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Abstract

Fix any A > 0 and let X, X5,... be independent and identically
distributed 0-1 valued random variables such that

. 2\ Inj
P(X;=1) = ==
(X;=1) mm{ - j,l}
(/2]

Let G, = E X;jXn—j. Gp is the number of times two numbers from
Jj=1
the random set S = {j : X; = 1} add to n. We evaluate the almost

T n _ 0 Gn .
sure limits ]lnII_l' 1°r<1)f EG. = c1(A) and c2(N) = hrr:fo%p G, showing

that 0 < ¢1(A) <1 < e2(X) < o0.

Introduction

Around 1932 Sidon asked whether there exist positive integers

a1 < az < ... such that f(n) > 0 for all n sufficiently large and yet
lim f_(n_) =0 for all € > 0, where

n—oo Nt

(1) f(n) =#{i > 1:a; + aj; = n for some j; > i}.

Fix any A > 0. Let X3, Xo, ... be independent random variables taking only
values zero and one, as determined by the probabilities

@) P(Xj=1)=min{,/%rﬁ Eljl@}spj.
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ln/2]
Let G, = Z X;Xn—j. Using the integers occuring in the random subset
=1
S = {j : X; = 1}, Paul Erdos [1956] answered Sidon’s question, showing
that

(3) c1 = c1(A) = liminf Cn is positive almost surely iff A > 1,
n—oo EGp,

(4) c2 = c2(\) = limsup —= is finite almost surely,
and
(5) EGp~XInnasn— oo.

Note that G, denotes the number of instances in which a pair of elements
of § sum to n.

Erdos then wondered whether 1‘% can ever tend to a finite, positive

limit. In this paper we evaluate c;()\) and cp()), showing that indeed they
are distinct for almost all of the subsets S constructed here.

Results

Using exponential bounds and the convergence part of the Borel-Cantelli
lemma it can be easily shown that

Lne]

(6) ;ir% li;n_} Solip ; XlE)g;_l =0 a.s.
and similarly that
. . L) XiXn—;
(7 611{% ll7rtn—'s°l<1>pi=%;ngj é, G?n * =0 as.
For ¢ > 1 put
s
8) Anke(@) =38 Y XiXn_i > cEG|1 ey

i=le(1+e)k]
To second order precision (see Lemma 1 of the Appendix)

(9) P(Anke(c)) ~ P(Ngnke) = CEG|(14e)k))
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uniformly in 0 <e <« land nin (1+&)f < n < (1+¢e)k*! as (14 )k — o0,
where

14e)k—1
| —)

(10) g(n.k,e)= > EXiEXn
i=|e(1+e)k]

and N, ~ Poisson(y). Since g(n, k,&) ~ Ak(1 — O(v/€)) In(1 + ¢),

(11) P(Apge(c)) ~ (g(c(1 + O(y/2))) 1Ok Ini+e)

uniformly in n and ¢ as (1 +¢)¥ — oo, where g(c) = ¢

Notice that ¢(1) = 1 and ¢(c) is a continuous function on 1 < ¢ < oo
which strictly decreases to zero. By the intermediate value theorem there is
a unique ¢z = c2(A) > 1 such that

(12) (qlea))* = (ecrl)A =e L.

(c)e2

Take any ¢ > c2(A). Then there exists § > 0 such that for all sufficiently
small ¢ >0

(13) (q(E(1 + O(vE))))A-OWENA < =16
and so (by (11) and (13)),

[e.¢]

oo
lim >~ > P(Anke(@) < lim 3 e(l4e)itle k(49 In+e) — g,

ko—o0
° k=ko (1+e)k<n<(1+e)k+1 k=ko

Since ¢ > c2(A) is arbitrary,

(14) li;rl sup EGC?n < ea(N) as.

On the other hand, if 1 < ¢ < c2(A) then there exists § > 0 such that for all
sufficiently small € > 0

(15) (q(c(1 + O(VE))))1OWEDA 5 =144,

Let Iy ¢ . denote the interval of consecutive integers n such that (1+e)k <
n < e (c), where

nke(c) = thelastn < (1+ g)k+1 .

n
(16) 27r(02(/\))32EG[(1+€)’°J Z P(Aj,k,e(g)) < 1.
J=[(1+e)¥]
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Then set
(17) kelc) = U An (o).

n€lg e c

By restricting Aj, (c) to a union over only some of the integers (14+e)f <n <
(L+¢)k+!, we will be able to compute the order of magnitude of P(A} _(c)).
Applying Lemma 4 of the Appendix to the probability of pairwise intersec-

tions of events whose union comprises A} (c) demonstrates by means of the
Bonferroni inequality

> P(Ankelo) - Y P(Anke(0) N A ke(0))

(18) n€lge ¢ {n#n'nn'€ly .}

N =

P(Age(0))

that the correct order of magnitude of P(4j .(c)) is given by Boole’s inequal-
ity:

(19) P(4.(0) < Y P(Anke(9):

n€ly,e,c

Actually, for all € > 0 sufficiently small and |(1 + ¢)*] sufficiently large

) > BTN
(20) PUie(d) 2 g

For k' > k + €72, Ag(c) and Ap ¢(c) are independent. Moreover, by (5)

and (20), > e P( [ka"zj .(c)) diverges. Hence limsup ©_ > candso

n—0oo n

Gn
(21) llf?i)sol:)p BC. = = cz(A) as.

As for the almost sure lower bound, Erdos showed in 1956 that ¢; =
c1(A) = 0if A < 1. In fact, Erdos showed that G, = 0 infinitely often
if A < 1. Suppose, therefore, that A > 1. By a zero-one law followed by

application of Fatou’s lemma,

_ _ Gn Gn
L=L(\) = hnrr_lgéfEGn EhnnlngEGn

.. Gn
< =1.
< llmlnfE<EG ) 1

n—00 n

Hence the hm 1nf and hm sup of R;L are indeed distinct. In an effort to

identify L()\) let a= cl(/\) denote the smallest positive root of the equation

(2) ((T)l-)A e
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Since ¢(c) is continuous on [0, 1], strictly increasing from e~! to 1, it is
clear that 0 < ¢1(A) < 1 for A > 1. Set
L!1+€!k_1J

2
(23) Bn,k,s(c) = Z XiXn—i < CEGI_(l.H_:)kJ
i=|e(1+e)* |

Reasoning much as before, if 0 < ¢ < ¢;(A) and A > 1, then

[e <]

(24) k&i—{noo Z 5(1 + E)kP(B[(1+€)’°+1J,k,e(-Q)) =0,
k=ko

which implies P(By e(c) i.0. (n)) = 0. Since ¢ > 0 and 0 < ¢ < ¢1(X) are
arbitrary,

Gn
imi > .S.
(25) lﬂgf BG. 2 ci(A) as
As for the reverse inequality, it is proved by applying an analogue of
Lemma 4 of the Appendix to the analogous Bonferroni inequality for all
fixed ¢ > ¢1(A\) and then using the divergence part of the Borel-Cantelli

°o< 8. f
B, < c1(M\) a.s. and therefore

lemma as before. Consequently, liminf
n—oo

Gn
lim inf
n—oo n

=c1(A) a.s.
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Appendix

Lemma 1. Let (1+¢€)F < n < (1+¢€)**! and define Apke(c) as in (8).
Then (A.9) holds for fizted ¢ > 1 and A > 0.

Proof. Let Y;, = X;Xn_;. For each fixed n in the indicated interval and

all le(1+ )] < i< gl—*%:l-, the random variables Y;, are independent
Bernoulli’s. Letting

(A1) e Mn=1— PP,
and introducing independent random variables
(A.2) Win = Pois(\in),

it is obvious that
L(Yin) = L(min{W; 5, 1}).

Hence we may assume

(A.3) Yin = min{W;,,1}.
Let
Lg1+522’°‘1J
(A4) A= > Ain
i=|e(1+e)k]
L(1+£2!k_1J
(A.5) Wo= >  Win,
i=|e(1+e)k]
and
|G
(AG) Yn = Z },i,‘n-
i=[e(1+e)k]
Then
W, ~ Pois(\,)
and

14e)k—1
|G |

P(Ya#Wo)< )

i=|e(1+e)k]

(/\i,n)2



Number of Pairwise Sums 185

Since
Ain = —~In(1 - PiPn—-'i)
= PiPn—i + ai,n(PiPn—i)Z;
where % < 0;n <1 for all ¢ sufficiently large
402k2e2 In L
(A7) A= EYp+0p et
m2n

where |0 k| < 3 4 O(e) for all (1 + ¢)F sufficiently large and

4\2k2e? In L
m2n

(A-8) P(Yn # Wp) <

for all (1 + ) sufficiently large and 0 < € < 4. Note that g(n, k,e) = EY,,.
By virtue of (A.7) and (A.8), for all £ > 0 sufficiently small and (1 + ¢)*
sufficiently large,

8M\2k%e? In 1
(A.9) |P(Anke(c)) = P(Ng(nke) = cEG|(14e)k))| < w
for all n € (|(1 +e)*], |(1+ )]

Lemma 2. Let Ny ~ Poisy. Take anyl <c<c<oo. Forc<c<¢c

(A.10) PV 2 07) ~ 5 (z_ 5 (ezl)w.

uniformly in ¢ as v — oo. For purposes of comparison, the best possible
exponential upper bound of this probability is

c—1\"7
(A.11) inf EetVr—e) = (e ) ,
t>0 c¢
usingt =t.=1Inc. Henceifc<c<c
(A.12) %gg EetMy=en) < V2myP(Ny > cy)

for all v sufficiently large.
Secondly, take any 0 < c_ < c¢* < 1. Forc_ <c<c*,

c—1\"7
(A.13) P(N, < ¢7) ~ (1_0)1W (ecc ) .

The best possible exponential upper bound of this probability is

—1\7
(A.14) inf Eet(©7~N+) = (ec ) ;
t>0 c¢
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usingt =t, = —In c.
Hence forc— < c<c*

(A.15) inf Eer=N)7 < /AP(N, < ¢y)

for all sufficiently large v (since (1 — c)?2mc < 1).

Lemma 3. Let (1+e)* <n<n' < (1+e)f* and Jy = {l: |[e(1 +¢)¥] <
1< |80 1) Then

1
P (Z X X1 Xpry > 30) < (S

leJy

for all (1 + €)* sufficiently large (uniformly in n and n').

Proof. The set Ji can be partitioned into three disjoint subsets (and some-
times two) Jk,1, Ji,2 and Ji 3 such that the variates {X;Xn_ 1 Xp/—; : 1 € Ji i}
are independent for each 1 <1 < 3.

Letting Il denote the smallest integer in Ji, the set Ji; can be con-
structed as follows. Let jk’,- = {l € J of the form Iy + (i — 1)([i2‘—"J +1)+
i’ +7'(n' = n+ [252] + 1) such that 0 < i’ < |%5%] and j’ > 0}. Then let
T = Jr1, Jk2 = Jk2, and Jiz = Ji3\Jk1

3
P (Z X1 Xn-1Xw-1 2 30) <) P (Z XiXn-1 Xn—1 2 10) :

ledg i=1 l€Jk,:

Using an exponential upper bound,

P <Z X1 Xn 1 Xp_1 > 10) < Eexp (—10t+ > tX,X,,_lX,,,_,)

lEJk,i lGJk,i
e~ 10t H EetXiXn-1Xp_y
l€Jk,q
e 1% [ (1 + PPociPui(ef - 1))
l€Jk,5
< eexp Y PPy Pu(e - 1).
lEJk_,*

Set t = In 2(1 4 €)*/3. Then

> PPy Pyy(ef—1) -0
lGJk,,;
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as k — oo and the result holds. O

Lemma 4. Fiz any 1 < ¢ < ca()\). Put gr = gre = EG[(1 +¢€)*|. Then
take € > 0 sufficiently small. Using the same notations and assumptions as
given elsewhere in the paper,

P(Anke(©)NAp ke(€)) < (1+5)—3k+(02()‘))3127TEG|_(1+5)’°JP(An,k,e(Q))P(An’,k,s(g))'

Proof.

P(An,k,e(g) N An’,k,a(g)) < P (Z XiXn 1 X1 2> 30)
ledy

+P (Z Xan_anl_l S 30’ etl(EIEJk X1 Xn—1—cgx)
ledg

(xetz(ZleJk Xlxn’—l_ggk) 2 1)

1 11 e 7. XiXn—1—cgk)
< E 1 leJy, MAn—l CYk
S {drem e
x et2(zze,1k Xan'_z—Egk)etz(30_ZzeJk XiXn—1Xpr—y)
< (1+e)¥*+ T

Let Iy = min{l € Ji} and [} = max{l € Ji}. Taking conditional expec-
tations given {Xp—1 X —; : | € Ji}, rewriting the resultant expression and
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then upper bounding that,

:112 — 630t2——(t1+t2)gng H (1 + Pl(et1xn_1+tzxn,_l—th,,_zXn;_, _ 1))

ledy
— 30t2—(ti+t2)cgr g H (1 + }Dl(etl _ 1))Xn-z(1 + Pl(etz _ 1))Xn’—[(1_Xn—l)
ledg
< Srtrap | | T 1+ P =) | | [ @+ Pua(e® —1))%
len—Jy len'—Ji
n'—lx-1
= 30t2—(t1t+t2)egr p H (14 Po_y(eft — 1))Xz
l=n-1}
n—lg
[T @+ Puci(e = 1)1+ Poog(e - 1)
l=n/—l%
n' =l
x JI (+Puo(e-1)®
l=n—1l+1
n'—l;-1
=  30t2—(t1+t2)cgx H (1+ PPo_y(eh — 1))
l=n—1}
n—lk
t1 t2 _ t1 t2
x [] @+ PPui(e" —1)+ PPy_i(e”? — 1) + PPy 1Py (e — 1)(e"? — 1))
I=n'-1}
n' =l
x TI (+RPui(e - 1)
l=n—1l+1
< exp{ 30ty — (tl + tg)ggk + (etl — 1) Z Pan_.j

J€Jk

(e — 1) Z PjPy_j+ (e —1)(e*2 — 1) Z PjPpjPu—j
JEJk ]EJk

Z P;P,_j = g(n,k,€) and Z PjPy_j = g(n', k,€), each of which is asymp-
€Tk J€

totic to EG|(14¢)k| uniformly in n,n' as (1 + €)¥ — oco. Letting et =

cEG| 1., cEG| 1., .
77%))_"1 and e2 = —9(7115,1,:—6))“, (A.12) of Lemma 2 gives

e—tlggk-}—(etl—l)g(n,k,e) <V 2ﬂg(naka€)P(Ng(n,k,s) 2> Q‘]k)
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and
e—tzqu+(et2—1)g(n',k,€) < V 27rg(n/’ka€)P(Ng(n’,k,e) 2 ng)
Note that
(" —1)(e? —1) > PPy jPy_; >0
J€Jk

as (1+¢€)F — oco. Incorporating Lemma 1 as well as the formula for ez, etc.,
I < (9)31277EGL(1+5)’=JP(An,k,e(Q))P(An’,k,E(Q))

for all (1 + ¢)* sufficiently large. o
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