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Compatible confidence intervals for

intersection union tests involving two

hypotheses∗
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Abstract: The intersection union test is a standard test in situations where
the rejection of all elements of a set of k hypotheses is required. In particular,
the intersection union test is known to be uniformly most powerful within a
certain class of monotone level−α tests. In this article we consider the special
case of k = 2. We consider the problem of deriving simultaneous confidence
intervals which are compatible with the associated test decisions. We apply
the general partitioning principle of Finner and Strassburger (2002) to derive
a general method to construct confidence intervals which are compatible to
a given test. Several examples of partitioning the two-dimensional parameter
space are given and their characteristics are discussed in detail. The methods
in this paper are illustrated by two gold standard clinical trials, where a new
treatment under investigation is compared to both a placebo group and a
standard therapy.

1. Introduction

Let Θ = R
2 be the parameter space and let ϑ = (ϑ1, ϑ2) ∈ Θ be the parameter

vector of interest. Define Hi = {ϑ ∈ Θ : ϑi ≤ 0}, i = 1, 2. We are interested in
testing the composite null hypothesis ϑ ∈ H = H1 ∪H2 against the alternative ϑ ∈
K = Θ \ H . Consider the following two motivating examples, which can be traced
back to the above test problem. In drug combination trials a combination treatment
AB has to show a relevant improvement with respect to its individual components
A and B. Here, ϑ1 = µAB − µA − δ and ϑ2 = µAB − µB − δ, where µ defines
the corresponding location parameter and δ ≥ 0 is the relevance shift. In contrast,
gold standard trials are designed to compare a new treatment T to a placebo P
(when the goal is to show relevant superiority) and a standard treatment S (when
it may be sufficient to show non-relevant inferiority). Here, ϑ1 = µT − µP − δ1 and
ϑ2 = µT − µS + δ2, δ1, δ2 ≥ 0.

Given this test problem, we are concerned about finding good confidence sets,
which yield maximum information about the unknown ϑ.

In the following we assume that ϑ can be estimated by ϑ̂ = (ϑ̂1, ϑ̂2)′ such
that ϑ̂ ∼ N2(ϑ, Σ), where the elements of the covariance matrix Σ are given by

*The work of Frank Bretz is supported by the Deutsche Forschungsgemeinschaft, grant BR
2202/1.

1Department of Biometrics and Epidemiology, German Diabetes Research In-
stitute, Leibniz Institute at Heinrich-Heine-University Düsseldorf, Germany. e-mail:
strass@ddfi.uni-duesseldorf.de

2Research Unit Bioinformatics, University of Hannover, Germany. e-mail:
bretz@bioinf.uni-hannover.de

3Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv
University, Israel. e-mail: hochberg@post.tau.ac.il

Keywords and phrases: multiple hypotheses testing, min-test, partitioning principle, gold stan-
dard clinical trials, stepwise testing.

AMS 2000 subject classifications: primary 62F03; secondary 62J15.

129

http://www.imstat.org/publications/lecnotes.htm
http://www.imstat.org
mailto:strass@ddfi.uni-duesseldorf.de
mailto:bretz@bioinf.uni-hannover.de
mailto:hochberg@post.tau.ac.il


130 Klaus Strassburger et al.

σii = σ2λ2
i and σ12 = σ2λ1λ2ρ, with known correlation ρ ∈ (−1, 1). We assume that

λi, i = 1, 2, are positive known constants which usually depend on the involved
sample sizes and that σ can be estimated by σ̂ independent to ϑ̂ such that νσ̂2

follows a central χ2 distribution with degree of freedom ν. In case of ϑ = 0 the
corresponding standardized t−test statistic t = (t1, t2)′ with ti = ϑ̂i/(λiσ̂), i = 1, 2,
has a bivariate t-distribution with degree of freedom ν and a correlation matrix
R = (ρij)ij with ρii = 1, i = 1, 2 and ρ12 = ρ.

The classical procedure for the above test problem is the intersection union
test (IUT), which requires that both Hi are rejected in order to reject H (Berger,
1982). The IUT is also known as min-test, as coined by Laska and Meisner (1989).
Denote by c1 the (1−α)−quantile of the univariate tν−distribution. The composite
hypothesis H is rejected, iff min{t1, t2} > c1. Since the maximum probability of
rejection for the IUT under H does not depend on ρ and is attained at ϑ = (0,∞)
and ϑ = (∞, 0), c1 is computed from the univariate marginal distributions.

As an example for the IUT, consider the following gold standard trial. Lange
et al. (1998) described a clinical trial to show therapeutic equivalence of horse chest-
nut extract (HCSE) and compression treatment in patients with chronic venous
insufficiency. Compression was regarded as standard therapy. The study included a
placebo group as third arm, thus leading to a three-armed gold standard trial as de-
scribed above. The primary endpoint was oedema reduction (ml) after 12 weeks. Ta-
ble 1 shows the summary data of this trial. The relevance shifts were δ1 = δ2 = 50ml.
Let X̄P , X̄T , X̄S denote the sample means and nP , nT , nS the corresponding sam-
ple sizes of the three treatments. Then ϑ̂1 = X̄T −X̄P −δ1 and ϑ̂2 = X̄T −X̄S+δ2. In
this case the correlation ρ equals [(1+nT /nP )(1+nT /nS)]−

1
2 and the standardizing

constants λi are given by λ1 =
√

n−1
T + n−1

P and λ2 =
√

n−1
T + n−1

S .

To estimate σ the common pooled variance estimator is used, yielding σ̂ = 97.7
such that the t-test statistic are given by t = (0.21, 3.36)′. The decision of the IUT
is based on the 95% quantile c1 = 1.65 of the univariate t237 distribution. Since t1 =
0.21 < 1.65 = c1, the classical IUT would not reject H , even though HCSE were
at most non-relevantly inferior compared with compression (t2 = 3.36). Thus the
study failed to achieve its aim and the final decision is the unsatisfactory statement
“ϑ ∈ Θ”. Any further conclusion could only be drawn at the exploratory level. This
is a general drawback of the IUT, since it does not provide any intermediate results,
if one of the elementary hypotheses remains not rejected. The focus of this paper
is to provide additional information about the parameters ϑ1 and ϑ2 by deriving
compatible confidence intervals for the IUT with two hypotheses.

Standard techniques to deduce confidence intervals from a given test fail in case
of the IUT. A common technique used in shift models is to test each η ∈ Θ with
acceptance region Aη = A0 + η, where A0 is the acceptance region of the test
at hand. The set of all non rejected η’s then yields a (1 − α)-confidence set for
ϑ. Usually this technique provides good practical confidence sets, but in case of
the IUT, where A0 = {x ∈ R

2 : mini=1,2{xi/(λiσ̂)} ≤ c1}, we end up with the
confidence set Θ \ {η : ηi < ϑ̂i − c1λiσ̂, i = 1, 2}. This set is neither consistent

Table 1: Summary data for the HCSE clinical trial

Placebo (P ) HCSE (T ) Compression (S)

Sample size 46 95 99
Mean -9.8 43.8 46.7

Std. dev. 100.1 111.1 81.6
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with the IUT nor does it provide lower confidence bounds. Even worse the same
confidence set could have been guaranteed with a smaller critical value c2 being the
solution of P (t1 > c2, t2 > c2|ϑ = 0) = α.

One way to overcome the disadvantages of the IUT is to priorize the hypotheses
and test them sequentially in a pre-determined order as described by Hsu and Berger
(1999) in connection with some dose response problems and toxicity studies. Let
Ai = ϑ̂i − c1λiσ̂, i = 1, 2. Denote further by H(i), i = 1, 2, the ordered hypotheses
such that H(1) is tested first. Then the stepwise confidence intervals of Hsu and
Berger (1999) provide the intermediate information ϑ(1) > A(1) if H(1) can not be
rejected and ϑ(1) > 0, ϑ(2) > A(2) if H(1) can be rejected but H(2) is retained. If
both hypotheses are rejected, one concludes that min{ϑ1, ϑ2} > min{A1, A2}.

In this paper we make use of a construction method similar to that of Hsu and
Berger (1999) by applying the general partitioning principle of Finner and Strass-
burger (2002). As seen later in the paper, the stepwise confidence intervals of Hsu
and Berger (1999) turn out to be one choice within a wide class of strategies for
constructing confidence intervals which are compatible with the IUT. Here, com-
patibility of a level-(1−α) confidence set C with a level-α test ψ for H is taken to
mean that the events {ψ = 1} and {C ⊆ K} coincide for all possible parameter con-
figurations with probability one (Hayter and Hsu, 1994). Consequently, we search
for IUT compatible confidence intervals which provide additional information to
the IUT. It is not our aim to improve the IUT itself. Such improvements can be
found in Berger (1989) and Sarkar, Snapinn and Wang (1995). A quite simple way
of improving the IUT is to restrict the parameter space to Θ̃ =

⋂
Hi ∪ K (either

both individual hypotheses are true or both are false) and reformulate the test
problem as H̃ : H1 ∩H2 against K̃ = Θ̃ \ H̃ . Applications of such restricted models
could arise in gene expression settings (either all or none genes are active) or in
repeated measures settings (there is a difference at either all or none time points).
Here, H̃ is rejected iff min{t1, t2} > c2. Note that in contrast to c1 the critical
value c2 depends on the correlation ρ. In fact, Slepians (1962) inequality yields that
c2 is non decreasing in ρ ∈ (−1, 1). Since c2 < c1 for all possible values of ρ, the
resulting procedure is more powerful than the IUT, but it should be preferred only
if the restriction of the parameter space is feasible. Moreover it should be noted
that, at least in the case of known σ, improving the IUT must cause some kind
of incoherence. The rejection region of an improved procedure must be larger than
that of the IUT. Consequently it can happen that, taken as one-sample problem,
H1 can not be rejected but taken as two-sample problem both, H1 and H2 can be
rejected.

The paper is organized as follows. Section 2 introduces the Partitioning Lemma
and a general method to construct confidence intervals which are compatible to a
given test. Section 3 gives some examples of partitioning Θ. A detailed discussion of
these partitions and the specification of the arising parameters is given. Extensions
of the proposed techniques to test problems involving additional information about
the ratio ϑ2/ϑ1 or the difference ϑ2 − ϑ1 are described. Section 4 applies and com-
pares the confidence intervals using two clinical data examples. Concluding remarks
are given in the final Section 5.

2. The Partitioning Lemma

Suppose that Pϑ,σ is the probability measure inducing the distribution of a sampling
statistic X . Let ϑ ∈ Θ be the parameter of interest and let σ be a nuisance parame-
ter. A test ϕ for a single hypothesis ϑ ∈ H against the alternative ϑ ∈ K = Θ \ H
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does not provide much information about the unknown parameter ϑ. If we interpret
the two possible decisions of the test in terms of confidence sets for ϑ we end up
with ϑ ∈ Θ if ϕ(X) = 0 or ϑ ∈ K if ϕ(X) = 1. The worst fist case could be a
matter of greed. A more moderate test may have rejected ϑ ∈ H ′ ⊂ H and we
could have get ϑ ∈ Θ \H ′ instead of no information. Also the decision for ϑ ∈ K is
not satisfactory, because it may have been possible to reject ϑ ∈ H ′′ ⊃ H leading
to the more informative confidence statement ϑ ∈ Θ \ H ′′.

Our approach to overcome this trouble follows the basic idea to break up H
and K into small disjoint subhypotheses and to test each subhypothesis with an
appropriate test. The union of all non rejected hypotheses then yields a confidence
set for ϑ. The core piece of this idea is formalized in the following Lemma which
is a direct consequence of the general partition principle introduced by Finner and
Strassburger (2002). It can be viewed as an extension of the well known connection
between tests and confidence sets (Lehmann, 1986, p. 90).

Lemma (Partitioning Lemma). Let ℘Θ = {Θi, i ∈ I} be a partition of Θ for
some index set I (i.e. Θi ∩Θj = ∅, i 
= j and

⋃
i∈I Θi = Θ) and let ϕ = {ϕi, i ∈ I}

be a family of local level α tests for ℘Θ, i.e.

inf
ϑ∈Θi,σ

Pϑ,σ

(
ϕi(X) = 1

)
≤ α, i ∈ I,

then C(X) =
⋃

i∈I:ϕi(X)=0 Θi is an (1 − α)−confidence set for ϑ.

Note that the finest possible partition of Θ is given by ℘Θ = {{ϑ}, ϑ ∈ Θ}. In
this case each point of Θ represent an element of the partition. Most of the classical
(simultaneous) confidence intervals can be derived from the Partitioning Lemma
using the finest partition and an appropriate family {ϕϑ, ϑ ∈ Θ} of one or two
sided tests. For example, under the normal model explained in the Introduction,
simultaneous lower confidence bounds related to Dunnett’s (1955) procedure can be
obtained by setting ϕϑ = 0 iff maxi=1,2{ϑ̂i−ϑi−dλiσ̂} ≤ 0, where d is the solution
of P (t1 ≤ d, t2 ≤ d|ϑ = 0) = 1 − α. In this case the resulting confidence set C =
{ϑ : ϑi ≥ ϑ̂i −dλiσ̂, i = 1, 2} itself is a simultaneous confidence interval. This must
not be the case in general, but for Θ ⊆ R

k, a confidence set C(X) for ϑ can be used
to construct simultaneous confidence intervals for the parameters ϑj , j = 1, . . . , k,
by simply projecting C(X) on the coordinate axes. If one is interested in lower
confidence bounds, the projection of a (1−α)−confidence set leads to simultaneous
lower (1−α)−confidence bounds for ϑj of the form Lj(X) := min{ηj : η ∈ C(X)},
j = 1, . . . , k.

An application of the Partitioning Lemma yields confidence sets which are com-
patible to a given test ψ, if the following two conditions are satisfied:

(A) the partition ℘Θ contains a subpartition ℘H = {Θi, i ∈ J}, J ⊆ I, with
H =

⋃
i∈J Θi,

(B) the family {ϕi, i ∈ J} of tests for ℘H fulfills ψ = mini∈J ϕi.

3. IUT compatible confidence intervals

Let Θ = R
2, H = {η : min{η1, η2} ≤ 0} and K = Θ \ H . In the following we apply

the Partition Lemma to construct various confidence sets which are compatible
with the IUT. Under the normal model described in the introduction we have
X = (ϑ̂1, ϑ̂2, σ̂). To define the pairs (℘Θ, ϕ) discussed in the following, let f1 and f2

be two functions defined on R satisfying f2(f1(x)) ≥ x, fi(x) ≤ (≥)0, for x < (≥)0,
i = 1, 2. Furthermore let
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• Θ(1,r) = {η : η1 = r, η2 > f1(r)}, r ∈ R,

• Θ(2,r) = {η : η2 = r, η1 > f2(r)}, r ∈ R,

• Θ(3,r1,r2) = {(r1, r2)}, (r1, r2) ∈ Θ′ = {η : η1 ≤ f2(η2), η2 ≤ f1(η1)}.

Then the condition f2(f1(x)) ≥ x ensures that

℘Θ = {Θ(1,r), r ∈ R} ∪ {Θ(2,r), r ∈ R} ∪
{
Θ(3,r1,r2) : (r1, r2) ∈ Θ′}

is a partition of Θ.
Let Bi = ϑ̂i − c2λiσ̂, i = 1, 2. Then the family of local level-α tests ϕ for ℘Θ is

defined as follows:

• ϕ(1,r) rejects ϑ ∈ Θ(1,r), iff A1 ≥ r,

• ϕ(2,r) rejects ϑ ∈ Θ(2,r), iff A2 ≥ r,

• ϕ(3,r1,r2) rejects ϑ ∈ Θ(3,r1,r2) (i.e. ϑ = (r1, r2)), iff mini=1,2{Bi − ri} ≥ 0.

With the index set I = {(j, r), j = 1, 2, r ∈ R} ∪ {(3, r1, r2), (r1, r2) ∈ Θ′} the
Partition Lemma yields the (1 − α)−confidence set

C(X) =
⋃

i∈I:ϕi(X)=0

Θi =
{
η : η1 > f2(η2), A2 < η2

}
∪

{
η : η2 > f1(η1), A1 < η1

}
∪

{
η : η1 ≤ f2(η2), η2 ≤ f1(η1), max{η1 − B1, η2 − B2

}
> 0

}
.

Projection of C(X) on the coordinate axes yields the simultaneous lower (1−α)-
confidence bounds

Li(X) = min{Ai, Ci, Di}, i = 1, 2,

where Ci = inf{r : fi(r) > B3−i} and Di = inf{f3−i(r) : r > A3−i}, i = 1, 2, with
the convention inf{∅} = ∞.

Note that the condition fi(x) ≤ 0, for x < 0, i = 1, 2, and the fact Bi ≥ Ai,
i = 1, 2, guarantees (A) and (B), so that the confidence sets and the confidence
bounds are always compatible with the IUT.

In the following we give some examples for the choice of f1, f2 and the resulting
confidence bounds. For convenience we drop the X in the notation of Li(X), i = 1, 2.
Note that by construction each resulting partition contains two subpartitions, one of
H and one of K. Other partitions can be generated by combination of the resulting
subpartitions.

(I) The first couple of examples deals with the case that f1 is a non decreasing,
piecewise continuous function with f1(x) ≤ (≥)0, if x < (≥)0. The function
f2 is the generalized inverse of f1, i.e. f2(x) = inf{y : f1(y) > x}. This choice
of f1 and f2 results in Ci ≥ Di, i = 1, 2. The confidence bounds do not depend
on the Ci’s and are given by Li = min{Ai, f3−i(A3−i)}, i = 1, 2. Note that
there is no need to define the Θ(3,r1,r2) explicitly for the partitions in (I),
since the individual points could be included in either of the Θ(i,r), i = 1, 2,
without changing Li. But to be consistent with the notation for the following
partitions we decided to retain the Θ(3,r1,r2).

For sake of simplicity and some heuristic reasons discussed later we restrict
ourselves to piecewise linear functions of the type f1(x) = min{0, (γ1 +x)τ1},
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Figure 1: Graphical representation of some partitions leading to IUT compatible
confidence intervals. The partition elements Θ(1,r) and Θ(2,r) are representetd by
the vertical and horinzontal lines, respectively. The partition elements Θ(3,r1,r2) are
represented by dots.

if x < 0 and f1(x) = max{0, (γ2 + x)τ2} if x ≥ 0, where τ1, τ2 > 0. This
setting results in

L1 =

{
min{0, A1, A2/τ1 − γ1} if A2 < 0

min{A1, max{0, A2/τ2 − γ2}} if A2 ≥ 0
,

L2 =




min{0, A2, (γ1 + A1)τ1} if A1 < 0

min{A2, max{0, (γ2 + A1)τ2}} if A1 ≥ 0 .

We get the following special cases:

(i) τ1 = τ2, γ1 = γ2 = 0, i.e. f1(x) = τ1x,
(ii) τ1 = 1, τ2 → ∞, γ1 > 0, γ2 = 0,
(iii) τ1 → ∞, τ2 → ∞, γ1 > 0, γ2 = 0,
(iv) τ1 → ∞, τ2 = 1, γ1 = γ2 = 0.

Figure 1 visualizes the corresponding partitions for (ii)–(iv).

(II) Let j0 ∈ Z, j0 ≤ 0, and let γ1, γ2 be two positive real constants. For m = 1, 2
define

fm(x) =

{
j0γ3−m if x < j0γm

jγ3−m if (j − 1)γm ≤ x < jγm, j ∈ Z, j > j0
.
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This setting results in

Li =




−∞ if j0 > B3−i/γ3−i

min{Ai, γi(�A3−i/γ3−i� + 1)}

if �B3−i/γ3−i� ≥ A3−i/γ3−i

min{Ai, γi�A3−i/γ3−i�} otherwise

, i = 1, 2,

where �x� = max{j ∈ Z : j ≤ x} denotes the floor function.

(III) f1(x) = max{−γ0, τx}, f2(x) = max{−γ0/τ, x/τ}, with γ0, τ ≥ 0 results in

L1 =

{
−∞ if B2 < −γ0

min{A1, max{−γ0, A2}/τ} if B2 ≥ −γ0

,

L2 =

{
−∞ if B1 < −γ0/τ

min{A2, max{−γ0/τ, A1}τ} if B1 ≥ −γ0/τ
.

(IV) Let f1(x) = 0, if x < 0, f1(x) = γ + τx if x ≥ 0, f2(x) = 0, if x < 0,
f2(x) = (γ + x)/τ if x ≥ 0, with τ ≥ 0 and γ > 0. This setting results in

L1 =




−∞ if B2 < 0

min{0, A1, (B2 − γ)/τ} if B2 ≥ 0, A2 < 0

min{A1, max{(B2 − γ)/τ, 0}, (A2 + γ)/τ} if A2 ≥ 0

,

L2 =




−∞ if B1 < 0

min{0, A2, τB1 − γ} if B1 ≥ 0, A1 < 0

min{A2, max{τB1 − γ, 0}, τA1 + γ} if A1 ≥ 0

.

The performance of the proposed confidence bounds depends strongly on f1 and
f2 (i.e. the γ’s, τ ’s), the true values of ϑ1, ϑ2, σ and the design parameters λ1, λ2.
Note that f1 and f2 must be defined without looking at the data. There is no
uniformly best set of functions f1 and f2 available in the sense, that the resulting
confidence bounds are always the best possible. In the following we will discuss
some deterministic and some heuristic rules to choose the γ’s and τ ’s in order tailor
the tests to the experimenters goal.

Let us first consider the partitions in (I). If τ1 = 1 then (i) results in Li =
min{A1, A2}. This seems to be a good choice if one is interested in a lower confidence
bound only for min{ϑ1, ϑ2}. Other values of τ1 may lead to bounds that are sharper
for one of the parameters (at the cost of the second parameter).

The setting (iv) provides the confidence bounds of Hsu and Berger (1999) if
H1 = H(1) is the priorized hypothesis. Choosing f1 as in (ii) and (iii) yields other
stepwise testing strategies, which are particularly useful in situations, where the
hypotheses can be treated asymmetric and ϑ2 is deemed to be more important than
ϑ1. Recall the gold standard trial from the Introduction where ϑ1 = µT − µP − δ1

and ϑ2 = µT − µS + δ2, δ1, δ2 ≥ 0. Set γ1 = δ1 and consider partition (iii) in
more detail at first. Plugging in the values for γi and τi, i = 1, 2, we obtain explicit
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expressions of the lower confidence bounds for the ϑi’s, i = 1, 2:

L1(X) =




min{A1,−δ1} if A2 < 0

min{A1, 0} if A2 ≥ 0 ,

L2(X) =




−∞ if A1 < −δ1

min{A2, 0} if − δ1 ≤ A1 < 0

A2 if A1 ≥ 0

.

The logic behind this approach is that we are primarily interested in obtaining
the sharpest confidence intervals possible for µT −µS , as long as µT −µP has shown
to be (relevantly) significant. The following stepwise confidence interval procedure
illustrates this:

Step 1: If A1 < −δ1, conclude µT − µP > A1 + δ1 and stop; else go to step 2.

Step 2: If A2 < 0, conclude µT − µP > 0, µT − µS > A2 − δ2 and stop; else go to
step 3.

Step 3: If A1 < 0, conclude µT −µP > A1 + δ1, µT −µS > −δ2 and stop ; else go to
step 4.

Step 4: Conclude µT − µP > δ1 and µT − µS > A2 − δ2.

The confidence bounds resulting from (ii) are the same at steps 3 and 4, but
steps 1 and 2 are exchanged by

Step 1’: If A1 < −δ1, conclude µT − µP > min{A1 + δ1, A2}, µT − µS > min{A1 +
δ1, A2} − δ2 and stop; else go to step 2’.

Step 2’: If A2 < 0, conclude µT −µP > A2, µT −µS > A2 − δ2 and stop ; else go to
step 3.

Thus, in contrast to (iii) we get more information about µT −µS but we have to
pay the price of information loss for µT −µP . This sounds reasonable, if one assumes
that the latter comparison serves for validation purposes only and the main interest
lies in µT − µS .

In general an optimal (but data dependent) choice of f1 would be any function
fulfilling f1(A1) = A2. In such cases, L1(X) = A1 and L2(X) = A2, which are the
best bounds we can get for this setting. To get free from the data dependence one
could replace A1 and A2 by their expectations and search for functions f1 with

f1(ϑ1 − c1λ1σ) = ϑ2 − c1λ2σ. (1)

After finding a solution for f1, one has to redefine f1 as min{0, f1(x)} for x <
0 and max{0, f1(x)} for x ≥ 0, in order to produce IUT compatible confidence
intervals. To determine f1 from (1) we must have at least partial knowledge about
the unknown parameters. We discuss two possible approaches, having in mind that
other approaches can be devised if ϑ1 and ϑ2 were replaced by their parameters
in the original testing problem. The first approach starts with fixing ϑ1 and ϑ2.
Then, equation (1) is satisfied for all σ if f1(x) = ϑ2 − (ϑ1 − x)λ2/λ1. This results
in τ1 = τ2 = λ2/λ1. Assume that the experimenter has a guesstimate ϑ∗ for ϑ,
based on preceding studies or just based on intuition. Then the setting γ1 = γ2 =
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ϑ∗
2λ1/λ2 − ϑ∗

1 would result in a reasonably practical choice for f1. We can also
choose two different values for ϑ∗ in order to define f1(x) on x < 0 and x ≥ 0
respectively. For x < 0 a careful choice would be ϑ∗ = 0 (i.e. γ1 = 0), which
is the limiting worst case if K is true. A second way to get candidates for f1

is to fix the value of σ and set ϑ2 = g(ϑ1) for some non decreasing function g.
We obtain f1(x) = g(x + c1λ1σ) − c1λ2σ and we are left with the problem of
finding a guesstimate for σ and a reasonable choice for g. A “linear” guess for
g, i.e. ϑ2 = a + bϑ1, results in piecewise linear functions f1 as proposed for the
partitions (I).

Let us consider the partitions in (II). To ensure �B3−i/γ3−i� ≥ A3−i/γ3−i in
order to get the larger bound in (II), we require B3−i/γ3−i − A3−i/γ3−i ≥ 1. On
the other side, γi should be set as large as possible. This leaves γi = Bi − Ai

as a promising but data dependent candidate. Taking expectations yields γi =
(c1 − c2)λiσ and replacing σ with a guesstimate σ∗ would yield a reasonable choice
for γ1 and γ2. A good choice for j0 seems to be a guesstimate for the expectation
of min{B2/γ2, B1/γ1, 0}. Using γi = (c1 − c2)λiσ

∗ and the worst case setting for
ϑ1, ϑ2 under K, i.e. ϑ1 = ϑ2 = 0, one obtains j0 = �−c2/(c1 − c2)�.

The partition resulting from (III) can be viewed as a limit of the partition (II)
for values of γ1 and γ2 tending to zero, with fixed γ2/γ1 = τ and j0γ2 = −γ0.
Plugging in the estimates obtained above for partition (II) leads to τ = λ2/λ1 and
γ0 = c2λ2σ

∗. Under this setting partition (II) produces a larger (smaller) confidence
bound Li than (III) if �B3−i/γ3−i� ≥ (<)A3−i/γ3−i.

Maximizing the lower confidence bounds in (IV) leads to γ = λ2σ
∗(c1 − c2)/2

and τ = λ2/λ1. Partition (IV) does not provide information about ϑi if B3−i < 0.
To attenuate this disadvantage one can generalize partition (4) by setting f1(x) =
min{0, max{−γ0, γ + τx}}, if x < 0, f1(x) = γ + τx, if x ≥ 0, and f2(x) =
min{0, max{−γ0, (γ + x)}/τ}, if x < 0, f2(x) = (γ + x)/τ , if x ≥ 0, where γ0

is an additional positive constant. In this case L1 = −∞ only if B2 < −γ0 and
L2 = −∞ if B1 < −γ0/τ . But since the formulae for the Li’s get more complicated,
we dropped this case for the sake of simplicity.

It should be noted that the critical value c2 depends on the correlation ρ as
mentioned in the introduction. Consequently ρ is involved in the proposed choices
for partitions of type (II)–(IV).

The proposed partitions and confidence intervals so far are designed to provide
the IUT with lower confidence bounds for the individual parameters ϑi. To the
end of this section we discuss some additional strategies, when the experimenter
is additionally interested in the ratio ϑ2/ϑ1 or the difference ϑ2 − ϑ1. A clinical
example for this type of question will be discussed in the next section.

(V) Let Θ(1,r) = {η : η1 = r}, Θ(2,r) = {η : η2 = rη1, η1 > 0} then ℘Θ =
{Θ(1,r), r ≤ 0}∪ {Θ(2,r), r ∈ R} is a partition of Θ fulfilling the compatibility
requirement (A). The element Θ(1,r) is rejected iff A1 ≥ r. The element Θ(2,r)

is rejected iff ϑ̂2 − rϑ̂1 ≥ c1σ̂λ(r), where σ̂λ(r) is an estimate of the standard
deviation of ϑ̂2 − rϑ̂1, depending on r and the involved sample sizes. We get
the confidence bounds

ϑ1 > A1 if A1 < 0,

ϑ1 > 0, ϑ2 > r∗ϑ1 if A1 ≥ 0,

where r∗ = min{r ∈ R : ϑ̂2−rϑ̂1 < c1σ̂λ(r)}. An explicit formula for r∗ results
in Fieller’s (1954) confidence interval for ϑ2/ϑ1. We note that the confidence
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intervals are compatible with the IUT only if compatibility requirement (B)
is satisfied, i.e. if λ2 ≥ λ(r) for all r < 0.

(VI) If one is only interested in confidence statements of the form ϑ2 ≥ r∗ϑ1

when r∗ ≥ 0, one can use the partition ℘Θ = {Θ(1,r), r ≤ 0} ∪ {Θ(2,r), r >
0} ∪ {Θ(3,r), r ≤ 0}, where Θ(3,r) = {η : η1 > 0, η2 = r}. An element Θ(3,r) is
rejected iff A2 ≥ r. This would result in confidence bounds

ϑ1 > A1 if A1 < 0,

ϑ1 > 0, ϑ2 > A2 if A1 ≥ 0, A2 < 0,
ϑ1 > 0, ϑ2 > max{0, r∗ϑ1} if A1 ≥ 0, A2 ≥ 0.

Instead of getting a confidence statement ϑ2 ≥ r∗ϑ1, for some r∗ < 0 we now
get lower bounds for ϑ2. Moreover, the confidence intervals are compatible
with the IUT.

(VII) If one is interested in confidence statements for the difference ϑ2−ϑ1 instead of
the ratio ϑ2/ϑ1 one can use the following additive analog of the last partition.
Let ℘Θ = {Θ(1,r), r ≤ 0}∪{Θ(3,r), r ≤ 0}∪{Θ(4,r), r ∈ R}, where Θ(4,r) = {η :
η2 − η1 = r, η1 > 0, η2 > 0}. An element Θ(4,r) is rejected iff A3 > r, where
A3 = ϑ̂2 − ϑ̂1 − c1σ̂λ1,2 and σ̂λ12 is an estimate of the standard deviation
of ϑ̂2 − ϑ̂1, depending on the involved sample sizes. This would result in
confidence bounds

ϑ1 > A1 if A1 < 0,

ϑ1 > 0, ϑ2 > A2 if A1 ≥ 0, A2 < 0,

ϑ1 > 0, ϑ2 > max{0, ϑ1 + A3} if A1 ≥ 0, A2 ≥ 0.

Finally it should be mentioned, that there are situations where mixed confidence
statements as ϑ1 ≥ δ + rϑ2 are of interest. In an obvious way the above partition
approaches can also be tailored to this goal.

4. Two gold standard trial examples

4.1. Example 1

Recall the gold standard trial described in the Introduction. We use this example
data set to compare and discuss the different partitions of the previous section
(α = 0.05 throughout). Recall that in this example the IUT did not reject the union
hypothesis H since one of the two individual comparisons failed to be significant.
Thus, the conclusion drawn by Lange et al. (1998) was “ϑ ∈ Θ” (or, equivalently,
Li(X) = −∞, i = 1, 2).

In contrast, computing the IUT compatible confidence intervals based on the
partition (i) for τ1 = 1 (thus treating both hypotheses equally) yields L1 = L2 =
min{A1, A2} = −25.39, where A1 = −25.39 and A2 = 23.92 . Therefore, ϑ1 =
µT − µP − δ1 > −25.39 as well as ϑ2 = µT − µS + δ2 > −25.39 at the given
confidence level. These lower bounds, however, can be improved substantially using
any of the other partitions. If we follow the rules devised in the previous section,
τ1 = λ2/λ1 = 0.8 should be used. We obtain L1 = −25.28 and L2 = −20.31, thus
leading to slightly better results. Since A1 = −25.39 < 0 in the present example
and HCSE fails to be relevantly superior to placebo, τ1 < 1 leads always to better
confidence intervals. In fact, L2 ↗ 0 as τ1 → 0.
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Table 2: IUT compatible confidence intervals for the HCSE clinical trial

Partition L1 L2 Parameters

IUT −∞ −∞
(i) −25.39 −25.39 τ1 = 1
(i) −25.39 −20.31 τ1 = 0.8
(ii) −25.39 0 γ1 = 50
(iii) −25.39 0 γ1 = 50
(iv) −25.39 −∞
(II) −25.39 −17.59 j0 = −2, γ1 = 11, γ2 = 8.79
(III) −25.39 −14.92 τ = 0.8, γ0 = 14.92
(IV) −25.39 −∞ τ = 0.8, γ = 4.4
Dunnett −30.41 19.91

For the partitions (ii) and (iii) a suitable choice is γ1 = δ1. Thus, sharper
bounds L2 are obtained in dependence of the results for testing H1. This corresponds
roughly to a stepwise approach of first comparing HCSE with placebo and then
trying to find a best confidence bound for the equivalence comparison of both
treatments. As noted previously, the resulting bounds are the same at steps 3
and 4, which happens to be the case in our example (L1 = −25.28 and L2 =
0). In general, these two partitions strongly stress the importance of ϑ2 at the
cost of ϑ1. Evaluation of other examples show that they frequently result in worse
confidence bounds for ϑ1 but much sharper ones for ϑ2 in comparison to those of
the competitors.

The final partition (iv) in this first set mimics a stepwise test as discussed by
Hsu and Berger (1999): first test, whether µT is relevantly better than µP , and only
if this is true get to the next step of comparing µT with µS . Since in our example
HCSE fails to be relevantly superior to placebo, L1 = −25.28 and L2 = −∞ and
no information is obtained with regard to ϑ2.

Consider partition (II) now. Following the advises of the previous section, we set
j0 = �−c2/(c1− c2)� = −2. For the remaining design parameters γ1 and γ2 we need
a good estimate for σ. Lange et al. (1998) reported to have used σ = 100 in their
power calculation, where the particular choice was based on previous experiences.
Consequently, we use γ1 = 11 and γ2 = 8.79 for our calculations. Further on,
B1 = −14.64 and B2 = 32.52. Correspondingly, we obtain τ = 0.8 and γ0 = 14.92
for partition (III). The resulting lower confidence bounds are given in Table 2.

The final partition (IV) will only be of use for the construction of confidence
intervals for those ϑi, for which B3−i ≥ 0. In the present example this is not the
case for B1 and we fail to get any information about ϑ2 and thus L2 = −∞. For the
other parameter L1 = −25.28. Note that all of the partitions considered here led
to the same lower bound for ϑ1, because L1(X) = A1 can not be improved upon in
this example.

For reference purposes we also included a Dunnett (1955) type test, where HCSE
treatment is the “control” to which the other two groups are compared with. The
resulting confidence bounds L1 = −30.41 and L2 = 19.91 suggest that this proce-
dure is particularly powerful in comparison to the IUT or its associated compatible
confidence intervals, if one of the parameters is significant but the other not. How-
ever, if both parameters are effective (or ineffective) the IUT has the advantage of
using the univariate quantile c1, which is smaller than the bivariate quantile d used
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by Dunnett (1955). Imagine that the present study would have been less ambitious
and δ1 = 20ml would have been sufficient to show a relevant superiority of HCSE
over the placebo group. In this scenario, the (single step) Dunnett (1955) proce-
dure still fails to show that ϑ1 is significant (L1 = −0.41, L2 = 19.09). But any of
the partitions above provides sharper confidence bounds for ϑ1 and possibly also
for ϑ2. Partition (II), for example, which treats both parameters equally, leads to
L1 = 4.61 and L2 = 8.79. In contrast, partitions (ii) and (iii), which both emphasize
inference on ϑ2, yield L1 = 0 and L2 = 23.92.

4.2. Example 2

Pigeot et al. (2003) described a non-inferiority clinical trial on mild asthmatic pa-
tients consisting of a three armed gold standard design. The summary data of the
trial are shown in Table 3. The primary endpoint was increase of forced vital capac-
ity after 6 weeks. In order to be consistent with the results of Pigeot et al. (2003),
we set α = 0.025.

The hypotheses of interest in this trial are different to those discussed in the
previous example. For the remaining section let ϑ1 = µS − µP and ϑ2 = µT − µP .
Pigeot at al. (2003) start considering the main hypothesis H ′ : µT − µS ≤ δ.
The authors advocate that the relevance margin δ should not be chosen without
taking the difference µS − µP into account for “internal validation”. Thus, above
hypothesis is reformulated as H1 : ϑ2/ϑ1 ≤ r, where r ∈ R denotes the relevance
fraction of the reference difference µS − µP . Pigeot et al. (2003) propose the use
of Fieller’s (1954) confidence intervals for testing the ratio in H1 under the usual
normality assumptions. In addition, it is proposed to test H1 only if the gatekeeping
hypothesis H(1) = H2 : ϑ1 ≤ 0 is rejected before. This stepwise procedure, where
the non-rejection of H(1) renders the testing of H(2) = H1 unnecessary, corresponds
to the partition (V) in Section 3. Note that the stepwise testing approach of Pigeot
et al. (2003) does not provide any confidence intervals if H(1) remains not rejected
(i.e. A1 < 0). For the present data set, A1 = 1.03 > 0 and we assess that the
standard treatment is indeed superior to placebo (ϑ1 > 0). For the second step,
applying Fieller’s (1954) formulae, one obtains r∗ = 0.39. Thus, it has been shown
that the difference µT − µP is at least 39% of the reference value µS − µP . Since
r∗ > 0 and ϑ1 > 0 this also implies ϑ2 > 0.

As discussed previously, partition (V) is not the only way to approach the given
test problem. In particular, if r∗ < 0, the assessment of how much negative ϑ2 will
be compared to ϑ1 might be replaced by a lower confidence bound for ϑ2 itself.
This leads to partitions as indicated in (VI). For the present data example, the
conclusions remain the same as for partition (V), since r∗ > 0.

Partition (VII) is designed for applications, where interest lies in the ϑi, i =
1, 2, and the parameter of original interest ϑ2 − ϑ1 = µT − µS . Thus, instead of
investigating µT − µP on a relative scale (i.e. in comparison to µS − µP ), we get

Table 3: Summary data for the comparative study in asthmatic patients

Placebo Treatment Standard

Sample size 20 35 19
Mean 3.14 4.32 4.86
Std. dev. 0.97 1.16 1.03
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Figure 2: Graphical representation of the partitions (V)–(VII). The partition ele-
ments Θ(1,r) and Θ(3,r) are representetd by the vertical and horinzontal lines, re-
spectively. The elements Θ(2,r) and Θ(4,r) are represented by angular and diagonal
lines, respectively.

information about µT − µS on the absolute scale. Since A3 = −1.15, we conclude
here that ϑi > 0, i = 1, 2 and µT − µS > −1.15.

The last two partitions have shown that standard stepwise tests, as employed
by Pigeot et al. (2003), for example, can be improved substantially and additional
information is available without paying anything in terms of further multiplicity
adjustment.

5. Conclusions

This paper addressed the problem of deriving simultaneous confidence intervals,
which lead to the same hypothesis decisions as the associated tests. We focused on
the evaluation of the IUT for two hypotheses. The number of partitions considered
in this paper (and many other additional ones, which could have been included
instead) indicate that research on selecting good partitions is still at its starting
point. We tried to derive a few heuristic rules for a better understanding and to
tailor this selection process. A suitable choice of such partitions and the concrete
specification of their parameters seem to depend on the unknown constants and
good estimates are required. Whether or not a satisfactory solution exists, remains
to be seen. But the use of any IUT compatible confidence intervals substantially
improves the standard IUT, as more information on the single parameters becomes
available. In addition we have shown that in specific cases additional information on
composite parameters are possible at no costs of further multiplicity adjustments.
The two clinical examples have shown that the problems discussed in this paper are
“real” and that better procedures than the current standard ones might be used in
daily practice.
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