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Abstract: Estimation of the proportion or the number of true null hypotheses
is an important problem in multiple testing, especially when the number of
hypotheses is large. Wu, Guan and Zhao [Biometrics 62 (2006) 735–744] found
that nonparametric approaches are too conservative. We study two parametric
mixture models (normal and beta) for the distributions of the test statistics
or their p-values to address this problem. The components of the mixture are
the null and alternative distributions with mixing proportions π0 and 1 − π0,
respectively, where π0 is the unknown proportion to be estimated. The normal
model assumes that the test statistics from the true null hypotheses are i.i.d.
N(0, 1) while those from the alternative hypotheses are i.i.d. N(δ, 1) with δ �= 0.
The beta model assumes that the p-values from the null hypotheses are i.i.d.
U [0, 1] and those from the alternative hypotheses are i.i.d. Beta(a, b) with
a < 1 < b. All parameters are assumed to be unknown. Three methods of
estimation of π0 are developed for each model. The methods are compared
via simulation with each other and with Storey’s [J. Roy. Statist. Soc. Ser. B
64 (2002) 297–304] nonparametric method in terms of the bias and mean
square error of the estimators of π0 and the achieved FDR. Robustness of
the estimators to the model violations is also studied by generating data from
other models. For the normal model, the parametric methods perform better
compared to Storey’s method with the EM method (Dempster, Laird and
Rubin [Roy. Statist. Soc. Ser. B 39 (1977) 1–38]) performing best overall
when the assumed model holds; however, it is not very robust to significant
model violations. For the beta model, the parametric methods do not perform
as well because of the difficulties of estimation of parameters, and Storey’s
nonparametric method turns out to be the winner in many cases. Therefore
the beta model is not recommended for use in practice. An example is given
to illustrate the methods.
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1. Introduction

Suppose that m null hypotheses, H01, . . . , H0m, are to be tested against alternatives,
H11, . . . , H1m. Let X1, . . . , Xm be the test statistics and p1, . . . , pm their p-values.
Throughout we assume that the Xi’s and hence the pi’s are mutually independent.
Suppose that some unknown number m0 of the hypotheses are true and m1 =
m−m0 are false. We wish to estimate m0 or equivalently the proportion π0 = m0/m
of the true hypotheses based on the Xi’s or equivalently the pi’s. The estimate m̂0 is
useful for devising more powerful adaptive multiple comparison procedures (MCPs)
to control an appropriate type I error rate, e.g., the familywise error rate (FWE)
(Hochberg and Tamhane [11]) in the Bonferroni procedure or the false discovery rate
(FDR) in the Benjamini and Hochberg [1] procedure. These procedures normally
use the total number m as a conservative upper bound on the number of true
hypotheses. Adaptive procedures based on m̂0 are especially useful in large-scale
multiplicity testing problems arising in microarray data involving m of the order of
several thousands.

A number of methods have been proposed for estimating m0 starting with
Schweder and Spjøtvoll [18]; see, e.g., Hochberg and Benjamini [10], Benjamini
and Hochberg [2], Turkheimer, Smith and Schmidt [23], Storey [21], Storey et al.
[22], Jiang and Doerge [15] and Langaas et al. [17]. Many of these methods reject
the p-values that differ significantly from the null U [0, 1] distribution as non-null
and exclude them from the estimation process. Different formal or graphical tests
are used for this purpose. For example, consider Storey’s [21] method with a fixed
λ-level test for a sufficiently large λ (e.g., λ = 0.5) to reject any p-value ≤ λ as
non-null. (It should be noted that in fact λ is not fixed but is a tuning parameter
whose value is determined from the data to minimize the mean square error of
the estimate of π0 using bootstrap.) Let Nr(λ) = �(pi ≤ λ) denote the number of
rejected hypotheses and Na(λ) = �(pi > λ) the number of accepted hypotheses at
level λ ∈ (0, 1). If type II errors are ignored for a sufficiently large λ then

(1.1) E[Na(λ)] ≈ m0(1 − λ).

Storey’s (ST) estimator is given by

(1.2) π̂0(λ) =
Na(λ)

m(1 − λ)
or m̂0(λ) =

Na(λ)
1 − λ

.

Schweder and Spjøtvoll’s [18] method visually fits a straight line through the origin
to the plot of Na(p(i)) = m − i vs. 1 − p(i) (1 ≤ i ≤ m) for large values of
the p(i). The slope of the fitted line is taken as an estimate of m0 according to
Equation (1.1). Because these estimators attribute all nonsignificant p-values to
the true null hypotheses (type II errors are ignored) and do not explicitly model
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the non-null p-values, they tend to be positively biased which results in conservative
adaptive control of any type I error rate.

To get a handle on type II errors, so that both the null and non-null p-values can
be utilized to estimate π0, the mixture model approach has been proposed by several
authors. The mixture model differs from the setup given in the first paragraph in
that the number of true hypotheses is a random variable (r.v.) and m0 is its expected
value. Specifically, let Zi be a Bernoulli r.v. which equals 1 with probability π0 if
H0i is true and 0 with probability π1 = 1 − π0 if H0i is false. Assume that the Zi

(1 ≤ i ≤ m) are i.i.d. Then the number of true hypotheses, M0 =
∑m

i=1 Zi, is a
binomial r.v. with parameters m and π0, and E(M0) = m0 = mπ0.

A parametric mixture model was considered by Hsueh, Chen, and Kodell [12]
(HCK). They assumed the following simple hypothesis testing setup. Suppose that
all m hypotheses pertain to the means of the normal distributions with H0i : μi = 0
versus H1i : μi > 0. (HCK considered a two-sided alternative, but that is not
germane to their method.) Conditional on Zi, the test statistic Xi ∼ N(δi, 1),
where δi is the standardized μi with δi = 0 if Zi = 1 and δi = δ > 0 if Zi = 0
where HCK assumed that δ is known. We refer to this model as the normal model,
which was also used by Black [3] to study the bias of Storey’s [21] estimator. An
expression for the expected number of Xi’s that are greater than any specified
threshold can be derived using this setup. By plotting the corresponding observed
number of Xi’s against the threshold, m0 could be estimated as the slope of the
straight line through the origin using least squares (LS) regression.

The normal model is the topic of Section 2. We first extend the HCK estimation
method to the unknown δ case, which is a nonlinear least squares (NLS) regression
problem. Next we note that the HCK method makes use of only the number of Xi’s
that are greater than a specified threshold; it does not make use of the magnitudes
of the Xi’s. Therefore we propose two alternative methods of estimation which uti-
lize the magnitudes of the Xi’s in an attempt to obtain a better estimate of δ and
thereby a better estimate of m0. The first of these alternative methods is similar to
the LS method of HCK, but uses the sample mean (instead of the number) of the
Xi’s that are greater than a specified threshold. We refer to it as the test statis-
tics (TS) method. The second method is the EM method of Dempster, Laird and
Rubin [4] which finds the maximum likelihood estimators (MLEs) of the mixture
distribution of the Xi’s.

This normal mixture model approach in conjunction with the EM algorithm was
proposed by Guan, Wu and Zhao [8] and most recently by Iyer and Sarkar [14]. So,
although the use of the EM algorithm for estimation in the context of the present
problem is not new, we perform a comprehensive comparison of it with the other
two new methods, and find that it performs best when the assumed model is correct,
but is not robust to model violations.

In the second approach discussed in Section 3, the non-null p-values are modeled
by a beta distribution with unknown parameters a and b (denoted by Beta(a, b)).
We refer to this model as the beta model. Here we restrict to estimation methods
based on p-values since the Xi’s can have different null distributions. All three
estimators (HCK, TS and EM) are also derived for the beta model.

We stress that both the normal and beta models are simply “working” models
intended to get a handle on type II errors. We do not pretend that these models are
strictly true. Therefore robustness of the estimators to the model assumptions is an
important issue. In the simulation comparisons for the normal model, robustness of
the fixed δ assumption is tested by generating different δi’s for the false hypotheses
from a normal distribution. Robustness of the normal model assumption is tested by



Parametric Mixture Models 307

generating pi’s for the false hypotheses using the beta model and transforming them
to the Xi’s using the inverse normal transformation. Similarly, the robustness of the
beta model is tested by generating Xi’s using the normal model and transforming
them to pi’s.

Adaptive control of FDR using different estimators of m0 is the topic of Sec-
tion 4. The ST, HCK, TS and EM estimators are compared in a large simulation
study in Section 5. The performance measures used in the simulation study are the
biases and mean square errors of the estimators of π0 and FDR. An example illus-
trating application of the proposed methods is given in Section 6. Conclusions are
summarized in Section 7. Proofs of some technical results are given in the Appendix.

2. Normal Model

The normal mixture model can be expressed as

(2.1) f(xi) = π0φ(xi) + π1φ(xi − δ),

where f(xi) is the p.d.f. of Xi and φ(·) is the p.d.f. of the standard normal distri-
bution. Although δ will need to be estimated, we are not too concerned about its
estimation accuracy since, after all, it is a parameter of a working model.

2.1. Hsueh, Chen, and Kodell (HCK) Method

Let

(2.2) β(δ, λ) = PH1i {pi > λ} = PH1i {Xi < zλ} = Φ
(
zλ − δ

)
denote the type II error probability of a test performed at level λ where Φ(·) is the
standard normal c.d.f. and zλ = Φ−1(1 − λ). Then E[Nr(λ)] = m0λ+(m − m0)[1 −
β(δ, λ)], and hence

(2.3) E[Nr(λ)] − mΦ
(

−zλ + δ
)

= m0[λ − Φ
(

−zλ + δ
)
].

For λ = p(i), i = 1, 2, . . . , m, the term inside the square brackets in the R.H.S. of
the above equation is

(2.4) xi = p(i) − Φ
(

−zp(i) + δ
)

and the L.H.S. can be estimated by

(2.5) yi = i − mΦ
(

−zp(i) + δ
)
.

If δ is assumed to be known then we can calculate (xi, yi), i = 1, 2, . . . , m, and using
(2.3) fit an LS straight line through the origin by minimizing

∑m
i=1(yi −m0xi)2 with

respect to (w.r.t.) m0. The LS estimator of m0 is given by

(2.6) m̂0 =
∑m

i=1 xiyi∑m
i=1 x2

i

.

We first extend the HCK estimator to the unknown δ case by incorporating
estimation of δ as part of the NLS problem of minimizing

∑m
i=1(yi − m0xi)2 w.r.t.

m0 and δ. The iterative algorithm for this purpose is given below. The initial values
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for this algorithm as well as the algorithms for the TS and EM estimators were
determined by solving the following two moment equations for m0 and δ:

(2.7)
m∑

i=1

Xi = (m − m0)δ and
m∑

i=1

X2
i = m0 + (m − m0)(δ2 + 1).

HCK Algorithm
Step 0: Compute initial estimates m̂0 and δ̂ by solving (2.7). Let π̂0 = m̂0/m.
Step 1: Set δ = δ̂ and compute (xi, yi), i = 1, 2, . . . , m, using (2.4) and (2.5).
Step 2: Compute m̂0 using (2.6) and π̂0 = m̂0/m.
Step 3: Find δ̂ to minimize

∑m
i=1(yi − m0xi)2.

Step 4: Return to Step 1 until convergence.

Remark. One could use weighted least squares to take into account the het-
eroscedasticity of the yi’s. We tried this, but the resulting NLS problem was com-
putationally much more intensive without a collateral gain in the efficiency of the
estimators.

2.2. Test Statistics (TS) Method

As noted in Section 1, we hope to improve upon the HCK estimator by utilizing
the information in the magnitudes of the Xi’s. Toward this end we first propose
an estimator analogous to the HCK estimator except that it uses the sample mean
(rather than the number) of the Xi’s that are significant at a specified level λ.

Define

Sa(λ) = {i : pi > λ} =
{
i : Xi < zλ

}
and Sr(λ) = {i : pi ≤ λ} =

{
i : Xi ≥ zλ

}
.

Then Na(λ) = |Sa(λ)| and Nr(λ) = |Sr(λ)|. Finally define

Xa(λ) =
1

Na(λ)

∑
i∈Sa(λ)

Xi and Xr(λ) =
1

Nr(λ)

∑
i∈Sr(λ)

Xi.

To derive the expected values of these sample means the following lemma is useful.

Lemma 1. Define

c0a(λ) = EH0i

(
Xi|Xi < zλ

)
, c0r(λ) = EH0i

(
Xi|Xi ≥ zλ

)
,

and
c1a(δ, λ) = EH1i

(
Xi|Xi < zλ

)
, c1r(δ, λ) = EH1i

(
Xi|Xi ≥ zλ

)
.

Then

c0a(λ) = −
φ(zλ)
1 − λ

, c0r(λ) =
φ(zλ)

λ

and

c1a(δ, λ) = δ −
φ(zλ − δ)
Φ(zλ − δ)

, c1r(δ, λ) = δ +
φ(δ − zλ)
Φ(δ − zλ)

.

Proof. The proof follows from the following expressions for the conditional expec-
tations of X ∼ N(μ, 1):

E(X|X ≤ x) = μ − φ(x − μ)
Φ(x − μ)

and E(X|X > x) = μ +
φ(μ − x)
Φ(μ − x)

.
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The desired expected values of Xa(λ) and Xr(λ) are then given by the following
lemma.

Lemma 2. Let

(2.8) g(π0, δ, λ) = P
{
Zi = 1|Xi < zλ

}
=

π0(1 − λ)
π0(1 − λ) + π1Φ

(
zλ − δ

)
and

(2.9) h(π0, δ, λ) = P
{
Zi = 1|Xi ≥ zλ

}
=

π0λ

π0λ + π1Φ
(

−zλ + δ
) .

Then

(2.10) E[Xa(λ)] = g(π0, δ, λ)c0a(λ) + [1 − g(π0, δ, λ)]c1a(δ, λ)

and

(2.11) E[Xr(λ)] = h(π0, δ, λ)c0r(λ) + [1 − h(π0, δ, λ)]c1r(δ, λ),

where c0a(λ), c0r(λ), c1a(δ, λ) and c1r(δ, λ) are as given in Lemma 1.

Proof. Given in the Appendix.

To develop an estimation method analogous to the HCK method note that from
(2.3) and (2.11) we get

E[Nr(λ)]E[Xr(λ)] − mΦ
(

−zλ + δ
)
c1r(δ, λ)

(2.12)
= m0

[
λc0r(λ) − Φ

(
−zλ + δ

)
c1r(δ, λ)

]
.

For λ = p(i), i = 1, 2, . . . , m, the term inside the square brackets in the R.H.S. of
the above equation is

(2.13) xi = p(i)c0r(p(i)) − Φ
(

−zp(i) + δ
)
c1r(δ, p(i))

and the L.H.S. can be estimated by

yi = iXr(p(i)) − mΦ
(

−zp(i) + δ
)
c1r(δ, p(i))

=
m∑

j=m−i+1

X(j) − mΦ
(

−zp(i) + δ
)
c1r(δ, p(i)).(2.14)

Then from (2.12) we see that a regression line of yi versus xi can be fitted through
the origin with slope m0 by minimizing

∑m
i=1(yi − m0xi)2 w.r.t. m0 and δ. The

algorithm to solve this NLS regression problem is exactly analogous to the HCK
algorithm.

2.3. EM Method

Whereas the HCK and TS methods compute the LS estimators of π0 and δ (for
two different regression models), the EM method computes their MLEs. For these
MLEs to exist, it is necessary that π0 be bounded away from 0 and 1. The steps in
the EM algorithm are as follows.
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EM Algorithm
Step 0: Compute initial estimates m̂0 and δ̂ by solving (2.7). Let π̂0 = m̂0/m.
Step 1 (E-step): Calculate the posterior probabilities:

π̂0(Xi) =
π̂0φ(Xi)

π̂0φ(Xi) + π̂1φ(Xi − δ̂)

and π̂1(Xi) = 1 − π̂0(Xi), i = 1, 2, . . . , m.
Step 2 (M-step): Calculate new estimates:

π̂0 =
∑m

i=1 π̂0(Xi)
m

and δ̂ =
∑m

i=1 π̂1(Xi)Xi∑m
i=1 π̂1(Xi)

.

Step 3: Return to Step 1 until convergence.

3. Beta Model

In many applications the normal model may be inappropriate because the test
statistics may not be normally distributed or different types of test statistics (e.g.,
normal, t, chi-square, Wilcoxon, log-rank) may be used to test different hypotheses
or only the p-values of the test statistics may be available. In these cases we use
the p-values to estimate π0.

We propose to model the non-null p-values by a Beta(a, b) distribution given by

g(p|a, b) =
Γ(a + b)
Γ(a)Γ(b)

pa−1(1 − p)b−1

with unknown parameters a and b with a < 1 and b > 1. This restriction is imposed
in order to ensure that g(p|a, b) is decreasing in p. It is well-known that the non-null
distribution of the p-values must be right-skewed and generally decreasing in shape
(see Hung, O’Neill, Bauer and Kohne [13]). Langaas et al. [17] imposed the same
restriction in their nonparametric estimate of the non-null distribution of p-values.

Of course, the null distribution of a p-value is Beta(1, 1), i.e., the U [0, 1] distri-
bution. As in the case of the normal model, the beta model can be represented as
a mixture model for the distribution of the pi:

(3.1) f(pi) = π0 × 1 + π1g(pi|a, b).

The parameters a and b must be estimated along with π0. This problem is analogous
to that encountered for the normal model with the difference that in addition to
π0, we have to estimate two parameters, a and b, instead of a single parameter δ.
We first extend the HCK method for the normal model discussed in Section 2.1 to
this beta model.

3.1. Hsueh, Chen, and Kodell (HCK) Method

Denote the type II error probability of a test performed at level λ by

(3.2) β(a, b, λ) = PH1i {pi > λ} =
Γ(a + b)
Γ(a)Γ(b)

∫ 1

λ
pa−1(1 − p)b−1dp = 1 − Iλ(a, b),

where Iλ(a, b) is the incomplete beta function. Put

(3.3) xi = p(i) − Ip(i)(a, b) and yi = i − mIp(i)(a, b).
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Then the HCK method amounts to solving the NLS problem of minimizing∑m
i=1(yi − m0xi)2 w.r.t. m0 and (a, b) (subject to a < 1 < b). Gauss-Newton

method (Gill et al. [7]) was used to perform minimization w.r.t. (a, b). The initial
starting values for this algorithm as well as the algorithms for the TS and EM
estimators described below were determined by solving the following three moment
equations for m0 and (a, b):

m∑
i=1

pi =
1
2
m0 +

a

a + b
m1,

m∑
i=1

p2
i =

1
3
m0 +

a(a + 1)
(a + b)(a + b + 1)

m1,(3.4)

m∑
i=1

p3
i =

1
4
m0 +

a(a + 1)(a + 2)
(a + b)(a + b + 1)(a + b + 2)

m1.

3.2. Test Statistics (TS) Method

Here the TS estimator is based on the average of the “accepted” or “rejected”
p-values defined as

pa(λ) =
1

Na(λ)

∑
i∈Sa(λ)

pi and pr(λ) =
1

Nr(λ)

∑
i∈Sr(λ)

pi.

Analogous to Lemma 1, we have the following lemma.

Lemma 3. Define

d0a(λ) = EH0i (pi|pi > λ) , d0r(λ) = EH0i (pi|pi ≤ λ) ,

and
d1a(a, b, λ) = EH1i (pi|pi > λ) , d1r(a, b, λ) = EH1i (pi|pi ≤ λ) .

Then we have
d0a(λ) =

λ + 1
2

, d0r(λ) =
λ

2
and

d1a(a, b, λ) =
1 − Iλ(a + 1, b)

1 − Iλ(a, b)
· a

a + b
, d1r(a, b, λ) =

Iλ(a + 1, b)
Iλ(a, b)

· a

a + b
.

Proof. Straightforward.

The next lemma gives E[pa(λ)] and E[pr(λ)]; its proof is exactly analogous to
that of Lemma 2.

Lemma 4. Let

g(π0, a, b, λ) = P {Zi = 1|pi > λ} =
π0(1 − λ)

π0(1 − λ) + π1[1 − Iλ(a, b)]

and
h(π0, a, b, λ) = P {Zi = 1|pi ≤ λ} =

π0λ

π0λ + π1Iλ(a, b)
.
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Then

(3.5) E[pa(λ)] = g(π0, a, b, λ)d0a(λ) + [1 − g(π0, a, b, λ)]d1a(a, b, λ)

and

(3.6) E[pr(λ)] = h(π0, a, b, λ)d0r(λ) + [1 − h(π0, a, b, λ)]d1r(a, b, λ),

where d0a(λ), d0r(λ), d1a(a, b, λ) and d1r(a, b, λ) are as given in Lemma 3.

The equations for the TS estimator are derived as follows. Analogous to (2.12),
we obtain

E[Nr(λ)]E[pr(λ)] − mIλ(a, b)d1r(a, b, λ) = m0[λd0r(λ) − Iλ(a, b)d1r(a, b, λ)].

For λ = p(i), i = 1, 2, . . . , m, the term in the square brackets in the R.H.S. of the
above equation equals

xi =
p2
(i)

2
− a

a + b
Ip(i)(a + 1, b)

and the L.H.S. can be estimated by

yi =
i∑

j=1

p(j) − a

a + b
Ip(i)(a + 1, b).

The TS algorithm for the normal model can be modified to minimize
∑m

i=1(yi −
m0xi)2 by replacing the minimization with respect to δ by minimization with re-
spect to (a, b).

3.3. EM Method

The steps in the EM algorithm, which gives the MLEs of π0 and (a, b), are as fol-
lows. As in the case of the normal model, for these MLEs to exist, it is necessary
that π0 be bounded away from 0 and 1.

Step 0: Initialize m̂0 and (â, b̂) by solving (3.5). Let π̂0 = m̂0/m.
Step 1 (E-Step): Calculate the posterior probabilities:

π̂0(pi) =
π̂0

π̂0 + π̂1g(pi|â, b̂)

and π̂1(pi) = 1 − π̂0(pi), i = 1, 2, . . . , m.
Step 2 (M-Step): Calculate â and b̂ as solutions of the equations (see equa-
tions (21.1) and (21.2) in Johnson and Kotz [16]):

ψ(a) − ψ(a + b) =
∑m

i=1 π̂1(pi) ln pi∑m
i=1 π̂1(pi)

,

ψ(b) − ψ(a + b) =
∑m

i=1 π̂1(pi) ln(1 − pi)∑m
i=1 π̂1(pi)

,

where ψ(·) is the digamma function (i.e., the derivative of the natural logarithm of
the gamma function). Also calculate

π̂0 =
∑m

i=1 π̂0(pi)
m

.

Step 3: Return to Step 1 until convergence.
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4. Adaptive Control of FDR

We now discuss the use of the estimate m̂0 for adaptively controlling the FDR.
The control is assumed to be strong control (Hochberg and Tamhane [11]), i.e.,
FDR ≤ α for some specified α < 1 for all possible combinations of true and false
null hypotheses and the respective parameter values. Let R be the total number of
rejected hypotheses and let V be the number of true hypotheses that are rejected.
Benjamini and Hochberg [1] introduced the definition

FDR = E

[
V

R

]
= E

[
V

R

∣∣∣∣ R > 0
]

P (R > 0),

where 0/0 is defined as 0. Benjamini and Hochberg [1] gave a step-up (SU) procedure
that controls FDR ≤ α.

Storey [21] considered a single-step (SS) procedure (which he referred to as the
fixed rejection region method) that rejects H0i if pi ≤ γ for some common fixed
threshold γ. His focus was on estimating the FDR. He proposed the following non-
parametric estimator:

(4.1) F̂DRλ(γ) =
π̂0(λ)γ

{Nr(λ) ∨ 1}/m
,

where π̂0(λ) is given by (1.2). The solution γ̂ to the equation F̂DRλ(γ) = α can
be used in an MCP that tests each hypothesis at the γ̂-level. Storey, Taylor and
Siegmund ([22], Theorem 3) have shown that this heuristic procedure (which uses
a slightly modified estimator of π0) controls the FDR. The heuristic procedures
proposed below along the same lines (which use parametric estimators of the FDR)
have not been rigorously shown to control the FDR.

We propose the following parametric estimator of the FDR:

(4.2) F̂DR(γ) =
π̂0γ

π̂0γ + π̂1[1 − β(·, γ)]
,

where β(·, γ) is either β(δ̂, γ) given by (2.2) for the normal model or β(â, b̂, γ) given
by (3.2) for the beta model. To adaptively control the FDR at level α, we use
the same heuristic procedure as above except that γ̂ is obtained by setting this
parametric estimator equal to α.

We may confine attention to α ≤ π0 since if α > π0 then one can choose γ̂ = 1,
and reject all hypotheses while still controlling the FDR = π0 < α. Existence and
uniqueness of γ̂ for α ∈ (0, π0] is proved in the following two lemmas for the normal
and beta models, respectively.

Lemma 5. For the normal model, the solution γ̂ to the equation F̂DR(γ) = α,
where F̂DR(γ) and β(δ̂, γ) are given by (4.2) and (2.2), respectively, exists and is
unique for α ∈ (0, π0].

Proof. Given in the Appendix.

Lemma 6. For the beta model, assuming 0 < â < 1 < b̂, the solution γ̂ to the
equation F̂DR(γ) = α, where F̂DR(γ) and β(δ̂, γ) are given by (4.2) and (3.2),
respectively, exists and is unique for α ∈ (0, π0].

Proof. Given in the Appendix.
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To develop an adaptive FDR-controlling procedure for the normal mixture model,
Iyer and Sarkar [14] took a somewhat different approach via the following asymp-
totic result of Genovese and Wasserman [6]: Assume that the pi are independent
U [0, 1] when the H0i are true and have a common distribution F when the H0i are
false. Then the nominal α-level Benjamini and Hochberg SU procedure is asymp-
totically (as m → ∞) equivalent to Storey’s SS procedure that rejects H0i if pi ≤ γ̂
where γ̂ is the solution to the equation

F (γ) = ργ and ρ =
1 − απ0

α(1 − π0)
.

Furthermore, since the SU procedure actually controls the FDR conservatively at
π0α level, exact control at level α is achieved by replacing α in the expression for
ρ by α/π0, which results in the following equation for γ:

(4.3) F (γ) = ργ and ρ =
π0(1 − α)
α(1 − π0)

.

By writing F (γ) = 1 − β(·, γ), we see that F̂DR(γ) = α and (4.3) are identical if
π0 is replaced by π̂0 in (4.3). Iyer and Sarkar [14] used the solution γ̂ from (4.3)
in Storey’s SS procedure with F (γ) = Φ(δ − zγ), and δ and π0 replaced by their
estimates δ̂ and π̂0 obtained from the EM method, which results in an adaptive
FDR-controlling procedure, which is identical to the one proposed before.

5. Simulation Results

We compared different estimators by conducting an extensive simulation study. The
ST estimator was used with λ = 0.5 throughout. The estimators were compared
in terms of their accuracy of estimation of π0 and control of FDR at a nominal
α = 0.10 using the SS procedure. The bias and mean square error (MSE) of the
estimators were used as the performance measures. The results for the normal model
are presented in Section 5.1 and for the beta model in Section 5.3. Throughout we
used m = 1000 and the number of replications was also set equal to 1000. We varied
π0 from 0.1 to 0.9 in steps of 0.1. The values π0 = 0 and 1 were excluded because
π̂0 exhibits erratic results in these extreme cases; also FDR = 0 when π0 = 0.

In each simulation run, first the random indexes of the true and false hypotheses
were generated by generating Bernoulli r.v.’s Zi. Then the respective Xi’s or the
pi’s were generated using the appropriate null or alternative distributions. The bias
of each π̂0 estimator was estimated as the difference between the average of the π̂0

values over 1000 replicates and the true value of π0. In the case of FDR, the bias
was estimated as the difference between the average of the F̂DR values over 1000
replicates and the nominal α = 0.10. The MSE was computed as the sum of the
square of the bias and the variance of the π̂0 (or F̂DR) values averaged over 1000
replicates. The detailed numerical results are given in Shi [20]; here we only present
graphical plots to save space.

5.1. Simulation Results for Normal Model

Simulations were conducted in three parts. In the first part, the true model for the
non-null hypotheses was set to be the same as the assumed model by generating the
Xi’s for the false hypotheses from a N(δ, σ2) distribution with a fixed δ = 2 and
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σ = 1. In the other two parts of simulations, robustness of the assumed model was
tested by generating the Xi’s for the false hypotheses from different distributions
than the assumed one. In the second part, the Xi’s for the false hypotheses were
generated from N(δi, σ

2) distributions where the δi’s were themselves drawn from a
N(δ0, σ

2
0) distribution with δ0 = 2 and σ0 = 0.25 corresponding to an approximate

range of [1, 3] for the δi. In the third part, the pi’s for the false hypotheses were
generated from a Beta(a, b) distribution with a = 0.5 and b = 2, and the Xi’s were
computed using the inverse normal transformation Xi = Φ−1(1 − pi).

Results for Fixed δ

The bias and the square root of the mean square error (
√

MSE) of π̂0 for ST, HCK,
TS and EM estimators are plotted in Figure 1. Note from equation (2.3) that the
bias of the ST estimator is given by

(5.1) Bias[π̂0(λ)] =
1 − π0

1 − λ
Φ(zλ − δ).

Also, using the fact that Na(λ) has a binomial distribution with number of trials
m and success probability,

p = P {pi > λ} = π0(1 − λ) + (1 − π0)Φ(zλ − δ),

and using equation (1.2) for π̂0(λ), we have

(5.2) Var[π̂0(λ)] =
p(1 − p)

m(1 − λ)2
.

These formulae were used to compute the bias and MSE of the ST estimator instead
of estimating them by simulation. Note that the bias of the ST estimator decreases
linearly in π0. The

√
MSE plot for the ST estimator is also approximately linear

because the bias is the dominant term in MSE. This is true whenever the alternative
is fixed for all false null hypotheses.

The TS estimator does not offer an improvement over the HCK estimator, as we
had hoped, and in fact performs slightly worse in terms of MSE for π0 ≤ 0.5. We sus-
pect that this result is due to the bias introduced when the term E[Nr(λ)]E[Xr(λ)]

Fig 1. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Fixed δ).
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Fig 2. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Fixed δ).

in equation (2.12) is estimated by iXr(p(i)) for λ = p(i) because of the fact that the
product of the expected values does not equal the expected value of the product of
two dependent r.v.’s. The EM estimator has consistently the lowest bias and the
lowest MSE.

The bias and
√

MSE of F̂DR for ST, HCK, TS and EM estimators are plotted
in Figure 2. We see that the ST estimator leads to a large negative bias which
means that, on the average, F̂DR is less than the nominal α = 0.10 resulting in
conservative control of FDR. The other three estimators yield approximately the
same level of control. Surprisingly, there is very little difference in the MSEs of the
four estimators. The EM estimator still is the best choice with the lowest bias and
the lowest MSE throughout the entire range of π0 values.

Results for Random δ

The bias and
√

MSE of π̂0 and of F̂DR for ST, HCK, TS and EM estimators are
plotted in Figures 3 and 4, respectively. By comparing these results with those for
fixed δ = 2, we see that, as one would expect, there is a slight degradation in the
performance of every estimator because the assumed model does not hold. The

Fig 3. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Random δ).
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Fig 4. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Random δ).

comparisons between the four estimators here are similar to those for fixed δ with
the estimators ranked as EM > HCK > TS > ST.

5.2. Robustness Results for Data Generated by Beta Model

The bias and
√

MSE of π̂0 and of F̂DR for ST, HCK, TS and EM estimators are
plotted in Figures 5 and 6, respectively. Looking at Figure 5 first, we see that the
biases and MSEs of all four estimators are an order of magnitude higher compared
to the normal model data which reflects lack of robustness.

It is interesting to note that the EM estimator is no longer uniformly best for esti-
mating π0. In fact, the HCK estimator has a lower bias and MSE for 0.2 ≤ π0 ≤ 0.7.
The lack of robustness of the EM estimator is likely due to the strong dependence
of the likelihood methods on distributional assumptions. On the other hand, for the
least squares methods, the dependence on the assumed distribution is only through
its first moment and hence is less strong. As far as control of FDR is concerned,
there are not large differences between the proposed estimators. However, when
π0 = 0.9 the proposed estimators exceed the nominal FDR by as much as 0.05,
while the ST estimator still controls FDR conservatively. In conclusion, the HCK
estimator performs best for the middle range of π0 values.

Fig 5. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Beta Model).
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Fig 6. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Beta Model).

5.3. Simulation Results for Beta Model

Results for Beta(0.5, 2) Data

In this case the non-null p-values were generated from a Beta(a, b) distribution with
a = 0.5, b = 2.0 and the null p-values were generated from the U [0, 1] distribution.
As before, the bias and variance of the ST estimator were not estimated from simu-
lations, but were computed using Equations (5.1) and (5.2) with Φ(zλ − δ) replaced
by 1−Iλ(a, b). Note that the bias of the ST estimator decreases linearly in π0 in this
case as well and

√
MSE decreases approximately linearly. From Figure 7 we see that

all estimators of π0, except ST, have significant negative biases particularly over
the interval [0.2, 0.5] and for π0 ≥ 0.7, resulting in the achieved FDR significantly
exceeding the nominal value of α = 0.10 over the corresponding ranges of π0 as can
be seen from Figure 8. Comparing the results here with those for the normal model
with the fixed δ case, we see that the biases and MSEs of all estimators are an order
of magnitude higher in the present case. The reason behind this poor performance
of the beta model probably lies in the difficulty of estimating the parameters a, b
of the beta distribution. Only the ST estimator controls FDR conservatively and
has the smallest MSE for 0.2 ≤ π0 ≤ 0.7. Thus the ST estimator has the best

Fig 7. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Beta Model).
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Fig 8. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Beta Model).

performance since it is a nonparametric estimator (and the performance would be
even better if λ is not fixed, but is used as a tuning parameter). In other words,
the benefits of using a parametric model are far outweighed by the difficulty of
estimating the parameters of the model resulting in less efficient estimators.

Robustness Results for Data Generated by Normal Model

In this case we generated the data by the normal model with N(2, 12) as the al-
ternative distribution. The p-values were then computed and all four methods of
estimation were applied. The results are plotted in Figures 9 and 10. From these fig-
ures we see that none of the proposed estimators exhibit consistent negative bias as
they did when the data were generated according to the beta model. This is some-
what surprising since one would expect these estimators to perform more poorly
when the assumed model does not hold as in the present case. We also see that
the EM estimator performs worse than other estimators. Thus lack of robustness
of the EM estimator to the model assumptions is demonstrated again, and for the
same reason. The TS estimator generally has the lowest bias for estimating π0 and
its achieved FDR is closest to the nominal α; the ST estimator has the second best
performance.

Fig 9. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Normal Model).
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Fig 10. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Normal Model).

6. Example

We consider the National Assessment of Educational Progress (NAEP) data ana-
lyzed by Benjamini and Hochberg [2]. The data pertain to the changes in the average
eighth-grade mathematics achievement scores for the 34 states that participated in
both the 1990 and 1992 NAEP Trial State Assessment. The raw p-values for the
34 states are listed in the increasing order in Table 2. The FWE controlling Bon-
ferroni procedure and the Hochberg [9] procedure both identified only 4 significant
results (those with p-values ≤ p(4) = 0.0002) Application of the FDR controlling
non-adaptive Benjamini-Hochberg SU procedure resulted in 11 significant results.
By applying their method they estimated m̂0 = 7 (π̂0 = 0.2059); using this value
in the adaptive version of their procedure yielded 24 significant results.

We applied the three methods of estimation considered in this paper to these
data under both the normal and beta models. The estimates π̂0 and the associated
δ̂ or (â, b̂) values are given in Table 1. We see that for both models, the HCK and
EM methods give smaller estimates of π0 than does the TS method. The γ̂-values
obtained by solving the equation F̂DR(γ) = α for α = 0.05 are inversely ordered.

The p-values ≤ γ̂ are declared significant. From Table 2, we see that the number
of significant p-values for HCK, TS and EM for the normal model are 28, 21 and
27, respectively. Thus, HCK and EM methods give more rejections than Benjamini
and Hochberg’s [2] adaptive SU procedure.

Before fitting the beta mixture model, it is useful to plot a histogram of the p-

Table 1

Estimates of the Parameters for the Normal and Beta Models, Value of γ̂ and Number of
Rejected Hypotheses for the HCK, TS and EM Methods

Normal Model Beta Model

HCK TS EM HCK TS EM

π̂0 0.1317 0.3233 0.1407 0.0096 0.1307 0.0160

γ̂ 0.3163 0.0918 0.2946 1.0000 0.3092 1.0000

δ̂ 1.8285 2.2657 1.9221 – – –

â – – – 0.3291 0.4474 0.3210

b̂ – – – 2.0764 3.2842 1.9313
Nr 28 21 27 34 27 34
Nr = Number of rejected hypotheses.
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Table 2

NAEP Trial State Assessment: Test Results for the HCK, TS and EM Methods (Normal Model)

State p-value HCK TS EM State p-value HCK TS EM
RI 0.00000 * * * NY 0.05802 * * *
MN 0.00002 * * * OH 0.06590 * * *
HI 0.00002 * * * CA 0.07912 * * *
NC 0.00002 * * * MD 0.08226 * * *
NH 0.00180 * * * WV 0.10026 * *
IA 0.00200 * * * VA 0.14374 * *
CO 0.00282 * * * WI 0.15872 * *
TX 0.00404 * * * IN 0.19388 * *
ID 0.00748 * * * LA 0.20964 * *
AZ 0.00904 * * * MI 0.23522 * *
KY 0.00964 * * * DE 0.31162 *
OK 0.02036 * * * ND 0.36890
CT 0.04104 * * * NE 0.38640
NM 0.04650 * * * NJ 0.41998
WY 0.04678 * * * AL 0.44008
FL 0.05490 * * * AR 0.60282
PA 0.05572 * * * GA 0.85628
∗Significant p-values are indicated by asterisks. For the beta model, the HCK and EM methods
find all p-values significant, while the TS method finds the p-values less than γ̂ = 0.3093 significant,
i.e., the same as those under the EM column in this table.

values. This histogram is shown in Fig. 11. It has a decreasing shape, and assuming
that the majority of the p-values are non-null, it corresponds to a < 1 and b > 1.
HCK and EM methods yield π̂0 < α = 0.05, hence γ̂ = 1 which means that all 34
hypotheses are rejected. This evidently liberal result is likely due to underestimation
of π0 using the beta model as noted in Section 5.3. The TS method yields π̂0 =
0.1307 and γ̂ = 0.3092, which are close to the estimates produced by the HCK and
EM methods for the normal model and it rejects the same 27 hypotheses.

Rejections of hypotheses with large p-values will justifiably raise many eyebrows.
This appears to be a problem with FDR-controlling procedures when there are many

Fig 11. Histogram of the p-Values for the NAEP Data.
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hypotheses that are clearly false (with p-values close to zero) which lowers the bar
for rejection for other hypotheses. Shaffer [19] has discussed this problem and has
suggested imposing additional error controlling requirements in order to limit such
dubious rejections. This is a topic for further research.

7. Concluding Remarks

In this paper we offered two different mixture models for estimating the number of
true null hypotheses by modeling the non-null p-values. For each model (the normal
and beta), three methods of estimation were developed: HCK, TS and EM. Gener-
ally speaking, these parametric estimators outperform (in terms of the accuracy of
the estimate of π0 and control of the FDR) the nonparametric ST estimator for the
normal model but not for the beta model. The reason for this is that the normal
model is easier to estimate and so the benefits of the parametric estimators are not
significantly compromised by the errors of estimation. On the other hand, the beta
model is difficult to estimate and so the benefits of the parametric estimators are
lost. Therefore we do not recommend the use of the beta model in practice.

For normally distributed test statistics, the EM estimator generally performs best
followed by the HCK and TS estimators. However, the EM estimator is not robust
to the violation of the model assumptions. If the EM estimator for the normal model
is applied to the data generated from the beta model or vice versa, its performance
is often worse than that of the HCK estimator, and sometimes even that of the ST
estimator. The TS estimator did not improve on the HCK estimator in all cases
as we had hoped. Thus our final recommendation is to use the normal model with
the EM method if the test statistics follow approximately normal distributions and
the HCK method otherwise. If only the p-values calculated from various types of
test statistics are available then the ST method is recommended; alternatively the
p-values may be transformed using the inverse normal transform and then the HCK
method may be applied.

Appendix

Proof of Lemma 2. We have

E[Xa(λ)] = E

{
1

Na

∑
i∈Sa(λ)

Xi

}

= E

{
E

[
1
na

∑
i∈sa

Xi

∣∣∣ Sa(λ) = sa, Na(λ) = na

]}

= E

{
1
na

· na[g(π0, δ, λ)c0a(λ) + [1 − g(π0, δ, λ)]c1a(δ, λ)]
}

= g(π0, δ, λ)c0a(λ) + [1 − g(π0, δ, λ)]c1a(δ, λ).

In the penultimate step above, we have used the fact that conditionally on Xi ≤
zλ, the probability that Zi = 1 is g(π0, δ, λ) and the probability that Zi = 0 is
1 − g(π0, δ, λ). Furthermore, the conditional expectation of Xi in the first case is
c0a(λ) and in the second case it is c1a(δ, λ). The expression for E[Xr(λ)] follows
similarly.
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Proof of Lemma 5. By substituting for β(·, γ) from (2.2) and dropping carets on
F̂DR(γ), π̂0, π̂1 and δ̂ for notational convenience, the equation to be solved is

FDR(γ) =
π0

π0 + π1Φ(δ − zγ)/γ
= α.

It is easy to check that FDR(0) = 0 and FDR(1) = π0. We shall show that FDR(γ)
is an increasing function of γ which will prove the lemma. Thus we need to show
that u(δ, γ) = Φ(δ − zγ)/γ is decreasing in γ. By implicit differentiation of the
equation Φ(zγ) = 1 − γ, we get

dzγ

dγ
= − 1

φ(zγ)
.

Hence,
du(δ, γ)

dγ
=

γφ(δ − zγ) − φ(zγ)Φ(δ − zγ)
γ2φ(zγ)

.

Therefore we need to show that

v(δ, γ) = φ(zγ)Φ(δ − zγ) − γφ(δ − zγ) > 0 ∀ δ > 0.

Now v(0, γ) = 0. Therefore we must show that

dv(δ, γ)
dδ

= φ(δ − zγ)[φ(zγ) + γ(δ − zγ)] > 0,

which reduces to the condition: w(δ, γ) = φ(zγ) + γ(δ − zγ) > 0. Since w(δ, γ) is
increasing in δ, it suffices to show that

w(0, γ) = φ(zγ) − γzγ > 0.

By putting x = zγ and hence γ = Φ(−x) the above inequality becomes

Φ(−x)
φ(x)

<
1
x

,

which is the Mills’ ratio inequality (Johnson and Kotz [16], p. 279). This completes
the proof of the lemma.

Proof of Lemma 6. By substituting for β(·, γ) from (3.2) and dropping carets on
F̂DR(γ), π̂0, π̂1, â and b̂ for notational convenience, the equation to be solved is

(A.1) FDR(γ) =
π0

π0 + π1Iγ(a, b)/γ
= α.

Note that FDR(0) = 0 and FDR(1) = π0. To show that FDR(γ) is an increasing
function of γ we need to show that Iγ(a, b)/γ decreases in γ. To see this, note that
the derivative of Iγ(a, b)/γ w.r.t. γ is proportional to γg(γ|a, b) − Iγ(a, b), which is
negative since the beta p.d.f. g(γ|a, b) is strictly decreasing in γ for a < 1 and b > 1,
and so γg(γ|a, b) < Iγ(a, b). It follows therefore that the equation FDR(γ) = α has
a unique solution in γ ∈ (0, 1) for α ∈ (0, π0].
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