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Abstract

The central limit theorem for stationary processes arising from mea-
sure preserving dynamical systems has been reduced in [6] and [7] to the
central limit theorem of martingale difference sequences. In the present
note we discuss the same problem for conditional central limit theorems,
in particular for Markov chains and immersed filt rat ions.

1 Introduction

Let (Oc)fcez = ((ζk,Vk))kez be a two-component strictly stationary random pro-
cess. Every measurable real-valued function / on the state space of the process
defines another stationary sequence (/(Cfc))fcez Various questions in stochastic
control theory, modeling of random environment among many other applica-
tions lead to the study of conditional distributions of the sums Y^Z0 f(ζk)
given ?7o,..., r}n-i- I n particular, the asymptotic behaviour of these conditional
distributions is of interest, including the case when the limit distribution is
normal.

We shall prove conditional central limit theorems in the slightly more abstract
situation of measure preserving dynamical systems (X, T, P, T), where (X, T, P)
is a probability space and T : X —> X is P-preserving.

Let / be a measurable function and H be a sub-σ-algebra. / is said to satisfy
the conditional central limit theorem with respect to Tί (CCLT(Tΐ)), if P a.s.
the conditional distributions of

n-l

given H, converge weakly to a normal distribution with some non-random vari-

ance σ 2 > 0.

This leads to the identification problem for L2(P)-subspaces consisting of func-
tions satisfying a CCLT. Following [6], an elegant way to describe such subclasses
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uses Γ-filtrations, i.e. increasing sequences of σ-fields Tn — T 1 ^ Γ

n +i, n G Z.
Here we need to consider a pair of T-fiΊtrations (J-n)n^z and (Qn)nez satisfying
Qn C Tn for every n G Z. For example, in case of a strictly stationary random
process (ξk)kez as above the σ-field Tn (or Qn) is generated by {ζk)k<n (or
{Vk)k<n, respectively). First of all, the conditional distributions in CCLT(TY)
are determined by

n=\J gkv\J Fk.
kez k<o

Secondly, a general condition describing the class of functions / for which the
CCLT(TY) holds is given by the coboundary equation / = h + g — g o Γ with a
(JΓn)nez-martingale difference sequence hoTk (i.e. h is C/τW-measurable and

:= E(f\H) = 0).

The coboundary equation is implicitely also used in [10] and [9]. In [10], suffi-

cient conditions for CCLT(Ή) are obtained, when Tί is replaced by Ή — \Jkez Qk ,

and our Proposition 3.1 contains this result as a special case. This proposition

also specializes in case of skew products T(x,y) = (r(x),Tx(y)) as in [9], where

Qn is a T-filtration, and where Ή is also replaced by Ή.

It is hardly possible to verify this coboundary condition using properties of
the σ-ίields (Fn)nez and (Gn)nez without making assumptions about their in-
teraction. It has been noticed in [5] that conditional independence plays a
fundamental role when studying conditional measures and their properties in
connection with thermodynamic formalism. This additional property of con-
ditional independence has been called immersion in [1], and we shall adopt
this terminology. It means that for every n G Z the σ-fields Tn and Gn+i are
conditionally independent given Qn. The property of immersion is an essential
simplification, although it seems to be rather strong. However, it looks quite
natural in several situations (see e.g. [5]), in particular, when both (ζk)kez and
(Vk)kez are Markovian. Indeed, if the sequence (ηk)kez models the time evo-
lution of a random environment influencing the process (ξk)k<EZ, the condition
just means that there is no interaction between the process (ζk)kez and the en-
vironment (ηk)kez The same picture arises when (ξk)kez models the outcome
of non-anticipating observations over the process (ηk)kez, mixed with noise. If
the sequence (ζk)kez is a Markov chain, there is a natural assumption in terms
of transition probabilities to guarantee that the corresponding nitrations are
immersed (see Section 4).

The notion of immersed filtrations was first recognized as an important concept
in connection with the classification problem of filtrations (see [1] and references
therein). A closely related notion, regular factors, was introduced in [5]. The
latter paper also contains some examples of regular factors originating in two-
dimensional complex dynamics.

In more general situations (like in control theory) some form of the feed-back
between the two processes may be present, and we cannot expect that the
corresponding filtrations are immersed. In this case more general concepts and
results (like Theorem 3.7 of the present paper) have to be developed.

In particular, we study the CCLT-problem for functions of Markov chains. We
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follow the ideas in [7] closely where a rather general and natural condition in
terms of the transition operator was introduced for the CLT-problem. This
condition means that the Poisson equation is solvable, and it avoids mixing as-
sumptions and similar concepts (e.g. [9] contains results in this direction). There
is a natural construction embedding the original Markov chain into another one,
for which the Poisson equation has to be solved. We give some comments how
this verification can be done, in particular, in the context of fibred dynamical
systems [5]. However, we do not go into much of details. As a consequence we
obtain the functional form of the CLT for fluctuations of a random sequence
around the conditional mean.

Finally, we consider the case of immersed Markov chains. This property together
with a solution of the Poisson equations for the original and extended Markov
chains establishes an analogous result for conditional mean values of the original
sequence, in addition to the CLT for fluctuations.

The present paper arose from an attempt to understand Bezhaeva's paper [2]
from the viewpoint of martingales. Bezhaeva's article studies the same problem
as in the present note in the special case of finite state Markov chains. We
do not reproduce these results in detail and formulate the conclusions of our
theorems in a way different from the viewpoint taken in [2]. However, we would
like to sketch the differences in both approaches. There are two results on
the CLT in [2]: Theorem 3 and Theorem 5 (the latter theorem seems to be
the most important result of [2]). Our corresponding results are Theorem 3.7
and Theorem 4.4. Though, we do not verify here that the conditions of our
Theorem 4.4 are satisfied for a class of Markov chains considered in [2] and
arbitrary centered functions: this would be just a reproduction of a part of
[2]. Its proof and the content of our Section 4 clearly show that even for finite
state Markov chain we really deal with continuous state space when considering
a conditional setup. In fact much more general chains than in Theorem 5 in
[2] (for example, geometrically ergodic) can be considered on the basis of our
Theorem 4.4. Our method of proving the CLT is quite different from that of [2]
and, as was remarked above, is based on approximation by martingales.

We assume in this paper that all probability spaces and σ-fields satisfy the re-
quirements of Rokhlin's theory of Lebesgue spaces and measurable partitions.
This does not imply any restriction to the joint distributions of random se-
quences we are considering; hence we may freely use conditional probability
distributions given a σ-field. An alternative approach would be to reformulate
the results avoiding conditional distributions. However, we do not think that
the advantages given by such an approach justifies the complexity of such a
description.

2 Immersed Filtrations

Throughout this paper, let (X, T, P) and T : X —> X be, respectively, a
probability space and an automorphism of (X, T, P) (that is an invertible P-
preserving measurable transformation). An increasing sequence of σ-subfields
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(^n)nez of T will be called a filtration and a T-filtration if, in addition, T ι {Fn) —
Tn+\ for every n G Z. Any σ-field ί C f defines a natural T-filtration (£n)nez =
(T~nS)nez, whenever T~λS D 8. A filtration ((5n)nez is said to be subordinated
to a filtration (^Γ

n)nGZ, if for every n G Z

£n C ^ n , (2.1)

and it is called immersed into the filtration (J-n)nez^ if (Gn)nez is subordinated
to (.FrOnίEZ and for every n G Z the σ-fields ^ and Gn+ι are conditionally
independent given Qn.

We shall always assume that

T = V ^ (2.2)

(\JseSSs denotes the smallest σ-field containing all σ-fields £ s, s G 5). Setting
f? = VΠGZ ̂  ^ follows from the definition of a T-filtration that Q is completely
invariant with respect to T (that is T~1(^) = Q). Finally, define T- = f\ez ?Ίfe?
and similarly ^_ = f]keZ Gk

Throughout this paper (Gn)nez always denotes a T-filtration which is subordi-
nated to the T-filtration (^Γ

n)nez We then set

The transformation T defines a unitary operator UT on L2 = L2 (-̂ , ^7 -P) by
t/τ/ = / ° T, / G L2. Given a sub-σ-field Ίi, C J7, we denote its conditional
expectation operator (on L2) by ϋ?^ and its conditional probability by P(-\H).
Let II II2 denote the L2-norm.

As mentioned above, the notion of immersed nitrations arises naturally in the
context of Gibbs measures in the thermodynamic formalism (see [5]) and of
Markov chains (see e.g. [2]). In order to simplify our conditions in the CCLT
for these applications we need the following lemma for immersed filtrations.

Lemma 2.1. The T-filtration (Gk)kez is immersed into the T-filtration (J-'k)kez,
if for every n G Z

EFn oEQn+l =EQ". (2.3)

or, equivalently,
EQn + l o E T n = E G n . (2.4)

Conversely, if (Gk)kez is immersed into (Fk)kez, then the following equalities
hold for every n G Z and m > 1 :

E T n Q EGn + m = βGn + m Q E^n = EGn , (2.5)

Proof We first show that (Gk)kez is immersed into (T^kez, if (2.3 ) holds. Let
n € Z be fixed and let ξ and η be bounded functions measurable with respect to
Tn and Gn+i, respectively. It follows from (2.3 ) that ETnη = EQrιη. Therefore
we have

EGn (ξη) = EQn ETn (ξη) = E9n (ξE^ η)

η) = EGn(ξ)EGn(η),
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which implies the conditional independence of Tn and Qn+ι given Qn. In a sim-
ilar way (replacing Tn by Gn+ι) one shows conditional independence assuming
(2)

Conversely, we first show that conditional independence of Tn and <7n+i given
Qn for some n G Z implies (2.3 ). Indeed, it suffices to verify (2.3 ) for all
bounded Tn V Qn+ι-measurable functions of the form ξη, where ξ and η are Tn-
and £n +i-measurable, respectively. By conditional independence, for a Gn+\-
measurable, bounded function /ι,

ίh EG"+1ξdP = ί EG"(ξh)dP = ί EG"ξEG"hdP = ί

whence EGn+1ξ = EGnξ. Similarly one shows that ETrxr\ — EGnη. It follows
that

Since the equation (2.4 ) can be proved similarly, we obtain the equivalence of
(2.3 ) and (2.4 ). Moreover, by induction one easily verifies (2.5 ). D

3 A Conditional Central Limit Theorem

Let (̂ fc)jfc>i be a sequence of real-valued random variables. For every n G Z +

define a random function with values in the Skorokhod space D([0,1]) ([3], [8])
in the standard way: it is piecewise constant, right continuous, equals 0 in the
interval [0,1/n) and equals n~ 1 / / 2 ]C 1 < m <r n t ] ^m fc>r a point t G [1/τι, 1] This
random function will be denoted by Rn(iΊ,..., Vn) and has a distribution on
.D([0,1]), denoted by Pn(y\,..., ι/n). We write wσ for the Brownian motion on
[0,1] with variance σ 2 of wσ(l) (we need not exclude σ 2 = 0 since WQ is the
process which identically vanishes). The distribution of wσ in C([0,1]) will be
denoted by Wσ.

Remark 3.1. In the sequel we deal with convergence in probability of a se-
quence of random probability distributions in £>([0,1]) t ° a non-random proba-
bility distribution. It is assumed here that the set of all probability distributions
in £)([0,1]) is endowed with the weak topology. It is well known that the piece-
wise constant random functions (in D([0,1])) can be replaced by piecewise linear
functions (in C([0,1])) without changing the essence of the results formulated
below.

3.1 A general CCLT

As mentioned in the introduction the conditional central limit theorems in [9]
and [10] are proved using some martingale approximation. There are different
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versions of a martingale central limit theorem which may be used in the present
context. They all are versions and extensions of Brown's martingale central
limit theorem. It has been used in [10] directly, and is used in [9] and here in
a modified form. We apply a corollary of Theorem 8.3.33 in [8] to obtain the
following CLT for arrays of martingale difference sequences.

Lemma 3.1. For n G Z + let (Ωn, Tn', (̂ Γ/c,n)fc>o5 P
n) be α probability space with

filtration T\t,n C Tn (k > 0), and let (vk,n)k>i be a square integrable martingale
difference sequence with respect to ((•?"&,n)/c>o> Pn) If for every e > 0 and t > 0
we have

l<k<nt

and
Σ E^-vl^tσ^ (3.7)

l<k<nt

in probability as n —> oo then {Pn{vι,..., vn) : n > 1}, converges weakly to

The following proposition is the key result in the martingale approximation
method for the CCLT. Implicitly it also appears in [10], and its proof is analo-
gous to that for the central limit theorem in [6] or [7].

Proposition 3.1. Let T be an ergodic automorphism and (Hn)nez be a T-
filtration. Assume that g,h G L2 and

EHlh = h,En°h = 0. (3.8)

If f is defined by
(3.9)

then, with probability 1, the conditional distributions Pn(f, Uτf , 5 U^Γ1 f\Ho)
given Ho of the random functions i?n(/> t^τ/> > U^~lf) converge weakly to the
(non-random) probability distribution Wσ, where σ = ||ft||2 > 0.

Remark 3.2. The equations in (3.8 ) say that the sequence (U^h)nez is a
stationary martingale difference sequence with respect to the filtration (7~ίn)nez

Remark 3.3. The conclusion of Proposition 3.1 remains true if the σ-field
Ho in the statement is changed to any coarser one. This follows easily from the
definition of weak convergence and the non-randomness of the limit distribution.

Proof of Proposition 3.1. By remark 3.2 the sequence of finite series Vk,n —
n~1/2Uτ~

1h, (1 < k < n), form a martingale difference sequence with respect
to the filtrations (Hk)o<k<n- Assume first that σ > 0. We show that the
sequence {Vfc,n|l < k < n, n G Z} with probability 1 satisfies the conditions
3.6 and 3.7 of Lemma 3.1 with respect to the conditional distribution given
Tίo Relative to this conditional distribution with probability 1 the sequence
(U^h)nez is a (non-stationary) sequence of martingale differences with finite
second moments. The ergodic theorem implies that with P-probability 1

1 n-i n-i

k=0 k=0
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as n —> oo. It follows that with probability 1 the same relation holds almost
surely with respect to the conditional probability given 7ί0, establishing (3.7 ).
We need to check (3.6 ). By the ergodic theorem again, for every e > 0 and
A > 0 we have with P-probability 1

lim sup

= limsup n-1 ]Γ EH*((u£h)2lmh>€nl/*})
n^°° 0<fc<(n—l)i

< limsup n"1 \ J
n^°° 0<k<(n-l)t

= limsup n-1

n^°° 0</K(n-l)t

= limsup n"1 £
n^°° 0<fc<(n-l)t

= EEn°(h2lm>A}) - E(h2lm>A}),

and, choosing A large enough, the latter expression can be made arbitrarily
small. Thus for every e > 0 with P-probability 1

as n —> CXD. This implies that with probability 1 the same expression tends to
zero with respect to the conditional probability given TYQ, proving (3.6 ).

It follows from Lemma 3.1 that Pn(/ι,..., U^~lh\Ho) converges weakly to Wσ

P-a.s. The same conclusion also holds if σ — 0 (h — 0 in this case).

Finally we need to show that the sequences (U^h)nez and (JJj>f)nez a r e stochas-
tically equivalent. We have

,..., n'^U^h) =

Rn(n-1/2(Uτg - g), rΓ1'2^ - Uτg),..., n " 1 / 2 ^ - U^g)).

It is easy to see that the maximum (over the interval [0,1]) of the modulus
of the latter random function equals n " 1 / / 2 m a x i < κ n \U^g — g\ and does not
exceed n~ι/2(\g\ -fmaxi<κ n \U^g\). Since by the ergodic theorem n~1U^g2 —»
0, this expression tends to zero P-a.s. Thus we see that P-a.s. the distance
in D([0,1]) between Rn(h,..., U^~ιh) and Rn(f,..., U?~lf) tends to zero as
n —> oo. This implies that, with probability 1, the conditional distributions
P n ( / , . . . , Uτ~ιf)\Ho) in D([0,1]) have the same weak limit as

D
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3.2 On Rubshtein's CCLT

Proposition 3.1 is in fact a general result which can be seen when compared to
other theorems in the literature. We begin recalling Rubshtein's result in [10].

Theorem 3.4. Let (£n, ηn)nez be an ergodic stationary process with ξ £ L2 and

Egξ0 = 0. //

/ / „ \ \ 2

e ) I < oo, (3.10)p

then, with probability 1, the conditional distributions Pn(ξi, &, ••• , ζn\G) of
Rn (ζi, £2, , ξn) converge weakly to the non-random probability Wσ, where

lim -

The proof of this result can be reduced to Proposition 3.1 observing that (3.10 )
implies a representation as in (3.9 ). The result in [9], Theorem 2.3 is of the
same nature, but in the special situation of a skew product. Another special
case of Proposition 3.1 is the following theorem, which is also a generalization
of Theorem 2 in [6], when p = 2.

Theorem 3.5. Let T be an ergodic automorphism and (T~ίn)nez be a T-filtration.
If f G 1/2 is a real-valued function satisfying

\\E kf\\2) < oo, (3.11)

then Proposition 3.1 applies to f. In particular, there exists σ > 0 such that with
probability 1 the conditional distributions Pn(f, Uτf > , U^Γ1 f\ Ho) converge
weakly to the probability distribution Wσ.

Proof. The following explicit formula defines a function g which permits a
representation as in (3.9 ), where we set h — f — g o T + g:

fc=l k=0

(here and below the series are L2-norm convergent due to the assumption
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(3.11 )). It follows

h =

that

/ - Uτg + g
oo

k=l

oo

+Σ^- f c(.
fe=l

oo

k=0
oo

k=0
oo

Σ^(
oo

oo

/e=l k=0
oo

k=l

oo

EHof + Σ U$(En-k^f - En~kf)
k=l

kez

= lim (EHl - En°)
n > o o

This representation clearly shows that h satisfies (3.8 ) and the theorem follows
from Proposition 3.1. D

3.3 The CCLT for subordinated nitrations

Let (Gn)n(ΞZ a n d (3-n)n(zz be two subordinated T-filtrations as explained in sec-
tion 2 on filtrations. We shall use Proposition 3.1 to obtain sufficient conditions
that the CCLT holds together with the CLT for the conditional mean. We begin
with the following reformulation of Proposition 3.1.

Proposition 3.2. Let T be an ergodic automorphism, (Gn)nez and [Tn)n^ι be

a pair of T-filtrations such that (Gn)nez is subordinated to ( f n ) n G z For f G L2

define f = E& f and f = f — f. Assume that f and f admit representations

f = h + g-Uτg, (3.12)

and
(3.13)

where g, g G L2,
EGlh = h, EGoh = 0

EHlh = h and EHoh = 0;

then
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i) the distributions Pn{f •> Uτf-> • , U^~λ f) of the random functions

Rn(f, Uτf > , U^~λf) converge weakly to the probability distribution W&,

where σ = \\h\\2 > 0.

ii) with probability 1, the conditional distributions Pn(f, Urf, , U^~ι f\Ho)

given Ή$ of the random functions Rn(f, Uτf-> > U^~ι f) converge weakly

to the (non-random) probability distribution W3?, where σ — \h\i > 0.

Remark 3.6. The same proof as for Proposition 3.2 shows that the joint distri-

bution of the partial sums of (/, /) converge to aGaussian law with covariance

matrix (σ^ ), where σ\ — ||/ι||2, o~\ — \\h\\2 a n ( i σi,2 = ̂ "2,1 = / hhdμ. One easily

deduces from this that also / is asymptotically normal with variance \\h + h^fe.

Proof. The assertion ii) is a direct consequence of Proposition 3.1. The assertion
i) also follows from the Proposition 3.1 (applied to the filtration (Gn)nez) and
Remark 3.3. D

Corollary 3.1. Under the assumptions^ of Proposition 3.2, with probability

1, the conditional distributions Pn(/? Uτf > , U^~ι f\f', Uτf > , U^~lf) con-

verge weakly to W&, where σ = \\h\\2 > 0.

Proof. This follows from Remark 3.3, because the functions /, Uτf >.. , U^~ι f
are ^-measurable and G Q Ήo Π

Theorem 3.7. Let T be an ergodic automorphism, and let (Gn)nez and (Λι)n€Z
be a pair of T-filtrations such that (Gn)nez is subordinated to (J-n)nez- Let
f G L2 be a real-valued function satisfying

_ < 00, (3.14)
fc=0

II2 < 00 (3.15)
fc=0

Σ\\EGf-EQhf\\2 <oo (3.16)

and

_ / | | 2 < 00. (3.17)
k=0

Setting

f = Egf and f = f-Eδf,

then f and f admit, respectively, the representations

and

f = h + g-Uτg,
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where

EQlh = ft, Eg°h = 0, EHlft = ft, £^°ft = 0, g, g € L2, £g<? = <?.

i) £/ιe distributions Pn(f, Uτf > , U^1 f) of the random functions

Rn{ f ,Uτf T ,Uγ~ιf) converge weakly to the probability distribution

Wz, where σ = ||ft||2 > 0.

ii) with probability 1, the conditional distributions Pn(f, UTJ\ . . , U^~λ f\Ho)

given Ho of the random functions Rn(f, Urf, , U^~X f) converge weakly

to the (non-random) probability distribution W$, where σ = \\h\\2 > 0.

Remark 3.8. (1) Instead of (3.17 ) it is sometimes more convenient to verify
the stronger condition

k=0

(2) If

then the class of functions satisfying the assumptions of Theorem 3.7 is dense in
the subspace of the functions / G L2 satisfying E^~ f = 0. A sufficient condition
for this can be found in subsection 4.4.

Proof of Theorem 3.7. We apply Theorem 3.5 twice. Let us show first that /
and (Wn)n6Z satisfy the assumptions of Theorem 3.5. We have by (3.14 ) and
(3.15 )

k=0
00

k=0
00

fc=0

and

k=0

By (3.16 ) and (3.17 ) we can also apply Theorem 3.5 to / and (Gn)nez (instead

of / and (Hn)nGz), since

00 00 co

£ \\Es->f\\2 = Σ \\Eβ-*Esf\\2 = ̂  ||£e-*/l|2 < 00
k=0 fc=0 k=0
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and
oo

Σ11/- E°kfh = Σ
k=0 k=0

D

Corollary 3.2. Let T be an ergodic automorphism, (Qn)nez and (JΓ

n)n€Z be a
pair of T-filtrations such that (f?n)nez is immersed into ( f n ) n € z - Assume that

T- C g, (3.18)

and that f E L2 is a real-valued function satisfying

< oo, (3.19)

0 0

k=0

and

k=0

Set
f = Egf and f = f-

then (3.14 )-(3.17 ) of Theorem 3.7 are satisfied and its conclusion applies to
f and f. Moreover, the class of functions satisfying the assumptions (3.14 )-
(3.17 ) is dense in {/ G L2 : EG~f = 0}.

Remark 3.9. In many applications we have T- — λί where λί is the trivial
σ-subfield. This obviously implies (3.18 ).

Proof of Corollary 3.2. We only need to verify (3.16 ). This can be deduced
from (2.5 ) in the statement of Lemma 2.1 as follows:

and (3.16 ) follows from (3.19 ). By (3.18 ) Remark 3.8 (2) applies and the set
of functions satisfying (3.14 )-(3.17 ) is dense in {f e L2 ' Eg~ f = 0}. D

4 Markov chains

4.1 A general result

Let (^n)nGZ be a stationary Markov chain with state space (Sκ, Λκ) (where Sκ

is a non-empty set and Λκ a σ-field in Sκ), transition probability Qκ : Sκ x
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Λκ —• [0,1] and stationary probability measure μκ on Λκ. We assume that the
random sequence (xk)kez is defined on some fixed sample space (X, T, P) where
the probability measure P is the distribution of the Markov chain with initial
distribution μκ, the stationary distribution. Then every κk maps (X, T, P)
onto (Sκ, Aκ, μκ) in a measurable and measure preserving way. For every n e Z
denote by /Cn the σ-field in X generated by κn and by Ήn the σ-field generated
by {xk - k < n}, i.e. 7ίn — V/c<n f̂c ^he shift transformation T in X preserves
P and operates on the Markov chain by x n +i — xnoT for every n G Z.

We use the same notation for a transition probability Q and for the correspond-
ing transition operator Qf(x) = f f(y)Q(x,dy) (/ bounded, measurable). Re-
call that a transition operator Q with a specified stationary probability measure
λ is ergodic if QF = F for F G ̂ ( λ ) implies that F is constant. For an ergodic
Q the shift transformation in the path space of the corresponding stationary
Markov chain is ergodic [4], Ch.4, Lemma 7.1.

The following result on the CLT for Markov chains is well known (see [4], in a
weaker form also [7]).

Proposition 4.1. Let (κn)nez be an ergodic stationary Markov chain with
stationary probability measure μκ and transition operator Qκ. If F G L2(μκ)
has the representation

F = G- QκG (4.20)

for some G G L2(μκ), then, with probability 1, the conditional distributions

P n ( F o χ 0 , F o χ l r . . , F o x n _i |7ΐo) given Ho of the random functions Rn(F o

xch F ° Hii - 5 F ° Kn-\) converge weakly to the (non-random) probability dis-

tribution Wσ, where σ2 = \\G\\2

2 - \\QκGg > 0.

Proof We apply Proposition 3.1 to F o xO Indeed, the representation (3.9 )
has now the form

F o χ0 — (G o κ\ — (QκG) o χ 0 ) - G o χ i + G o χ 0

= H+ Go κ0-Uτ(Go κ0),

where Ή. — G o κλ — (QκG) o x 0 satisfies (3.8 ). To complete the proof it is
sufficient to notice that

\\H\\l
= EP\G oκλ\

2- 2EP(((G o Xl) (Q^G) o x0)) + £p|(Q*G) o x o | 2

!-||Q*G|H. •

4.2 Markov chains fibred over invertible transformations

We keep the notation as in the previous subsection. In addition, let (5 π , Λπ) be
a measurable space and φ : Sκ -^ Sπ a measurable map. ψ defines a stationary
sequence π n = ψ o x n (n G Z) with one-dimensional marginal μπ = μκ o ψ~ι,
the image of μκ under ^ . We assume that there exists an invertible measurable
transformation V of Sπ onto itself such that

n)), n G Z . (4.21)



146 On Conditional Central Limit Theorems For Stationary Processes

Since (κn)nez *s a stationary sequence with one-dimensional distribution μ κ, it
follows from (4.21 ) that V preserves μπ. Next, consider the following identity
for the transition operator Qκ, for all bounded, ^4^-measurable functions F on
Sκ and all bounded, A^-measurable functions G on Sπ :

(Qκ((G o φ)F))(-) = G(V(φ(-)))(QκF)(-). (4.22)

If SκjZ — ψ~1(z) denotes the fibre over z G 5 π , then property (4.22 ) means
that the transition probability for an initial point x G Sκ is concentrated on
the fibre S^y^O))- In this case the transition operator Qκ is fibred over the
transformation V, and (Sπ,Λπ,μπ) and V are called the base probability space
and the base transformation, respectively.

Fix some x G Sκ. We are interested in the distribution of (xn)n>o conditioned
by the constraints xo — x,Ψ(κn) — Vn(ψ(x)),n G Z. In order to describe this
behaviour let C be a σ-field generated by some fixed random variables πj. The
following observation follows from Propsition 4.1 by passing from the σ-field Ho
to the coarser σ-field C.

Proposition 4.2. Let Qκ be an ergodic transition probability with stationary
probability measure μκ, and assume that Qκ is fibred over a transformation V
with base probability space (S'7r,^l7r,/x7r).

If F G Z/2 (//;*) has a representation (4.20 )

F = G- QκG

for some G G L2(μ>c), then, with probability 1, the conditional distributions
Pn{F o κ o , F o κ 1 , . . . , F o xn_i|C) of the random functions Rn(F o χ 0, F o
x i , . . . , F o κn-ι) converge weakly to the (non-random) probability distribution
Wσ, where σ2 = | |G | | | - \\QκG\\2

2 > 0.

The same conclusion holds for F — F — EA'*F, where Λ'π = '0~1(-4π)

Proof. First note that the first claim follows from Proposition 4.1. By the
assumptions we have the identity

QκE
 π — E *Qκ,

which implies that both functions F and F defined by

F = EΛ~F, F = F-F (4.23)

also satisfy (4.20 ), because E< (G - QκG) = EΛ'*G - QκE
Λ~G. D

Remark 4.1. Only F defines a stationary process f oκn (n > 0) with a possibly
non-generate CLT, while F has the form F = G o V — G, hence is a coboundary
and defines a stationary process with a degenerate limit in the CLT. For a
function F with decomposition (4.23 ), we can always assume that the function
G in a representation (4.20 ) has a decomposition of the form (4.23 ) as well,
i.e.

F = EΛ'«G - QxEΛ«G = G - QκG
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and

F = G-G- Qκ(G -G) = G- QκG.

Under this condition (4.20 ) admits at most one solution.

Functions satisfying (4.20 ) form a dense subset in L^^μ^). This follows from
the fact that their orthogonal complement in L2{μκ) is the space of Q ̂ -invariant
functions, whence are constant by ergodicity of Qκ. They are also dense in the
subspace of functions F, satisfying

EΛ"F = 0. (4.24)

Remark 4.2. There are different strategies to obtain (4.20 ) for a given func-
tion. If Qκ is a normal operator (in the sense that it commutes with its con-
jugate), very precise conditions for (4.20 ) to hold can be given in terms of the
spectral decomposition of F relative to Qκ ([4]).

For a function F a solution G to the equation (4.20 ) can be written down as a
formal power series:

Qn

κF. (4.25)
n=0

In some cases this series converges with respect to an appropriate norm.

Remark 4.3. Fibration over the base space is of particular interest for fibred
dynamical systems (see [5]). The fibres are given by Sκ,z — φ~ι{z) and the
measure μκ has a disintegration into probability measures μκ,z which are sup-
ported on the fibres SκjZ. Under (4.22 ) fibrewise transition probabilities are
defined by

Q^'n)(x, A) = Qn

κ(x, A), x G Sx,x, A G Λ(Vn(z)),

where z G Sπ and A(z) is the restriction of the σ-field Aκ to the fibre SκjZ. The

family (Qκ'
n )zes7Γ,n>o is measurable in z and satisfies the cocycle identity in

n, i.e.

Q(^fc(*)'*)(iι j4)Q(*'fc)(# du) = Q^z'k+ι\x, A), (4.26)
:,Vk(z)

for z G 5 π , x G S^s, A G ^(V f c + /(z)), fc,Z > 0. The transition probabil-

ity Qκ transports the conditional measure μ^.z) o n the fibre 5^^ to the

conditional measure μ[κy^{z)) on ^ ^ n ^ ) . The condition (4.24 ) means that

F has vanishing integrals with respect to each fibre probability measure μκ,z,

thus defining the family of function spaces on fibres Sκ,z given by functions

of vanishing integral with respect to μ(κjZ). The family Qκ also defines a

family of operators between these function spaces with the cocycle property

(4.26 ) (the operator Qκ

n^ maps functions on the fibre Sκyn^ to those on

Sκ,z). They also preserve integrals with respect to the conditional measures, in

particular, the set of function with integral 0 is invariant with respect to these

operators. Various conditions are known in the literature ensuring that this

family of operators, restricted to spaces of functions with vanishing integrals

over all fibres, are contractions with respect to an appropriate norm (provided
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n is sufficiently large). For example, in the case of immersed finite state Markov
chains considered in Theorem 5 of [2] (we shall treat the immersed case in the
next section avoiding such considerations) there are only finitely many types of
finite fibres with finitely many types of transition probabilities between them.
Under some additional assumptions the contraction property is ensured in the
uniform norm. Alternatively, assuming that Sκ is a metric space, we can use
Holder norms to achieve the contraction property. This technique is often used
in connection with thermodynamic formalism and its relativized version (see [5]
and references therein). The transfer operator considered there is a generaliza-
tion of the transition operator, because it does not need to preserve the space
of constant functions; however, it is a specialization at the same time, because
the "reversed process" is deterministic. Notice, that there is no need to apply
the Hubert projective norm technique because we assume the existence of a
stationary probability measure (though this technique is very helpful in proving
the existence of these measures).

4.3 Reduction of conditional Markov chains to chains with
deterministic base

In this section we sketch the application of subsection 4.2 to the general problem
mentioned in the introduction. Recall that we are interested in the asymptotic
distribution of YJζll /(Ofe) g i v e n Ήo, -<>Vn-i, where ζk = {ξk,Vk) is a two com-
ponent strictly stationary homogeneous Markov chain.

Let (ζk)kez be a stationary homogeneous Markov chain. Its state space is
denoted by (Sζ,Aζ) (where Sζ is a set and Λζ is a σ-field in Sζ), its transition
probability by Qζ : Sζ x Λζ —• [0,1] and its stationary probability measure
by μζ on Λζ, i.e. E(F(ζn+1)\ζk, k < n) = {QζF)(ζn). We assume that the
random sequence (ζk)kez is defined on some fixed probability space (X,F,P)
where the probability measure P is derived from the stationary distribution μζ
(as in subsection 4.2). Then every ζk maps (X, T, P) onto (Sζ,Aζ,μζ) in a
measurable and measure preserving way. For every n G Z denote by Λn the
σ-field in X generated by ζn and by Tn the σ-field generated by {ζk : k < n},
i.e. Tn — \lk<n^k The shift transformation T : X —> X preserves P and
Cn+i = ζn o T for every n G Z.

The process (ηn)nez as above can be described by a measurable map φ from

(Sζ,Aζ) to a measurable space (Sη,Λη). We set for every n G Z ηn = φ{ζn),

Bn = Cn'Λ' (= η - 1 A,), On = V*< n B k , A* = ψ~ιA, and g = \JkeZBk.

The Markov chain has a representation as in subsection 4.2 as follows.

Take Sπ to be the set S^ formed by two sided inifinite sequences of elements

of Sη. Denote by S^ the set of all left-infinite sequences of the elements in

X = S^. We define the shift transformation V on S^ by V(..., z_i, zo, z\,

. . . ) = (..., ZQJ zι > Z2 > )• The set S^ consists of those pairs (x, z) G 57 x

Sπ with x = (... ,x_!,xo), z = ( ,z-i,2o,zi,...) which satisfy φ(xo) =

ZQ. Then we set ^((x?2)) — z The random sequence (xn)nez can be de-
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fined on the same probability space (X,T,P) as (Cn)nez by setting x n =
(( . . . ,Cn-i?Cn),(. jϊ7n-i,ϊ7n,f7n+i,. - ))>n € z> where 7yn in the second coordi-
nate marks the position 0 in the infinite string. It is obvious that xn oT = xn+i
and that (κn)nez generates T. Therefore (X, T, P) can be also considered as the
path space of ( x n ) n e z Note that (xn)nez is a Markov chain, because (xn)n<EZ
is a random sequence for which the past can be reconstructed from the present.
Now we see that we are essentially in the situation of subsection 4.2. The op-
erator Qκ can be defined correctly at least as an operator on L2(Sκ,A>c,μκ),
and Proposition 4.2 applies. Given a function F on S(, the problem remains to
check (4.20 ) for the function F' defined on Sκ by

F ' ( ( . . . , x_i, x0), ( , 2-i, 20, zι, •••))= ^(^o)

First we need to subtract from F' the function z >—> J Ff(u)μκ^z(du)^ the condi-
tional expectation with respect to the base. Then we may prove, for example,
convergence of the series (4.25 ) for the function F' — J F'{u)μκ^(du). As to
the behavior of the random sequence (E(F o (ζn)\{Vk}kez)nez related to the
function z ι—>• JF'(u)μκ^{du), it requires some estimates showing that μκ^ is
mainly determined by the finite part of the sequence z. In Bezhaeva [2] this is
assured by condition (A).

4.4 Immersed Markov chains

We keep the notation of the previous subsection.

Let Q be a transition probability on S x A and A' be a σ-subfield of A. Then Q is
said to be A'-compatible if the transition probability Q( , A) is a ^.'-measurable
function for every A G A'.

Let (Cn)nGZ be a stationary Markov chain and (ηn)nez be a random sequence
defined by ηn — φ(ζn),n G Z. We say that (ηn)nez is immersed into (Cn)nez, if
Qζ is φ~ι(Aη)-compatible. Under this condition a straight forward calculation
shows that the sequence (ηn)nez is a Markov chain, and that the filtration
Qn = \Jk<n Af

k is immersed into Tn — V/c<n Ak- There are two main properties
which specifically hold in the immersed case, but not in the general situation of
the previous subsection:

i) the fibrewise transition probability Q^z^ depends on z0 only where z =
(. . . , 2 _ i , 2 o , 2 i , . . . ) ;

ii) the conditional measure μz is a function of z o ,2_i , . . . (here again z =

Recall that Q is the σ-field generated by (ηn)nez and A'π = φ~1(Aπ) is the
σ-field on the state space of the Markov chain (xn)nez generated by the map ψ.
In other words it is generated by the map (x,z) *-» z, where x = ( . . . , x - \ , x $ )
and z = (..., 2_i, 20,21,...). Let Λ be the map sending (x, z) to XQ. In the
following theorem we use the notations introduced above.
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Theorem 4.4. Let (ζn)nez be α Markov chain andηn = φ(ζn),n G Z. Assume,
that (ηn)nez ^s immersed into (Cn)nez Let (xn)nez denote the Markov chain
associated to (ζn)nez as in subsection J^.3. For a function F' — F o Λ on Sκ,
define _

Ff = EA'*Ff, andF' = F'-F'.

If the functions F and F1 admit representations

F = G-QζG

and _ _ _
F' = G'- QKG1^

where G £ L2(μζ) and G' £ L2(μ><), then f = F' o κ0 and f = F' o χ 0 satisfy
the assumptions of Proposition 3.2. Thus,

i) the distributions Pn{f, Urf, . , U^~λ f) of the random functions

i?n(/, Uτf > , Uγ~ι f) converge weakly to the probability distribution W$,

ii) with probability 1, the conditional distributions Pn(f', lJτf -> •> U^~λ f\Ήo)

given Ho of the random functions Rn(f, Urf, , U^~l f) converge weakly

to the (non-random) probability distribution W^, where σ2 — \\Gf\\\ —

Proof. We apply Proposition 3.2 to the functions / and /.

It is clear from the proof of Proposition 4.1 that / satisfies the condition (3.13 )
of Proposition 3.2 with (7 = Gr o χO

Setting pn = (... ,7/n_i,?7n) we introduce a stationary Markov chain (pn)n<EZ
with state space Sp, transition operator Qp and stationary measure μp. Let χ :
Sκ -> Sp be the map sending (( . . . , z_i, χ0), (..., z-ι, z0, zu . . .)) to (..., Z-i,z0)
and by A" the σ-field in S^ generated by χ. Then by immersion it followsjthat
EA'*(G o Λ) is ^"-measurable. Therefore, it can be written in the form G o A
with an appropriate function G on Sp, and, applying the immersion property
again, we obtain _

This implies the representation

F'{κn) = G(pn) - (QPG)(Pn),

whence (3.12 ) holds for / with 7j = G(pn).

It follows that Proposition 3.2 applies to the function f = f -\- f. D
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