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Abstract

Let {Xn} be a Markov chain on R+ generated by the iteration scheme
Xn+i = Cn+iXng(Xu), where {Cn,gn(-)} are i.i.d. such that {Cn} are
nonnegative r.v. with values in [0, L], L < oo, {gn} are continuous func-
tions from [0,oo) —>• [0,1] with gn(0) = 1. This paper presents a survey
of recent results on the existence of nontrivial stationary measures, Har-
ris irreducibility and uniqueness of stationary measures, convergence and
persistence. Four well known special cases i.e. the logistic, Ricker, Hassel
and Vellekoop-Hognas models are discussed.
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1 Introduction

A topic of some interest to Professor Rabi N. Bhattacharya, whom the present
volume honors, and to which he has contributed substatially is the iteration of
i.i.d. random quadratic maps on the unit interval [0,1]. Beginning with the pa-
per Bhattacharya and Rao [7] where they analyzed the case of i.i.d. iteration of
two quadratic maps using the Dubins-Freedman [9] results on random monotone
maps on an interval, Professor Bhattacharya has obtained a number of interest-
ing results on the uniqueness and support of the stationary distribution as well
as on rates of convergence. For these the reader is referred to Bhattacharya and
Majumdar [6] and Bhattacharya and Waymire [8].

In the present paper we study Markov chains generated by iteration of i.i.d.
random maps on i?+ that are restricted to the class of functions / : R+ —> R+

such that they possess a finite, positive derivative at 0, vanish at 0 and have a
sublinear growth for large values. This class is of relevance and use in population
ecology and growth models in economics. The conditions imposed on / in
this class reflects two features common in ecological modelling, namely, i) for
small values of the population size Xn at time n, the population size Xn+ι a t
time n + 1 is approximately proportional to Xn with a random proportionality
constant while for large values of Xn, competition sets in and the linear growth
is scaled down by a factor. This class includes many of the known models in
the ecology literature such as the logistic maps, Ricker maps, Hassel maps and
Vellekoop-Hognas maps, as explained in the next section.

Here is an outline of the rest of the paper. In the next section we describe the
basic mathematical set up and establish some results for Feller chains on i?+.
In section 3 we describe a set of necessary and two sets of sufficient conditions
for the existence of stationary measures with support in (0, 00). In section 4,
a trichotomy into subcritical, critical and supercritical cases is introduced and
convergence results for the subcritical and critical cases are provided. Section 5
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is devoted to Harris irreducibility and uniqueness of the stationary measures in
the supercritical case. Some open problems are indicated at the end.

It is a great pleasure for the author to dedicate this paper to Professor Rabi
N. Bhattacharya who has been a dear friend and a source of inspiration.

2 The mathematical framework

Let the collection T of functions / : [0, L) —• [0, L), L < oo be such that

i) / is continuous

ii) /(0) = 0

iii) l im^^ = /ί(0) exists and is positive and finite

iv) g(x) = j r ^ o y ^ satisfies 0 < g(x) < 1 for 0 < x < L.

Let (Ω, #, P) be a probability space.
Let {fj(uj, x)}j>ι be a collection of random maps from Ω x [0, oo) —> [0, oo)

that are jointly measurable, i.e. that are (/? x β[0, oo), β[0, oo)) measurable and
for each j,fj(ω, •) G T with probability one. Consider the random dynamical
system generated by the iteration scheme:

Xn+ι(ω,x) = fn+ι(ω,Xn(ω,x)),n > 0

Xo(ω,x) = x. (1)

Since fj(ϋj, ) G T w.p.l. the model (1) reflects the two features common in
ecological modelling i.e. for small values of Xn, Xn+ι is proportional to Xn

with proportionality constant /^+i(0) = C n + i , say, and for large values of Xt,
this is reduced by the factor g(Xn).

The class T includes the logistic, Ricker, Hassel, Vellekoop-Hognas families
mentioned in the introduction, as shown below.

For the logistic family, fc(x) — cx(l — x), L = 1, /+(0) = c, and
g(x) = 1 — x for 0 < x < 1.

For the Ricker family [13], L = oo, fc,d(x) = cxe~dx, f'+(0) = c,

g[x) =e~dx, 0 < x < oo.

For the Hassel family [11], L = oo, fc,d(x) = cx(l + x)" d , /+(0) = c
and g(x) = (1 + x)~d.

For the Vellekoop-Hognas family [14], L = oo, /(#) = rx(h(x))~b,
/;(0) = r, 5(x) = (Λ(ar))-6.

From now on, suppose that {fi]i>\ are i.i.d. stochastic processes. Then the
sequence {Xn} defined by (1) is a Markov chain with state space S — [0, L)
and transition function P( , ̂ 4) = P(/, (CJ, .) G .A) and initial value x0 = x the
same is true when XQ is chosen as a random variable (with values in S) but
independently of {/*}. Further, since fι are continuous w.p.l., {Xn} has the
Feller property:
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For each k S^S bounded and continuous, (Pk)(x) = E(k(Xι)\x0 = x) is
continuous in x.

For Feller Markov Chains it is known [8] that if a probability measure Γ is the
weak limit point of the sequence {Γn( )} of occupation measures,

,.. i - 1

Σ (J \o = x)
n o

then Γ is necessarily stationary for P, i.e.

Γ(A) = ί P(x, A)T(dx) V A e B(S), (3)
Js

the Borel σ-algebra on S. The following proposition is slightly more general.

Proposition 2.1. Let {Xn} be Feller with state space S = [0, L). Let a sub-
probability measure Γ( ) on S be a vague limit point ofTnjχ0 for some initial
r.v. Xo. Then Γ is stationary for P, i.e. it satisfies (3).

For a proof see Athreya [1].
A sufficient condition for ensuring that every vague limit point Γ of {Γn:E}

is nontrivial on (0, L), i.e. satisfies Γ(0, L) > 0 is provided by the following.

Proposition 2.2. Suppose there exists O V : S Ξ [ 0 , L ) - > R+ a set K C (0,L)
and constants 0 <oc, M < oc such that

i) V x φ K , E{V{X1)\XQ = X)< V(X)- OC

ii) V x e 5, E(y(x!) |X 0 = x) < V(x) + M

Then Γ(K) > limΓn,,(K) > ^ ^ > 0.

The proof is not difficult and may be found in Athreya [1].

3 Stationary Measures

In this section we present one set of necessary and two sets of sufficient conditions
for the existence of a stationary probability measure π such that π(0, L) — 1 for
the Markov Chain (1). For proofs of these see Athreya [1].

Theorem 3.1. Let Co = l i m ^ A
xlO X

I 1 for x = 0

Let
+ <oo. (4)

Suppose there exists a probability measure π satisfying the stationarity condi-
tion (3) and the nontriviality condition π(0,L) = 1. Then the following hold:

) i < oo,
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ii) fE\lngi{x)\π(dx) < oo,

iii) E\nCι = - J E(\ng1(x))π(dx) > 0.

Corollary 3.1. If E\nCλ < 0 ί/ien

ẑ) T/ie only stationary probability meausre on [0, oo) is the delta measure at
0.

ii) For any x > 0, and Borel sets A such that A C (0, L)

limΓn,x(^) = 0.

Next we present two sets of sufficient conditions for the existence of a sta-
tionary measure π with τr(O, oo) > 0 for the Markov chain {Xn} in (1).

Theorem 3.2. Let {fj}, {Cj}, {gj} be as in Theorem 3.1. Let Dj(ω) = sup/j(cj, x).
x>0

Assume

i) k(x) = —E\ngι(x) < oo for all 0 < x < L.

ii) limfc(x) = 0.

iii) k( ) is nondecreasing in (T,L) for some 0 < T < L.

iv) E\\nCι\ < oo, Elnd > 0.

υ) E(lnD!)+ < oo.

vi) E\k(Dι)\ < oo.

Then there exists a stationary distribution π for the Markov chain {Xn} defined
by (1) such that τr(O, L) = 1.

Special Cases. We now apply Theorem 3.2 above to the four cases mentioned
earlier.

1. Random Logistic Maps [7]
Here fλ(x) = dx(l - x), 0 < x < 1, 0 < Cλ < 4, gx(x) = (1 - x) so
k{x) = — ln(l — x) and hence i), ii), and iii) of Theorem 3.2 hold. Also
Ό\ = ^ < 1 and so v) holds. Thus i) - vi) of Theorem 3.2 reduce to

£|lnCΊ|<oo, £lnCΊ>0, E In (l - Q-λ I < oo. (5)

This was established by Athreya and Dai [3].

2. Random Ricker Maps [13]
Here fλ{x) = Cιxe~dlX, 0 < x < oo, 0 < Cu dλ < oo. So k(x) = (Edλ)x
and hence i), ii) and iii) of Theorem 3.2 reduce to Ed\ < oo.

Also Dι = ^supdιxe'dlX = ^ . Thus, i) - vi) of Theorem 3.2 reduce to

£ | l n C Ί | < o o , ^ l n C Ί > 0 , Edλ < oo, E-±- < oo.
α
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3. Random Hassel Maps [11]

Here fλ(x) = Cχx{l + x)'d\ 0 < x < oo, 0 < Cu di < oo. So fc(z) =
(-Edi) ln(l+x) and hence i), ii) and iii) of Theorem 3.2 reduce to Ed\ < oo.
Also,

Ci if dx = 1
oo if di < 1

So we need P(dι > 1) = 1. This implies L>i < CΊ w.p.l. and so v) is
implied by £"(lnCi)+ < °o which in turn is implied by iv).

Finally, | ln(l + £>i)| < ln(l + d ) . Thus i) - vi) of Theorem 3.2 are implied
by £ | lnCΊ | < oo, E(\nd) > 0, Ed1 < oo, P(d1 > 1) = 1.

4. Random Vellekoop-Hόgnas Maps [14]

Here f±(x) = Cιx(hι{x))-b\ 0 < x < oo where 0 < Cu h < oo and hλ{-)

satisfies fti(0) = 1, h\(x) > 1 for x > 0, fti( )? is continuously differentiate

and hι(x) = ^τ^τfy is strictly increasing.

Note that this includes all three previous cases. So k(x) = Eb\ lnfti(x).

Next, to find .Di note that the function r\(x) = ln(x(/ii(x))~61) satisfies

Since Λi(a ) is strictly increasing and is zero at x = 0, rj(x) > 0 for 0 <
x <oci, = 0 for x =oc, and < 0 for x >oc, where oci= inf{x: h\(x) > b\}.

So

ί C\ oci (h1(cx1))~bl if oci< oo
lϊmdxih^x))-^ if oci=oo

Thus, i) - vi) of Theorem 3.2 are implied by

i) Eb\ \nhι(x) < oo for all 0 < x < oo.

ii) limJ5&iln/ii(aO = 0 .
x[v

iii) Ebi \nhι(x) is nondecreasing in (T, oo) for some T > 0.

iv) £ | lnCΊ | <oo, Elnd > 0

v) 3 0 <oci< oc -* fti(oci) = ^ and ^ (in (oci (Λi(oc))~bl)) +

< oo.

vi) E\k(Dι)\ = Ek(Dι) = Eb2lnh2{D1) < oc where bx and h2{ ) are
defined by f2{x) = C2x(h2(x))~b2 with /(•) being i.i.d. copy of /i( )

Remark: In all the above four cases the function Qj(x) = ^ ^ ^ 0 as x -^ oo

asserting that for large x the growth is sublinear. But in some ecological context

such as arising in resource management procedures it is more realistic to keep

Qj(x) bounded away from zero for large values of x.
Similarly, in some growth models in economics the possibility of fj (x) —• oo

as x —* oo is not unrealistic. This leads us to a second set of sufficient conditions.
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Theorem 3.3. Let {/?}, {Cj}, {g} be as in Theorem 3.1. Suppose

i) lim E\nC\g\(x) = βi exists and is > 0.
x—>Ό

ii) lim E(]nCιxgι(x))+ = °

Hi) lim ElnCιgι(x) = β2 exists and is < 0.

iυ) lim E{\vLCιxgι{x))~ = 0.
x—>L

v) k(x) = E\ lnCi^i(x)| is bounded on [α, b] for all 0 < a < b < L.

Then there exists a stationary measure π for the Markov chain {Xn} defined by
(1) satisfying π(0, L) = 1.

Corollary 3.2. In the set up of Theorem 3.3, suppose:

i) £ | lnCΊ| < oo, £71nCΊ > 0.

ii) With probability one lim^i(x) = 1, MmgΛx) — η > 0 and there exists
x[0 x]L

0 < a such that a < inf g\(x) < sup^i(x) < 1.
x

Hi) Elnd+Elnη < 0.

Then there exists a stationary π for {Xn} satisfying π(0,L) = 1.

4 Convergence results

The last section dealt with the existence of stationary measures for the Markov
chain {Xn} generated by (1) or equivalently by the iteration scheme

Xn+ι = Cn + 1Xn<M+ 1(Xn), n = 0,1,2,... (6)

where the pair (Cn,#n( )n>i) are i.i.d. with 0 < Cn < oo, gn( ) being w.p.l. a
continuous function as in Theorem 3.1 and independent of XQ.

The convergence questions that we consider here are:

i) The almost sure convergence of the sequence {Xn} &s n —> oo, i.e. conver-
gence of the trajectories,

ii) the convergence of {Xn} in probability and

iii) the convergence of the distribution of {Xn}.

Since the state space of the Markov chain {Xn} is uncountable one has
to look for results from general state space Markov chains theory. There is
a body of results available for the case when the chain is Harris irreducible
(see Nummelin [12]). Unfortunately, many of the iterated random maps cases
turn out to be not irreducible, especially among those where the collection of
functions T sampled from is finite or countable. In these cases if the maps
are interval maps that are monotone then the Dubins-Freedman theory [9] can
be appealed to. The papers by Bhattacharya and Rao [7], Bhattacharya and
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Majumdar [6] and Bhattacharya and Waymire [8] have nice accounts of this in
the random logistic maps case.

On the other hand, as shown in the next section, if the distribution of Cn

is smooth, e.g. absolutely continuous, then {Xn} turns out to be (under some
more hypothesis) Harris irreducible. For the random logistics case Bhattacharya
and Rao [7], Bhattacharya and Waymire [8] have some nice results under such
assumptions.

Motivated by Theorem 3.1, we give the following definition.

Definition: The Markov chain {Xn} of (1) or (6) is subcritical, critical, or
supercritical according as E\nC\ < 0, = 0, or > 0.

In the subcritical case, {Xn} converges to zero w.p.l. In fact, a slightly more
general result holds.

For the rest of this section {Xn}t>o will be as in (6).

Theorem 4.1. Suppose

I n

Λ

lim — VlnC7-(α;) = d(ω) < 0 w.p.l. (7)
n ̂ -^

Then
Xn(ω) = O(pn) w.p.l. (8)

for any p > ed^ and hence Xn(ω) —• 0 w.p.l.

Proof. Since fj G F

Thus

-\nXn < -lnX 0 + - 5
n n n ^

Now (7) => (8).
D

Corollary 4.1. If E In C\ < 0 then (7) and hence (8) holds, provided {CΊ}n>i
are i.i.d.

Remark: In this theorem the hypothesis {Cn}n>i are independent is not
needed. The geometric decay of {Xn} can be exploited to establish the log
normality of Xni a common hypothesis proposed in the ecology literature.

Theorem 4.2. Assume

i) gj(-) is nonincreasing in [0,5] w.p.l. for some δ > 0.

ii) E\nd< 0, E(lnCi)2 < oo.

in) 0 < k(x) = —E\ngι(x) < oo for all x and nondecreasing.

oo

iv) ^2k(oc λj) < oo for some 0 <oc< oo and eElnCl < λ < 1.
1
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Then
\nXn-nElnd

where σ2 =

Proof. From (6)

Since g\ is nonincreasing in [0,5] w.p.l. and (8) holds, 1 > gj(Xj-χ) > gj(αλj)
for j large, some constant α and 0 < λ < 1.

But -E Ingj(αλj) < k(αλj) and so

j=l 1

which is finite by (iii). Thus,

oo ^ n

^ (αλ^) < oo w.p.l. => — ^ l n ^ ( ^ _ i ) - 0 w.p.l. (11)
3=1 3=1

By the central limit theorem

^,-nElnCl
7= > JV(o, l).

Now (10) and (11) yield (9).
D

Next we turn to the critical case.
In the critical case the occupation measures μn,χ( ) defined by (2) all con-

verge in distribution to δ0. This implies that for every G> 0,

., n-l

i.e. αn = Px(Xn >G) —> 0 in the Cesaro sense. A natural question is whether it
can be improved to full convergence or equivalently does Xn —> 0 in probability
for all 0 < x < oo? For the logistic case, i.e. when fι is a logistic map w.p.l.
Athreya and Dai [3] have shown this by comparison argument. This is extended
below to the present context assuming that w.p.l., f\ is unimodal with a common
nonrandom mode α such that /i is nondecreasing in [0, α] and nonincreasing in
[α,oo).

Theorem 4.3. Let ϋ7(lnCΊ)+ < oo and ElnCi — 0. Assume further that there
exists a nonrandom a in (0, oo) such that w.p.l. f\ is nondecreasing in [0, a] and
nonincreasing in [α, oo).

Then
Xn-^-Q for any initial value Xo = x. (12)

The proof makes use of the following.
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Theorem 4.4. COMPARISON LEMMA Let {fi}i>± be i.i.d. and unimodal as in
the above theorem. Let XQ be independent o/{/z}z>i.

Let {Xn}, {Fn}, {Ϋn} and {Zn}, n > 0, be defined by

= min{/n + 1(yn),α}, Yo = mi

y n + i = min{/n +i(fn),α}, Ϋo = a

Zn = mm{Xn,a}

Then for all n > 0, Ϋn>Yn>Zn w.p.l.

Proof. Since Yo < Ϋo = α, and f\ is nondecreasing in [0,α], fi{Yo) <
implying YΊ = min(/i (Yb),α) < min(/i(yo)?^) = Ϋi Now induction yields
Ϋn > Yn for all n.

If Xo ^ α5 then YQ = XQ and so

implying Y1 = mm{fι(Y0),a} = min{Xi,o;} = Zx.
If Xo > «, then Yo = a so

implying Y\ = min{/i(Yr

0)5<^} > min{AΊ,α} = Z\. Thus Y\ > Z\. Induction
yields Yn > Zn for all n.

D
Remark: This comparison lemma does not require any conditions as EΊn C\.

Corollary 4.2. For any 0 <G< α, and n > 1

< Pχ(y« >e) < P(Ϋn >

ii)
Ϋp(Ϋ

n+1

Proof. Clearly i) follows from the comparison lemma. Next, by the Markov
property of {Ϋn}

n+ι >€) =EP(Ϋn >e | ί i >G) < P(Ϋn < e).

Proof of Theorem 4.3 By Corollary 4.2 i) it suffices to show that P(Ϋn >G
0. But since this is nondecreasing in n this is equivalent to showing

- V P(Yj >e) -> o (13)

But the occupation measure sequence μ%( ) defined by

£
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can be shown to have a nontrivial limit point only if E In C\ > 0 (as in the proof
of Theorem 3.1). Thus μ£([e,oo)) -> 0 implying (13).

A natural question prompted by Theorem 4.3 is whether in the critical case
the convergence of Xn to zero in probability could be strengthened to conver-
gence w.p.l. Athreya and Schuh [5] showed that in the logistic case this is not
possible.

Theorem 4.5. Let E]nd = 0, P(Cλ = 1) < 1 and 7 = sup{x :P(Cλ < x) <
1}. Then:

i) There exists a level /?, 0 < β < 1 and an atmost countable set Δ such
that for any x G (0,1) — Δ, Px (Xn > β for infinitely many n > 1)= 1
where Px stands for the intial condition Xo = x. Further, Δ is empty if
P(d = 4) = 0.

ii) If 1 < 7 < 2, i.e. P{CX < 2) = 1 then for all x e (0,1) - Δ

Px

in) Ifη>2, i.e. P(d > 2) > 0 then

( > lpx (n

iv) For any initial value of Xo, the empirical distribution

.. n — 1

LJA) Ξ - V IA(Xj), A e B[0,1]
n o

converges weakly to SQ w.p.l.

Remark: The above result has an interesting interpretation. In the critical case
even though for large n the population size Xn is small with a high probability
the population does not die out. Indeed w.p.l. the trajectory of Xn rises to
heights β and beyond again and again. This may be referred to as the persistence
of the critical logistic process.

5 Harris irreducibility

A Markov chain {Xn} with a measurable state space (S,S) and transition
function P( , •) is Harris irreducible with reference measure φ if for every x G
<S, φ(A) > 0 => P(Xn £ A for some n > 1\XO = x) > 0. Here φ is assumed to
be a σ-finite nonzero measure.

In this section we find sufficient conditions for Markov chains on S C R+
generated by the iteration of maps of the form f(x) = θh(x) where h( ) is a
continuous function. All the results of this section are from Athreya [2] where
the reader will find full details.

Let S = [0, L], L < oc, θ = [0, fc], k < oc and ft: S -> [0, oo) be continuous
and strictly positive on (0, L). Let {^}i>i be i.i.d. r.v. with values in [0, k]. Let
{Xn}n>o be the Markov chain defined by

X n + 1 = θn+ιh(Xn) (14)
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where Xo is independent of {#;}. It is assumed here that for all θ in [0, ifc], θh(x) G
S=[0,L].

The following provides a sufficient condition for Harris irreducibility of {Xn}

Theorem 5.1. Suppose:

i) 3 0 <ot< k, δ > 0 and a strictly positive Borel function Φ m J = (oc
—J, oc +5) c (0, k) such that for all Borel sets

BcJ, Q(B) = P{θ, G B) > f Φ(0) dθ.
JB

ii) 3 0 < p < L and m > 1 such that /(m)(p,oc) = p where / ( m )( ,oc)
is the mth iterate o//( ,oc) =oc h( ) . Then, (a): 3 η > 0 such that
\/ x e I = (p — η, p + η), and Borel set A C I with m(A) > 0

P(Xm G A\X0 = x) > 0.

//", in addition to i) and ii), suppose the following holds:

in) V 0 < i < L, 3 a finite set {oci,oc2,... ,ocn} contained in support of
Q(.) = P(θ1 G •) such that Yn G / where

Yo = x, y i + 1 = f(Yj, ocj+i), i = 0,1,2,..., n - 1.

T/ien (&):{Xn} is Harris irreducible on (0, L) lyiίft reference measure
Φ(-)=m( ni).

Remark: Condition i) is a smoothness hypothesis on the distribution of θ±.
Without this, one could provide examples where the chain is not Harris irre-
ducible. For example, if θ\ has a finite support and {Xn} admits a stationary
distribution π that is nonatomic then it cannot be Harris irreducible since for
any initial value x, the distribution of Xn is discrete and hence cannot converge
in the Cesaro sense and in variation norm to π. But Harris irreducibility and
the existence of a stationary distribution π would imply such a convergence.

Condition ii) is the existence of a periodic point.
The first conclusion (a) is a local irreducibility result while (b) is a global

irreducibility result. The next result exploits the fact that a sufficient condition
for iii) of Theorem 5.1 to hold in the case when h( ) is 5-unimodal on [0,1] (see
definition below) is for the pair (p, oc) to be such that p is a stable periodic point
for the map /(•, oc) =oc h( ).
Definition: A map / : [0,1] —» [0,1] is called g-unimodal if

i) / is three times continuously differentiable,

ii) / is unimodal with a mode at c in (0,1) such that fμ(c) < 0 and / is
strictly increasing in (0, c) and strictly decreasing in (c, 1),

iii) /(0) = /(I) = 0 and

iv) the Schwartzian derivative of /

m{x) s ( 9$ - ( )
l-oo if/'(x)=0.

is < 0 for all 0 < x < 1.
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Examples of S unimodal maps are

f{x) = x(l — x), f(x) — £ 2 sin THE.

A result of Guckenheimer [10] is that if /(•) is a S-unimodal with a stable

periodic point p, i.e. for some m > 1, f(m\p) = p and \f^'(p) < 1, then

for almost all x in (0,1) (with respect to Lebesgue measure) the limit point set
ω{x) of the orbit 0x = {f(n\x),n > 0} of x under / coincides with the orbit
7(p) of p under /, i.e. the set {p, /(p), . . . , /^m~^(p)}.

Theorem 5.2. Let 5 = [0,1], θ = [0,L], /(α,0) = 0ft(x) with f : S -^ S for
each θ G θ. Suppose:

i) h( ) is S-unimodal

ii) 3 (p, ex) G Sxθ, p / 0 and for some m > 1, f(m\p, ex) = p and(

? o c < 1 ^ p zs a stable periodic point of f( ,oc)).

Hi) 3 δ > 0 and a stricty positive function Φ on J = (oc —(5, ex +5) a subset
of θ swc/i ί/iaί /or a// B C J,

Q(B) = P{θi G B) >

where {θi}i>ι are i.i.d. r.v. with values in θ andm(-) is Lebesgue measure.

iv) Xn+i = θn+\h(Xn), n > 0, tί /iere Xo ^ independent of {θi]i>\ with
values in (0,1).

Then {Xn} is Harris irreducible.

A special case of the above is the case of i.i.d. random logistic maps.

Theorem 5.3. Let S= [0,1], θ= [0,4], Xn+1 = θn+1Xn(l-Xn) with {(9n}n>i
z.z.d. r.i;. w /̂i values in [0,4] and Xo ^^ independent r.v. with values in [0,1].
Suppose 3 an open interval J C (0,4) and a strictly positive function Φ on J
such that for all B c J

Q(B) = P{θi G B) > f Ψ(θ)M(dθ)
JB

where m( ) is Lebesgue measure. If JΠ (1,4) = Q, then assume in addition that
there exists a β > 1 in the support ofQ( ) such that the map /(x, β) Ξ βx(l — x)
admits a stable periodic point p in (0,1).

Then {Xn} is Harris irreducible.
Suppose further that ElnCi > 0 and E In (l — ̂ ) | < oo. Then there ex-

ists a unique ergodic absolutely continuous stationary measure π such that the
occupation measure

converges to π in total variation norm.

Corollary 5.1. In the set up of Theorem 5.3 suppose θ\ has the uniform [0,4]
distribution. Then 3 a unique absolutely stationary probability π such that
π(0,1) = 1 and for any 0 < x < 1, \\Px(Xn G •) - τr( ) | | -• 0 where \\ | |

is total variation.
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6 Some open questions

1) Persistence in the critical case. Extend the Athreya-Schuh [5] results to
the present more general setting.

2) Nonuniqueness. Extend the nonuniqueness result of Athreya and Dai [4]
for the logistic case to the present setting.

3) The condition E | l n ( l - ^ L ) | < o o . For the random logistic case in the su-
percritical case this is a sufficient condition for the existence of a nontrivial
stationary measure. However, it is known that if P{C\ = 4) = 1 then von
Neumann and Ulam [15] showed that the arcsine law is the unique ergodic
has absolutely continuous stationary distribution. It is worth investigating
whether this condition could be dropped.

4) The lognormal limit law in the critical case. It has been shown here that
in the subcritical case the distribution of lnJ*Γn is approximately normal.
Extend this to the critical case.

5) Statistical inference. Suppose the sequence {Xj} is observed for 0 < j < n.
Can one estimate the distribution of C\ and #i( )?

K. B. Athreya
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