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Abstract

Modern genetic research involves complex stochastic processes and
difficult inference problems and research in this area is necessarily a
collaboration with geneticists and biologists. The major difficulty is
in defining stochastic processes which are biologically meaningful yet
amenable to analysis. To illustrate this we examine a class of random
effects models for dynamic mutations. Dynamic mutations characterize
several inherited disorders in humans. In these disorders a mutated
segment of the gene typically increases in size as it is transmitted from
generation to generation until the gene fails. Biological interest is in
the effect of various genetic markers on the rate of expansion of the
mutated segment and to what extent these markers describe alternate
pathways. We concentrate on the widely studied fragile X disorder as
there are data sets available for statistical analysis. We use heirarchical
Bayes models fitted via MCMC methods to examine some data and
hence determine a class of random coefficients, branching, time series
models which have applications in genetical research.

1 Introduction

The realistic modelling of the stochastic processes occurring in biology quickly
leads to analytically intractable models. However, these models may be of
enormous practical importance. Here we examine a model for the recently
discovered phenomenon of dynamic mutations, that lead to a number of
genetic disorders. In these disorders rather than an on-off allele being trans-
mitted from a parent to their offspring the mutation itself changes upon
transmission. The mutation arises through expansion at a region of the
gene, i.e. the insertion of extra genetic material in the form of trinucleotide
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repeats at that site. This induces instability at that site with the size of
the expansion usually increasing from generation to generation. Ultimately
the expansion becomes large enough to affect the functioning of the gene re-
sulting in phenotypic expression of the disorder. A feature of these dynamic
mutations is that they are clinically undetectable until the expansion crosses
a threshold and phenotypically abnormal individuals arise.

The fragile X Syndrome is the most widely studied dynamic mutation. It
is a common X-linked genetic disorder associated with intellectual disability.
The fragile X syndrome arises as the result of progressive CGG trinucleotide
repeat expansion in the FMR1 gene, which culminates in the failure of gene
expression. The mechanism for the expansion of the repeat size has not been
determined. The fragile X syndrome is classified according to the number of
CGG repeats. The premutation (55-200 repeats) and full mutation (200+
repeats) categories are unstable and some instability has also been reported
within grey zone (35-55 repeats) alleles. Previously the rate of expansion
of CGG repeats on transmission has usually been modelled as a function of
the size of CGG repeat sequence on the maternal X chromosome. However,
some molecular characteristics of the gene other than the size of the CGG
repeat in this chromosome have recently been shown to affect the rate of
expansion. These genetic covariates are certain combinations of microsatel-
lite markers (haplotypes) flanking the repeat sequence, and the number and
position of the AGG triplets which normally interrupt CGG repeats at in-
tervals of 9-10 units. Eichler et al. (1996) have recently hypothesised that
at least two different mutational pathways leading to the fragile X syndrome
related to those genetic covariates are in action in the population. However,
the data obtained by Dana et al (2000) from an Afro-American population
showed that this hypothesis should be viewed from a broader evolutionary
perspective.

Several mathematical models for the transmission of fragile X have been
proposed. These include comprehensive transmission models (Ashley and
Sherman 1995, Morton & Macpherson 1992, Morris et al 1995), iterated
branching models (Gawel and Kimmel 1996) and Bernoulli counting process
models (Bat et al 1997). The model of Ashley and Sherman (1995) accounts
for the dynamics of fragile X mutation by assuming the multi-step expan-
sion of CGG repeats (meiotic expansion in either sex, and mitotic expansion
restricted to somatic alleles of maternal origin). They also included popula-
tion assumptions, such as selection against full mutation, as well as molecular
mechanisms, such as the loss of AGG interspersions, which in their model
constitutes the initial mutation in the FMR1 gene. These previous models
were biologically meaningful but were difficult to analyse statistically and
tended to become outdated as more data on molecular characteristics of the
gene came to hand.
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Huggins, Loesch & Sherman (1998) introduced a multi-step non-linear
time series models for the transmission of dynamic mutations which could
be analysed using standard statistical methods. They used a random inter-
cepts model to examine the effects of haplotypes or genetic markers on the
transmission of the mutation. Here we extend that model in several direc-
tions, with an emphasis on the effect of the genetic markers on the rate of
transmission. Firstly, we use cubic splines to model the relationship between
the length of the repeat sequence in offspring X chromosomes to that in the
parent X chromosome. Secondly we allow the rate of transmission to be
random, rather than just a random intercept.

Available data consists of observations on several generations of affected
families as, due to the lengths of human generations, it is not possible to
collect DNA to construct longer chains. However, one purpose of our mod-
elling is to be able to model distantly related affected individuals who are
known to have a common ancestor. We illustrate the inference method using
published data of Murray et al (1997) who report a variety of haplotypes
which may be related to the rate of expansion in fragile X. The biological
meaning of our results shall be discussed elsewhere, as will formal tests of
hypotheses.

2 Notation

We label the observed haplotypes by h = 1,2,..., H. We suppose there are
Nh families with haplotype /ι, labelled /ι/, / = 1,..., iV .̂ Let n^f denote
the number of parents that produce observed offspring in family /&/, labelled
/ι/fc, k = 1,..., rihf. Also, let Whfk be the number of offspring of individual
hfk. The offspring of individual hfk are denoted by hfkl, I = 1,..., Whfk
Note that individuals may be labeled both as parents and as offspring of
their parents. This notation aids in constructing the conditional densities
required below.

In this paper, inference is conducted conditional on the initiating indi-
vidual in each family, the observed family structure and the observed haplo-
types. Further, the probands, or the individuals initially detected with the
disorder in each family, have been omitted. This was done on order to re-
duce the ascertainment bias as the probands were usually detected by their
having an extreme phenotype and hence genotype. Let Y be the vector of
observations of the CGG triplet repeat lengths on all offspring. Namely,
Y = {Yhfki : (Λ,/,M) e S], where S is defined by S = {(Λ,/,M): h =
1,2,-- ,£Γ; /|Λ = 1,2,--.,ΛΓΛ; k\hf = 1,2, -- ,n Λ / ; l\hfk = 1,2, ,whfk.}.
Here f\h is understood as the value of / given h.
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3 The Hierarchical Model

Our full model for the length of the CGG triplet repeat sequence in offspring
I of individual k is of the general form

(βh + β{

f

h))IF(hfk)} + δFIFζhfkl + σεh}ku (3.1)

h = 1,... ,iϊ, f\h = 1,... ,ΛΓΛ, k\hf = 1,..., nΛ/, Z|/ι/fc = 1,..., wh}k, where
the C/ι/Jfc/'s a n d tfifkis are independent normal random variables with 0 means
and variance 1, Xhfk is a design matrix and IF(hfk) takes the value 1 if
individual hfk is female and zero otherwise. The response g(Yhfkι) is taken
to be log log Yhfki m this paper as this gave errors that appeared normally
distributed, although other choices are possible. We suppose βh follows a
common probability distribution for all individuals with haplotype h and βi '
follows a common distribution for all individuals in family / within haplotype
h. The introduction of the sex effect allows us to mimic the Ashley-Sherman
(1995) model and the subsequent model of Huggins et al (1998) which were
two step models with an initial step common to transmissions from males and
females, and a second step that only occurs in transmissions from females.
This is difficult to directly model in a linear framework so instead we allow
different rates in transmissions from males and females. Available data,
see the plots of Huggins & Loesch (1998), suggest there is little difference
between the haplotypes or families in transmissions from males and a single
vector β is used to model this transition.

The conditional mean Xhfk{β + (βh + βf^I^hfk)} of g(Yhfkι) as a
function of the parameters and log Yhfk was modelled using cubic splines
(Dierckx 1993). The corresponding B-splines are contained in Xhfk- As the
present work is exploratory ten degrees of freedom were used in the cubic
splines to allow flexible modelling. This gave similar results to models with
different degrees of freedom (6, 8 and 14). Let m denote the number of
columns of Xhfk- The main interest is in the posterior distributions of βh
and βf\

We will use the following prior distributions for the parameters /?, βh, βf \σ2

and tip:

2. βh - b2(βh\Σho) = DMVN(0, ΣΛO), h = 1,..., £Γ,

3. iβJΛ)~6i(i9jΛ)|Σ/o) = MyΛΓ(O1Σ/o), f\h = 1,... ,JVΛ, Λ = l, . . . ,

4. σ2 ~ 6 4 ( σ > , λ ) = = IGa(i//2,i/λ/2),

5. 4 ~ 65(41^, λF) = IGa(ι/F/2, I/
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which are all assumed to be independent. Here MVN denotes the multivari-
ate normal distribution, IGa the inverse Gamma distribution (e.g. Robert
1994, p. 153). The values of v, λ, up and Xp do not have any significant effect
on the analysis so will be specified in the study (see Appendix A). The hyper-
prior distributions for the hyper-parameters in the above prior distributions
are taken to be:

1. βo ~ Wo|&,Σ) = DMVN{b,Σ),

2. Σo-W-Hξo + m + l^oiϊo), ξo>m

3. Σfco ~ W-ι(ξh0 + m + l,ξhoRhθ), ξhx> > m,

4. Σ/o - W-ι(ξf0 + m + l,ξ/OΛ/o), ξ/o > m,

which are also assumed to be independent. Here W7^
1(ξ. + m + l.ξ.R.)

denotes an inverted Whishart distribution for an m x m random matrix Σ.
with degrees of freedom £ + m + 1 and positive definite matrix R. It can
be shown that ^ ( Σ " 1 ) = R~ι and E(Σm) = {(£ - m - ljξ.β.}"1 if these
exist (Muirhead 1981, p.113). The values of &,Σ,fθj-Ro?fΛθ?Λ/ιθjf/o a n d
Rfo will be specified in Appendix A. We denote the last three densities by

wo(Σo|ξo,i?o), u>hθ(Zho\ξhθ,Rhθ) and^/o(Σ/o|ξ/o,Λ/o) respectively.
In order to simplify the presentation, we use Θ and 7 respectively to de-

note the parameters and hyper-parameters in the hierarchical model defined
here. Namely, Θ = ( / ^ / ^ / ^ σ 2 , ^ ) * and 7 = (/3b,Σo,ΣΛO,Σ/o), where

Ph — vPi? 7 P/f J 5 P/ — vP/ 5 ? P/ a n α P/ — vPi

/ι = 1, , H. Note that Θ is a vector of dimension (1 + H + Σ Λ ^ I Nh)m + 2
and 7 is an m x (1 + 3m) matrix.

The equation (3.1) together with the prior distribution of Θ and hyper-
prior distribution of 7 comprise a hierarchical random effects model for the
CGG triplet repeat sequence. In order to make inference about Θ and 7,
and in particular βh and βj ' from the data, we need the posterior distri-
butions of βh and βί '. Because of their mathematical complexity we will
not be able to make inferences directly from these posterior distributions.
Rather we will first generate a sample from these distributions and then
make inferences from the sample. The Markov chain Monte Carlo (MCMC)
technique has shown to be powerful in simulating a sample from those prob-
ability distributions which are analytically intractable. Recall that the basic
idea of MCMC is to use a relatively simple transition probability kernel to
generate a Markov chain in such a way that its invariant distribution is that
from which we want to generate a sample. After a sufficient number of
generations of the chain have been simulated, subsequent generations can
be regarded as a sample from the target distribution. Two most basic algo-
rithms used in MCMC methods are Gibbs sampling and Metropolis-Hastings
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algorithm. We use a mixture of these two algorithms which is called MCMC
block-at-a-time algorithm (Chib and Greenberg, 1995).

Several methods are available (Robert 1998) for monitoring the conver-
gence to stationarity of the resulting Markov chain. We employ the Gelman-
Rubin statistic (Gelman and Rubin 1992) which measures the correlation
between the within- and between-chain variations of the simulated multiple
Markov chains. When the Gelman-Rubin statistic becomes very close to 1
(usually less than 1.2 or 1.1 is enough in practice), the chains can be regarded
as having achieved convergence. Once a sample has been generated from the
joint posterior distribution, it can be examined to detect the random effects
of haplotypes and families. The sample can also be used to simulate the pos-
terior predictive distribution for the response variable CGG repeats which,
after comparison with the true CGG observations, allows determination of
the goodness of fit of the model. The various joint and conditional densi-
ties and the MCMC procedure used to fit the model are described in the
appendices.

4 Results

The data of Murray et al (1997) contain observations on CGG repeat se-
quences for 124 individuals and their parents after the probands were omit-
ted. The remaining 124 individuals are the offspring of 86 observed parents
who come from 57 different families, nested in 18 different haplotypes. In
addition, 10 of the 86 observed parents are fathers who between them have
18 offspring. When applying the hierarchical model of section 3, the pa-
rameter vector Θ contains 762 components and the hyper-parameter 7 is a
10 x 31 matrix. For each of these parameters we generated 3 Markov chains
of length 10,000 from which the posterior samples were formed.

We first check the convergence of the simulated Markov chains. It was
found that for the current model at most 2400 transitions would be sufficient
for the simulated Markov chain to be stationary. In the simulations the slow-
est convergence occurred at the Markov chain of Θ(88) = /?s (8) (component
8 of haplotype 724) among all parameters and at 7(6,17) = E^o^β] (the
6th diagonal element of Σ^o) among all hyper-parameters. Figure 1 displays
the sub-chain of a simulated Markov chain (by filter [fc/50], i.e., taking every
50th value) for each of /?s(8) and Σ^oίθjθ) and their Gelman-Rubin statistic
value sequences based on the 3 parallel chains.

To form a posterior sample for each parameter or hyper-parameter, we
discard the first half of each of the 3 generated chains and combined the rest
into one sequence; then we filter this sequence by the operator [Λ /50] and
take the resulting sequence of length 300. Shown in Figure 2 are histogram
densities of the posterior samples for the 10 components of the haplotype
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Figure 1: Row 1 gives Markov chains generated for β$(8) and Έho(6,6). Row
2 gives the corresponding Gelman-Rubin statistic values based on the three
parallel chains.

8 effect 0 8 (the 81st-90th elements of Θ, i.e. Θ[81 : 90] and the 10 com-
ponents of the family effects β[2) = Θ[261 : 270] (effects of the first family
in the second haplotype which are the 261-270th components of Θ). These
histograms are also typical of other haplotype and family effects.

The haplotype effects can be analysed by examining whether or not
there is any heterogeneity among the marginal posterior distributions of
{βh(ϊ), h = 1, , 18} (i = 1, , 10). Shown in the first column of Figure 3
are the Xbar-chart and S-chart with 95% confidence level for posterior sam-
ples of {0i(8), ,0is(8)}, and the histogram density and the QQ-plot for
the corresponding posterior means. The other two columns of Figure 3 are
for {0i(6), ,/?i8 (6)} and {0i (3), ,0is(3)}. Figure 3 gives evidence of
haplotype effects in the expansion process.

The family effects given the haplotype effects can be similarly analysed
based on the marginal posterior distributions of βf(i) (i — 1, , 10). The
three columns in Figure 4 give the results of these effects from the posterior
samples of 0/(8) 's, 0/(4)'s and 0/(1) 's respectively. Again family effects are
evident in Figure 4.

The goodness of fit of the model can be assessed by comparing the re-
sponse observations g(Y) to their posterior predictive distributions (Gelman
et al 1995, sec. 6.3). For each response observation g(Yhfki) a sample of size
300, regarded as the replicates of g(Yhfki) which could have been observed,
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was generated from its posterior predictive distribution. Then the Bayes p-
value was calculated for each sample, which is the proportion of the replicates
that are greater than g{Yhfki) The histogram density for the replicates of
log log Yg, which is typical for all 124 response observations, is given in Fig-
ure 5. A histogram of the 124 Bayes p-values is also given in Figure 5. Since
most of the Bayes p-values are very close to 0.5 (all but one are between 0.4
and 0.563), it implies that the response observations are typical under the
posterior predictive distributions. In addition, we provide in Figure 5 the
plots of log log Ynew IY — the sample means of the posterior predictive distri-
butions against= log log Y, and £?(loglog Y|Θ p o 5 ) — the fitted response val-
ues using the posterior means of the distributions of the /?'s against log log Y.
These plots show the reasonable fit of the proposed model to the data which
is also supported by the values of the goodness of fit statistic computed from
(2) below. Actually it was found that || loglog Y-loglog Yne™|Y||2 = 14.10
and 11 log log Y - E(loglog Y |Θ p o 5 ) | | 2 = 7.26. However, the histogram den-
sity in Figure 5 shows that the posterior predictive distribution of Y has
a quite wide range and a large variance, particularly considering the na-
ture of a loglog( ) transformation for the response Y. This implies that the
proposed model has a large variation in its predictability although it is not
the main interest of this paper. One could possibly obtain better predic-
tions if another transformation g(Y) or a discrete model such as a Poisson
distribution for Y were used.

Finally we propose to evaluate the goodness of fit of the model by the
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Figure 5: Model assessment based on posterior predictive distributions.

following statistic

N

N
i=l hfkl

Var(Yhfkl\θi)
(4.1)

where θ i , , θ # is a posterior sample of θ . Although no rigorous justifica-
tion is available, it sounds sensible to approximate T by a χf 24 distribution
without being too erroneous. Based on the posterior θ sample generated in
our study we found T = 87.26, which corresponds to 0.5-percentile of a χ{24

and thus indicates that the proposed model gives an adequate fit.

5 Discussion

Many of the advances in inference for stochastic processes over the past few
decades have arisen from branching processes and time series models. A
population model for the transmission of dynamic mutations combines time
series models with branching processes, for, as well as (3.1) holding the num-
ber of offspring Whfk of individual hfk has a distribution that depends on
both the sex of individual hfk and the value of Yhfk- The outstanding prob-
lem is to find conditions under which the population model has a stationary
distribution.

We have concentrated on developing and fitting time series type models
for the transmission of a dynamic mutation given the observed haplotypes
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and family structures. The model can be viewed as an extension of the
simpler bifurcating autoregressive models for cell lineages. The work on
cell lineage studies starting with Cowan (1984), Cowan &: Staudte (1986)
and others considers the bifurcating autoregressive process for cell lineage
studies. Cell lineage trees arise from the binary splitting of cells and the
processes of interest are time series, typically low order autoregresive mod-
els, down lines of descent with correlated errors for sister cells and in later
models (Huggins & Basawa 1999) correlations between individuals in the
same generation. Bui & Huggins (1999) considered random effects models
for the bifurcating autoregressive(l) model. The processes of interest here
have a random number of offspring rather than just the two of the bifurcat-
ing autoregressive process and the models down each line of descent are more
sophisticated than the ARMA type processes. Moreover, individuals with
a given identified haplotype may differ at other gene sites, which naturally
gives rise to the random effects models. Hence we take the transition rates to
be random, which are common for individuals in the same families and there
is communality between unrelated individuals with the same haplotype.

Markov models are typically used to model the transmission of a charac-
teristic from parent to offspring. That is, the genetic make up of the offspring
only depends on that of the parents. The indiscriminant use of such Markov
models may be unrealistic in the branching situations that occur in family
studies. For example, in related work on cell lineage studies, Staudte et al
(1996) determined that the correlation between cousins in the data exam-
ined by them was larger than what was predicted by AR(1) type Markov
models. In Markovian AR(1) models for cell lineages, correlations drop off
as powers of the mother-daughter correlation θ. That is, mother-daughter
correlation is 0, the= sister-sister correlation is θ2 (plus environment effects)
the cousin-cousin correlation is 04 etc. Huggins & Basawa (1999) proposed
several models which allow higher correlations between cousins and other
more distant relatives including an AR(2) type model as well as random ef-
fects models of generation effects. This situation may also occur in dynamic
mutations unless genetic covariates that affect the expansion rates are taken
into account. This motivated our hierarchical random effects model.

The models examined here are based on transmissions over one or two
generations and may not reflect the full complexity of the dynamic muta-
tions. Moreover, the processes are sparsely observed and as the process is
unobserved in its initial stages, there is little information concerning the mu-
tation rate currently available. The nested random effects, which depend on
haplotypes that are themselves evolving according to some stochastic pro-
cess, add another level of complexity. However, the haplotypes occur on a
portion of the gene which does not appear to code for a protein hence they
should not be exposed to selection so that their evolution should be depen-
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dent only on random mutations and rare recombinations and be simpler than
that of the the FMR1 gene itself.

Future work will involve the collection and modelling of data on distantly
related affected individuals, where the evolution of the haplotypes will need
to be considered. The strength of the relationship between individuals will
be determined either through family trees or through genetic markers with
known mutation rates.

It is not necessary to use MCMC to estimate random effects although it
was convenient in the present example. For example, Park & Basawa (2000)
have developed an optimal estimating function approach. However, they
have not yet fully developed the inferential procedures.

The use of cubic splines has advantages in that the models are linear and
may to some extent be regarded as non-parametric. Moreover, it was not
necessary to introduce a threshold as in Huggins et al (1998). However, the
non-linear models of Huggins et al (1998) did have some biological advan-
tages in that they more naturally modelled the expansions in the meiotic
and mitotic phases. In the non-linear case it was possible to let the param-
eters in the model depend on the size of the parents repeat sequence which
is more difficult in linear models.

The increasing interest in molecular genetics will result in new and com-
plex stochastic processes. However, as in cell lineage studies and the exam-
ple considered here, these new processes are combinations of familiar simpler
stochastic processes with perhaps extended error structures. Nevertheless, it
appears certain that many new problems in statistical inference and applied
probability will arise in this area.
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Appendices
In the appendices we derive the joint and conditional densities required

to estimate the model parameters using MCMC, and then give the MCMC
algorithm.

A Joint Densities

Using the notations introduced in the paper, it follows that the joint condi-
tional density of g(Y) given Θ, 7 and the observed ancestor of each family
is

H Nh nh=fhfk

P{g(Y)\θ,Ί} ί>{5(Y)|ΘJQΠ Π ΐ[p{9(Yhfki)\β,βh,βf\σ2,δ2

F}
h=lf=l k=l 1=1

H Nh nhf

h=l /=1 k=l

{g(Yhfki)-Xhfk[β

2(PpIF(hfk) + σ*)

(A.1)

The joint prior density of the parameter Θ given 7 is

H Nh H

π(θ|7) Π Π WrlΣ/o) Π WΛo)
h=lf=l h=l

H Nh

/ι=l/=l

H

X

h=l

{ 1 ff

Λ=l/=1
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x|ΣΛ 0Γ* / 2exp {-^

x|ΣoΓ1/2 exp {—tr&^iβ - βo)(β - βoΫ}]

(A.2)

The joint prior density of the hyper-parameter 7 is

τr(7) = ω/0(Σ;o|ξ/θιΛ/o) ωω(Σ!fto|ξfco,ΛAθ) ^o(Σo|ξo,i?o) • bo{βo\b,Σ)

x(2π)-"/2 |ΣΓ1/2exp{-i(ft,-6)'Σ-1(A-6)} (A.3)

where Γm( ) is the multivariate gamma function (see Muirhead 1981, pp.
61-63).

In the simulations, the value of b was taken to be the estimate of β in the
spline regression model g(Yhfki) = Xhfkβ We also used the following values
in the simulation in such a way that they should have very weak effects on the
simulation results: v = λ = up = \ F = 10,= Σ = RQ = Rho — Rfo — 10̂ 10
with Jio being the 10 x 10 identity matrix, and £o = 6ιθ = ζfo = 50.

B Posterior Conditional Densities

In order to simulate the posterior distributions using MCMC methods we
need a number of posterior conditional densities.

The joint posterior density of Θ, 7 given the observed ancestor of each
family is

The conditional posterior density of θ given 7 and the observed ancestor of
each family is

p{g(Y)|Θ,γ}7r(Θ|Ύ) f R .
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The conditional posterior density of 7 given Θ and the observed ancestor of
each family is

C Simulating the Posterior Densities by MCMC

To simulate the posterior distributions of the β^s and βί s, we first generate
a random sample for (©,7) from the posterior density π(θ,7|Y). Then we
extract those values of βh and βf in the sample, which clearly comprises a
random sample from the posterior distributions of (/?£, βj)1. So the question
is how to generate a random sample from the posterior density π(θ,7|Y).

To answer this question we apply an Markov chain Monte Carlo method
(MCMC) which uses a Metropolis-Hastings acceptance-rejection algorithm
alternately to the two blocks of the random quantity (©,7). In other word,
this is the so-called MCMC block-at-a-time algorithm (refer to Chib and
Greenberg, 1995). We list the algorithm in the following:

Obtain the initial values (7(0),

1. Generate a matrix 7̂ °) from the prior π(7).

2. Generate a vector θ<°) from the prior 7r(e

Update ( 7ϋ), θ ^ ) to {^j+ι\ θ^ + 1 ) ) . Repeat for j = 0,1, , N - 1.

1. Use an M-H acceptance-rejection algorithm to generate a matrix
7^+1) from the conditional posterior density π ( 7 | Y , θ ^ ) :

- Generate an initial matrix 70 from τr(7).

- Repeat for i = 0,1, , / — 1.

- Generate a matrix 7' from π(7) and u from the uniform dis-

tribution ZY(/, 00).

- If u < Oij(ji ,V), set 7^\ = 7;. The acceptance probability
is defined by

a ( τ ω τ V mini π ( θ | 7 ) l7(7ί ' 7 ) ~ U ( Θ ( % ? Y

- F i n a l l y s e t

2. U s e a n M - H a c c e p t a n c e - r e j e c t i o n a l g o r i t h m t o g e n e r a t e a v e c t o r
QU+ι) f r o m t h e c o n d i t i o n a l p o s t e r i o r d e n s i t y π ( ^ ^
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- Generate an initial vector ΘQ fr°m 7r(θ|7^+ 1)).

- Repeat for q = 0,1, , Q — 1.

- Generate a matrix θ ' from π(θ|7^+ 1^) and u from the uni-

form distribution Z//(/, oo).

- If u < OLQ(QΨ,&), set θ ^ i = ©'. The acceptance proba-
bility is defined by

- If u > aθ(θφ,&), set Θ% = θ[j).

- Finally set θ^+ 1) = θ § } .

Return the sequence {(7<°\ β ^ ) , (7 ( 1 ) , θW), • • •, (7 ( Λ Γ ), Θ(JV))}.

As in any MCMC method, the sequence generated by the above algorithm
is actually a Markov chain with τr(θ,7|Y) a s i*s invariance density. So by
ignoring the first iVo values the sequence can be approximately regarded as a
random sample from the posterior density τr(θ, 7|Y), provided that both NQ
and N are sufficiently large. In our simulations we found that when taking
/ = Q = 50 the simulated Markov chain became convergent after No > 48
runs.




