 2) or {Xt,yt) (in Section 3), where

Xt = dollar value of investment in bond,

Yt = dollar value of investment in stock, (1.2)

yt = number of shares held in stock.

In particular, we note the relation Yt = ytSt.

The rest of the paper is organized as follows. In Section 2, we consider optimal
investment and consumption, beginning with a treatment of the "Merton prob-
lem" (no transaction costs) over a finite horizon, and then proceeding to the
transaction costs problem considered by Magill and Constantinides (1976) and,
more recently, by ourselves. We also consider the infinite-horizon case, drawing
on results from Davis and Norman (1990) and Shreve and Soner (1994), and
review the work of Taksar, Klass and Assaf (1988) on the related problem of
maximizing the long-run growth rate of the investor's asset value. The problem
of option pricing and hedging in the presence of transaction costs is considered
in Section 3. Some concluding remarks are given in Section 4.
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2 Optimal Consumption and Investment with

Transaction Costs

The investment and consumption decisions of an investor comprise three non-
negative {jΓ^j^o-adapted processes C, L, and M, such that C is integrable on
each finite time interval, and L and M are nondecreasing and right-continuous
with left-hand limits. Specifically, the investor consumes at rate Ct from the
bond and Lt (resp. Mt) represents the cumulative dollar value of stock bought
(resp. sold) within the time interval [0, ί], 0 < t < T. In the presence of propor-
tional transaction costs, the investor pays fractions 0 < λ < 1 and 0 < μ < 1
of the dollar value transacted on purchase and sale of stock, respectively. Thus,
the investor's position (Xt,Yt) satisfies

dXt = (rXt - Ct) dt - (1 + λ) dLt + (1 - μ) dMu (2.1a)

dYt = αYt dt + σYt dWt + dLt - dMt. (2.1b)

The factor 1 + λ (resp. 1 — μ) in (2.1a) reflects the fact that a transaction
fee in the amount of XdL (resp. μdM) needs to be paid from the bond when
purchasing dL (resp. selling dM) dollar value of stock. We define the investor's
wealth (or net worth) as

Zt = Xt + (l-μ)Yt iίYt>0; Zt = Xt + (1 + X)Yt if Yt < 0.

By requiring that the investor remains solvent (i.e., has nonnegative net worth)
at all times, the investor's position is constrained to lie in the solvency region
V which is a closed convex set bounded by the line segments

dλV = {(x, y) : x > 0, y < 0 and x + (1 + λ)y = 0},

dμV = {(x, y) : x < 0, y > 0 and x + (1 - μ)y = 0}.

We denote by A(t, x, y) the class of admissible policies, for the position {Xt , Yt) —
(x,y), satisfying (Xa,Y8) G D for t < s < Γ, or equivalently, Zs > 0 for
t < s <T. At time t, the investor's objective is to maximize over A(t,x,y) the
expected utility

J(t,x,y)=Έ Xt=χ,Yt=y

where β > 0 is a discount factor and U\ and Uz are concave utility functions
of consumption and terminal wealth. We assume that U\ is differentiate and
that the inverse function (U^1 exists. Often U\ and U2 are chosen from the
so-called HARA (hyperbolic absolute risk aversion) class:

U(c) = cΊ/Ί if 7 < 1, 7 Φ 0; U{c) = logc if 7 = 0, (2.2)

which has constant relative risk aversion —cU"(c)/U'(c) — 1 — η. We define the

value function by

V(t,x,y)= sup J{t,x,y). (2.3)
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2.1 The Merton Problem (No Transaction Costs)

Before presenting the solution to the general transaction costs problem (2.3), we
consider the case λ = μ = 0 (no transaction costs) analyzed by Merton (1969).
In this case, by adding (2.1a) and (2.1b), the total wealth Zt = Xt + Yt can be
represented as

dZt = {rZt + (α - r)θtZt - Ct} dt + σθtZt dWu (2.4)

where θt — Yt/{Xt~\-Yt) is the proportion of the investment held in stock. Using
the reparameterization z = x + y, the value function can be expressed as

V(t, z) = sup E
(C,L,M)eA(t,z)

Γ
Jt

Zt — z

where A(t, z) denotes all admissible policies (C, θ) for which Zs > 0 for all
t < s <T. The Bellman equation for the value function is

max{(d/dt + C)V(t, z) + U{C) - βV{t, z)} = 0, (2.5)
o, Θ

subject to the terminal condition V(T, z) — U2(z), where C is the infinitesimal
generator of (2.4):

Formal maximization with respect to C and θ yields C = {U[)~ι(Vz) and θ =
— (Vz/Vzz)(α — r)/σ2z (in which subscript denotes partial derivative, e.g., Vz =
dV/dz). Substituting for C and θ in (2.5) leads to the PDE

where C* = C*(t,z) = (U^-^V^t.z)). Let

α-r 1 Γ 7(α-r)
^ = c = \ β Ί r" (l-7)σ2« l - 7 [ ^ " 2(l-7)σ2j' (2.7)

Ci(t) = c/{l-φie
c^t-τ^} (i = 1,2), 0i = l, 02 = l - c .

If ί/i takes the form (2.2), then C* = (K)1/(7-i) a n d solving the PDE yields
the optimal policy: 0£* = p and Ct* = CΊ(ί)Zt when U2 = 0, or Ct* = C2(t)Zt

when t/2 takes the form (2.2). Note that c = β when 7 = 0. Thus, in the
Merton problem, the optimal strategy is to devote a constant proportion (the
Merton proportion p) of the investment to the stock and to consume at a rate
proportional to wealth. Furthermore, for ί = 1 or 2 (corresponding to U2 = 0
or to (2.2)), the value function is

V(t,z) = —[Ci(tψ-1 if 7 < 1 ,7^0;
7

V(t, z) = αi{t) + - i - \og[Ci{t)z] if 7 = 0,
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where α<(ί) = β~2[r - β + (α - r)2/2σ2]{l - e ^ " τ ) [ l + &/?(* - Γ)]}. Since
β > 0, V(ί, 2:) < 00 when 7 < 0. A necessary and sufficient condition for a
finite value function when 0 < 7 < l i s / ? > 7 r + η(μ — r)2/{2(l - 7)σ2}.
Corresponding results for general utility functions U\ and U2 have been given
by Cox and Huang (1989), who use a martingale technique instead of the usual
dynamic programming principle. By working under the equivalent martingale
measure so that differences in mean rates of return among assets are removed,
the martingale approach allows candidate optimal policies to be constructed by
solving a linear (instead of nonlinear) PDE; see also Karatzas, Lehoczky and
Shreve (1987).

2.2 Transaction Costs and Singular Stochastic Control

In the presence of transaction costs, analytic solutions are generally unavailable,
even for HARA utility functions. One approach to the problem is to apply a dis-
crete time dynamic programming algorithm on a suitable approximating Markov
chain for the controlled process. This approach is based on weak convergence
of probability measures, which will ensure that the discrete-time value func-
tion converges to its continuous-time counterpart as the discretization scheme
becomes infinitely fine. Note that the optimal investment and consumption
problem involves both singular control (portfolio adjustments) and continuous
control (consumption decisions).

We begin with an analysis of the Bellman equation, which will subsequently
suggest an appropriate Markov chain approximation for our problem. We can
obtain key insights into the nature of the optimal policies by temporarily re-
stricting L and M to be absolutely continuous with derivatives bounded by «,
i.e.,

Lt = £s ds and Mt = / ms ds, 0 < £s,ms < ft < 00. (2.8)
Jo Jo

Proceeding as before, the Bellman equation for the value function (2.3) is

ma,x{(d/dt + C)V(t,x,y) + U^C) - βV(t,x,y)} = 0, (2.9)
C,t,m

subject to V(T,x,y) = U2{x + (l-μ)y) if y > 0; V(T,x,y) = U2(x + (l + \)y)
if y < 0, where C is the infinitesimal generator of (2.1a)-(2.1b):

(2.10)

The maximum in (2.9) is attained by C = (t/{)"~x(V^), ί = κ^{vυ>(i+\)vx},
and m — κl{^<(i_μ)yx}. Thus, it can be conjectured that buying or selling
either takes place at maximum rate or not at all, and the solvency region V
can be partitioned into three regions corresponding to "buy stock" (β), "sell
stock" (5), and "no transactions" (Λ/") Instantaneous transition from B to the
buy boundary dB or from S to the sell boundary dS takes place by letting
n —• oo and moving the portfolio parallel to d\D or dμV (i.e., in the direction of
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(-1, (l + λ)" 1) 7" or (1, - ( l - μ ) ~ 1 ) τ , where τ denotes transpose). This suggests
that V(t,x,y) = V(t,x + (1 - μ)δy,y - δy) for (t,x,y) G S and V(t,x,y) =

, x-(l + λ)δy, y + <fy) for (ί, z, y) G β. In the limit as δy -» 0, we have

f" T* I I I (~t If* *) ll £— Λ i^) 1 1 ίλ I

yy(ί,x,2/) = (1 + λ)Vi(ί,x,y), (ί,x,2/) G β. (2.11b)

In Λ/" the value function satisfies (2.9) with ί = m — 0, leading to the PDE

dV σ2y2 d2V , ^bΛί dV , _ , x r

1 7r + (rx — C ) h o;?/ h ί/i(C ) — pK = 0, (ί, x, Ϊ/) G TV ,
αί 2 αy2 αx oy

(2.11c)
where C* = C*(t,x,y) = {V[)-ι(Vx{t,x,y)) as in (2.6).
To solve (2.11a)-(2.11c), the first step is to find an approximating Markov chain
which is locally consistent with the controlled diffusion (2.1a)-(2.1b). Following
Kushner and Dupuis (1992), we will use the "finite difference" method to obtain
the transition probabilities of the approximating Markov chain. Specifically, for
a candidate consumption decision (i.e., continuous control) C, we make the
following (standard) approximations to the derivatives in equation (2.11c):

V ( t x ) _ >
χ{ ,x,y) -> 1[V^(ί H- 5,a;,2/) — ̂ ( t H- 5,α; — e,2/)]/e if rx - C < 0,

v ( t χ ,{[V(t + δ,x,y + e ) V ( t + δ,x,y)]/e if y > 0 ,
y['X'y)~*\ \ δ,x,y-e)]/e if y < 0,

Vyy(t,x,y) -> [V(t + δ,x,y + e) + V(t + 5,^2/ - e) - 2V(t + i,
(2.12)

Collecting terms and noting that C* in (2.11c) is the optimal control, we obtain
the following backward induction equation for the "consumption step":

(2.13)

χ,y

where only the following five transition probabilities are nonzero:

p(x ± e, y I x, y) = (rx — C)±(5/e,

p(x, y±e\x,y)= ay±δ/e + (σ2y2/2) δ/e2,

p(x, y I x, y) = 1 - (\rx - C\ + a\y\)δ/e - [σ2y2)δ/e2.

Equation (2.13) is to be evaluated for t G T = {0, δ, 2δ,..., Nδ} with δ = T/N
and (x, y) belonging to some grid X x Y made up of multiples of ±e. Given δ,
the choice of e must ensure that p(x, y \ x, y) > 0. Let A\ = maxx Gχ ) (7 \rx - C\
and A2 = max^^y \y\. Then one could set

e = (δ/2)(A1
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A similar treatment of equations (2.11a)-(2.11b) yields respective relations for
the "sell step" and the "buy step" (singular controls):

Vs(t,x, y) = μV(t,x, y - e) + (1 - μ)V(t,x + e,y-e),

:-e,y) + V(t,x-e,y + e)].

Since only one of buy, sell or no transactions can happen at each step, the dy-
namic programming equation for the (discrete-time) finite horizon value function
is therefore

V(t, x, y) = max{y°(ί, x, y), Vs(t, x, y), Vh(t, x, y)},

with terminal condition V(T,x,y) = U2{x + (1 — μ)y) if y > 0; V(T,x,y) =
U2(x + (1 + X)y) if y < 0. For a sufficiently fine grid T x X x Y, this gives
good approximations to the value function (2.3) and the transaction regions:
(t,x,y) G S if V(t,x,y) = Vs(t,x,y) and (t,x,y) G B if F(£,x,y) = Vb(t,z,2/).

When C/i and {/2 take the form (2.2), we find that V is concave and homothetic
in (#,?/): for η > 0,

V(£, 77#, ηy) = ηΊV(t, x,y) if 7 < 1, 7 ^ 0;

V{t, ηx, ηy) = {β-1 [1 - eW'V] + e^*"^ } log ry + V(ί, x, j/) if 7 = 0.

Homotheticity of V suggests that if equations (2.11a) and (2.11b) are satisfied for
some (ί, x, y) G dS and 9^, respectively, then the same is true for any (£, r/x, ηy)
with 77 > 0. Thus, it can further be conjectured that the boundaries between
the transaction and no transactions regions are straight lines (rays) through the
origin for each t G [0,T]. Moreover, since C* = (Vx)

1^Ί~ι\ equation (2.11c)
becomes

dV σ2y2d2V dV dV 1 - 7 f dV \ 7 / ( 7 - 1 }

 o j r

αί 2 αy2 αx oy η \ox J
(2.14)

with the fifth term on the l.h.s. of (2.14) replaced by —(1 + log\4) when 7 = 0.

We can further exploit homotheticity of V to reduce the nonlinear PDE (2.14)
to an equation in one state variable. Indeed, let ψ(x) = V(t,x,l) so that
V(t,x,y) = yΊψ(t,x/y). Then, for some functions A*(ί), A*(i), and - ( 1 - μ ) <
x*(t) < x*(t) < oc, equations (2.11a)-(2.11b) and (2.14) are equivalent to the
following when 7 < 1 and 7 ^ 0 :

ψ(t,x) = r)~1A^(t)(x + 1 — μ) 7, x<x*(t), (2.15a)

ψ(t,x) =7~1A*(ί)(x + l + λ)7, x >x*{t), (2.15b)

Έ7 +^3^ 2 ^-τ +fox-κ- H ( Λ~ ) +bλψ = 0, x G [^(ί),^*^)],
αί ααr αx 7 \ox J

(2.15c)

where

./?, ^2 = σ 2 ( 1 _ 7 ) + r _ α 5 63 = σ2/2. (2.16)
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A similar set of equations can also be obtained for 7 = 0. A simplified version
of the numerical scheme described earlier in this section can be implemented
to solve for ψ(t,x) as well as the boundaries x*(t) and x*(t). For details and
numerical examples, see Lai and Lim (2002a).

Hence, for HARA utility functions, the optimal policy for the transaction costs
problem (2.3) is given by the triple (C*,L*,M*), where

and

L\ = ί I[x./Yt=x.(s)}dL*a, Ml = f I{x./γ.=x.(a)}dM;, t e [0,T\.
Jo Jo

The introduction of transaction costs into Merton's problem in Section 2.1
has the following consequence. The investor should optimally maintain the
proportion of investment in stock between θ*(i) := [1 + x*(ί)] - 1 > 0 and
θ*(t) := [1 + x*(ί)]~1 < μ-\ i.e., θ*(t) < 6>£* < θ*(t) in our earlier notation.
Thus, the no transactions region Λί is a "wedge" in the solvency region 2λ Such
an observation can be traced back to Magill and Constantinides (1976), who
found that "the investor trades in securities when the variation in the underly-
ing security prices forces his portfolio proportions outside a certain region about
the optimal proportions in the absence of transaction costs."

The foregoing analysis and solution of problem (2.3) can be extended to the case
of more than one stock. While a straightforward application of the principle of
dynamic programming would suffice to derive the Bellman equation, computa-
tional aspects of the problem become much more involved. As pointed out by
Magill and Constantinides (1976), m stocks imply 3 m possible partitions of the
solvency region so even for moderately large m (e.g., 35 « 250, 3 1 0 « 60000)
it is unclear how to systematically solve for the transaction regions. When the
stock prices are geometric Brownian motions, Magill (1976) established a mu-
tual fund theorem on the reduction of the optimal investment and consumption
problem to the case consisting of a bond and only one stock.

2.3 Stationary Policies for Infinite-Horizon Problems

We can view the infinite-horizon optimal investment and consumption problem
as the limiting case of the finite-horizon problem in Section 2.2. By setting
t = 0 and letting T —• 00, the finite-horizon value function (2.3) approaches the
following infinite-horizon value function (dropping the subscript on U\):

/»OO

V(x, y) = sup E / e-βtU(Ct) dt, (x, y) G V, (2.17)
(CtL,M)eA(x,y) Jθ

where Λ(x, y) denotes the set of all admissible policies (C, L, M) for an initial
position (x, y) G V such that (Xt, Yt) G V for allί > 0 a.s. Because the problem
no longer depends on time t, the regions B, <S, and Λί are stationary over time.
The Bellman equation is given by (2.9) without d/dt. The analysis of Section
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2.2 carries over, leading to analogs of equations (2.11a)-(2.11c) (i.e., without t
and dV/dt).

For a general utility function [/, the numerical procedure described in Section
2.2 can be modified to give a solution of the infinite-horizon investment and
consumption problem. With the finite difference approximations given by (2.12)
but without t or t + 5, we obtain, after normalization, the following analog of
(2.13):

Y^p(x,y\x,y)V(x,y) + δU1(C) \, (2.18)

where δ = e/Σ, Σ = \rx — C\ + &\y\, and

p(x ± e, y I x, y) = (rx — C)±5/e, _p(x, ?/ ± e \ x, y) — ay±δ/e.

Thus, proceeding as in Section 2.2, the dynamic programming equation is

V(x, y) = max{y°(z, y), Vs(x, y), Vh(x, y)}, (2.19)

where Vs(x,y) = μV(x,y — e) + (1 — μ)y(x + e,y — e) and Vb(x,y) = (1 +
λ)~1[XV(x — e,y) + (1 — λ)V(x — e, y + e). According to which value on the r.h.s.
of (2.19) V(#,2/) takes, the position (x,y) is classified as belong to Λ/*, 5, or B.

We next specialize U to take the form (2.2) to simplify the dynamic program-
ming equation. For future reference, we begin with some results for the case of
no transaction costs (λ = μ = 0). An analysis of the infinite-horizon analog of
(2.5) (i.e., without d/dt) yields θ% = p and C* = cZt for all t > 0, where p and
c are given by (2.7). The value function is

i f 7 = 0

These results can also be derived from those in Section 2.1 on the Merton
problem by letting T —» oo, since then Ci(0) —» c (i = 1,2). In the presence
of transaction costs, the control problem has been independently considered
by Davis and Norman (1990) using the principle of smooth fit and by Shreve
and Soner (1994) using the concept of viscosity solutions to second-order PDEs.
Earlier Constantinides (1986) obtained an approximate solution of the problem
under the restriction that the investor consumes at a rate proportion to his
holding in bond. A general numerical procedure when there are m > 1 stocks
has been developed by Akian, Menaldi and Sulem (1996).

Because V is concave and homothetic, it is possible to reduce the problem
to solving ordinary differential equations (ODEs). Indeed, the control prob-
lem can be solved by finding a C2 function φ and constants oo > x* >
x* > —(1 — μ) and A*, A* satisfying equations (2.15a)-(2.15c) without time
dependence. It can be shown that #* < p < #*, with θ* = (1 + x*)" 1 ,
#* = (1 + χ*)~λ. Two sufficient conditions for finiteness of the value function
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V are β > ηr + η(α - r)2/{2(l - η)σ2} and (β - α-y)(l + X) > (β - n)(l - μ);
see Shreve, Soner and Xu (1991). Interestingly, if lump-sum transaction costs
proportional to portfolio value (e.g., portfolio management fees) are imposed
in addition to proportional transaction costs, then portfolio selection and with-
drawal for consumption are made optimally at regular intervals (as opposed
to trading at randomly spaced instants of time), with the investor consuming
deterministically between transactions, as shown by Duffie and Sun (1990).

To find the constants #*, x*, A*, A*, and the function ψ, the principle of
smooth fit can be first applied to ψ" at x* and x* to solve for A* and A*
(which depend on x* and x* respectively). Next, the second order ODE (2.15c)
(without t and dψ/dt) can be written as a pair of first-order equations after
a change of variables. Specifically, for 7 ψ 0 (so U(c) = cΊ /η), let Q(f) =
-h/Ί - b2f + (1 - 7 ) 6 3 / 2 and R(f) - -6^/7 + (63 - h)f - Ίb3f

2, where bub2,
and 63 are defined in (2.16). Then there exist functions f(x) and h(x) satisfying
the system of differential equations

(2.20a)

h(x*)=Q(f*), (2.20b)

such that

" v ' 7 L 1 - 7 J lf(χ)

satisfies (2.15c) (without t and dψ/dt). In this case, the optimal consumption
policy is C; = C*(Xt,Yt), where C*(x,y) = j(l - Ί)~λxh(x/y)/f(x/y). The
case 7 = 0 can be treated similarly.

Davis and Norman (1990) suggested the following algorithm for the numerical
solution of (2.20a)-(2.20b) (in which /, /ι, x*, x* need to be determined). The
iterative procedure starts with an arbitrary value x* of x* > 1 — p, and the
corresponding values /* = #*/(#* + 1 + λ) and h* = Q(/*) It uses numerical
integration to evaluate

fix) = r - Γ
J X

h{χ) = K._

R(f{u)) - h(u) Jr du,

' h(u)[h(u)-Q(f(u))}

b3uf(u)

for a sequence of decreasing x values until the first value x* of x for which
ft(£*) = Q(f(x*))- At this point, we have a solution of (2.20a)-(2.20b) with μ
replaced by x* -\-1 — x*//(x*). The iterative procedure continues by adjusting
the initial guess x* and computing the resulting i*, terminating when x* + 1 —
%*/f(x*) differs from μ by no more than some prescribed error bound.
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2.4 Maximization of Long-Run Growth Rate

An alternative optimality criterion was considered by Taksar, Klass and Assaf
(1988). Instead of maximizing expected utility of consumption as in (2.17),
suppose the objective is to maximize, in the model (2.1a)-(2.1b) without con-
sumption (i.e., Ct = 0), the expected rate of growth of investor assets (equiva-
lently the long-run growth rate). This optimality criterion can be reformulated
in terms of Rt = Yt/Xt alone so that the problem is to minimize the following
limiting expected "cost" per unit time:

- ^ ί / h(Rt)dt+ ί g(Rt)dLt+ ί f(Rt)dMt\, (2.21)
I Jo Jo Jo J

where

„, x βx / x λ , , x σ2x2 ( σ2\ x

(2.22)
In (2.21), Lt (resp. Mt) can be interpreted as the cumulative percentage of stock
bought (resp. sold) within the time interval [0,t], and is related to Lt (resp. Mt)
via dLt = (l/Xt)dLt (resp. dMt — Yt~

λ dMt). If λ = μ — 0 (no transaction
costs), the second and third terms in (2.21) vanish and the optimal policy is to
keep Rt equal to the optimal proportion obtained as the minimizer of h(x). This
is tantamount to setting θt (= Yt/(Xt + Yt)) equal to p* := (α — r)/σ2 + 1/2,
which resembles the Merton proportion p in (2.7).

We study the general problem of minimizing (2.21) under the condition |α — r\ <
σ2/2. (If this condition is violated, the optimal policy is to transfer all the
investment to bond or stock at time 0 and to do no more transfer thereafter.)
Since

an analysis of the value function V using the Bellman equation shows (in a
manner similar to the previous section) that there exist constants £*, #*, A
(optimal value) such that

(σ2/2)x2V"(x) + (α-r + σ2/2)xV\x) + h(x) - A = 0, xE [x*,x*],
(2.23a)

V'{x) = F(x), z<z*, V'(x) = G(x), x>x\ (2.23b)

where F(x) = - λ ( l + x ) - 1 ( l + (l-hλ)x)-1 and G(x) =
Using the principle of smooth fit at x* and x*, we find that A = h((l + λ)x*) =

— μ)#*), from which it follows that

* 1 + λ * ί 1 W-l/2)(l
either x* = x*, or x* = ± ;x*, or x = ; / .

(2.24)

Hence, even though an alternative criterion (of maximizing long-run growth
rate) is used to assess the optimality of investment policies, the above analysis
shows that like Section 2.3 the investor should again optimally maintain the
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proportion of investment in stock between θ* := x*/(l + £*) and θ* := x*/(l +
x*). The constants £* and x* can be computed by solving the second-order
nonhomogeneous ODE

l-2p* W J ' ( 5 j

with initial conditions V^a?*) = F* := F(x*) and F"0r*) = Fl := F'(x*) at x*,
which is obtained by differentiating (2.23a)-(2.23b). A search procedure can
then be employed to find that value of x* for which x* given by (2.24) satisfies
V'{x*) = G(x*) in view of (2.23b).

3 Option Pricing and Hedging

This section considers the problem of constructing hedging strategies which best
replicate the outcomes from options (and other contingent claims) in the pres-
ence of transaction costs, which can be formulated as the minimization of some
loss function defined on the replication error. In our recent work, we directly
minimize the (expected) cumulative variance of the replicating portfolio in the
presence of additional rebalancing costs due to transaction costs. As shown
in Section 3.3, this leads to substantial simplification as the optimal hedging
strategy can be obtained by solving an optimal stopping (instead of control)
problem. In Sections 3.1 and 3.2 we review an alternative approach, developed
by Hodges and Neuberger (1989), Davis, Panas and Zariphopoulou (1993) and
Clewlow and Hodges (1997), which is based on the maximization of the expected
utility of terminal wealth and which generally results in a free boundary prob-
lem in four-dimensional space. Instead of solving the free boundary problem,
Constantinides and Zariphopoulou (1999) derived analytic bounds on option
prices.

3.1 Formulation via Utility Maximization

The utility-based approach adopts a paradigm similar to Section 2. Suppose
the investor trades only in the underlying stock on which the option is written
and proportional transaction costs are imposed on purchase and sale of stock.
Following the notation in (1.2), his holding of bond (dollar value) and stock
(number of shares) is given by

dXt = rXt dt - (1 + X)St dLt + (1 - μ)St dMt, (3.1a)

dyt = dLt-dMu (3.1b)

where Lt (resp. Mt) represents the cumulative number of shares bought (resp.
sold) within the time interval [0, t]. Define the cash value of y shares of stock
when the stock price is S by

Y{y,S) = (l + λ)yS ϋy<0; Y(y, S) = (1 - μ)yS if y > 0.
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For technical reasons, the investor's position is constrained to lie in the region

V = {(x, ί/^)Gl 2 xl+:i + Y(y, S) > -α} (3.2)

for some prescribed positive constant α. We denote by A(t, x, y, S) the class
of admissible trading strategies (L,M) for the position (x,y,S) G V at time t
such that (Xs,ys,Ss) G V for all s G [t,T]. The objective is to maximize the
expected utility of terminal wealth, giving rise to the value functions

sup E[U(Zι

τ)], i = 0,s,b, (3.3)
e A ( t S )

where U : R —> R is a concave increasing function (so it is a risk-averse utility
function). The terminal wealth of the investor (with or without an option
position) is given by

Z% = Xτ + Y(yτ,Sτ) (no call),

Zs

τ = Xτ + Y(yτ, Sτ) 1{ST<K} + [Y{yτ ~ 1, Sτ) + K] l{Sτ>K} (sell a call),

Z\ = Xτ + Y(yτ, Sτ) 1{ST<K} + [Y(yτ + 1, SΓ) - if] Π{5T>K} (buy a call),

in which we have assumed that the option is asset settled so that the writer
delivers one share of stock in return for a payment of K when the holder chooses
to exercise the option at maturity T. In the case of cash settled options, the
writer delivers (Sτ - K)+ in cash, so Zs

τ = Xτ + Y(yτ, Sτ) ~ (Sτ ~ K)+ and
Z\ = Xτ + Y(yτ, Sτ) + (Sτ - K)+.

From the definition of the value functions (3.3), it is evident that an application
of the principle of dynamic programming will yield the same PDE for each
value function (i — 0, s, b), with the terminal condition governed by utility
of the respective terminal wealth. By temporarily restricting L and M as in
(2.8) (and then letting n —> oc), the Bellman equation for V1 is max^m(d/<9ί +
£)Vι(t,x,y,S) — 0, where C is the infinitesimal generator of (3.1a)-(3.1b) and
dSt = St(adt + σdWt):

Thus, once again, the state space can be partitioned into regions in which it is
optimal to buy stock at the maximum rate, or to sell stock at the maximum
rate, or not to do any transaction. Arguments similar to those in Section 2
show that there exist functions y*(t,x,S) (buy boundary) and y*(t,x,S) (sell
boundary) for each i = 0, s, b such that

t,x,y,S), y<y,{t,x,S), (3.4a)

,x,y,S), y>y*(t,x,S), (3.4b)

V? + rxVί + aSVί. + (σ2S2/2)V£s = 0, y e [y.(t,x,S),y*(t,x,S)], (3.4c)

The optimal hedging strategy associated with (3.3) is given by the pair (L*, M*),
where for each i = 0, s, b,

L*t = ί I(».=».(.AA)} dLl, K = f hys=y(s,x,,ss)} dM*s, t G [0,T\.
Jo Jo
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Two different definitions of option prices have been proposed. In Hodges and
Neuberger (1989) and subsequently in Clewlow and Hodges (1997), the reser-
vation selling (resp. buying) price is defined as the amount of cash Ps (resp.
P b ) required initially to provide the same expected utility as not selling (resp.
buying) the option. Thus, Ps and Ph satisfy the following equations:

F s(0, P s , 0, S) = V°(0,0,0, S) = F b(0, - P b , 0, S). (3.5)

An alternative definition is used by Davis, Panas and Zariphopoulou (1993).
Assuming that C/(0) = 0, define

xi = inϊ{x : V^(0, x, 0, S) > 0}, i = 0, s, b,

so in particular, x° < 0 because F°(0,0,0, S) > 0 (investing in neither bond nor
stock is admissible). Thus, an investor pays an "entry fee" — x° to trade in the
market strictly on his own account. The selling price Ps and buying price Ph

of the option are then constructed such that the investor is indifferent between
going into the market with and without an option position: Ps — xs — x° and
Ph = —(xh — x°). Although they advocate this definition for the option writer's
price, Davis, Panas and Zariphopoulou (1993, pp. 492-493) express reservations
of using it to define the buyer's price.

3.2 Solution for Exponential Utility Functions

A reduction in dimensionality (from four to three) can be achieved by specializ-
ing to the negative exponential utility function U(z) = 1 — e~ΊZ (with constant
index of risk aversion —U"(z)/U'(z) = 7). Using this utility function, the bond
position can be managed through time independently of the stock holding and

i(t,y,S), i = 0,s,b,

where Hι(t,y,S) := 1 — Vl(t,0,y, S). As a consequence, the free boundary
problem (3.4a)-(3.4c) for each i = 0, s, b is transformed into the following prob-
lem:

t,y,S), y<y*(t,S), (3.6a)

i ,y,S), y>y*(t,S), (3.6b)

Hί + aSIPs + (σ2S2/2)Wss =0, ye [j/.(ί,S),y*(t,S)]. (3.6c)

It is also straightforward to observe that the price definitions are equivalent to

7 1OgLff°(0,0,S)J' F ~ Ί e lOg[H%0,0,S)
"(3.7)

The solution of the free boundary problem (3.6a)-(3.6c) can be obtained by
approximating dyt = dLt — dMt and dSt — St(adt + σ dWt) with Markov
chains and applying a that discrete-time dynamic programming algorithm as in
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Section 2.2. To this end, it is useful to note from (3.6a)-(3.6b) that

Vl < y2 < y*(t, S),

- μ)S(yi - ?/2)} , Vl > y2 > y*(t, S).

We discretize time t so that it takes values in T = {0,(5, 25, . . . , Nδ}, where
δ = T/N. The number of shares is also discretized so that y is a multiple of e.
Then we can approximate the stock price process using the following random
walk:

\euSt with probability p,

1 e~uSt with probability 1 — p,

where u = yjσ2δ + (α - σ2/2)2δ2 and p = [1 + (α - σ2/2)δ/u}/2. Let Y = {ke :
k is an integer} and S = {ekuSo ' A: is an integer} This discretization scheme
leads to the following algorithm for (t,y,S) G T x Y x S:

H%y, S) = min {w(t,y + e, 5) exp ^ ^ " ^ ( l + λ)Se],

(3.8)

see Davis, Panas and Zariphopoulou (1993) and Clewlow and Hodges (1997) for
details. Depending on which term on the r.h.s. of (3.8) is the smallest, the point
(t,y,S) is classified as belonging to #, <S, or Λ/", respectively. We set y*(t,S)
(resp. y*(t, S)) to be the largest (resp. smallest) value of y for which (£, y,S) G B
(resp. S).

3.3 A New Approach

The previous analysis shows that, in the presence of transaction costs, perfect
hedging of an option is not possible and trading in options involves an element of
risk. Indeed, if the region V defined in (3.2) is replaced by the solvency region of
Section 2, Soner, Shreve and Cvitanic (1995) showed that "the least costly way
of hedging the call option in a market with proportional transaction costs is the
trivial one—to buy a share of the stock and hold it." By relaxing the requirement
of perfect hedging, Leland (1985) and Boyle and Vorst (1992) demonstrated
that discrete-time hedging strategies, for which trading takes place at regular
intervals, can nearly replicate the option payoff at maturity. The option price
is essentially the Black-Scholes value with an adjusted volatility. While hedging
error can be reduced to zero as the time between trades approaches zero, the
adjusted volatility approaches infinity and the option value approaches the value
of one share of stock.

A new approach has been recently proposed in Lai and Lim (2002b). The
formulation is motivated by the original analysis of Black and Scholes (1973) in
the following way: form a hedging portfolio that minimizes hedging error and
price the option by the (expected) initial capital require to set up the hedge.
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For the hedging portfolio, the objective is to minimize the expected cumulative
instantaneous variance and additional rebalancing costs due to transaction fees,
given by

J(t,S,y)=Έ\J F(s,Ss,ys)ds + λJ (Ss/K)dLs

ίT

+μ / (Ss/K)dMs

Jt

where F(t, 5, y) = σ2(S/K)2[y - Δ(ί, S)}2 for the option writer and F(t, 5, y) =
σ2(S/K)2[y + Δ(*,S)]2 for the option buyer. Here, Δ(ί,5) - JV(di(ί,S)) is
the Black-Scholes delta (i.e., the number of shares in the option's perfectly
replicating portfolio) with

di(ί, S) = {log(S/K) + r(Γ - t)}/σVY^~t + σVT^i/2.

Taking α = r, analysis of the Bellman equation for the value function V(ί, 5, y) =
J(t, S, y) leads to the following free boundary problem:

Vy(t,S,y) = -\S/K mλίcΓ){y<A(t,S)},

Vy(t,S,y)=μS/K mMcΓ){y>A(t,S)},

dV σ2S2d2V 8V _, n . ..
+ + rSΊ)s+F = 0 m Λ Λ

By working with Vy instead of directly with V, we deduce from the previous set
of equations that Vy(t,S,y) satisfies another free boundary problem associated
with an optimal stopping problem. It is this reduction to optimal stopping that
greatly simplifies the hedging problem.

Applying the transformations s — σ2(t — T) and z = \og(S/K) — (p — l/2)s,
where p = r/σ2, it suffices to work with υ(s, z, y) = Vy(t(s), S(s, z),y). For each
2/, we obtain the following discrete-time dynamic programming equation for the
option writer, utilizing a symmetric Bernoulli walk approximation to Brownian
motion:

υ(s,z,y) = mm{μez+βs,ϋ(s,z,y)}l{y>D{S:Z)}

+ max{-λe*+/?s, v(s, z, y)}I{y<D(s,z)}, (3.9)

with υ(0,z,y) = [μI{y>D(o,z)} ~ >^{y<D(o,z)}}ez, where ϋ(s,z,y) = δg(s,z,y) +

D(s, z) = eapsΦ(z/Λ/^s + Λ/^S), and s = -δ, -25,. . . . Each point (5, z, y) G
(—00, 0] x R x [0,1] can be classified as belonging to the sell region, buy region,
or no transactions region, according to whether υ(s,z,y) = μez+(3s, v(s,z,y) =
—λe2+/3s, or — \ez+Ps < υ(s,z,y) < μez+(3s, respectively. Since υ(s,z,y) is
nondecreasing in y, there exist sell and buy boundaries, denoted respectively
by ys(s, z) and yh(s, z), such that if y > ys(s, z) (resp. y < yh(s, z)), the option
writer must immediately sell y — ys(s, z) (resp. buy yh(s, z)—y) shares of stock to
form an optimal hedge. The optimal hedging portfolio for the option buyer can
also be obtained from (3.9) by symmetry: the optimal sell and buy boundaries
for the option buyer with sell rate μ and buy rate λ are -yh(s, z) and —ys(s, z)
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respectively, where ys(s, z) and yh(s, z) are the optimal sell and buy boundaries
for the option writer with sell rate λ and buy rate μ. Simulation studies have
shown the approach to be efficient in the sense that it results in the smallest
standard error of hedging error for any specified mean hedging error, where
hedging error is defined to the difference between the Black-Scholes value and
the initial capital needed to replicate the option payoff at maturity. For details
and refinements, see Lai and Lim (2002b).

4 Conclusion

Optimal investment portfolios and hedging strategies derived in the absence of
transaction costs involve continuous trading to maintain the optimal positions.
Such continuous policies are at best approximations to what can be achieved
in the real world, and a frequent practice is to execute the policies discretely
so that transactions take place at regular (or predetermined) intervals. With
appropriate adjustments, these policies can also be implemented in the presence
of transaction costs since they do not lead to an infinite turnover of asset.
However, in the absence of a clearly defined objective, it is difficult to argue
that a discrete policy is optimal in any sense.

This difficulty can be overcome in investment and consumption problems through
utility maximization, and in option pricing and hedging problems through the
minimization of hedging error. Many formulations of these problems lead natu-
rally to singular stochastic control problems, in which transactions either occur
at maximum rate ("bang-bang") or not at all. In the analysis of these singular
control problems, the principle of dynamic programming is used to derive the
Bellman equations, which are nonlinear PDEs whose solutions in the classical
sense have posed formidable existence and uniqueness problems. The develop-
ment of viscosity solutions to these PDEs in the 1980s is a major breakthrough
that circumvents these difficulties; see Crandall, Ishii and Lions (1992). In con-
trast to discrete policies, singular control policies require trading to take place
at random instants of time, when asset holdings fall too "out of line" from a
"target." Besides being naturally intuitive, singular control policies lend fur-
ther insight into optimal investor behavior when faced with investment decisions
(with or without consumption). Efficient numerical procedures can be developed
to solve for the singular control policies based on Markov chain approximations
of the controlled diffusion process. In some instances, a reduction to optimal
stopping reduces the computational effort considerably.

Tiong Wee Lim Tze Leung Lai
Dept. of Statistics and Appl. Prob. Department of Statistics
National University of Singapore Stanford University
Singapore 117546 Stanford, CA 94305
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