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Multiple testing of pairwise comparisons
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Abstract: Multiple testing for pairwise comparisons in a one way fixed and
balanced analysis of variance model is studied. Normality, independence and
homogeneity of variance is assumed. Two sided alternatives are considered.
The usual stepwise procedures are shown to lack an intuitive and important
interval property for acceptance sections of individual tests. This renders them
inadmissible in terms of both types of errors. Alternative procedures that do
have the interval property are suggested. The new procedures are compared
to the standard procedures in terms of power and in terms of practicality. One
of the new procedures follows logical restrictions which may be a desirable
property in some instances.
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1. Introduction

Multiple testing of pairwise comparisons in analysis of variance models is a long
standing statistical practice. The classical Tukey procedure is the standard method
which is offered in most textbooks. With the rise of multiple testing in the last
two decades, given impetus by fields of application calling for many tests, new
and less conservative approaches to tests of pairwise differences have arisen. The
Tukey method is a single step method as opposed to stepwise methods suggested
by [7, 13, 14, 15], and others. [11] (Section 9.3), have an excellent summary of this
topic.

For multiple testing of means of a normal random vector stepwise procedures are
popular methods. See, for example, [4]. Many of these procedures are based on P-
values determined from marginal distributions of test statistics that are correlated.
In the case of pairwise comparisons the test statistics used are correlated and have a
known covariance matrix (except for a scalar multiple). This sort of situation occurs
in many multiple testing settings. Some stepwise procedures do try to incorporate
the dependence by using a closed testing framework (see [9]) or by using resampling
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based procedures (see [11]). Nevertheless many standard stepwise procedures would
use the same critical values regardless of the correlation.

In constructing stepwise procedures it is common to begin with tests for the
individual hypotheses that are known to have desirable properties. For example,
[13] says to begin with unbiased tests. Next we realize that all stepwise procedures
induce new tests on the individual testing problems. Furthermore, in a multivariate
normal model with correlation, theoretical properties of these new induced tests
depend heavily on the precise form of the covariance matrix. The nature of these
induced tests is typically overlooked. However, when studied, we find that many of
the stepwise procedures lack an important theoretical as well as intuitive property.
Namely, certain acceptance sections (as indicated by the specific correlation struc-
ture) for the induced tests are not intervals when they absolutely should be. The
basis of our approach is to develop procedures whose induced tests have acceptance
regions satisfying the conditions mandated by the particular covariance structure.

We clarify these issues with the simplest special case of our model (described in
detail in Section 2). Let Xi have a N(μi, 1) distribution for i = 1, 2, 3 where the Xi

are independent. We wish to test the hypotheses H12 : μ1 = μ2 vs. K12 : μ1 �= μ2,
H13 : μ1 = μ3 vs. K13 : μ1 �= μ3 and H23 : μ2 = μ3 vs. K23 : μ2 �= μ3. If we
were testing Hij only we would use a test of the form: Reject Hij if and only if
|Xi − Xj | ≥ c. This test has very good properties. It is the unique UMPU, is
admissible and has an interval acceptance region. Most stepwise procedures for all
three hypothesis testing problems would be based on these individual test statistics
alone while using various choices of critical values. Thus the correlation does not
enter into the functional form of the test statistics.

In the example above, the test of Hij induced by most stepwise procedures will
no longer enjoy any of the desirable properties of the original tests. In fact, it will
likely have some undesirable properties.

For example, using the procedure of [7] or S1 of [14], the acceptance section for
testing H12 will not even always be an interval for every fixed X3. In fact, for every
fixed X3 there are values x and 0 < Δ1 < Δ2 such that the induced test will exhibit
the following behavior. When X1 = x = X2 is observed H12 will be accepted. Next
we let X1 and X2 move apart. The induced test will lead to rejection of H12 when
X1 = x + Δ1, X2 = x − Δ1 but it will again lead to acceptance of H12 when
X1 = x + Δ2, X2 = x − Δ2. We will see more of this later in Figure 1. We will also
see, by Lemma A.1, that this implies inadmissibility (defined below).

In 4 dimensions a more intuitive sense of this objectionable behavior can be
obtained by looking at Example 2.1 of [13]. Here we focus on the decision for
testing H34. In that example there are four means to be compared pairwise. The
observed values are X1 = 0.0, X2 = 3.2, X3 = 3.3 and X4 = 6.55. The purpose
of that example was to show that the closed test will reject H34 but accept H13

even though |X1 − X3| = 3.3 > 3.25 = |X3 − X4|. This behavior was considered
to be, practically, undesirable. It was pointed out that using the Royen procedure
one would accept H34 for this data. What had not been noticed is the following.
Suppose we keep X1 and X2 fixed while bringing X3 and X4 even closer together.
For example, take X1 = 0.0, X2 = 3.2, X3 = 3.32 and X4 = 6.53. Surprisingly, for
this data, the Royen procedure (available on SAS) will now reject H34.

This type of behavior is also unappealing for practical purposes and cannot
occur with the methods we present. Furthermore, it is often enough to render the
test inadmissible. Here admissibility is with respect to the usual 0 - 1 testing loss
function. That is, there is a loss of 1 for a mistake and 0 for a correct decision.
Thus if a test of any one of the hypotheses is inadmissible there exists a test
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with smaller probability of Type I error and greater power. Furthermore, for the
procedure as a whole using the better tests would result in fewer expected Type I
errors and fewer expected Type II errors. We do not construct procedures that are
theoretically better (this is not computationally feasible). We do offer procedures
that are admissible and are, at least, competitive if not more favorable in terms of
operating characteristics as demonstrated by simulation. See [2]. This is a serious
shortcoming of many existing popular stepwise procedures.

Lastly is the issue of what is called logical restrictions. We notice that if H12

and H13 are true then H23 must also be true. Logical restrictions are discussed
thoroughly in [11] and [14]. Such restrictions are important in the evaluation of
multiple testing procedures (MTP). Recognizing this can result in better choices
of critical values and greater power (see [14]). However, typical MTPs do not obey
logical restrictions in their actions. That is, observed data sets can easily result in
the acceptance of H12 and H13 but the rejection of H23. When this is done the
interpretation is that we are “convinced” that μ2 �= μ3 but do not have enough
evidence to claim either μ1 �= μ2 or μ1 �= μ3.

The desirability of obeying logical restrictions in the actions depends on the
application at hand. For example, when the goal is some type of sorting or classifi-
cation scheme and every population must be placed somewhere, saying that we are
not sure may not be an option.

Suppose that the level of state funding for school districts depends on teaching
success as measured by performance on standardized exams. Districts are compared
by doing all pairwise tests on exam scores. If it is concluded that two districts differ
in performance then they will be funded at different levels. Otherwise they are
funded at the same level. We cannot say that A and B get equal funding and B and
C get equal funding yet A and C get different funding. In this instance a multiple
testing procedure of pairwise comparisons that follows logical restrictions in the
actions is necessary.

Another common situation of this type is the assignment of grades. Instructors
assign grades by comparing students on the semester’s body of work. Students who
are found to perform comparably receive the same grade otherwise they get different
grades. Instructors cannot say that they are not sure.

The first method we introduce is labeled PADD (which reads partitioned average
difference down) and does follow logical restrictions in its actions. It is based on
sample averages determined by partitions of individual treatment means. The sec-
ond method does not follow logical restrictions in actions and has the flexibility to
accept or reject each and every hypothesis regardless of the decisions made for the
other hypotheses. A method that does have such flexibility is the Tukey single step.
The procedure we recommend is a combination of PADD followed by a screening
stage using a modification of the Tukey method based on pairwise differences of
sample means and our new step-down method. The combination procedure will be
designated as PADD+. The + signifies the screening stage.

We apply PADD+, Royen and Shaffer’s S1 to a 6-dimensional, example and
discuss their performance based on a simulation study. The power functions of
PADD+ and Royen were almost identical and somewhat preferable to S1. PADD+
has the advantage of admissibility, convex acceptance sections. It is also easy to
compute and can easily handle high dimensions. Furthermore, in cases where logical
restrictions in the actions must be adhered to one can simply omit the screening
stage.

In response to shortcomings of typical stepwise procedures, [3] proposed a new
method called Maximum Residual Down (MRD) for a multivariate normal model
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with a nonsingular known covariance matrix. This method is derived so that the
focus is to do well for each individual test in terms of expected Type I error and
expected Type II error. As such any optimality property it has for individual test-
ing risk will hold for any risk that is an increasing function of these risks. This
includes the classification risk function used by [10, 8] and [6]. The method is not
only admissible for such risk functions but simulations indicate a superiority of the
method in terms of numbers of errors, compared to popular stepwise methods in
the models considered. In light of this we seek an extension of the MRD method
to apply to the problem of multiple testing of pairwise comparisons. The MRD
construction depended heavily on the non-singularity of the covariance matrix. In
this situation we can consider a random vector which is multivariate normal but
now the covariance matrix is singular. Nevertheless we initially derive a method
based on the analogues of the residuals.

The theoretical optimality property of the new method is proven for a normal
balanced one way analysis of variance model assuming the variance of all obser-
vations is known. For the more realistic case where the variance is unknown, we
would simply replace the role of the variance by the mean square error (MSE).

In the next section we state the model and give some preliminaries. In Section 3
we outline the new method and give an example and discuss performance based on
a simulation study. In Section 4 we state the results concerning admissibility. All
proofs are given in the appendix.

2. Model and preliminaries

The model is that of a balanced fixed effects one way analysis of variance. That is
Xij , i = 1 . . . , I; j = 1, . . . J are independent, normally distributed with mean μi

and variance σ2. For now assume σ2 is known, let J = 1 without loss of generality
and also suppress j in Xij . Later σ2 will be unknown and J > 1. For all i �= i′ we
wish to test the q = CI

2 null hypotheses Hii′ : δii′ =μi − μi′ = 0 vs. Kii′ : δii′ �= 0.

We note that the CI
2 pairwise differences are subject to logical restrictions. De-

spite the existence of logical restrictions in the parameter space all procedures that
have been proposed in the past do not follow logical restrictions in their actions. In
many applications this seems reasonable.

For suppose we are comparing three populations A, B and C where sample means
are ordered. One might want to say that A is different from C but cannot conclude
that A differs from B or that B differs from C. However, in settings where the
outcomes of acceptance and rejection require contradictory actions violations in
logical restrictions is not an option. Recall the example given in the introduction.

We now define the weak and strong familywise error rate (FWER).

Definition 2.1. The weak FWER is the probability of rejecting at least one of the
q hypotheses when all null hypotheses are true.

Definition 2.2. Suppose a subset of the q hypotheses are true and the remaining
hypotheses are not true. Then the probability of rejecting at least one true hypoth-
esis is called the strong FWER. It is understood that this error rate is a function
of those parameters related to the hypotheses that were not true.

At this point we describe the Tukey single step procedure and then describe a
class of step-down procedures. This latter class includes those procedures recom-
mended by [7, 13], and [14]. The truncated procedure of [15] is an extension of
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these latter two for any collection of contrasts. The Tukey procedure based on the
distribution of the range rejects Hii′ if and only if

(2.1) Yii′ = |Xi − Xi′ |/σ > CT .

Typically CT depends on α where (1 − α) is the probability of accepting all
hypotheses when they are all true.

To describe a class of step-down procedures let 0 ≤ C1 ≤ · · · ≤ Cq be a sequence
of critical values. Let Y(1) ≤ Y(2) · · · ≤ Y(q) correspond to order statistics for Y(i).

(i) If Y(q) > Cq reject H(q). Otherwise stop and accept H(γ), γ = 1, . . . , q.
(ii) If H(q) is rejected, reject H(q−1) if Y(q−1) > Cq−1. Otherwise stop and accept

H(1), . . . , H(q−1).
(iii) In general, at stage m, if Y(q−m+1) > Cq−m+1 reject H(q−m+1). Otherwise

stop and accept H(1), . . . , H(q−m+1). The critical values can be chosen in a variety
of ways. Oftentimes Cq is chosen at stage 1 to control weak FWER (same as in the
Tukey procedure) and the other C ′s are chosen to control strong FWER.

We evaluate the collection of q tests by evaluating each individual test by its
expected Type I error and expected Type II error. In terms of admissibility, multiple
testing procedures that are inadmissible for these individual problems would remain
so if the risk was any non-decreasing function of the collection of individual expected
values.

3. PADD+

In this section we describe PADD and PADD+. PADD is an outgrowth of the MRD
method developed in [3]. The motivation for the method is based on a theorem that
yields a necessary and sufficient condition for admissibility of a test for a hypothesis
concerned with a single parameter when there are other parameters in the model.
In particular, when the m × 1 random vector Y has a full rank exponential family
density

f(y | θ) = h(y)β(θ) exp
m∑

i=1

ti(y)θi.

Suppose we wish to test H : θ1 = 0 vs. K : θ1 �= 0. Then (see Lemma A.1 of the
Appendix) a necessary and sufficient condition for a test φ1(y) to be admissible is
that for fixed t2, . . . , tm, φ1(y) can only be zero (i.e. accept) on an interval of t1
values. We call the ti(y) residuals.

The situation in this paper, dealing with all pairwise differences of mean para-
meters, does not directly deal with a single full rank exponential family. However
by taking linearly independent subsets of size I-1 from the variables that represent
sample mean differences, we can generate residuals for each full rank subset. These
residuals turn out to be average differences for all possible groupings of sample
means. We will utilize these residuals in such a way that they satisfy the conditions
required for admissibility. Some clarification of the above can be gained by studying
the Appendix.

Both methods, PADD and PADD+, are based on what we have (see above)
called residuals. Decision theory tells us how the residuals should be used to attain
the desirable optimality properties. The situation in this paper is more complicated
than the MRD paper because the density representing the data does not include
all the pairwise differences to be tested. Nevertheless, by adaptively generating
residuals when considering subsets of all the pairwise differences we come up with a



Multiple testing of pairwise comparisons 149

complete collection of residuals. These residuals turn out to be average differences
for all possible groupings of sample means. We proceed to formally define PADD
and PADD+.

Let S = [1, . . . , I]. For any subset of integers A ⊂ S let N(A) = the number
of points in A. Let XA =

∑
i∈A Xi/N(A). Next define, for all A ⊂ B ⊆ S with

A �= φ �= B \ A, for each sample point x,

(3.1) Dx(A; B) = (XA − XB\A))/σ(1/N(A) + 1/N(B \ A))1/2

and

(3.2) D∗
x(B) = max

A⊂B
Dx(A; B).

Thus D∗
x(B) is the largest possible standardized difference in subset means when

the set of [Xi : i ∈ B] is broken into two non-empty subsets whose union is [Xi :
i ∈ B]. We further let Vx(B) denote the set for which the maximum is attained.
That is,

D∗
x(B) = Dx(Vx; B) when B is split into Vx(B) and B \ Vx(B).

At the first stage of PADD all non-empty 2 set partitions of S are considered.
Dx(A; S) is computed for all non-empty A ⊂ S. Letting C(S) denote a constant at
stage 1 and letting D1 = D∗

x(S), if D1 ≤ C(S) stop and accept all null hypotheses.
If D1 > C(S) then partition S into Vx(S) and S \ Vx(S) and continue to stage 2.

At each successive stage, until the procedure stops, one of the sets in the cur-
rent partition will be split into two sets as follows: Suppose that after stage n, S
has been partitioned into B1, B2, . . . , Bn+1 and we continue. Let C{B1, . . . , Bn+1}
be a constant determined by the partition {B1, . . . , Bn+1} . Compute Dn+1 =
max1≤k≤n+1 D∗

x(Bk). If Dn+1 ≤ C{B1, . . . , Bn+1} we stop. If Dn+1 > C{B1, . . . ,
Bn+1} find k* so that Dn+1 = D∗

x(Bk∗ ). Next break Bk∗ into Vx(Bk∗ ) and Bk∗ \
Vx(Bk∗ ). Continue to stage n + 1.

Thus we see that as we enter stage n the partition consists of n sets. Denote
these by Bn,1(x), . . . , Bn,n(x). If Dn ≤ C{Bn,1(x), . . . , Bn,n(x)}, stop and then
{Bn,1(x), . . . , Bn,n(x)} is the final partition. If Dn > C{Bn,1(x), . . . , Bn,n(x)} we
continue and the partition will become finer. If {Bn,1(x), . . . , Bn,n(x)} is the final
partition then Hii′ is accepted provided i and i′ are in the same set of the partition.
Otherwise Hii′ is rejected.

Note that computationally this step merely requires computation of (I-1) statis-
tics that are expressed in terms of the order statistics. That is, suppose we have J
observations in each column and let Xi be the sample mean for each column. The
ordered sample means are X(1) < X(2) < · · · < X(I) . The relevant (I - 1) statistics
are as follows:

√
J

{
i∑

j=1

X̄(j)/i−
I∑

j=i+1

X̄(j)/(I − i)

}
/σ

√
{1/i + 1/(I − i)}.

Use of the order statistics also facilitates the computations at all stages. (See the
example below).

There is considerable flexibility in the choice of critical values C{Bn,1, . . . , Bn,n}.
One way to choose them is to simply allow them to depend on the stage n. Another
way to choose them is to let them depend on the number of indices in the largest
set of the partition. Still another way is to let them depend on the total number of
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pairwise comparisons to be made by adding up the pairwise comparisons in each
set of the partition.

Since at any given stage no single index can be in more than one subset it
implies that PADD follows logical restrictions. We regard this as too restrictive in
some applications in that it does not allow for the possibility of deciding on each
and every hypothesis separately. For example if I = 3, the PADD does not allow
the possibility of rejecting one hypothesis and accepting the two others. Intuitively
there are sample points where one may want this option. Furthermore there are
sample points in which the Yii′ ’s are small and yet PADD could reject Hii′ .

When more flexibility is needed we propose to supplement PADD with Tukey-
like procedures. That is we specify two additional constants, CL ≤ CU . Then Hii′

will be rejected if and only if the indices i and i′ lie in different sets of the final
partition, {Bn,1(x), . . . , Bn,n(x)} and Yii′ > CL or i and i′ lie in the same set of
the final partition but Yii′ > CU . We call the combined procedure PADD+.

In the ANOVA model if σ2 is unknown and J > 1, then the role of Xi would
be replaced by Xi =

∑J
j=1 Xij/J, i = 1, . . . , I, and s2 = MSE would replace σ2.

I(J − 1)s2/σ2 has a chi-squared distribution with I(J-1) degrees of freedom.
We conclude this section with an example. The data appear in exercise 21, p. 385

of the multiple comparison section of [5]. The data are survival times of rats exposed
to nitrogen dioxide. There are I = 6 groups with J = 14 rats in each group. With
sample sizes of 14 and a list of variances given in the exercise, we feel that the
assumptions for analysis are satisfied. The 6 means in increasing order are

X̄(1) = 166, X̄(2) = 184, X̄(3) = 202, X̄(4) = 212, X̄(5) = 266, X̄(6) = 303.

We calculate s = 41.01. We will select constants at any stage determined by the
number of indices in the set of the partition with the largest number of indices.
The actual constants are determined by simulation in deference to an FWER of
α = .05. For the screen stage the critical values are CL = 2.687, CU = 3.491 and
for the PADD stage they are Ci = F −1

t (iα/(2(7 − i(1 − α/2)))), for i = 2, . . . , 6
where Ft is the cdf of the t-distribution with 78 degrees of freedom. These Ci are
suggested by the work of [1] for a different problem with correlation but also work
well here. Note C6 is used at stage 1 since there are 6 indices in S.

At stage 1 we need to compute the following 5 statistics:

√
14

⎛
⎝X̄(1) −

⎛
⎝ 6∑

j=2

X̄(j)

⎞
⎠ /5

⎞
⎠ /s

(
1 + 1/5

)1/2 = −5.6138,(3.3)

√
14

⎛
⎝X̄(6) −

⎛
⎝ 5∑

j=1

X̄(j)

⎞
⎠ /5

⎞
⎠ /s

(
1 + 1/5

)1/2 = 9.7503,(3.4)

√
14

⎛
⎝(

X̄(1) + X̄(2)

)
/2 −

6∑
j=3

X̄(j)/4

⎞
⎠ /s

(
1/2 + 1/4

)1/2 = −7.4547,(3.5)

√
14

⎛
⎝(

X̄(6) + X̄(5)

)
/2 −

4∑
j=1

X̄(j)/4

⎞
⎠ /s

(
1/2 + 1/4

)1/2 = 9.8499,(3.6)

(3.7)
√

14
((

X̄(1) + X̄(2) + X̄(3)

)
/3 −

(
X̄(4) + X̄(5) + X̄(6)

)
/3

)
/s

(
2/3

)1/2 = −9.7442,
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Using the data we find the maximum of the absolute value of the above 5 statistics
occurs for (3.6) with the value of the statistic 9.8499. Since this exceeds C6 = 3.3532
the partition at stage 2 consists of the two sets {1,2,3,4} and {5,6} so that we reject
the following 8 hypotheses:

H(1)(6), H(2)(6), H(3)(6), H(4)(6), H(1)(5), H(2)(5), H(3)(5), andH(4)(5).

At this stage we consider the following 4 statistics:
√

14
(
X̄(5) − X̄(6)

)
/s

√
2= −2.3868,

√
14

(
X̄(1) −

(
X̄(2) + X̄(3) + X̄(4)

)
/3

)
/s

(
1 + 1/3

)1/2 = −2.2124,

√
14

(
X̄(4) −

(
X̄(1) + X̄(2) + X̄(3)

)
/3

)
s
(
1 + 1/3

)1/2 = 2.6075,
√

14
(
X̄(1) + X̄(2) − X̄(3) − X̄(4)

)
/2s= −2.9196.

The largest of these in absolute value is
√

14
(
X̄(1) + X̄(2) − X̄(3) − X̄(4)

)
/2s =

2.9196 which exceeds C4 = 2.6914. We are now left with the partition {1,2}, {3,4}
and {5,6}. Thus at this stage, hypotheses H(1)(3), H(1)(4), H(2)(3) and H(2)(4) are
rejected. The t-statistics for the remaining pairs in the partition are all less than
CL = 2.687. Thus these hypotheses are not rejected. Now all 12 hypotheses pre-
viously rejected are reconsidered. Their pairwise t-statistics are compared with
CL = 2.687. Hypotheses H(1)(3), H(2)(3), H(2)(4) give rise to t-statistics which are
less than 2.687 and now are accepted. The final decisions for PADD+ are to reject
9 hypotheses.

For this data set [14] S1 procedure, [13] procedure and Tukey’s single step pro-
cedure at FWER = .05 all reject the same 9 hypotheses.

The most natural procedure to compare with PADD+ is Royen’s method. A
simulation was done to study the power function behavior of the two methods for a
general six population problem with 14 observations per population. This was done
over a wide variety of more than 50 parameter points in the following way.

The simulation computed the average probability of the Type I errors over all
hypotheses for which the null hypothesis is true at a given parameter point. For
example, if the parameter point is (0, 2, 0, 2, 3, 4) the only true null hypotheses
are H13 and H24. Thus the probability of Type I error for this parameter point
would be the average of the probabilities of rejecting H13 and H24. Note that this
probability depends on all six parameters (0, 2, 0, 2, 3, 4). Also, in the simulation,
power was taken as the average of the probabilities of rejecting each of the null
hypotheses that was not true.

There was, essentially, no difference in power between PADD+ and the Royen
method for the more than 50 varied parameter points considered.

4. Properties of PADD and PADD+

In this section we will state that PADD and PADD+ do possess the intuitive and
desirable interval property for acceptance sections. This latter property is a neces-
sary and sufficient condition for admissibility in the variance known case. We also
state that most stepwise procedures based on P-values determined from marginal
distributions of test statistics lack this property and therefore are inadmissible.
Proofs will be given in the Appendix.
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Fig 1. Regions of action by the Step-down procedure and its induced individual test.

Figures 1 and 2 offer cross sections of procedures for the case where I = 3, σ2

is known and X1 + X2 + X3 is fixed. Figure 1 is concerned with a step-down
procedure such as given by [7]. In Figure 1 we see regions of actions (A = accept,
R = reject) for all three hypothesis testing problems. Note that in all the figures
the horizontal lines are the axes representing the variable, say Y = X1 − X2, which
when normalized is the test statistic for testing the null hypothesis H12 : μ12 = 0
vs. K12 : μ12 �= 0. Thus in Figure 1 we note a violation of the interval property for
many fixed values of X3 when X1 + X2 + X3 is also fixed. That is, we see that for
some values of X3 the Holm procedure, as a function of Y, has the following pattern
as Y goes from −∞ to ∞: reject, accept, reject, accept, reject, accept, reject. This
indeed is a disturbing property, which also holds for the procedures offered by [14],
[13], and [15].

Figure 2 displays the regions corresponding to Figure 1 for PADD.
In the Appendix we will prove

Theorem 4.1. For the analysis of variance model of Section 2 with σ2 known the
PADD procedure is admissible.

Theorem 4.2. For the analysis of variance model of Section 2 with σ2 known the
PADD+ procedure is admissible.

We will also prove in Theorem A.4 in the Appendix that under very mild condi-
tions on the critical values, the step-down procedures of [7, 13] and [14] are inad-
missible.

Fig 2. Regions of action by the PADD procedure and its induced individual test.
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Should σ2 be unknown we replace σ2 with s2 and find that the recommended
PADD+ procedure has the following properties:

(i) It is translation and scale invariant.
(ii) For fixed s2, it has the desirable interval acceptance sections.
(iii) The Tukey step corresponds to the usual Tukey procedure at different levels.
(iv) Simulations used to determine critical values are feasible for modest I.
(v) When I(J − 1) is large, the procedure is very close to the procedure described

when σ2 is known.
(vi) Should the practical nature of the problem dictate a procedure that follows

logical restrictions, PADD suffices.

Another option is to replace σ2 by T = s2 +J
∑I

i=1 X̄2
i . Whereas this option has

interval acceptance sections, is admissible, is scale invariant, it is not translation
invariant and critical values should be chosen for each given value of T . This is not
feasible for simulation and the determination of critical values.

Appendix: Proofs

In this appendix we prove the two theorems stated in Section 4 and an additional
theorem concerned with inadmissibility. The symmetry of the problem in terms of
hypotheses and the vector risk function (no hypothesis is treated any differently
than any other) enables us to focus on any one particular hypothesis, say H12 :
μ1 = μ2 vs. K12 : μ1 �= μ2. Without loss of generality we will take σ2 = 1.

To start let the I × 1 vector U = ΓX where

Γ =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 . . . 0
0 1 −1 . . . 0
...
0 . . . 0 1 −1
1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ .

Then U ∼ N(ν = Γμ, ΓΓ
′
). The density of U is

(A.1) fU (u|ν) = (2π)−I/2|ΓΓ
′ | −1/2 exp −(1/2)(u − ν)

′
(ΓΓ

′
)−1(u − ν).

In exponential family form (A.1) is

(A.2) fU (u|ν) = h(u)β(ν) exp u′(ΓΓ
′
)−1ν.

If we let W = (ΓΓ
′
)−1U

(A.3) fW (w|ν) = h∗(w)β(ν) exp
I∑

i=1

wiνi.

The hypothesis of interest is H12 : ν1 = 0 vs. K12 : ν1 �= 0. Now we give

Lemma A.1. A necessary and sufficient condition for a test ϕ(w) of H12 vs. K12

to be admissible, is that for almost every fixed w2, . . . , wI , the acceptance sections
of the test are convex in w1.

Proof. See Matthes and Truax [12].
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Note W = (ΓΓ′)−1U = (ΓΓ′)−1ΓX = (Γ′)−1X. Hence to study a test function
φ(w) = φ∗(x) as w1 varies and w2, . . . , wI remain fixed we can consider sample
points (x+rg) where g is the first column of Γ′ and r varies. This is true since when
x is replaced by (x+rg) then w becomes

(Γ
′
)−1(x + rg) = w + (r, 0, . . . , 0)

′
= (w1 + r, w2, . . . , wI)

′
.

We now let Ψ12(x) be the test of H12 determined by PADD. This test can be
described as follows: Suppose that, entering the nth stage the PADD partition is
Bn,1(x), . . . , Bn,n(x). Suppose {1} and { 2} were always in the same set of previous
partitions but now both { 1} and {2} belong to different sets in the partition. Then
reject H12. Otherwise accept H12 when the PADD procedure stops. Thus the test
of H12 would stop and reject H12 the first time { 1} and {2} are split (i.e. they are
contained in different sets of the current partition).

To study Ψ12(x) we will need only focus on Dx(A, B) for sets B such that either
B ∩ {1, 2} = ∅ or {1, 2} ⊂ B. Otherwise H12 would have been rejected earlier. Next
we state, for each B, some facts concerning Dx(A, B) and D∗

x(B) for points of the
form x = (z1 + r, z2 − r, z3, . . . , zI)′. These facts are immediate consequences of the
definitions.

(F1) Suppose B ∩ {1, 2} = φ That is, B contains neither {1} nor {2}. Then
Dx(A, B) and D∗

x(B) are constants as functions of r for all A ⊂ B.
(F2) Suppose {1, 2} ⊆ A ⊂ B. Then Dx(A, B) is constant as a function of r.
(F3) xi ≥ xj for every iεVx(B), jεB\Vx(B) and any B.
(F4) This fact follows from (F3). Suppose {1, 2} ⊆ B and consider maximizing

Dx(A, B) for sets A ⊂ B where A is such that either {1} or {2}, but not both, is
in A. The numerator of the maximized Dx(A, B) when maximized over such sets
A will be of the form.

(A.4)

∑
i∈A1

zi+max(z1 + r, z2 − r)
N(A1) + 1

−
∑

i∈A2
zi+min(z1 + r, z2 − r)

N(A2) + 1
,

where A1, A2, {1, 2} is a partition of B. Note (A.4) > 0.
Another useful, but simple fact is
(F5) As functions of r both max(z1+r,z2−r) and − min(z1+r,z2−r) are strictly

decreasing for r < (z2 − z1)/2 and strictly increasing for r > (z2 − z1)/2.
(F6) As a function of r, |z1 − z2 + 2r| is strictly decreasing for r < (z2 − z1)/2

and strictly increasing for r > (z2 − z1)/2.
Next we establish two properties of the PADD procedure as a test of H12 versus

K12.

Lemma A.2. Suppose Ψ12(x) accepts H12 and Ψ12(x∗) rejects H12 where x∗ =
x + rg for some r > 0 and g = (1 − 1, 0, . . . , 0)′. Then |x1 − x2| ≤ |x∗

1 − x∗
2|.

Proof. Suppose that when X = x is observed the PADD procedure stops at stage n
and the final partition is Bn,1(x), . . . , Bn,n(x). Since (x) is an accept point, {1, 2} ⊆
Bm,i(x) for some i = 1, . . . , m at each stage m = 1, . . . , n. That is, {1} and {2} were
not split at any stage. Remember that each partition is the result of a maximization
process. Since X = x∗ is a reject point, something must have changed in the
maximization process as {1} and {2} have become split.

By facts (F1) and (F2), Dx(A, B) and Dx∗ (A, B) can differ only for sets for
which {1, 2} ⊆ B and A contains {1} or {2} but not both. Thus for some such A
and B in one of the partitions, Dx(A, B) has increased and so D∗

x∗ (B) > D∗
x(B)
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and the set Vx∗ (B) splits {1} and {2}. By (F4) the measure Dx(A, B) for such sets
can increase only when max(z1 + r, z2 − r) increases. The result now follows from
(F5).

A similar proof yields

Lemma A.3. Suppose Ψ12(x) rejects H12 and Ψ12(x∗) accepts H12 where x∗ =
x + rg for some r > 0 and g = (1, −1, 0, . . . , 0)′. Then |x1 − x2| ≥ |x∗

1 − x∗
2|.

Next we define

Property M. A test is said to have Property M if there exists three points x, x∗ =
x + r1g, x∗ ∗ = x + r2g with 0 < r1 < r2 such that x and x∗ ∗ are accept points and
x∗ is a reject point.

Note Property M is necessary and sufficient for a test to be inadmissible by virtue
of Lemma A.1.

We now state

Theorem A.1. The PADD test Ψ12(x) is admissible as a test of H12 versus K12.

Proof. Note that Ψ12(x) is admissible if it does not have Property M. Suppose it
did have Property M. Then from Lemma A.2 and Lemma A.3 we have |x1 − x2| ≤
|x∗

1 − x∗
2| and |x∗

1 − x∗
2| ≥ |x∗ ∗

1 − x∗ ∗
2 |. Or equivalently,

(A.5) |x1 − x2| ≤ |x1 − x2+2r1| ≥ |x1 − x2+2r2|,

which is a contradiction of (F6).
Define the test function

(A.6) Ψ∗
12(x) =

⎧⎨
⎩

0 if |x1 − x2| < CL

1 if |x1 − x2| > CU

Ψ12(x) otherwise.

⎫⎬
⎭

This test function corresponds to PADD+.

Theorem A.2. The PADD+ test Ψ∗
12(x) is admissible as a test of H12 versus K12.

Proof. Suppose Ψ∗
12(x) has Property M, i.e. Ψ∗

12(x) is inadmissible. This can occur
in 8 ways. They are listed in the Table 1.

Table 1

Possible behaviors leading to Property M for Ψ∗
12

Sample points x x∗ x∗∗ x x∗ x∗∗

Case 1 Case 2

Actions of Ψ12 A A A A A R
| x1 − x2 |, | x∗

1 − x∗
2 |, | x∗∗

1 − x∗∗
2 | < CU , > CU , < CU < CU , > CU , < CL

Case 3 Case 4

Actions of Ψ12 A R A A R R
| x1 − x2 |, | x∗

1 − x∗
2 |, | x∗∗

1 − x∗∗
2 | < CU , > CL, < CU < CU , > CL, < CL

Case 5 Case 6

Actions of Ψ12 R A A R A R
| x1 − x2 |, | x∗

1 − x∗
2 |, | x∗∗

1 − x∗∗
2 | < CL, > CU , < CU < CL, > CU , < CL

Case 7 Case 8

Actions of Ψ12 R R A R R R
| x1 − x2 |, | x∗

1 − x∗
2 |, | x∗∗

1 − x∗∗
2 | < CL, > CL, < CU < CL, > CL, < CL
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We will see that each scenario would require that |x1 −x2| ≤ |x∗
1 −x∗

2| ≥ |x∗ ∗
1 −x∗ ∗

2 |
but this would violate (F6). Case 1 is immediate as it requires |x1 − x2| < CU , |x∗

1 −
x∗

2| > CU and |x∗ ∗
1 − x∗ ∗

2 | < CU .

Cases 2, 5, 6, and 8 are similar to Case 1. Case 3 is impossible as Ψ12 is admissible
by Theorem 4.1. Next we will consider Case 4 and Case 7.

In Case 4 we have |x∗
1 − x∗

2| > CL > |x∗ ∗
1 − x∗ ∗

2 |. Furthermore since x is an
accept point of Ψ12 and x∗ is a reject point of Ψ12 it follows from Lemma A.2 that
|x1 − x2| ≤ |x∗

1 − x∗
2|. This gives the contradiction.

In Case 7 we have |x1 − x2| < CL < |x∗
1 − x∗

2|. Furthermore since x∗ is a reject
point of Ψ12 and x∗ ∗ is an accept point of Ψ12 it follows from Lemma A.3 that
|x∗

1 − x∗
2| ≥ |x∗ ∗

1 − x∗ ∗
2 |. This gives the contradiction.

The critical values for the Holm [7] procedure are all different. Some critical
values for the Royen [13] and Shaffer [14] procedures can be the same. However if
I ≥ 4 there are at least 3 critical values that are different. In particular it is always
true that 0 < C1 < C2 < C3 < Cq.

Theorem A.3. For I ≥ 3 the Holm procedure is inadmissible. For I ≥ 4 and
(3C2 + C1)/2 > C3, the Shaffer and Royen procedures are inadmissible.

Proof. We prove the theorem for Shaffer’s procedure since the others will follow
similarly. We exhibit three sample points x, x∗ = x + r1g, x∗ ∗ = x + r2g with
0 < r1 < r2 such that x and x∗ ∗ are accept points for H12 while x∗ is a reject point.
That is, we show that the individual test of H12 determined by Shaffer’s method
has Property M. Now choose the I × 1 vector x so that x1 = (3C2 + C1)/2, x2 =
C2, x3 = 0, x4 = 2Cq +(3C2+C1)/2, and xi = 2xi−1, i = 5, . . . , I. For this x one can
verify that all hypotheses are rejected except H12 and H23 . Now choose r1 = ε > 0
and ε small, ε < (C2 − C1)/4. Recall g = (1, −1, 0, . . . , 0) so that x∗

1 = x1 − ε and
x∗

1 − x∗
2 = (C2 + C1)/2 − 2ε > C1. Also x∗

2 = x2 + ε so that x∗
2 − x∗

3 = C2 + ε.
Furthermore xi = x∗

i for i ≥ 3. In light of this and the choices of x and x∗ all
hypotheses are rejected. Next choose r2 = (C2 + C1)/4 so that x∗ ∗

1 − x∗ ∗
2 = 0. This

ensures that the procedure accepts H12 at x∗ ∗.

Remark A.5. The condition regarding the critical value would easily hold in
virtually all practical situations.

Remark A.6. If σ2 is unknown and s2 replaces σ2 in the Holm, Shaffer and Royen
procedures they are still inadmissible under mild conditions. The proof requires only
some modifications of the proof of Theorem A.4.
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