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Abstract

Nearly everyone uses "the number of Q20 bases" as a rough measure of the ef-
fective length of a given DNA sequence produced by the base-caller PHRED. This
metric simply counts the number of bases in a read in which the PHRED quality
score is at least 20. While the number of Q20 bases is a simple, easy to implement
rule-of-thumb, it does not have much else going for it: it consistently underesti-
mates the number of usable bases in the read. In this short paper, we develop and
evaluate an alternative metric that uses more of the PHRED quality data in a read
to predict how many bases from that read would make it into the eventual con-
sensus sequence of an assembly. The metric was developed by evaluating a set of
pre-existing, high-quality assembled contigs. The resulting predictor is a simple
function of the histogram of PHRED quality values already produced by sequenc-
ing software and performs nearly as well as a more complex additive model that
uses regression splines.
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1 Introduction

Large-scale genome sequencing projects have become increasingly common over the
last fifteen years. Many recent papers, starting with Lander and Waterman in 1988 [6],
have described mathematical models for predicting the progress of such sequencing
projects. These different "Lander-Waterman" analyses arise in response to different
approaches to sequencing large genomes. They model the sequencing process as a cov-
erage process like those described by Hall [5] and derive predictions of mean coverage,
depth, expected number of gaps, and the like, as a function of the number of clones
sequenced N, the genome size G, and the length of sequence L obtained from an in-
dividual clone chosen for sequencing. These predictions are then used to estimate the
number of clones required to obtain an assembled genome to a given depth or coverage.
Conversely, statistics on coverage and read length gathered during the sequencing effort
are used with these models to track progress, detect problems, and refine estimates of
the remaining work required.

The approximate genome size G can be determined in advance, and number of
clones sequenced N is easy to obtain from daily production statistics. However, what
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about LΊ The average number of bases sequenced from the end of a clone can be

tuned by changing electrophoresis conditions, run-time, and the sequencer chosen to

sequence the DNA. In fact, deciding on the desired length I is a major factor in planning

sequencing projects, along with the size (or sizes) of sequencing clone and whether or

not both ends are to be sequenced.

On one hand, most Lander-Waterman analyses assume L to be a constant (although

Lander and Waterman do provide some guidance on the degradation in performance due

to random clone sizes) and assume that any overlap between two clones is detected with

probability one for overlaps of a certain size or greater. On the other hand, sequencing

centers that use the most popular combination of base-caller and assembler, PHRED

[4, 3] and PHRAP [7], are faced with a much more complex situation with respect to

read length and overlap detection. PHRED can produce extremely long reads, but also

throttles the process somewhat by providing a probability of error with each base read.

This base-specific probability of error is expressed as a "quality value" for each base i\

qi = - 101og10/?z, where pt is (more or less) the probability that base i is called in error.

PHRED produces integer quality values ranging from zero to approximately fifty, and

those associated with bases at the ends of the read are typically much lower than those

in the middle. PHRAP uses these quality values in the assembly process in a complex

way. A byproduct of an assembly is a "trimmed" read for each read that entered the

assembly, in which some number of bases at the start and end of each read are discarded

during the alignment process.

Most sequencing centers finesse the problem of estimating L for a read by the sim-

ple expedient of counting the number of bases in a read for which q\ ^ 20. This £?20 rule

arose during the initial phases of the Human Genome Project and was adopted by the

public consortium as a common measure of read length. However, for planning future

projects, it would be desirable to derive a better measure of read length, and preferably

one that related to some measure of the useful size of a read.

In this paper, we define the "effective read length" of a read in an assembly as

the length of the trimmed read produced by PHRAP. We believe that this definition

of effective read length provides a more reasonable model for L in Lander-Waterman

analyses of projects that use PHRED and PHRAP as a base-caller and assembler. In this

paper, we explore some of the features of this distribution and build predictors of L as

a function of the set of q^ Our goal is to provide a simple algorithm to estimate L that

is more accurate and precise than the Q20 rule currently in place.

2 Methods

All analyses were done using the statistical computing environment R [8].
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Source of Reads

We analyzed assemblies from fifty-one sequencing projects produced by the Joint Genome

Institute (JGI) in Walnut Creek, California during two time periods spanning the 1998—

2002. Forty-eight of the sequencing projects were cosmids completed during the period

of November 1998-April 1999. These projects were sequenced on ABI 377 slab gel se-

quencers [2]. Three of the sequencing projects were bacterial artificial chromosomes

(BAC's) completed during the period June 2002-August 2002. These projects were se-

quenced on a combination of Molecular Dynamics Megabace 1000 [1] and ABI 3700

class capillary sequencers.

All projects were base-called and assembled using the current versions of PHRED

and PHRAP with default parameters. From each project, we selected only those contigs

which contained at least 300 reads and had coverage between 5 and 60. Five of the

projects had two such contigs; the rest had just one "main" contig.

Data Gathering

We excluded reads that contained vector, as they would need a special treatment in

order to remove the vector sequence and calculate effective read length. In addition,

we excluded those reads that had ends extending outside the trimmed part of the final

contig. We obtained statistics on each read from the output files produced by PHRED,

as well as the standard output file produced by PHRAP. Data obtained for each read

included the length of the untrimmed read; the length of the trimmed read; the inser-

tion, deletion, and substitution error rates in the trimmed part of the read; the expected

number of correct bases in the read, defined as n - Σi 10~^/10, where n is the number

of bases read and the qt are the corresponding quality values; the number of bases in

the read with PHRED quality values in five different histogram bins (0-9, 10-19, 20-

29, 30-39, 40 and above); and the expected number of correct bases in each of those

histogram bins.

3 Results

Distribution of Percent Trimmed

Table 1 summarizes, by quintile of average depth, the characteristics of the 52,097 reads

from fifty-one contigs obtained from the forty-eight slab gel projects. Each row of the

table shows summary statistics for one of five quintiles of depth of coverage in the

slab data set. Summary statistics for each quintile include the number of contigs, the

median number of reads in the contigs, and the median length of the contigs. Cosmids

are around 40,000 bases long, approximately the same size as the median size of each

contig in all five depth quintile.

Table 2 describes the characteristics of the 13,539 reads from five BAC contigs ob-

tained from the three capillary electrophoresis projects. BAC's are considerably longer
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Table 1: Characteristics of 51 cosmid contigs by depth quintile

Quintile

1

2
3
4

5

Depth

[12,14]

(14,16]

(16,18]
(18,21]

(21,46]

Number

of Contigs

14

9
10

8

10

Median

Number of Reads Length of Contig

772
882
945

1,064

1,326

43,458

39,670

41,473

38,790

39,890

Table 2: Characteristics of five BAC contigs sequenced by capillary electrophoresis

Project

THW

TKM

TKP

Contig

I
I

II
I
I

Depth

37
50
50
39
45

Number of Reads

3,934

1,967

2,729

1,012

3,897

Contig Length

177,944

67,818

96,546

40,502

142,666

than cosmids, ranging from 150,000 to 200,000 bases in length. Adding up the con-

tig sizes, we see that the selected contigs represent approximately the length of their

respective clones, and are all sequenced to high depth.

Figure 1 shows the relationship between raw and trimmed read length as a function

of sequencing technology and quartile of raw read length within sequencing technol-

ogy. Note that the read length quartile values differ in slab and capillary technologies,

largely because of the superior read length obtained with current capillary machines.

The quartile bins of raw read length for slab reads were 107-607, 608-657, 658-832,

and 833-2149. For capillary reads, the quartile bins were 187-795, 796-1114, 1115-

1213, and 1214-1578. There is considerable similarity between the distributions of

proportion trimmed, as a function of read length. The longer the raw read is, the larger

the proportion trimmed. Hence, the number of bases trimmed goes up dramatically as

the raw read length increases. The larger spread of proportion trimmed in the highest

quartile of slab gel reads is likely due to the extremely large size of the bin (833-2149,

versus 1214-1578 for the capillary reads). Overall, the median percentage trimmed

was slightly over seven percent, approximately twenty-five percent of the reads had

less than five percent trimmed, seventy-five percent of the reads had less than fifteen

percent of the raw read length trimmed, and 456 reads had over 90 percent trimmed.
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Proportion of read trimmed by PHRAP
by sequencer type and read length quartile
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Figure 1: Boxplots showing the distribution of of the proportion of the read trimmed
by PHRAP, as a function of the type of sequencer (slab gel vs. capillary) used and the
quartile of raw read length. Within each panel, four boxplots are shown: one for each
quartile of raw read length. The top panel shows the distribution for the reads in the
data set that were produced by a slab gel sequencer, while the bottom panel shows the
distribution for reads in the data set that were produced by capillary sequencer. Note that
the average proportion trimmed increases with increased read length, but is relatively
stable across sequencing technologies.

Current Measures of Effective Read Length

We now examine how well two common measures of read length predict the actual

number of bases used by PHRAP: the QIQ rule and the "expected correct", or Ec rule.

First, we examine the QIQ rule.

Recall that the QIQ rule simply counts the number of bases with a PHRED quality

score of 20 or more. Figure 2 shows a scatter plot of the relationship between Q20 and

the number of bases actually used. This plot shows clearly the extent to which Q20

dramatically underestimates the actual number of bases used by PHRAP. Superimposed

on the scatter plot is a scatter plot smoother fit and a line dividing the region where Q20

overestimates from the region where it underestimates. Note the almost total lack of
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Number of bases actually used by PHRAP
as a function of the number of reported "Q 20" bases

(sample of 5000 reads)
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Figure 2: The relationship between the number of "Q 20" bases in a read and the actual
number of bases used in the assembly. The £20 rule almost universally underestimates
the number of usable bases in a read, irrespective of sequencing technology. Note that
for ease in graphing, only 5000 randomly sampled points are plotted.

points where Q20 underestimates the read length. This result is not too surprising, as
PHRAP goes to great lengths to use the bases at the ends of the read, where the quality
scores are typically low. In addition, the graph does indicate that some other metric
that uses more of the information in the PHRED histogram cannot help but improve the
performance of a read length predictor.

A second obvious choice for read length estimator is the expected number of correct
bases, which can be written as

1=1

where n is the number of bases in the untrimmed read. This estimator subtracts off
a read-specific constant from the untrimmed read length in an attempt to estimate the
number of trimmed bases.

Figure 3 shows a scatter plot much like Figure 2, only plotting the number of bases
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Number of bases actually used by PHRAP
as a function of the expected number of "correct" bases

(sample of 5000 reads)
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Figure 3: The relationship between the expected number of correct bases, as estimated
by PHRED quality scores, and the actual number of bases used in the assembly. Note
that the "expected number" rule performs better, but often overestimates the number of
usable bases in a read.

used against Ec. Here we see the opposite effect of that observed with the Q20 rule: Ec

tends to overestimate the number of bases used by PHRAP. Despite that overestimation,

the tight clustering of points around the line jy = x indicates that this estimator is clearly

superior to the Q20 rule, especially for the capillary reads. Perhaps some combination

of the two estimators should be considered. We now examine that possibility.

Additive Combinations of Histogram Values

We now consider a simple generalization of the above two estimators. The Q20 rule

can be written as a simple affine combination of the histogram counts produced as a

byproduct of the sequencing process flow at the JGΓ.

220 = wo + w\N\ + W10N10 + W20N20 + W30N30 + W40N40,

where N\9N\o, Λ/20, N30, and N40 are the number of bases in the read with PHRED quality

values in [0,9), [10,19), [20,29), [30,39), and [40,50], respectively, and w0, wu wl0,
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0> W30> and W40 are weights. For the £20 rule, WQ = w\ = w\o = 0, and W20 = W30 =

W40 = 1. The Ec estimator can also be easily approximated by linear combination

of these histogram counts, with the weights wj approximating error probabilities for

bases in histogram bin j . We will now generalize to additive combinations of smooth

functions of histogram counts as predictors of read length.

0 200 600

N.01.09

0 200 400 600 800

N.10.19

0 50 150 250

N.20.29

0 100 200 300 400

N.30.39

0 200 400 600

N.40.pius

0 200 600 1000

Fitted G A M model

Figure 4: The five smooth terms in a GAM estimate of the number of bases used by
PHRAP, along with a plot of the deviance residuals versus fit. The five terms correspond
to smooth functions of the number of bases in each of the five histogram bins described in
Methods. In addition, a two-factor term adjusting for sequencing technology was also
included. The labels "N.01.09" through "N.40.plus" correspond to the five histogram
bins of PHRED values produced by local sequencing software (0-9, 10-19, 20-29, 30-
39, and 40 or more). Each y axis label is of the form s(x,d), where s() is an estimated
smoothing spline, x is the count in the corresponding histogram bin, and d is the approx-
imate degrees of freedom in the estimated spline. Only the 5000 random points plotted
in Figures 2 and 3 were used in the fit.

Figure 4 shows the result of fitting a generalized additive model to the read length

data described above. The model fit was of the form

^• = 00 + OLiXi + Σfj inij) + ε/
j
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where yt is the number of bases used by PHRAP for read i, JCZ is an indicator variable

that is one whenever the read was performed on a slab instrument, n^ is the number

of bases in histogram bin j for read /, the fj are penalized regression splines [9] with

knots to be determined by cross-validation, and ε, is Gaussian error. Five of the panels

in Figure 4 show estimates of the / ) , along with standard errors, while the lower right

panel shows a plot of deviance residuals versus fitted values. All of the terms in the

model were highly significant, and the adjusted R2 of the fit was 0.88.

From Figure 4 we see that, except for the histogram bin corresponding to bases with

q < 10, the resulting splines are reasonably linear. The spline for the q < 10 bin, on

the other hand, looks more complex. The conclusion we draw is that more detail about

the structure of the q < 10 quality values will be needed to make a substantial improve-

ment. However, as a first approximation, the spline looks like it might be adequately

approximated by a quadratic.

Consequently, we refit the data to a linear model with a quadratic term for the q < 10

histogram term:

^ ^ α o + OΛ + β o ^ + β i ^ ' + Σ γ y i i v + ε, (1)

(In order to keep the quadratic coefficient to a reasonable size, we scaled the q < 10

histogram value by dividing by 100). The results of the fit are shown in Table 3. We

Table 3: Results of linear model (quadratic term forN.01.09)

Term

Intercept

Slab

N.01.09/100

( J V . 0 1 . 0 9 / 1 0 0 ) 2

N.10.19

N.20.29

N.30.39

N.40.plus

Residual S.D.

Adjusted R2

Estimate

-101.90

35.00

79.00

-9.59

0.79

1.57

1.01

1.15

76

0.87

S.E.

7.58

4.36

2.19

0.29

0.02

0.03

0.02

0.01

t Ratio

-13.45

8.03

36.07

-32.98

40.04

51.83

61.52

107.61

Pr(> |/|)

^ 1(J

< 10- 1 4

< io- 5

< 10-15

< 10-15

< 10"15

<io- 1 5

< lo-15

see that the linear coefficients for bases with q < 20 are around 0.79, while the bases

with q ^ 20 have coefficients somewhat above one. We also see that a large number of

bases with low quality decreases the effective read length.

The fit in Table 3 was based on a training of 5000 points. In order to evaluate the

prediction error, we examined the distribution of the absolute value of the difference



304 D. O. Nelson andJ. Fridlyand

between the predicted number of bases and actual number of bases on a test set consist-
ing of the other 60,636 reads in the data set. Table 4 summarizes that distribution, and
compares it with the prediction error for four other estimators: the generalized additive
model described above, a linear model without a quadratic term for the q < 10 bases,
Ec, and Q2o

Table 4: Absolute prediction error quantiles for estimators of effective read length

Model
Additive Model
Linear Model
(with quadratic term)
(no quadratic term)
Ec
£?20

Quantile
25%

10

12
19
10

115

50%
24

26
39
22

201

of Prediction Error
75%

52

56
71
62

309

95%
159

161
173
365
462

99%
298

302
323
703
594

We see that, except for extremely large errors, the 020 estimator is dominated by
each of the other estimators analyzed. We see that the Ec estimator is quite competitive
with the linear model, at least until the read length gets extremely large.

4 Conclusions

We can draw several conclusions from the above analyses. First, the Q20 predictor
grossly underestimates the effective length of a sequencing read. Except for the extreme
cases, all of the other predictors discussed dominate it under all circumstances in which
they were compared. Second, the Ec and the linear model predictors have comparable
prediction error: on average, about sixty bases. However, the Ec estimator has two
disadvantages when compared to the estimators derived from a linear model. First,
the errors for Ec appear to be biased: on average, Ec overestimates the read length.
Second, Ec requires the entire set of PHRED quality scores. If we restrict our attention
to estimators based on histograms only, Table 4 shows that the best estimator based
only on a linear combination of histogram values is dominated by the linear model
with an added quadratic term, as expected. Finally, we note that the appropriate simple
linear combination of PHRED histogram bins is quite competitive with the much more
complex generalized additive model. The main benefit of adding a quadratic term seems
to be to decrease prediction error in the extreme case of a long, low-quality read.

The boxplots in Figure 1 show a considerable amount of skewness in the distri-
bution of percent trimmed. Although this skewness is transmitted somewhat to the
number of bases in the consensus, log-transforming the outcome y\ in Equation 1 does
not improve the prediction error at all.
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In these analyses, we have not explored any effects due to mis-called bases. Other
statistics gathered for these analyses include the percent of indels (insertions/deletions)
and substitution errors in the trimmed read. Our analysis (not shown) indicates that this
component of effective read length is small (under a few percent), and is dominated by
PHRAP's trimming process.

It seems clear that the relationship between the PHRED quality values and the size
of the region PHRAP trims from the raw read is both simple and quite complex. It
is simple in the sense that, in most cases, the expected number of bases Ec closely
matches what PHRAP uses. However, an examination of Figure 3 shows that as the
raw read gets longer, the situation becomes quite complex, and the size of the region
trimmed becomes more of a function of serial correlations between quality values. This
situation is exactly what various kinds of "moving window" trimming algorithms try
to capture. It would be interesting to explore the extent to which statistically-based
moving window algorithms might outperform the marginal approach outlined above in
the situation of long, low-quality reads.
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