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ABSTRACT. The paper sets forth a Bayesian nonparametric regres-
sion framework in which the principal issue is one of where obser-
vations should be taken. Specific criteria are advanced to measure
information gained so that designs might be compared, and asymp-
totics are introduced so that problems found in this way are more
manageable. Illustrations are drawn from different settings, and some
remarks are made about the general program

0. Introduction.
This is a paper in the optimal design tradition, begun with such

prominent works as Kiefer ((1958) and (1959)) and Kiefer and Wol-
fowitz ((1959) and (I960)). Beyond review articles detailing develop-
ments in the area, Atkinson and Fedorov (1989), Bandemer, Nather
and Pilz (1987), and Steinberg and Hunter (1984) for example, there
are the books by Fedorov (1972), Pilz (1991) and Pukelsheim (1993),
amongst others. Much of the research has featured observation of
a parametric response surface in the presence of independent errors,
posing the question of where should one observe to gain maximum
information about the parameters of the model. Some of this work
has reached a high level of mathematical sophistication, exemplified
by Cheng (1978) in the case of discrete problems, and by Dette and
Studden (1997) in continuous ones.

At the same time, the inherent difficulty of the accompanying opti-
mization problems has led to work meant, in part, to ease the amount
of labor involved. One method for doing this is to adopt a Bayesian
stance - for practical, if not philosophical, reasons. See OΉagan
(1978), Sacks and Ylvisaker (1985) and Ylvisaker (1987) about this.
A concomitant benefit of this approach is that one can downplay para-
metric models in the process, allowing the response surface to take a
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freer form. A second device used to soften difficulty is asymptotics, see
Mitchell, Sacks and Ylvisaker (1994) in this regard especially, hence-
forth MSY, and note that asymptotics is given a broader meaning
there than that conveyed by the notion of large sample sizes.

Even with the reduction in difficulty that comes from Bayesian
asymptotics, resulting problems are nontrivial. To bring in specific
items of interest, we begin with the setting employed in MSY. In
words, the asymptotics stem from imagining a weakly varying sig-
nal (the response surface) in the presence of noise (the observational
error); the Bayesian nonparametric slant comes from viewing the re-
sponse surface as a sample outcome of a stochastic process. The set of
sites for observation can be taken in some generality and the question
of which sites to observe, and how often, is posed in light of Bayesian
criteria for information gain. The problems that come about in this
way have a strong game theory flavor to them.

The necessary framework is set out in Section 1, where the results
of MSY are given some review and broadened a little. Thus, given the
ability to observe a stochastic process with error, problems of finding
designs termed A, D or G-optimum are posed. Some results are given
in Section 2. There we go through a sequence of settings in which
general matters can be made more precise and some explicit designs
can be provided for the sake of intuition. In particular, the question
of D-optimum designs is related to the older problems of estimating
the unknown mean of a stochastic process via a linear estimator, see
especially the work of Hajek ((1956) and (1962)) and Ylvisaker (1964)
in this direction. Lastly some remarks are made about the worthiness
of designs, produced through asymptotics, in the finite domain.

Tom Ferguson and I have been colleagues at UCLA for more than
thirty years, advantage to me. He is the epitome of a gentleman
scholar, and is hugely influential in his teaching of others. It is a plea-
sure then to at least name some of his wide-ranging interests in this
paper: Bayes procedures, nonparametrics, asymptotics, game theory.
In the same vein, apologies are offered over the mention of a minimum
variance unbiased estimator - it seemed to be a part of the story.

1. The Design Setup.
The set T will consist of sites at which one might draw observations

and, in our concrete discussion, T might be 2k or an interval in i?d,
for example. An observation at t in T has the form

(1)
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where β is a normal variable with mean 0 and variance υ, X is a
Gaussian process indexed by T and having mean 0 and covariance
function i?, while the ε error terms are independent normals with
mean 0 and variance σ2. In this framework we think of our uncer-
tainty about the response surface X as being modelled by the process
description given.

Despite the level of generality indicated one can state a basic ques-
tion: where should one take an alloted n observations, replication
being allowed? The question is made precise once a criterion is stated
whereby we can decide between proposed answers. To maintain sim-
plicity for this let T be a finite set - it is normally so in real practice
and approximately so in any event. Here are three criteria for com-
paring different designs: look to the process X conditioned on the
observations drawn, and state a preference for small values of

D : the generalized variance of the conditioned process;

(2)
G : the maximum variance over T of the conditioned process;

A : the average variance over T of the conditioned process.

(The last of these is well-specified once we give some meaning to
"average".)

These problems are simply stated, but cannot be solved in any
kind of generality. Invoking the following asymptotics brings them to
a more manageable form. Think of a "weakly varying signal" (here
X) in the presence of "noise" (observation error). More precisely,
take R to be fixed and allow v and σ2 to tend to infinity in ratio
η = v/σ2. One can then translate the criteria listed above to more
concrete forms by following (3.2) to (3.9) of MSY. Let ξ be the design
measure that puts weight 1/n at each chosen ί, replications being
allowed. Minimize, by choice of ξ, the criteria

JJ R(s, t)dξ(s)dξ(t) - J R(t, t)dξ(t),

lax I λ JJ R(a, t)dξ(s)dξ(t) - 2 J R(u, t)dξ(t)} ,

A : λ [[R(s,t)dξ(s)dξ(t) -2 IIR(s,t)dπ(s)dξ(t),

D:

(3)

G: max



316 DON YLVISAKER

where λ = (nη/(\ +nη)) and, for A-optimality, π is some probability
measure on T.

A standard device in the literature, going back to Kiefer and Wol-
fowitz, allows the design measure ξ to be general rather than insist
that nξ be integral. One speaks then of the approximate theory to
constrast it with an exact theory that expects to produce directly im-
plementable designs. We mostly follow the approximate theory here.

Some transparency can be given to the problems in (3) if one takes
X to have constant variance over T, takes 7 to be 0, or both. We set
forth simplified versions of each criterion in (3) as

D : min // R(s,t)dξ(s)dξ(t),

(4) G: maxmin / R(u,t)dξ(t),
£ u J

A : max // R(s,t)dπ(s)dξ(t),

where π is a fixed probability measure on T. In particular by now,
the G-optimality problem is one of finding the optimum strategy
for the maximizing player in a zero-sum game with payoff kernel R.
The present A-optimality problem is that of finding the maximizing
player's response in the knowledge of the minimizing player's strategy
(indeed, A-optimum designs under (4) can sit on a single point). The
-D-optimality criterion seeks a common strategy for the two players in
order to minimize the payout.

It is clear that D-optimum designs are more readily obtained than
are G-optimum designs, a finding common to many settings. It is
shown in MSY that the problem of minimizing the generalized vari-
ance of the conditioned process is the same as that of maximizing
the generalized variance of the observations. Thus attention can fo-
cus on at most n, as opposed to card(T), variables. Dealing with
A-optimality would normally be of intermediate difficulty, as in (3) if
not in (4). We turn now to the task of expanding the results of MSY
as they apply to problems found under (3) or the cleaner versions that
are given at (4).

2. Optimum Designs.
The structure of the section is something like the following. We

begin with D and A-optimality and with what the location of such
designs entails. Then in four different settings a series of comments is



BAYESIAN DESIGNS FROM ASYMPTOTICS 317

made about the covariance functions looked at, some of the optimum
designs that attach to them, and the relationships between optimum
designs as they surface.

Consider D-optimality as at (3) and set H(s) = f R(s,t)dξ(t).
Then, since R is nonnegative definite, standard perturbation tech-
niques show that £* is optimum if and only if the function 2XH* (s) —
i?(s, s) achieves its minimum value at all s in the support of £*. One
arrives at the D-optimal condition in (4) by taking X to have con-
stant variance over the set T, with λ φ 0. In this case £* is optimum
if and only if the function H* achieves its minimum value at all s in
the support of ξ*.

A optimality at (3) can be viewed in the same way. Let J(s) =
f R(s,t)dπ(t). Here ξ* is optimum if and only if XH*(s) — J(s)
achieves its minimum value at all s in the support of ξ*. Of course at
(4) we can see that any design is optimum provided it concentrates
on the maximum of J.
Setting 1: Let T = {—1, l}fc, i.e., consider an experimental situation
in which there are k factors each occurring at two levels, high and low
say. The elements of T can be seen to form a transitive group under
the operation of direct multiplication. With this in mind, a process
X is called stationary if R(m s, m-t)= i?(s, t) for all m, s and t in
Γ.

Here are some correlation functions of stationary processes on T.
Let pi, i — 1,... , k be a collection of positive correlations, normalized
so that Σi pi = 1, say. Take

(5) R(s,t) = Jexp{θΣ\*i-Φ°S Pi}dF(θ)

for any distribution function F on θ > 0. If the pi are constant, one
has a sub-class of isotropic processes where the coordinates of X are
exchangeable. (Correlations like this show up in Mitchell, Morris and
Ylvisaker (1995), along with other information about the structure of
stationary processes on T.)
la) If one assumes X to be stationary, the uniform measure £* on
T is a D-optimum design. This remark requires nothing more than
the observation that

H* (s) =
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for all m in T. Hence H* is constant over T, sufficient for D-optimality
under (4). Then too, if π is uniform on T, J(s) is constant over T
and the uniform measure is ^-optimum for this choice of weighting.
lb) Going further with this, the two person zero-sum game with
symmetric payoff kernel R is in equilibrium if each player picks a site
at random - the payoff is the constant value of H*. Then the uniform
design is G-optimum under the criteria at (3) as well. The sense of
this comes from the uniform nature of the criterion, in opposition to
A-optimality generally, but here is quick indication of why it is so. If
ξ were G-better than the uniform measure ξ*,

max jλ ίί R(s,t)dξ(s)dξ(t)-2 ί R(u,t)dξ(t)\

= λ ί ί R(s,t)dξ(s)dξ(t) - 2mmH(u) < (λ - 2)H*.

But ff R(s,t)dξ(s)dξ(t) > H* by the £>-optimality of £*,
and minn H{u) < H* since ξ* is a maximizing strategy for the game,
yielding a contraction. (This argument has force whenever the D-
optimum measure is supported on the whole of the design space Γ.)
lc) Of course we are begging the issue of implementation of the
uniform design if the design calls for n observations and n is not a
multiple of 2k. For D-optimality in the exact theory one should be
minimizing ΣΣ R(U, tj), the U being n possibly replicated sites in T.

Suppose, for instance, that n is less than 2fc. Asymptotics suggest
an interesting, equivalent problem here. Take a correlation function
of the form (5) and suppose that the distribution function does not
put too much weight on small θ. Then the D-optimum design is a
maximin distance design. This conclusion means that if the distance
d(s, t) between points s and t in T is taken to be {—Σ|si — U\ logp^},
the D-optimum design has the property that the minimum distance
between designs is maximized. See Johnson, Moore and Ylvisaker
(1990) for this, as well as the following.

Take a correlation function of the form (5) and suppose that the dis-
tribution function does not put too much weight on small 0, then the
G-optimum design is a minimax distance design. Thus if one checks
the distance from the most remote site in Γ to the design, using the
distance d above, such distance is minimized. (The second order term
that arises in the asymptotics is also known for suitable expansions,
and allows for some further refinements to these concepts.)
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These alternative problems, while provocative in tone, require quite
sophisticated computations. See Hardin and Sloane (1993) in this
regard, for instance.
Setting 2: Let T be the interval [—1,1] a n d take X to be a stationary
process on T.
2a) Suppose R(s,t) = exp{-0|s - t\}. Take ξ* = (0/(1 + θ)) U
(—1, l) + (2(l + θ))~1(d-ι+dι), where U denotes the uniform measure
and the <9's are point masses, and compute directly that H*(s) =
f R(s,t)dξ*(t) is identically (1 + θ)~λ. Accordingly a design that
takes a proportion (2(1 + θ))~1 of the n observations at each of the
two endpoints, along with the remaining observations equally spaced
on the interval, will be approximately D-optimum at (4). Since ξ*
has full support, the design is G-optimum as well. This measure was
first given by Hajek (1956) in the context of unbiased estimation of
the unknown mean of a stationary process with a convex correlation
function.

(Technically we have replaced the minimization of the generalized
variance of the conditioned process, infinite, by the maximization of
the generalized variance of the observations, finite, for making com-
parisons of different designs. To add rigor to this switch requires
passing to the limit through finite sets which bdcome dense in [—1,1]
- an uninteresting task, and avoided.)
2b) Here is a second example due to Hajek in the same context.
For simplicity, let R(s,t) = (1 — \s — t|)+ on the interval [—A, .A],
where A — m + α, 0 < α < 1. Determine ξ* through ξ*(0) = ξ*(A) =
(m+l)v, Γ ( l ) = Γ ( ^ - l ) = mv,... ,ξ*(m) = ξ*(A-m) = v, where
v~ι = (m + l)(m + 2), and compute directly that if* is constant on
[—A, A], Thus the Z?-optimum design is known in the approximate
theory. (When A is an integer, the D-optimum design turns out to
be uniform on 0,1,.. . , A.) Note further that the designs listed are
also G-optimum.
2c) Correlation functions at (5) arise by averaging over suitably
scaled product correlation functions. If one does the same with the
correlation functions in a) and b) above, the following families surface:

(6) R(s,t) = ίexp{-θ\s-t\}dF(θ) = ί Eθ(s,t)dF(θ) ,

(7) Λ(5, t) = J(l - θ\s - t\)+dF(θ) = J Lθ(s, t)dF(θ).
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The class (7) consists of all convex (or Polya) correlation functions,
and (6) is the subclass of completely monotone correlation functions.
It turns out that designs that do well for the D-criterion at the cor-
relations that generate these classes, EQ and LQ, will have decent
efficiency over the full class.

To see this, take the efficiency of a given measure ξo as

D - e&R(ξ0) = mm JJR(s,t)dξ(s)dξ(t) / JJR(s,t)dξo(s)dξo(t).

Then, for example, if R(s, t) = J exp{-0|s - t\}dF(θ) = J Eθ(s, t)
dF(θ),

D - effΛ(&)

= mmJJJEθ(s, t)dF(θ)dξ(s)dξ(t)/JJjEθ(s, t)dF(θ)dξo(s)dξo(t)

>j dF(θ) minjjEθ(s, t)dξ(s)dξ(t) jJ dF(θ)JjEθ(s, t)dξo{s)dξo{t).

This last is at least e* provided the efficiency at the EQ^S is at least
e* for all θ.

The foregoing argument is given in a more general form in Ylvisaker
(1964), where the interest was in estimating mean parameters rather
than in locating designs. Changing over to design, one calculation in
that paper has £>-eff at the uniform measure to be at least 3/4 when
R is a convex correlation function, and at least about 7/8 when R
is completely monotone. Of course the same device could be used
to give lower bounds on efficiency for other measures, such as those
which are D-optimum for E\ or Li, say.

Going further, there is no difficulty in doing the same with regard
to A-efficiencies. We do not trouble to set this out in detail, but
we note as an example that if π is the uniform measure on [—1,1],
the A-efficiency of the uniform measure over the class of completely
monotone function is at least about .872. To check this, set up an
efficiency ratio as above and argue that the worst case in the class
occurs at some E$. Technically then, all that is required is a little
calculus, and enough patience to evaluate the minimum of the function
[1 - (1 - e~2θ) /2Θ] / (1 - e-°) for θ > 0.
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Setting 3: Suppose now that T is some product set TΊ x Γ2 and that
the covariance kernel of X has a product form, say

EX(s, σ)X(t, τ) = R((s, σ), (ί, r)) - Λi(s, t)Λ2(σ, r).

We take the case of constant variance so that one reaches the opti-
mality problems at (4) rather than those at (3).

If one determines that ξ* is D-optimum for Ri on the set Tί, i =
1,2, then it follows that the product measure ξ* = ξ$ x ξ% is D-
optimum for R on T, as noted in MSY. One merely argues that
lf*(s,σ) = H{ (s)iϊ |(σ), s o if ^7 achieves its minimum on the sup-
port of £*, i = 1,2, then if* achieves its minimum on the support of

Γ
This fact has trivially shown up in the first of our settings where

T is already a product set. More interestingly, we can construct D-
optimum designs as product designs keying off information from the
second setting. Thus if

R((s,σ), (ί,r)) = (1 - \s - ί|)+(l - \σ - r\)+

on [0,3] x [0,4], the 20 point D-optimum design sits on the full grid of
points with integer coordinates. This is an unusual finding for designs
in more than one dimension, since one generally expects rectangular
grids to be inefficient, Ylvisaker (1975) gives an early example of that.
In any event, it is likely the case that the effect of the 20 point design
noted above can be captured fairly well by a more cleverly placed 12
point design, say.
Setting 4: Take T = [— 1,1] and consider a finite-dimensional process
as follows. Let X(t) be a random polynomial, without the zero order
term already accounted for by (1), say X{t) = ΈβjP where vai(βj) =
Vj, j = 1,... , k. Thus R(s, t) = ΣvjsHi.

For D-optimality a standard argument says one need only consider
ξ symmetric about the origin. Then one finds H(s) = Σ^2j52 ?μ2j?

where μ2j is the 2 j t h moment of ξ, and insists that ξ* be supported
on the minimum of 2 \H*(s) — ΈvjS2i.

In order to not stray into tedious computations at this point, the
quadratic polynomial case is used as an illustration. Thus we seek a
measure ξ* for which the function 2 XH*(s) — ΈVJS2^ = (2 λi^/^ —
vι)s2 — V2S4 achieves its minimum on the support of ξ*. Observe first
that if 2 Xv2 — vi is negative (and recall that λ < 1) then the function
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is decreasing in s2. Thus the measure ξ* that concentrates on ±1 and
has μ2 = 1 is D-optimum.

Designs that push toward the boundary of the region are com-
monplace in the case of D-optimality. A look at the form of the
function whose minimum is under scrutiny will convince one that the
only alternative to ξ* here is one which assigns mass to 0 as well as
±1. Let mass a go on the origin and look to find the minimum of
(2λt>2(l — a) — v\)s2 — v2s

4 being attained at 0, ±1. Of course the
value at 0 is 0 and thus one requires that 2λ^2(l — a) — v\ = v2-
Regarding λ, Vι and v2 as fixed, (1 - α) = (vι + v2)/2Xv2 should be
smaller than 1. Thus V\ < (2λ — 1)̂ 2 and, since λ < 1, one requires
at least that the variance of the quadratic term exceed the variance
of the linear term - a sensible finding, though hardly unexpected.

3. Some Remarks.
As mentioned in MSY the asymptotic approach to the Bayesian

design problems, as described here, came in response to the difficulty
of answering the most basic of questions: are there circumstances in
which one should replicate when one has, at best, sparse observa-
tion over a large design space? The success of the approach, if any,
has been in the production of problems of cleaner appearance and,
hopefully, some added insight has been found through them.

The total focus of the paper has been on finding designs, the posi-
tion is taken that analysis is the easier problem. In particular if a prior
is available, Bayesian analysis is straightforward. That the asymp-
totics employed appear useful in design output is argued through some
examples in MSY.

If there is a common thread that runs through the designs found
in the various settings of Section 2, it is that one should rely on
uniform designs. This lesson is already well known, through there
is considerable latitude in implementation of such a principle. The
extent to which one turns away from it should depend on specific
external information, and the (faithful) modelling of such knowledge.

References

Atkinson, A. and Fedorov, V. V. (1989). Optimum design of exper-
iments. Encyclopedia of Statistics, Suppl. Volume, 107-114. John
Wiley, New York.

Bandemer, H., Nather, W. and Pilz, J. (1987). Once more: optimal



BAYESIAN DESIGNS FROM ASYMPTOTICS 323

experimental design for regression models (with discussion). Statis-
tics, 18, 171-217.

Cheng, C. S. (1978). Optimality of certain asymmetrical experimental
designs. Ann. Statist, 6, 1239-1261.

Dette, Holger and Studden, William J. (1997). The Theory of Canon-
ical Moments with Applications in Statistics, Probability and Analysis.
John Wiley, New York.

Fedorov, V. V. (1972). Theory of Optimal Experiments (Translated
and Edited by E. M. Kleinko and W. J. Studden). Academic Press,
New York.

Hajek, J. (1956). Linear estimation of the mean value of a stationary
random process with convex correlation function. Czech. Math. J.
(Also in Selected Translations in Math. Statist, and Prob., 2, 41-61.)

Hajek, J. (1962). An inequality concerning random linear functionals
on a linear space with a random norm and its statistical applications.
Czech. Math. J., 12, 486-491.

Hardin, R. H. and Sloane, N. J. A. (1993). A new approach to the
construction of optimal designs. J. Statistical Planning and Inf., 37,
339-369.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and
maximin distance designs. J. Statist. Plann. Inference, 26, 131-148.

Kiefer, J. (1958). On the nonrandomized optimality and randomized
nonoptimality of symmetrical designs. Ann. Math. Statist., 29, 675-
699.

Kiefer, J. (1959). Optimum experimental designs (with discussion).
J. Royal Statist. Soc. Series B, 21 272-319.

Kiefer, J. and Wolfowitz, J. (1959). Optimum designs in regression
problems. Ann. Math. Statist, 30, 271-294.

Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum
problems. Canad. J. Math., 12, 363-366.

Mitchell, T. J., Morris, M. D. and Ylvisaker, D. (1995). Two-level
fractional factorials and Bayesian prediction. Statistica Sinica, 5, 559-
573.



324 DON YLVISAKER

Mitchell, T., Sacks, J. and Ylvisaker, D. (1994). Asymptotic Bayes
criteria for nonparametric response surface design. Ann. Statist, 22,
634-651.

OΉagan, A. (1978). Curve fitting and optimal design for prediction
(with discussion). J. Roy. Statist. Soc. Ser. B, 40, 1-42.

Pilz, Jurgen (1991). Bayesian Estimation and Experimental Design
in Linear Regression Models. John Wiley, New York.

Pukelsheim, Priedrich (1993). Optimal Design of Experiments. John
Wiley, New York.

Sacks, J. and Ylvisaker, D. (1985). Model robust design in regres-
sion: Bayes theory. Proceeding of the Berkeley Conf. in Honor of
Jerzy Neyman and Jack Kiefer (LeCam and Olshen, Eds.) 2, 667-
679. Wadsworth, Monterey, CA.

Steinberg, David M. and Hunter, William G. (1984). Experimental
design: review and comment (with discussion). Technometrics, 26,
71-130.

Ylvisaker, D. (1964). Lower bounds for minimum covariance matrices.
Ann. Math. Statist, 35, 362-368.

Ylvisaker, D. (1975). Designs on random fields. In A Survey of Statis-
tical Design and Linear Models (J. N. Srivastava, ed.), 593-607. North
Holland, Amsterdam.

Ylvisaker, D. (1987). Prediction and design. Ann. Statist, 15, 1-19.




