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Abstract: For a general family of one-dimensional skew-symmetric probabil-
ity densities, the application of the maximum likelihood method to the esti-
mation of the asymmetry parameter λ is studied. Under mild conditions, the
existence and consistency of a sequence {λ̂n } of maximum likelihood estima-

tors is established, and the limit distributions of {λ̂n } and the sequence of
likelihood ratios are determined under the null hypothesis H0 : λ = 0. These
latter conclusions, which hold under differential singularity of the likelihood
function at λ = 0, extend to the present framework results recently obtained
for general statistical models with null Fisher information.
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1. Introduction

This work concerns likelihood inference for the general one-dimensional skew-
symmetric family, which is constructed as follows: Given two symmetric densities
f and g on the real line—that is, f(x) = f(−x) and g(x) = g(−x) for all x ∈ IR—
let

(1.1) G(x) :=
∫ x

− ∞
g(z) dz
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be the cumulative distribution function of density g. Notice that
∫
IR

[1 − G(λw)] ×
f(w) dw =

∫
IR

[1 − G(−λw)]f(−w) dw =
∫
IR

G(λw)f(w) dw for every λ ∈ IR, so that∫
IR

2f(w)G(λw) dw = 1. This argument, due to Azzalini [1], shows that for each
λ ∈ IR

(1.2) ρ(x; λ) := 2f(x)G(λx), x ∈ IR

is a genuine density, and the collection

(1.3) S(f, g) := {ρ(·; λ) | λ ∈ IR},

is the skew-symmetric family determined by f and g. When the parametrization
λ �→ ρ(·; λ) is one-to-one, f(·) = ρ(·; 0) is the unique symmetric density in S(f, g),
and λ can be considered as a measure of the asymmetry (or skewness) of density
ρ(·; λ). The first systematic treatment of a skew-symmetric family was presented
in Azzalini [1, 2] for the case in which f and g coincide with the standard normal
density ϕ, and location-scale and regression models based on S(ϕ, ϕ) as well as
multivariate extensions have been intensively studied during the last twenty years;
see Azzalini and Dalla Valle [4], Azzalini and Capitanio [3], Pewsey [13], Genton
[10] and the references therein. The analysis of the maximum likelihood method
for the location-scale model based on S(ϕ, ϕ) has proved most challenging since,
in that context, the Fisher information matrix has incomplete rank at λ = 0, a
problem that also arises for the skew exponential family, which includes the skew
normal location-scale model as a particular case (Azzalini [2], DiCiccio and Monti
[9]). The singularity of the information matrix has been analyzed via the centered
parametrization introduced in Azzalini [1] and asymptotic results are based on the
recent work by Rotzintzky et al. [14]. Using the conclusions in this latter paper,
rates of convergence for maximum likelihood estimators are derived in Chiogna [8],
and Sartori [15] studied the finiteness of the estimator of the asymmetry parameter.

As suggested by the previous comments, family S(ϕ, ϕ) has been intensively
studied, and a great effort has been done on generalizations of that model (Genton
[10]), so that looking for inference results applicable to a broad class of skew fam-
ilies is, certainly, an interesting problem. This work is a first step in this direction
since, although no scale or location parameters will be introduced, the maximum
likelihood method applied to the estimation of the asymmetry parameter λ will be
studied under rather minimal conditions on densities f and g, making the likeli-
hood inference problem a very interesting one. The first objective of this note is

(i) To establish the existence of a sequence {λ̂n} of maximum likelihood estima-
tors of λ and to prove its consistency.

To see the interest behind this problem, denote the (kernel log-) likelihood cor-
responding to a single observation x by

(1.4) �(λ; x) := log(G(λx)),

and observe that if g is the standard normal density, then �(·; x) is strictly concave
for x �= 0, a property that yields the existence and consistency of maximum like-
lihood estimators (Newey and McFadden [12]). However, strict concavity of �(·; x)
is far from being a general property, and may fail in common cases, for instance,
if g is the Laplace density. In this work, problem (i) above will be studied under
the minimal assumption that the parametrization λ �→ ρ(·; λ) is identifiable and,
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since the parameter space is not compact for the S(f, g) family, to the best of the
authors’ knowledge, in this context the existence and consistency of maximum like-
lihood estimators can not be directly obtained form general available results. The
second problem studied in this work concerns the asymptotic distribution of {λ̂n}
and, as usual, the analysis below requires differentiability assumptions on �(·; x),
and then, on density g. This problem will be studied under conditions allowing g
to be non smooth at x = 0, which can be roughly described as follows:

A1: g is continuous on IR, is ‘smooth’ outside 0, and has lateral derivatives at zero.

Under this requirement, it is not difficult to see that if the true parameter value, say
ν, is non-null, then �(·; x) is smooth on a neighborhood of ν if �(ν; x) < ∞. Thus,
when the information number at ν, given by I(ν) =

∫
IR

(∂λ�(ν; x))2ρ(ν; x) dx(> 0),
is finite, under standard regularity conditions Wald’s classical results yield that√

nI(ν)(λ̂n − ν) has a standard normal distribution at the limit (Lehmann and
Casella [11], Section 6.3, Shao [16], Section 4.4). However, under the null hypothe-
sis H0 : λ = 0 such a direct conclusion is not possible, since g(·) is not necessarily
differentiable in a neighborhood of zero under condition A1 above. Also, observe
that ∂λ�(0; x) = 2g(0)x, so that I(0) = 4g(0)2

∫
R

x2f(x) dx; thus, I(0) is null if
g(0) = 0 and, again, in this case the asymptotic distribution of {λ̂n} can not be
obtained from the results in the aforementioned references. The case of null infor-
mation at λ = 0 was recently studied in a general context by Rotnitzky et al. [14]
under several assumptions, including (a) compactness of the parameter space, and
(b) the existence of higher order derivatives ∂k

λ�(λ; x) in a neighborhood of zero.
Since in the present context neither the parameter space is compact, nor higher
order derivatives ∂k

λ�(λ; x) exist around zero, if g(0) = 0 then the limiting distrib-
ution can not be solved by direct application of available results under condition
A1. Therefore, the second problem considered in this note is

(ii) to determine both the limit distribution of the (appropriately normalized)
sequence {λ̂n} under the hypothesis H0 : λ = 0, and the asymptotic null distribu-
tion of the likelihood ratio statistic.

The approach used below to study problems (i) and (ii) can be described as
follows: The monotonicity of the mapping λ �→ �(λ; x) is used to establish the
existence of maximizers λ̂n of the observed likelihood when the sample size n is
large enough, whereas the proof for the consistency of {λ̂n} follows the ideas in
Cavazos-Cadena and Gonzalez-Faŕıas [7] where, under mild conditions, it is shown
that sequence {λ̂n} is consistent if and only if it is bounded with probability 1;
here, after establishing the boundedness property, a direct proof of consistency is
given via a simple consequence of Kullback’s inequality. Concerning problem (ii),
as in the results presented in Lehmann and Casella ([11], Section 6.3), Shao ([16],
Section 4.4), or in Rotnitzky et al. [14], the analysis is based on Taylor series
expansions for the observed likelihood and its derivative around zero, which in the
present context are lateral expansions; they are used to show that the maximum
likelihood estimator is no null with probability increasing to 1, and the asymptotic
distributions are obtained via the central limit theorem and the strong law of large
numbers.

The organization of the paper is as follows: Problem (i) is analyzed in the fol-
lowing three sections. Thus, in Section 2 the identification property of the para-
metrization λ �→ ρ(λ; ·) is discussed, the existence of a sequence {λ̂n} of maximum
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likelihood estimators is established in Section 3, and the consistency of {λ̂n} is
proved in Section 4. After this point, the reminder of the paper concerns problem
(ii). In Section 5 the basic dominance and smoothness assumptions are formally
introduced, and the main asymptotic result is stated as Theorem 5.1. Next, in
Section 6 the necessary technical tools concerning lateral Taylor series for the like-
lihood function and its first derivative are established and, finally, the exposition
concludes in Section 7 with a proof of Theorem 5.1.

Notation. Throughout the remainder X1, X2, X3, . . . stands for a sequence of in-
dependent and identically distributed random variables with common density be-
longing to family S(f, g) in (1.3): For each n = 1, 2, . . ., set

(1.5) Xn
1 := (X1, . . . , Xn).

The distribution of the sequence (X1, X2, . . .) when ν is the true parameter value
is denoted by Pν [ · ], whereas Eν [ · ] stands for the corresponding expectation op-
erator. On the other hand, if H(·) is a function defined around zero, H(0+) :=
limx↘0 H(x), and H(0−) := limx↗0 H(x), whereas given A ⊂ IR, IA is the indica-
tor function of set A, that is, IA(x) = 1 if x ∈ A, whereas IA(x) = 0 when x /∈ A.
Finally, the following convention is enforced:

∑b
i=a Ci = 0 when b < a.

2. Identifiability

In this section the identifiability of the parametrization λ �→ ρ(·; λ) is briefly dis-
cussed. This condition establishes that different parameters correspond to different
densities, and plays a fundamental role in parametric estimation (Newey and Mc-
Fadden [12]).

Assumption 2.1. The mapping λ �→ ρ(·; λ) is one-to-one, that is,∫
IR

|ρ(x; λ) − ρ(x; ν)| dx =
∫

IR

2f(x)|G(λx) − G(νx)| dx �= 0, if λ �= ν;

see (1.2).

Some primitive conditions ensuring this requirement are now given.

Lemma 2.1. Assumption 2.1 holds under either of the following conditions (i)–
(iii).

(i) For every nonempty open interval J ⊂ IR,
∫

J
f(x) dx > 0;

(ii)
∫

J
g(x) dx > 0 for each nonempty open interval J ⊂ IR;

(iii) There exists δ > 0 such that∫
J

g(x) dx > 0 and
∫

J

f(x) dx > 0,

for each nonempty open interval J ⊂ (0, δ).

Proof. Let λ and ν be fixed and different real numbers, and suppose that

(2.1)
∫

IR

f(x)|G(λx) − G(νx)| dx = 0.

A contradiction will be obtained under each of the three conditions in the lemma.
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Assume that condition (i) holds. Given an open interval J ⊂ IR with positive
length, (2.1) and

∫
J

f(x) dx > 0 together yield that |G(λx) − G(νx)| = 0 for some
x ∈ J , so that {x | G(λx) − G(νx) = 0} is dense in IR. Since G(·) is continuous, this
set is also closed, so that

(2.2) G(λx) = G(νx) for all x ∈ IR.

This fact implies that λ �= 0 and ν �= 0. Indeed, if ν = 0, it follows that λ �= 0 and
the right-hand side equals 1/2 for all x, whereas the values of left-hand side cover the
whole interval (0, 1) as x moves on IR. Thus, ν �= 0 and, similarly, λ �= 0. Moreover,
(2.2) also yields that λ and ν have the same sign since, otherwise, as x → ∞ one
side of the equality converges to 1 and the other converges to 0. Therefore, recalling
that λ �= ν, it follows that |λ| �= |ν|, and without loss of generality it can be assumed
that β = |λ|/|ν| = λ/ν ∈ (0, 1). Replacing x by y/ν, (2.2) yields that, for all y ∈ IR,
G(y) = G(βy), and then

G(y) = G(βny), y ∈ IR, n = 1, 2, 3, . . . .

Letting n go to ∞, the continuity of G(·) and the inclusion β ∈ (0, 1) yield that
G(y) = G(0) = 1/2 for all y ∈ IR, in contradiction with the basic properties of a
distribution function.

Under condition (ii), G(b) − G(a) =
∫ b

a
g(x) dx > 0 for a < b, so that G(·) is

strictly increasing. Thus, since λ �= ν, |G(λx) − G(νx)| > 0 for all x �= 0, and it
follows that (2.1) is equivalent to

∫
IR

f(x) dx = 0, which is not possible, since f(·)
is a density.

Suppose that condition (iii) occurs. In this context, G(·) is strictly increasing on
the interval (0, δ) and then on (−δ, δ), by symmetry. Next, define δ1 := δ/(|λ| +
|ν| + 1) and, recalling that λ �= ν, notice that if x ∈ [δ1/2, δ1] then λx and νx are
different points in (−δ, δ), so that |G(λx) − G(νx)| > 0. Thus, by continuity of G(·),
minx∈[δ1/2,δ1] |G(λx) − G(νx)| =: ε > 0. Consequently,∫

[δ1/2,δ1]

f(x)|G(λx) − G(νx)| dx

≥ ε

∫
[δ1/2,δ1]

f(x) dx > 0,

where the inclusion [δ1/2, δ1] ⊂ (0, δ) was used to set the last inequality. Therefore,
(2.1) can not occur under condition (iii).

According to the previous result, Assumption 2.1 is valid under mild require-
ments on densities f and g, and it is interesting to observe that if conditions (i)–(iii)
in Lemma 2.1 do not hold, then identifiability may fail.

Example 2.1. Let the symmetric densities f and g be such that f(x) = 0 for
x ∈ [−1, 1], whereas g(x) = 0 for |x| > 1. In this case, it is not difficult to see
that the general density ρ(·; λ) ∈ S(f, g) satisfies ρ(·; λ) = ρ(·; 1) for λ ≥ 1, and
ρ(·; λ) = ρ(·; −1) when λ ≤ −1, so that Assumption 2.1 does not hold.

The basic consequence of Assumption 2.1, which plays a central role in the
subsequent development, is established in the following lemma. Firstly, recall that
G(·) is increasing and notice that if λ2 > λ1 then∫ ∞

0

f(x)|G(λ2x) − G(λ1x)| dx =
∫ ∞

0

f(x)(G(λ2x) − G(λ1x)) dx,
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and ∫ 0

− ∞
f(x)|G(λ2x) − G(λ1x)| dx =

∫ 0

− ∞
f(x)(G(λ1x) − G(λ2x)) dx

=
∫ ∞

0

f(x)(G(λ2x) − G(λ1x)) dx,

where the second equality comes from
∫
IR

f(x)G(λix) dx = 1/2 for i = 1, 2, so that∫
R

f(x)|G(λ2x) − G(λ1x)| dx(2.3)

= 2
∫ ∞

0

f(x)(G(λ2x) − G(λ1x)) dx

= 2
∫ 0

− ∞
f(x)(G(λ1x) − G(λ2x)) dx, λ1 < λ2.

Lemma 2.2. Under the identifiability Assumption 2.1, the following assertions (i)
and (ii) hold:

(i) For each λ ∈ IR,
∫ ∞
0

f(x)G(λx) dx > 0 and
∫ 0

− ∞ f(x)G(λx) dx > 0.
(ii) There exists a function c : IR → (0, ∞) such that

Pλ[X1 < −c(λ)] > 0 and Pλ[X1 > c(λ)] > 0, λ ∈ IR.

Proof. (i) Notice that

0 ≤
∫ ∞

0

f(x)G(λ1x) dx ≤
∫ ∞

0

f(x)G(λ2x) dx, λ1 < λ2,

since G(·) is increasing. Now, suppose that
∫ ∞
0

f(x)G(λ2x) dx = 0 for some λ2 ∈ IR.
In this case the above display yields

∫ ∞
0

f(x)G(λ1x) dx = 0 for every λ1 ≤ λ2, and
then, ∫

R

f(x)|G(λ2x) − G(λ1x)| dx = 0, λ1 ≤ λ2,

by the first equality in (2.3), contradicting Assumption 2.1; consequently,
∫ ∞
0

f(x)×
G(λx) dx > 0 for all λ ∈ IR, whereas the other part of the conclusion can be obtained
along similar lines.

(ii) By the monotone convergence theorem, as ε ↘ 0,
∫ ∞

ε
f(x)G(λx) dx ↗∫ ∞

0
f(x)G(λx) dx and

∫ −ε

− ∞ f(x)G(λx) dx ↗
∫ 0

− ∞ f(x)G(λx) dx for each λ. There-
fore, by part (i), there exists c(λ) > 0 such that

∫ ∞
c(λ)

f(x)G(λx) dx > 0 and∫ −c(λ)

− ∞ f(x)G(λx) dx > 0, and the conclusion follows.

3. Existence of Maximum Likelihood Estimators

The objective of this section is to establish the existence of a sequence of maximum
likelihood estimators, an idea that is formally stated below. To begin with, given a
fixed sample size n > 0, for each possible sample x = (x1, . . . , xn) ∈ IRn define the
average (kernel log-)likelihood function Ln(·;x) by

(3.1) Ln(λ;x) :=
1
n

n∑
k=1

�(λ; xk) =
1
n

n∑
k=1

log(G(λxk)), λ ∈ IR,
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(see (1.1) and (1.4)), where the usual convention log(0) := −∞ is enforced. Since
G(·) is continuous and takes values in [0, 1], Ln(·; ·) is continuous function from
IR × IRn into [−∞, 0]; moreover, for every Q ⊂ {1, 2, . . . , n}

(3.2) Ln(λ;x) ≤ 1
n

∑
i :i∈Q

log(G(λxi)) ≤ 0, λ ∈ IR, ∅ �= Q.

Definition 3.1. Let {λn : IRn → IR} be a sequence of (Borel) measurable functions
and set

λ̂n := λn(Xn
1 ).

In this case, {λ̂n} is a sequence of maximum likelihood of estimators of λ if

(3.3) Pλ0

[ ∞⋃
n=1

∞⋂
k=n

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ) for all λ]

]
= 1, λ0 ∈ IR.

Remark 3.1. (i) By continuity, Ln(λ̂n; Xn
1 ) ≥ Ln(λ; Xn

1 ) occurs for every λ ∈ IR if
and only if it holds for each rational number, so that [Ln(λ̂n; Xn

1 ) ≥ Ln(λ; Xn
1 ), λ ∈

IR] is an event.
(ii) In words, {λ̂n} is a sequence of maximum likelihood estimators of λ if, with

probability 1 and regardless of the true parameter value, λ̂n maximizes the observed
average likelihood function Ln(·; Xn

1 ) whenever n is large enough. The event within
brackets in (3.3) is the inferior limit of the events [Lk(λ̂k; Xk

1 ) ≥ Lk(λ; Xk
1 ), λ ∈ IR],

and when (3.3) holds then, as k → ∞, Pλ0 [Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ) for all λ] → 1;
see, for instance, Billingsley ([6], Section 4).

The main objective of this section is to prove the following result.

Theorem 3.1. Under Assumption 2.1, there exists a sequence of maximum likeli-
hood estimators of λ.

The proof of this theorem has been divided into three simple lemmas involving
the following notation: For each x ∈ IRn, set

(3.4) mn(x) := sup
λ∈IR

Ln(λ;x),

so that (3.1) and (3.2) lead to

(3.5) 0 ≥ mn(x) ≥ Ln(0;x) = − log(2), x ∈ IRn,

since G(0) = 1/2. Next, define

(3.6) Mn(x) := {ν ∈ IR | Ln(ν;x) = mn(x)}, x ∈ IRn,

which is a closed subset of IR, by the continuity of Ln(·;x). As can be seen from
the monotonicity of �(·; x), the set Mn(x) may be empty if the observed sample
x ∈ IRn does not contain observations of different sign. The first step to the proof of
Theorem 3.1 is the following lemma, showing that Mn(x) is nonempty and compact
if x ∈ IRn contains components with opposite signs. For each integer n ≥ 2, set

(3.7) Sn := {x ∈ IRn | xixj < 0 for some i and j with 1 ≤ i �= j ≤ n}

and observe that Sn is an open subset of IRn.
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Lemma 3.1. For each integer n ≥ 2 and x ∈ Sn, the set of maximizers Mn(x) is
nonempty and compact.

Proof. Given x ∈ Sn, select indexes i∗ and j∗ such that xi∗ < 0 and xj∗ > 0, so
that limλ→∞ log(G(λxi∗ )) = −∞ = limλ→ − ∞ log(G(λxj∗ )). After setting Q = {i∗ }
and Q = {j∗ } in (3.2), these convergences yield that

lim
|λ|→∞

Ln(λ;x) = −∞,

and it follows that the set Mn(x)—consisting of the maximizers of the continuous
function Ln(·;x)—is nonempty and compact.

Next, for each n ≥ 2, define λ+
n : Sn → IR by

(3.8) λ+
n (x) := max Mn(x), x ∈ Sn,

so that λ+
n (x) is the largest element in Mn(x). Observe that λ+

n (x) ∈ Mn(x) is a
well-defined finite number for each x ∈ Sn, by Lemma 3.1. As it is shown below,
this function λ+

n (·) is upper semi-continuous.

Lemma 3.2. Let the integer n ≥ 2 be arbitrary but fixed, and suppose that {xk } ⊂
Sn is such that limk→∞ xk = y ∈ Sn. In this context,

(i) If νk ∈ Mn(xk) for each k, then sequence {νk } is bounded, and
(ii) Every limit point of {νk } belongs to Mn(y).
Consequently,
(iii) λ+

n (·) is upper semi-continuous.

Proof. To begin with, write xk = (xk1, . . . , xkn) and notice that, since νk ∈ Mn(xk),

(3.9)
1
n

n∑
i=1

log(G(λxki)) = Ln(λ;xk) ≤ Ln(νk;xk) =
1
n

n∑
i=1

log(G(νkxki)),

for ever λ ∈ IR; in particular,

(3.10) − log(2) = Ln(0;xk) ≤ 1
n

n∑
i=1

log(G(νkxki)).

(i) Assume now that lim supk→∞ νk = ∞ and, taking a subsequence if neces-
sary, without loss of generality suppose that νk → ∞. In this context, select an
index i∗ such that yi∗ < 0, which is possible since y ∈ Sn (see (3.7)) and observe
that the convergence xki∗ → yi∗ < 0 leads to νkxki∗ → −∞ as k → ∞, so that
log(G(νkxki∗ )) → −∞, and then, via (3.2) with Q = {i∗ }, this yields

lim
k→∞

1
n

n∑
i=1

log(G(νkxki)) = −∞,

which contradicts (3.10); it follows that lim supk νk < ∞, whereas the inequality
lim infk νk > −∞ can be established along similar lines.

(ii) Let ν∗ be an arbitrary limit point of {νk }, and notice that, by part (i), ν∗

is finite; selecting a subsequence, if necessary, assume that νk → ν∗. In this case,
taking the limit as k goes to ∞ in (3.9), it follows that

Ln(λ;y) =
1
n

n∑
i=1

log(G(λyk)) ≤ 1
n

n∑
i=1

log(G(ν∗yk)) = Ln(ν∗;y), λ ∈ IR,
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i.e., ν∗ ∈ Mn(y).
(iii) Let y ∈ Sn be arbitrary. If {xk } ⊂ Sn is such that limk xk = y, recalling

that λ+
n (xk) ∈ Mn(xk), part (ii) with νk = λ+

n (xk) yields that lim supk λ+
n (xk) ∈

Mn(y), and then lim supk λ+
n (xk) ≤ λ+

n (y), by (3.8), so that λ+
n (·) is upper semi-

continuous.

The last step before the proof of Theorem 3.1 is the following consequence of
Lemma 2.2(i).

Lemma 3.3. Under Assumption 2.1,

lim
n→∞

Pν

[ ∞⋂
k=n

[Xk
1 ∈ Sk]

]
= 1, ν ∈ IR;

see (1.5) for notation.

Proof. Let ν ∈ IR be fixed and observe that for every i = 1, 2, . . . ,

Pν [Xi ≤ 0] = 1 − Pν [Xi > 0] = 1 − 2
∫ ∞

0

f(x)G(νx) dx =: ρ−(ν) ∈ [0, 1),

where the inclusion stems from Lemma 2.2(i), so that for each k > 0, ρ−(ν)k =
Pν [Xi ≤ 0, 1 ≤ i ≤ k]; similarly, Pν [Xi ≥ 0, 1 ≤ i ≤ k] = ρ+(ν)k for some
ρ+(ν) ∈ [0, 1). Since

[Xk
1 ∈ Sk]c = [Xi ≤ 0, 1 ≤ i ≤ k] ∪ [Xi ≥ 0, 1 ≤ i ≤ k],

it follows that Pν [[Xk
1 ∈ Sk]c] ≤ 2ρ(ν)k, where ρ(ν) ∈ [0, 1) is given by ρ(ν) :=

max{ρ−(ν), ρ+(ν)}. Observing that (1.5) and (3.7) together yield that [Xn
1 ∈ Sn] ⊂

[Xk
1 ∈ Sk] for k ≥ n, it follows that

Pν

[ ∞⋂
k=n

[Xk
1 ∈ Sk]

]
≥ Pν [Xn

1 ∈ Sn] ≥ 1 − 2ρ(ν)n

and the conclusion is obtained taking the limit as n → ∞.

Notice that the last display and Lemma 3.1 together shows that, with probability
increasing to 1 at a geometric rate, the function Ln(·; Xn

1 ) has a maximizer when
n is large enough.

Proof of Theorem 3.1. Select a point λ∗ ∈ IR and for each positive integer k define
λk : IRk → IR as follows: λ1(·) ≡ λ∗, whereas, for k ≥ 2, λk(x) := λ∗ if x ∈ IRk \ Sk,
and λk(x) := λ+

k (x) if x ∈ Sk. Since the Sk’s are open sets, Lemma 3.2(iii) implies
that each function λk(·) is measurable, and then λ̂k = λk(Xk

1 ) is a genuine statistic.
Using (3.4)–(3.6) and (3.8), this specification yields [Xk

1 ∈ Sk] ⊂ [Lk(λ̂k; Xk
1 ) ≥

Lk(λ; Xk
1 ), λ ∈ IR] for k ≥ 2. Therefore, for each integer m ≥ 2,

∞⋂
k=m

[Xk
1 ∈ Sk] ⊂

∞⋂
k=m

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ), λ ∈ IR]

⊂
∞⋃

n=1

∞⋂
k=n

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ), λ ∈ IR],
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a relation that yields that, for every parameter ν,

Pν

[ ∞⋃
n=1

∞⋂
k=n

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ), λ ∈ IR]

]
≥ Pν

[ ∞⋂
k=m

[Xk
1 ∈ Sk]

]
.

After taking the limit as m → ∞, an application of Lemma 3.3 leads to

Pν

[ ∞⋃
n=1

∞⋂
k=n

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ), λ ∈ IR]

]
= 1, ν ∈ IR,

so that, by Definition 3.1, {λ̂n} is a sequence of maximum likelihood estimators.

4. Consistency

The objective of this section is to show that a sequence {λ̂n} of maximum likelihood
estimators of λ is consistent, i.e., that {λ̂n} converges to the true parameter value
with probability 1.

Theorem 4.1. Suppose that Assumption 2.1 holds and let {λ̂n} be a sequence of
maximum likelihood estimators. In this context,

Pν

[
lim

n→∞
λ̂n = ν

]
= 1, ν ∈ IR.

The proof of this result relies on the two lemmas stated below and involves
the following notation: Throughout the remainder of the section {λ̂n} is a given
sequence of maximum likelihood estimators of λ and the event Ω∗ is given by

(4.1) Ω∗ :=
∞⋃

n=1

∞⋂
k=n

[Lk(λ̂k; Xk
1 ) ≥ Lk(λ; Xk

1 ), λ ∈ IR].

Also, for each ν ∈ IR,

Ω−
ν :=

[
lim

n→∞
1
n

n∑
i=1

I[Xi ≤ −c(ν)] = Pν [X ≤ −c(ν)]

]
,

(4.2)

Ω+
ν :=

[
lim

n→∞
1
n

n∑
i=1

I[Xi ≥ c(ν))] = Pν [X ≥ c(ν)]

]
,

where c(ν) > 0 is as in Lemma 2.2(ii). Notice that the strong law of large numbers
and Definition 3.1 yield

(4.3) Pν [Ω∗] = Pν [Ω+
ν ] = 1 = Pν [Ω−

ν ], ν ∈ IR.

The core of the proof of Theorem 4.1 is the following boundedness property.

Lemma 4.1. Under Assumption 2.1, if {λ̂n} is a sequence of maximum likelihood
estimators of λ, then

Pν

[
lim sup

n→∞
|λ̂n| < ∞

]
= 1, ν ∈ IR.



286 Cavazos–Cadena and González–Farías

Proof. It will be shown, by contradiction, that the event

(4.4)
[
lim sup

n→∞
λ̂n = ∞

]
∩ Ω∗ ∩ Ω−

ν is empty.

To achieve this goal, suppose that the sample trajectory X1, X2, . . . is such that the
above intersection occurs, and observe that along this path assertions (a)–(c) below
hold:

(a) Since the event [lim supn λ̂n = ∞] occurs when X1, X2, . . . is observed, there
exist a (trajectory dependent) subsequence {nk } such that

nk ≥ k and λ̂nk
≥ k

for all positive integers k;
(b) Using that X1, X2, . . . is such that Ω∗ occurs, it follows that λ̂n maximizes

Ln(·; Xn
1 ) for n large enough, so that there exists a positive integer M such that

Ln(λ̂n; Xn
1 ) ≥ Ln(0; Xn

1 ) = − log(2), n ≥ M ;

(c) Since the observation of X1, X2, . . . implies that Ω−
ν occurs,

1
n

n∑
i=1

I[Xi ≤ −c(ν)] → Pν [X1 ≤ −c(ν)] as n → ∞.

Notice now that for each integer M1 > M and k > M1, (a) and (b) together yield

− log(2) ≤ Lnk
(λ̂nk

; Xnk
1 ) =

1
nk

nk∑
i=1

log(G(λ̂nk
Xi))

≤ 1
nk

nk∑
i=1

log(G(λ̂nk
Xi))I[Xi ≤ −c(ν)]

≤ 1
nk

nk∑
i=1

log[G(−M1c(ν))]I[Xi ≤ −c(ν)]

where (3.2) with Q = {i : i ≤ nk, Xi ≤ −c(ν)} was used to set the second
inequality, and the third one follows from the monotonicity of log(G(·)), since λnk

>
k > M1. From this point, letting k go to ∞, (c) leads to

− log(2) ≤ log(G(−M1c(ν)))Pν [X1 ≤ −c(ν)];

and, recalling that limx→ − ∞ log(G(x)) = −∞ and that Pν [X1 ≤ −c(ν)] and
c(ν) are both positive (by Lemma 2.2(ii)), taking the limit as M1 → ∞, it fol-
lows that − log(2) ≤ −∞, which is a contradiction, establishing (4.4). Therefore,
[lim supn→∞ λ̂n = ∞] ⊂ (Ω∗)c ∪ (Ω−

ν )c, inclusion that yields

Pν

[
lim sup

n→∞
λ̂n = ∞

]
= 0, ν ∈ IR,

by (4.3). Similarly, it can be established that [lim infn→∞ λ̂n = −∞] ⊂ (Ω∗)c ∪
(Ω+

ν )c, so that Pν [lim infn→∞ λ̂n = −∞] = 0 for all ν ∈ IR; the conclusion follows
combining this fact with the above display.
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To continue, observe that since log(G(·)) ≤ 0, Eν [log(G(λX1))] is always a well-
defined non positive number, where the expectation may assume the value −∞.
Also, since x �→ x log(x) is bounded on (0, 1), Eν [log(G(νx))] =∫
IR

2 log(G(νx))G(νx)f(x) dx is finite.

Lemma 4.2. Suppose that Assumption 2.1 holds and let ν ∈ IR be arbitrary but
fixed.

(i) [Kullback’s inequality.] For each λ ∈ IR \ {ν},

Eν [log(G(λX1))] < Eν [log(G(νX1))].

(ii) Assume that {rk } and {sk } are two real sequences such that, for some ν∗ ∈
IR,

rk ↘ ν∗ and sk ↗ ν∗ as k → ∞

and suppose that, for every k = 1, 2, 3, . . ., the following inequality holds:

Eν [log(G(νX))](4.5)
≤ Eν [log(G(rkX))I[X ≥ 0]] + Eν [log(G(skX))I[X < 0]].

In this case, ν = ν∗.

Proof. (i) If λ �= ν, Assumption 2.1 and the strict concavity of the logarithmic
function yield, via Jensen’s inequality, that∫

IR

log
(

ρ(x; λ)
ρ(x; ν)

)
ρ(x; ν) dx < log

(∫
IR

ρ(x; λ)
ρ(x; ν)

ρ(x; ν) dx

)

= log
(∫

IR

ρ(x; λ) dx

)
= 0.

Observing that ρ(x; λ)/ρ(x; ν) = G(λx)/G(νx) when ρ(x; ν) is positive, the above
inequality can be written as Eν [log(G(λX1)) − log(G(νX1))] < 0, which yields the
desired conclusion since, as already noted, Eν [log(G(νX1))] is finite.

(ii) Notice that rk ↘ ν∗ leads to rkX ↘ ν∗X on [X ≥ 0], whereas sk ↗ ν∗

implies that skX ↘ ν∗X on [X < 0]. Therefore, since − log(G(·)) is decreasing and
nonnegative,

0 ≤ − log(G(rkX))I[X ≥ 0] ↗ − log(G(ν∗X))I[X ≥ 0]

and
0 ≤ − log(G(skX))I[X < 0] ↗ − log(G(ν∗X))I[X < 0].

Now, an application of the monotone convergence theorem yields

Eν [log(G(rkX))I[X ≥ 0]] ↘ Eν [log(G(ν∗X))I[X ≥ 0]]

and
Eν [log(G(skX))I[X < 0]] ↘ Eν [log(G(ν∗X))I[X < 0]],

convergences that, after taking the limit as k goes to ∞ in (4.5), lead to

Eν [log(G(νX))] ≤ Eν [log(G(ν∗X))],

and then ν = ν∗, by part (i).
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After these preliminaries, the proof of Theorem 4.1 is presented below. The ar-
gument uses the following notation, where Q stands for the set of rational numbers:
For each ν ∈ IR, define

(4.6) Ω0
ν :=

[
lim

n→∞

1
n

n∑
i=1

log(G(νXi)) = Eν [log(G(νX1))

]
;

Ω1
ν :=

[
lim

n→∞

1
n

n∑
i=1

log(G(λXi))I[Xi ≥ 0](4.7)

= Eν [log(G(λX1))I[X1 ≥ 0]], λ ∈ Q
]

,

and

Ω2
ν :=

[
lim

n→∞

1
n

n∑
i=1

log(G(λXi))I[Xi < 0](4.8)

= Eν [log(G(λX1))I[X1 < 0]], λ ∈ Q
]

.

Since Q is denumerable, the strong law of large numbers yields Pν [Ωi
ν ] = 1 for

i = 0, 1, 2, and then, setting

(4.9) Ων = Ω0
ν ∩ Ω1

ν ∩ Ω2
ν ,

it follows that

(4.10) Pν [Ων ] = 1.

Proof of Theorem 4.1. Given ν ∈ IR, it is sufficient to show that

(4.11)
[
lim sup

n
|λ̂n| < ∞

]
∩ Ω∗ ∩ Ων ⊂

[
lim
n

λ̂n = ν
]
,

where Ω∗ and Ων are specified in (4.1) and (4.9), respectively. Indeed, if this inclu-
sion is valid, then (4.3), (4.10) and Lemma 4.1 together imply that Pν [limn λ̂n =
ν] = 1. To establish (4.11) let X1, X2, X3, . . . be a fixed trajectory such that
[lim supn |λ̂n| < ∞] ∩ Ω∗ ∩ Ων occurs, select an arbitrary limit point ν∗ of the
associated sequence {λ̂n}, and observe the following facts (a)–(c):

(a) ν∗ is finite, since lim supn |λ̂n| < ∞ holds when X1, X2, X3, . . . is observed.
Let r and s be arbitrary rational numbers satisfying

(4.12) s < ν∗ < r

and select a sequence {nk } of positive integers such that

(4.13) nk > k, s < λ̂nk
< r, k = 1, 2, . . . .

(b) Since the path X1, X2, X3, . . . is such that Ω∗ occurs, λ̂n is a maximizer of
Ln(·; Xn

1 ) when n is large enough, say n > M ; see (4.1). In particular, Ln(ν; Xn
1 ) ≤
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Ln(λ̂n; Xn
1 ) when n > M , and then, replacing n by nk in this inequality and using

the monotonicity of log(G(·)) as well as (4.13), it follows that

1
nk

nk∑
i=1

log(G(νXi)) = Lnk
(ν; Xnk

1 )

≤ Lnk
(λ̂nk

; Xnk
1 )

=
1
nk

nk∑
i=1

log(G(λ̂nk
Xi))

≤ 1
nk

nk∑
i=1

log(G(rXi))I[Xi ≥ 0](4.14)

+
1
nk

nk∑
i=1

log(G(sXi))I[Xi < 0], k > M.

(c) Since the trajectory X1, X2, . . . is such that Ων occurs, a glance to (4.6)–(4.9)
immediately yields that, as k → ∞,

1
nk

nk∑
i=1

log(G(νXi)) → Eν [log(G(νX))],

1
nk

nk∑
i=1

log(G(rXi))I[Xi ≥ 0] → Eν [log(G(rX)I[X ≥ 0]], and

1
nk

nk∑
i=1

log(G(sXi))I[Xi < 0] → Eν [log(G(sX)I[X < 0]].

After taking the limit as k → ∞ in (4.14), these convergences yield that

Eν [log(G(νX))] ≤ Eν [log(G(rX)I[X ≥ 0]] + Eν [log(G(sX)I[X < 0]],

and then, since r and s are arbitrary rational numbers satisfying (4.12), from Lemma
4.2(ii) it follows that ν∗ = ν. In short, it has been proved that along an arbitrary
path X1, X2, . . . for which the intersection [lim supn |λ̂n| < ∞] ∩ Ω∗ ∩ Ων occurs,
the corresponding sequence {λ̂n} has ν as its unique limit point, so that λ̂n → ν as
n → ∞. This establishes (4.11) and, as already noted, completes the proof.

5. Asymptotic Distribution

The remainder of the paper concerns the asymptotic behavior of a consistent se-
quence {λ̂n} of maximum likelihood estimators of λ, whose existence is guaranteed
by Assumption 2.1. As already mentioned, the large sample properties of {λ̂n} will
be studied under the null hypothesis H0 : λ = 0, and the analysis below requires
two properties on the densities g and f generating the family S(f, g), namely, (i)
smoothness of density g outside of {0} and a ‘good’ behavior of its derivatives
around λ = 0, and (ii) a moment-dominance condition involving both densities f
and g. After a formal presentation of these assumptions, the main result is stated
at the end of the section, and the corresponding proof is given after establishing
the necessary technical preliminaries.



290 Cavazos–Cadena and González–Farías

Assumption 5.1. For some nonnegative integer r—hereafter referred to as the
critical order— the following conditions hold:
(i) The symmetric density g(x) is continuous on IR and has derivatives up to order
2r + 2 on the interval (0, ∞);
(ii) Dkg(0+) = limx↘0 Dkg(x) exists and is finite for k = 0, 1, 2, . . . , 2r + 1, and
(iii) Drg(0+) �= 0, whereas Dsg(0+) = 0 for 0 ≤ s < r.

Remark 5.1. (i) Under this Assumption, g(·) statisfies that Drg(0+) =
limx↘0 r!g(x)/xr ≥ 0, by continuity of g if r = 0, or by L’Hopital’s rule, if r > 0, so
that Drg(0+) > 0, since Drg(0+) is no null. It follows that a density g satisfying
Assumption 5.1 can be expressed as g(x) = |x|rh(|x|) where r is a nonnegative
integer (the critical order), h : [0, ∞) → [0, ∞) is continuous with h(0) > 0, and has
derivatives of order up to 2r+2 on (0, ∞), which are ‘well-behaved’ near zero so that
the required lateral limits of the derivatives of g exist at x = 0. Thus, besides the
smoothness requirement on the whole interval (0, ∞), the core of Assumption 5.1
essentially concerns the local behavior of g around the origin.

(ii) Under Assumption 5.1, density g(·) is continuous, so that G(·) has continuous
derivative, and then ∂λ�(λ; x) = ∂λ log(G(λx)) exists if �(λ; x) is finite. Suppose now
that λ̂n maximizes Ln(·; Xn

1 ). In this case − log(2) = Ln(0; Xn
1 ) ≤ Ln(λ̂n; Xn

1 ) im-
plies that log(G(λ̂nXi) is finite for every i = 1, 2, . . . , n, by (3.1), so that Ln(·; Xn

1 )
is differentiable at λ̂n, and then the likelihood equation holds: ∂λLn(λ̂n; Xn

1 ) = 0.

By symmetry, Assumption 5.1 yields that g(·) also has derivatives up to order
2r +2 on the interval (−∞, 0); indeed, if k ≤ 2r +2 then Dkg(x) = (−1)kDkg(−x)
for x �= 0, so that

(5.1) Dkg(0−) = lim
x↗0

Dkg(x) = (−1)kDkg(0+), k = 0, 1, 2, . . . , 2r + 1,

and the nullity of Dkg(0+) for 0 ≤ k < r implies that g has null (bilateral) derivative
at x = 0 of any order less that r. On the other hand, under Assumption 5.1 the
cumulative distribution function G in (1.1) has derivatives up to order 2r + 3 on
IR \ {0}, and using the relation DkG(x) = Dk−1g(x) for x �= 0 and k > 0 it follows
that

(5.2) DkG(0) = 0, 1 ≤ k < r + 1

and

(5.3) DkG(0+) = Dk−1g(0+), DkG(0−) = Dk−1g(0−), r + 1 ≤ k ≤ 2r + 2.

Next, define

(5.4) H(x) := log(G(x)), x ∈ IR,

and observe the equalities

�(λ; x) = H(λx), x ∈ IR,(5.5)
∂k

λ�(λ; x) = DkH(λx)xk, x �= 0, 1 ≤ k ≤ 2r + 3

see (1.4). It follows that the lateral limits of ∂k
λ�(·; x) at zero are given by

(5.6) ∂k
λ�(0+; x) =

{
DkH(0+)xk, if x > 0;
DkH(0−)xk, if x < 0
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and

(5.7) ∂k
λ�(0−; x) =

{
DkH(0−)xk, if x > 0;
DkH(0+)xk, if x < 0.

The analysis below uses (lateral) Taylor expansions of order 2r + 2 for Ln(·; Xn
1 )

around zero, and it is necessary to have an integrable bound for the residual as
well as finite second moments for the coefficients. For this reason, the following
conditions will be enforced.

Assumption 5.2. Conditions (i) and (ii) below hold, where r is the the critical
order in Assumption 5.1:

(i) E0[X1|4r+2] =
∫
IR

x4r+2f(x) dx < ∞;
(ii) There exists a function W : IR → [0, ∞) and δ > 0 such that

(5.8) |∂2r+3
λ �(λ; ·)| ≤ W (·), 0 < |λ| ≤ δ, and

∫
IR

W (x)f(x) dx < ∞.

Remark 5.2. The moment requirement in Assumption 5.2(i) concerns only density
f , whereas the dominance condition in the second part involves a relation between
g and f . Using (5.4), it can be shown by induction that, for x �= 0, DkH(x) is a
polynomial in Dsg(x)/G(x), s = 0, 1, 2, . . . , k − 1, and then, setting

Mr := max{ |Dkg(x)|/G(x) : 0 ≤ k ≤ 2r + 2, x �= 0},

via (5.5) it follows that there exists a constant B such that |∂2r+3
λ �(λ, x)| ≤

BMr |x|2r+3 so that, if Mr < ∞, then Assumption 5.2 holds entirely if the mo-
ment condition in part (i) is valid. It is not difficult to see that Mr is finite when
there exists x0 > 0 for which (a) or (b) below occur:

(a) g(x) is a rational function for x > x0, as it is the case if g(·) is a multiple of
a t-density for x large enough;

(b) g(x) = p(x)e−βx on (x0, ∞), where β is a positive constant and p(x) is a
polynomial or, more generally, a linear combination of terms of the form xs; this
occurs, for instance, when g(·) is proportional to a mixture of gamma densities on
(x0, ∞).

To state the result on the large sample distribution of maximum likelihood esti-
mators, set

(5.9) Vr+1 := 4
(

Drg(0+)
(r + 1)!

)2

E0

[
X2r+2

1

]
> 0

which, as it will be shown later, is the variance of ∂r+1
λ �(0+, Xi)/(r + 1)! ; for the

strict inequality, see Remark 5.1(i).

Theorem 5.1. Let {λ̂n} be a consistent sequence of maximum likelihood estimators
of λ, and suppose that Assumptions 5.1 and 5.2 hold. In this context, under the
hypothesis H0 : λ = 0, the following convergences (i) and (ii) occur as n → ∞,
where r is the critical order in Assumption 5.1, and Z is a random variable with
standard normal distribution:

(i) (nVr+1)
1/(2(r+1))

λ̂n
d−→ |Z|1/(r+1)sign(Z),

and

(ii) 2n[Ln(λ̂n; Xn
1 ) − Ln(0; Xn

1 )] d−→ Z2.
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Remark 5.3. (i) Suppose that the critical index r is null. In this case Theorem
5.1 (i) yields that (nV1)1/2 λ̂n

d−→ |Z|sign(Z) d=Z. This conclusion coincides with
that obtained from the general classical results presented, for instance, in Lehmann
and Casella (1998, Section 6.3), or Shao ([16], Section 4.4), where derivatives up to
order 2 are required for g(·) around zero; under Assumption 5.1, only the lateral
limits of Dg and D2g exist at zero.

(ii) Suppose that the critical order r is positive and that g(·) has (bilateral)
derivative of order r at zero, so that Drg(0+) = Drg(0−). Since Drg(0+) �= 0 it
follows from (5.1) that r is an even integer, and g(·) has derivatives up to order r on
the real line. Thus, setting s = r+1, s is odd, �(·; x) has derivatives up to order s on
IR, and ∂k

λ�(0; ·) = 0 for 1 ≤ k < s, whereas ∂s
λ�(0, x) �= 0 for x �= 0. If, among other

conditions, g(·) has derivatives up to order 2s at zero, an application of Theorem
1 in Rotnitzky et al. [14] yields the conclusions in Theorem 5.1; notice, however,
that Assumption 5.1 only ensures the existence of the lateral limits Dkg(0±) for
s < k ≤ 2s, so that Theorem 5.1 extends Theorem 1 in Rotnitzky et al. [14] to the
framework of this work.

The rather technical proof of Theorem 5.1, requiring some explicit computations
for the lateral limits ∂k

λ�(0±; x) in terms of density g(·), will be given after the
preliminaries established in the following section.

6. Technical Preliminaries

This section is dedicated to establish the basic tools that will be used to prove
Theorem 5.1, namely, lateral Taylor expansions around the origin for the average
likelihood Ln(·; Xn

1 ) and its first derivative; via the absolute value function, such
expansions are stated below as single equations. The following notation will be used:

(6.1) Δ(x) := ∂r+1
λ �(0−; x) − ∂r+1

λ �(0+; x), x ∈ IR.

Theorem 6.1. Suppose that Assumptions 5.1 and 5.2 hold. In this case, the asser-
tions (i)—(iii) below occur, where r is the critical order in Assumption 5.1, δ > 0
and W (·) are as in Assumption 5.2, and

Δn :=
1
n

n∑
i=1

Δ(Xi);

see (6.1).

(i) For each positive integer n and α ∈ (−δ, δ),

Ln(α; Xn
1 ) − Ln(0; Xn

1 )

= |α|rα
{

2r+1∑
k=r+1

∂k
λLn(0+; Xn

1 )
k!

|α|k−r−1

+

(
∂2r+2

λ Ln(0+; Xn
1 ) + ΔnI(− ∞,0)(α)

(2r + 2)!
+

W ∗
n(α)

(2r + 3)!
α

)
|α|rα

}
,(6.2)
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and

∂λLn(α, Xn
1 )

= |α|r
{

2r∑
k=r

∂k+1
λ Ln(0+; Xn

1 )
k!

|α|k−r

+

(
∂2r+2

λ Ln(0+; Xn
1 ) + ΔnI(− ∞,0)(α)

(2r + 1)!
+

W̃n(α)
(2r + 2)!

α

)
|α|rα

}
,(6.3)

where the random variables W ∗
n(α) and W̃n(α) satisfy

(6.4) |W ∗
n(α)|, |W̃n(α)| ≤ Wn :=

1
n

n∑
i=1

W (Xi).

(ii) Under H0 : λ = 0 for each k = r + 1, . . . , 2r + 1, the following convergences
hold as n → ∞:

(6.5)
√

n ∂k
λLn(0+; Xn

1 ) d−→ N (0, vk), where vk = E0

[(
∂k

λ�(0+; X1)
)2

]
,

whereas

(6.6) Δn → 0 and 2
∂2r+2

λ Ln(0+; Xn
1 )

(2r + 2)!
→ −Vr+1 P0-a.s.;

see (5.9).

The proof of this theorem relies on explicit formulas for ∂k
λ�(0±; x) in terms of

density g(·) and, in this direction, the following lemma concerning the lateral limits
at zero of the derivatives of function H(·) in (5.4) will be useful.

Lemma 6.1. Suppose that Assumption 5.1 holds. In this case, the lateral limits at
0 of the derivatives of function H(·) in (5.4) satisfy the following relations (i)–(iii):

(i) DkH(0+) = DkH(0−) = 0, 1 ≤ k < r + 1;
(ii) If r + 1 ≤ k < 2r + 2, then

DkH(0+) = 2Dk−1g(0+) and DkH(0−) = 2Dk−1g(0−).

(iii) D2r+2H(0+) = 2D2r+1g(0+) − 1
2

(
2r + 2
r + 1

) (
Dr+1H(0+)

)2
,

and

D2r+2H(0−) = 2D2r+1g(0−) − 1
2

(
2r + 2
r + 1

)(
Dr+1H(0−)

)2
.

Proof. Recalling that the distribution function G(x) is continuous and has deriva-
tives up to order 2r +3 on IR \ {0}; from (5.4) it follows that G(x)DH(x) = DG(x)
and, via Leibinitz’ formula,

G(x)DkH(x) +
k−1∑
i=1

(
k − 1

i

)
DiG(x)Dk−iH(x) = DkG(x)

for x �= 0 and 2 ≤ k ≤ 2r + 3; since G(·) is continuous and G(0) = 1/2, taking
lateral limit as x approaches to zero these equalities lead to

DH(0±) = 2DG(0)
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and, for 2 ≤ k ≤ 2r + 2,

DkH(0±) + 2
k−1∑
i=1

(
k − 1

i

)
DiG(0±)Dk−iH(0±) = 2DkG(0±).

Since DkG(0±) = 0 when 1 ≤ k ≤ r, by (5.2), these relations yield DkH(0±) = 0
for 1 ≤ k ≤ r, establishing part(i), as well as

(6.7) Dr+1H(0±) = 2Dr+1G(0±),

and

(6.8)

for r + 1 < k ≤ 2r + 2,

DkH(0±) + 2
k−1∑

i=r+1

(
k − 1

i

)
DiG(0±)Dk−iH(0±) = 2DkG(0±).

To prove part (ii), select an integer k such that r + 1 < k < 2r + 2. In this case, if
k > i ≥ r +1 then 1 ≤ k − i < r +1, and then Dk−iH(0±) = 0, by part (i), so that
the summation in the above display is null. Therefore, DkH(0±) = 2DkG(0±), and
combining this with (6.7) it follows that

DkH(0±) = 2DkG(0±), r + 1 ≤ k < 2r + 2,

equalities that yield part (ii) via (5.3). To conclude, observe that if k = 2r +2 then
2r + 1 ≥ i > r + 1 implies that 1 ≤ k − i < r + 1, and in this case Dk−iH(0±) = 0,
by part (i), so that the terms in the summation in (6.8) with k = 2r + 2 are null
when i > r + 1. Consequently,

D2r+2H(0±) + 2
(

2r + 1
r + 1

)
Dr+1G(0±)Dr+1H(0±) = 2D2r+2G(0±);

since
2Dr+1G(0±) = 2Drg(0±) = Dr+1H(0±)

and D2r+2G(0±) = D2r+1g(0±), by (5.3) and part (ii), respectively, the conclusion

follows observing that
(

2r + 1
r + 1

)
= 2−1

(
2r + 2
r + 1

)
.

The expressions in the previous lemma are used below to determine the lateral
limits of ∂k

λ�(·; x) at zero in terms of density g(·).
Lemma 6.2. Under Assumption 5.1, assertions (i)–(v) below hold:

(i) ∂k
λ�(0+; ·) = 0 = ∂k

λ�(0−; ·) for 1 ≤ k ≤ r.
(ii) For each x ∈ IR and r + 1 ≤ k < 2r + 2,

∂k
λ�(0+; x) = 2Dk−1g(0+)|x|k−1x,

∂k
λ�(0−; x) = 2Dk−1g(0−)|x|k−1x.

(iii) ∂k
λ�(0−; x) = (−1)k−1∂k

λ�(0+; x) for r + 1 ≤ k < 2r + 2 and x ∈ IR.
(iv) For each x ∈ IR

∂2r+2
λ �(0+; x) = 2D2r+1g(0+)|x|2r+1x(6.9)

− 1
2

(
2r + 2
r + 1

) (
∂r+1

λ �(0+; x)
)2

,
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and

∂2r+2
λ �(0−; x) = 2D2r+1g(0−)|x|2r+1x(6.10)

− 1
2

(
2r + 2
r + 1

) (
∂r+1

λ �(0−; x)
)2

.

Consequently,
(v) The difference between ∂2r+2

λ �(0−; x) and ∂2r+2
λ �(0+; x) is given by

(6.11) Δ(x) = −4D2r+1g(0+) |x|2r+1x, x ∈ IR;

see (6.1).

Proof. From Lemma 6.1(i), part (i) follows via (5.6) and (5.7), whereas these latter
equalities and Lemma 6.1(ii) together yield that, for r + 1 ≤ k ≤ 2r + 1, (a) and
(b) below hold:

(a) For x ≥ 0,

∂k
λ�(0+; x) = 2Dk−1g(0+)xk and ∂k

λ�(0−; x) = 2Dk−1g(0−)xk;

(b) If x < 0,

∂k
λ�(0+; x) = 2Dk−1g(0−)xk

= 2Dk−1g(0+)(−1)k−1xk = 2Dk−1g(0+)|x|k−1x,
∂k

λ�(0−; x) = 2Dk−1g(0+)xk

= 2Dk−1g(0−)(−1)k−1xk = 2Dk−1g(0−)|x|k−1x,

where (5.1) was used to set the second equalities. These facts (a) and (b) together
lead to part (ii), which implies part (iii) via (5.1). To establish part (iv), notice that
Lemma 6.1(iii) and (5.6) together imply that:

For x ≥ 0

∂2r+2
λ �(0+; x) = 2D2r+1g(0+)x2r+2 − 1

2

(
2r + 2
r + 1

) (
Dr+1H(0+)xr+1

)2

= 2D2r+1g(0+)x2r+2 − 1
2

(
2r + 2
r + 1

) (
∂r+1

λ �(0+; x)
)2

,

showing that (6.9) holds for x ≥ 0, whereas combining Lemma 6.1(iii) with relations
(5.6) and (5.1) it follows that if x < 0, then

∂2r+2
λ �(0+; x)

= 2D2r+1g(0−)x2r+2 − 1
2

(
2r + 2
r + 1

) (
Dr+1H(0−)xr+1

)2

= 2D2r+1g(0+)(−1)2r+1x2r+1x − 1
2

(
2r + 2
r + 1

)(
∂r+1

λ �(0+; x)
)2

= 2D2r+1g(0+)|x|2r+1x − 1
2

(
2r + 2
r + 1

) (
∂r+1

λ �(0+; x)
)2

,

and then (6.9) also holds for x < 0. Equality (6.10) can be established along similar
lines and, finally, observing that ∂r+1

λ �(0+; x) and ∂r+1
λ �(0−; x) have the same ab-

solute value, by part (iii), via part (iv), (6.11) follows immediately from (5.1) and
(6.1).
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Next, the above expressions will be used to write lateral Taylor expansions for
�(·; x) and ∂λ�(·; x) around the origin.

Lemma 6.3. Suppose that Assumptions 5.1 and 5.2 hold. In this case, the following
expansions are valid for x ∈ IR and α ∈ (−δ, δ) \ {0}:

�(α, x) − �(0; x)

= |α|rα
{

2r+1∑
k=r+1

∂k
λ�(0+; x)

k!
|α|k−r−1

+

(
∂2r+2

λ �(0+; x) + I(− ∞,0)(α)Δ(x)
(2r + 2)!

+
W ∗(α, x)
(2r + 3)!

α

)
|α|rα

}
,

and

∂λ�(α, x)

= |α|r
{

2r∑
k=r

∂k+1
λ �(0+; x)

k!
|α|k−r

+

(
∂2r+2

λ �(0+; x) + I(− ∞,0)(α)Δ(x)
(2r + 1)!

+
W̃ (α, x)
(2r + 2)!

α

)
|α|rα

}
,

where Δ(·) is as in (6.1), and

(6.12) |W ∗(α, x)|, |W̃ (α, x)| ≤ W (x).

Proof. Select α0 �= 0 with the same sign as α and |α0| < |α|, so that the closed
interval joining α0 and α is contained in (−δ, δ) \ {0}. Since �(·; x) has derivatives
up to order 2r + 3 outside 0, there exist points α∗ and α̃ between α0 and α such
that the following Taylor expansions hold:

(6.13) �(α, x) − �(α0; x) =
2r+2∑
k=1

∂k
λ�(α0; x)

k!
(α − α0)k +

∂2r+3
λ �(α∗; x)
(2r + 3)!

(α − α0)2r+3,

and

(6.14) ∂λ�(α, x) =
2r+1∑
k=0

∂k+1
λ �(α0; x)

k!
(α − α0)k +

∂2r+3
λ �(α̃; x)
(2r + 2)!

(α − α0)2r+2,

where

(6.15)
∣∣∂2r+3

λ �(α∗; x)
∣∣ ,

∣∣∂2r+3
λ �(α̃; x)

∣∣ ≤ W (x),

by Assumption 5.2(ii). Next, the conclusions in the lemma will be obtained taking
lateral limits as α0 goes to zero. Recall that �(·; x) is continuous and consider the
following exhaustive cases:

Case 1: α > 0. taking the limit as α0 decreases to zero, the above displayed
relations and Lemma 6.2(i) together yield

�(α, x) − �(0; x)

=
2r+2∑

k=r+1

∂k
λ�(0+; x)

k!
αk +

W ∗(α; x)
(2r + 3)!

α2r+3
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=
2r+1∑

k=r+1

∂k
λ�(0+; x)

k!
αk +

∂2r+2
λ �(0+; x)
(2r + 2)!

α2r+2 +
W ∗(α; x)
(2r + 3)!

α2r+3

= αr+1

{
2r+1∑

k=r+1

∂k
λ�(0+; x)

k!
αk−r−1

+
(

∂2r+2
λ �(0+; x)
(2r + 2)!

+
W ∗(α; x)
(2r + 3)!

α

)
αr+1

}
,

and

∂λ�(α; x) =
2r+1∑
k=r

∂k+1
λ �(0+; x)

k!
αk +

W̃ (α; x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ �(0+; x)

k!
αk +

∂2r+2
λ �(0+; x)
(2r + 1)!

α2r+1 +
W̃ (α; x)
(2r + 2)!

α2r+2

= αr

{
2r∑

k=r

∂k+1
λ �(0+; x)

k!
αk−r

+

(
∂2r+2

λ �(0+; x)
(2r + 1)!

+
W̃ (α; x)
(2r + 2)!

α

)
αr+1

}
,

where W ∗(α, x) is given by W ∗(α, x) := limα0↘0 ∂2r+3
λ �(α∗; x) and, similarly,

W̃ (α, x) := limα0↘0 ∂2r+3
λ �(α̃; x), so that

|W ∗(α, x)|, |W̃ (α, x)| ≤ W (x),

by (6.15); since α is positive, so that I(− ∞,0)(α) = 0, these last three displays are
equivalent to (6.12)–(6.12).

Case 2: α < 0. In this context, taking the limit as α0 increases to zero in (6.13)
and (6.14), Lemma 6.2(i) yields that

�(α, x) − �(0; x) =
2r+2∑

k=r+1

∂k
λ�(0−; x)

k!
αk +

W ∗(α; x)
(2r + 3)!

α2r+3

and

∂λ�(α; x) =
2r+1∑
k=r

∂k+1
λ �(0−; x)

k!
αk +

W̃ (α; x)
(2r + 2)!

α2r+2,

where, analogously to the previous case, W ∗(α, x) := limα0↗0 ∂2r+3
λ �(α∗; x) and

W̃ (α, x) := limα0↗0 ∂2r+3
λ �(α̃; x) so that, again, (6.15) implies that (6.12) is valid.

Observe now that Lemma 6.2(iii) allows to write

2r+2∑
k=r+1

∂k
λ�(0−; x)

k!
αk +

W ∗(α; x)
(2r + 3)!

α2r+3

=
2r+1∑

k=r+1

∂k
λ�(0+; x)

k!
(−1)k−1αk +

∂2r+2
λ �(0−; x)
(2r + 2)!

α2r+2 +
W ∗(α; x)
(2r + 3)!

α2r+3

=
2r+1∑

k=r+1

∂k
λ�(0+; x)

k!
|α|k−1α +

(
∂2r+2

λ �(0−; x)
(2r + 2)!

+
W ∗(α; x)
(2r + 3)!

α

)
(|α|rα)2
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= |α|rα
{

2r+1∑
k=r+1

∂k
λ�(0+; x)

k!
|α|k−r−1

+
(

∂2r+2
λ �(0−; x)
(2r + 2)!

+
W ∗(α; x)
(2r + 3)!

α

)
|α|rα

}

and

2r+1∑
k=r

∂k+1
λ �(0−; x)

k!
αk +

W̃ (α; x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ �(0+; x)

k!
(−1)kαk +

∂2r+2
λ �(0−; x)
(2r + 1)!

α2r+1 +
W̃ (α; x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ �(0+; x)

k!
|α|k + |α|r

(
∂2r+2

λ �(0−; x)
(2r + 1)!

+
W̃ (α; x)
(2r + 2)!

α

)
|α|rα

= |α|r
{

2r∑
k=r

∂k+1
λ �(0+; x)

k!
|α|k−r

+

(
∂2r+2

λ �(0−; x)
(2r + 1)!

+
W̃ (α; x)
(2r + 2)!

α

)
|α|rα

}
;

using that ∂2r+2
λ �(0−; x) = ∂2r+2

λ �(0+; x) + I(− ∞,0)(α)Δ(x), by (6.1), the last four
displays together yield that (6.12) and (6.12) are also valid for α < 0.

After the above preliminaries, the main result of this section can be established
as follows.

Proof of Theorem 6.1. (i) Since Ln(·; Xn
1 ) is the average of �(·; Xi), i = 1, 2, . . . , n,

by Lemma 6.3 the two indicated expansions hold with

W ∗
n(α) =

1
n

n∑
i=1

W ∗(α, Xi) and W̃n(α) =
1
n

n∑
i=1

W̃ (α, Xi),

so that (6.4) is satisfied, by (6.12).
(ii) Under H0 : λ = 0, Xi has symmetric distribution around zero with finite

moment of order 4r+2, by Assumption 5.2(i), so that a random variable of the form
|Xi|k−1Xi has zero expectation and finite second moment when 1 ≤ k < 2r + 2.
Thus, from Lemma 6.2, for all k = r + 1, . . . , 2r + 1,

E0[∂k
λ�(0+; Xi)] = 0 and E0[(∂k

λ�(0+; Xi))2] = vk < ∞,

as well as E0[Δ(X1)] = 0. From this point, (5.9) and (6.9) together yield

2
(2r + 2)!

E[∂2r+2
λ �(0+; Xi)] = −

(
1

(r + 1)!

)2

E[(∂r+1
λ �(0+; Xi))2]

= −4
(

Drg(0+)
(r + 1)!

)2

E[X2r+2
i ] = −Vr+1.

where Lemma 6.2(ii) was used to set the second equality (notice that this shows
that Vr+1 is the variance of ∂r+1

λ �(0+; Xi)/(r+1)!). Now, (6.5) and (6.6) follow from
the central limit theorem and the strong law of large numbers, respectively.
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7. Proof of Theorem 5.1

After the previous preliminaries, Theorem 5.1 is finally established in this section.
The core of the argument has been decoupled into two lemmas showing that, under
H0 : λ = 0, along a consistent sequence {λ̂n} of maximum likelihood estimators,
(i) the expansions in Theorem 6.1 can be simplified substantially, and (ii) that λ̂n

is no null that with probability converging to 1.

Lemma 7.1. Suppose that Assumptions 5.1 and 5.2 hold and let {λ̂n} be a con-
sistent sequence of maximum likelihood estimators of λ. In this case, assertions (i)
and (ii) below occur under the null hypothesis H0 : λ = 0.

(i) On the event [ |λ̂n| < δ], the following expressions are valid:

Ln(λ̂n; Xn
1 ) − Ln(0; Xn

1 )(7.1)

= λ̂n|λ̂n|r
[
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ An − Bn

2
λ̂n|λ̂n|r

]
,

and

(7.2)
∂λLn(λ̂n; Xn

1 )
r + 1

= |λ̂n|r
[
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ Ãn − B̃nλ̂n|λ̂n|r

]
,

where

(7.3) An = Op

(
λ̂n√

n

)
, Ãn = Op

(
λ̂n√

n

)
,

and

(7.4) lim
n→∞

Bn = lim
n→∞

B̃n = Vr+1 P0-a.s.

(ii) Consequently,

2n[Ln(λ̂n; Xn
1 ) − Ln(0; Xn

1 )]

= 2nλ̂n|λ̂n|r
[
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ An − Bn

2
λ̂n|λ̂n|r

]
+ op(1).

Proof. (i) Setting

An :=
2r+1∑

k=r+2

∂k
λLn(0+; Xn

1 )
k!

|λ̂n|k−r−1

and

Bn := −
(

2∂2r+2
λ Ln(0+; Xn

1 ) + 2ΔnI(− ∞,0)(λ̂n)
(2r + 2)!

+
2W ∗

n(λ̂n)
(2r + 3)!

λ̂n

)
,

(7.1) is equivalent to (6.2) with α = λ̂n. Similarly, defining

Ãn :=
1

r + 1

2r∑
k=r+1

∂k+1
λ Ln(0+; Xn

1 )
k!

|λ̂n|k−r
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and

B̃n := − 1
r + 1

(
∂2r+2

λ Ln(0+; Xn
1 ) + ΔnI(− ∞,0)(λ̂n)

(2r + 1)!
+

W̃n(λ̂n)
(2r + 2)!

λ̂n

)

= −
(

2∂2r+2
λ Ln(0+; Xn

1 ) + 2ΔnI(− ∞,0)(λ̂n)
(2r + 2)!

+
W̃n(λ̂n)

(r + 1)(2r + 2)!
λ̂n

)

it follows that (7.2) is equivalent to (6.3) with α = λ̂n. Therefore, since (6.2) and
(6.3) are valid for |α| < δ, (7.1) and (7.2) hold on the event [ |λ̂n| < δ]. To conclude,
it will be shown that (7.3) and (7.4) are satisfied. First, notice that An and Ãn

defined above are null for r = 0, so that (7.3) certainly occurs in this case. On the
other hand, if r > 0, then convergences (6.5) established in Theorem 6.1(ii) yield
that ∂k

λLn(0+; Xn
1 ) = Op(1/

√
n) for r+1 ≤ k < 2r+1 and then (7.3) follows, since

the above expressions for An and Ãn involve factors |λ̂n|s with s ≥ 1 and

(7.7) P0[λ̂n → 0] = 1,

by consistency. Next, observe that

|W ∗
n(λ̂n)|, |W̃n(λ̂n)| ≤ Wn =

1
n

n∑
i=1

W (Xi),

by (6.4), and then the strong law of large numbers and Assumption 5.2(ii) yield
that

lim sup
n→∞

|W ∗
n(λ̂n)|, lim sup

n→∞
|W̃n(λ̂n)| ≤

∫
IR

W (x)f(x), dx < ∞ P0-a.s.,

so that
lim

n→∞
W ∗

n(λ̂n)λ̂n = 0 = lim
n→∞

W̃n(λ̂n)λ̂n P0-a.s.,

by (7.7). From this point, (6.6) in Theorem 6.1(ii) and the specifications of Bn and
B̃n lead to (7.4).

(ii) Since expansion (7.1) is valid on [ |λ̂n| < δ], the conclusion follows from
(7.7).

Lemma 7.2. Suppose that Assumptions 5.1 and 5.2 are valid, let {λ̂n} be a se-
quence of maximum likelihood estimators of λ, and define

Ω∗ ∗
n :=

[
Ln(λ̂n; Xn

1 ) ≥ Ln(λ; Xn
1 ), λ ∈ IR

]
∩

[
∂r+1

λ Ln(0+; Xn
1 ) �= 0

]
.

With this notation, assertions (i) and (ii) below occur.

(i) λ̂n �= 0 on Ω∗ ∗
n .

Consequently,
(ii) P0[λ̂n �= 0] → 1 as n → ∞.

Proof. (i) The expansion for Ln(·; Xn
1 ) − Ln(0; Xn

1 ) in Theorem 6.1(i) yields that

lim
α→0

Ln(α; Xn
1 ) − Ln(0; Xn

1 )
|α|rα = ∂r+1

λ Ln(0+; Xn
1 ).
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It follows that if ∂r+1
λ Ln(0+; Xn

1 ) > 0, then Ln(α; Xn
1 ) − Ln(0; Xn

1 ) > 0 when α
is positive and small enough, whereas if ∂r+1

λ Ln(0+; Xn
1 ) < 0, then Ln(α; Xn

1 ) −
Ln(0; Xn

1 ) > 0 when α < 0 and |α| is sufficiently small. Thus, ∂r+1
λ Ln(0+; Xn

1 ) �= 0
implies that 0 is not a maximizer of Ln(·; Xn

1 ), so that, if λ̂n maximizes the average
likelihood Ln(·; Xn

1 ) and ∂r+1
λ Ln(0+; Xn

1 ) �= 0 then λ̂n is no null, i.e., Ω∗ ∗
n ⊂ [λ̂n �=

0].
(ii) Since Drg(0+) �= 0, it follows that ∂r+1

λ �(0+; Xi) = 2Drg(0+)|Xi|rXi has a
density, and then their average ∂r+1

λ Ln(0+; Xn
1 ) is absolutely continuous. It follows

that P0[∂r+1
λ Ln(0+; Xn

1 ) �= 0] = 1, and then P0[Ω∗ ∗
n ] → 1, by Definition 3.1 (see

Remark 3.1(ii)) and, via part (i), the conclusion follows.

Proof of Theorem 5.1. Suppose that Assumptions 5.1 and 5.2 hold, that the hy-
pothesis H0 : λ = 0 occurs, and let {λ̂n} be a consistent sequence of maximum
likelihood estimators. In this context, define

Ωn,∗ :=
[
Ln(λ̂n; Xn

1 ) ≥ Ln(λ; Xn
1 ), λ ∈ IR

]
∩

[
0 < |λ̂n| < δ

]
,

and notice that the conclusions in Lemma 7.1 occur on this event, since Ωn,∗ ⊂
[ |λ̂| < δ]. Also, the consistency of {λ̂n}, Definition 3.1 and Lemma 7.2(ii) together
imply that

(7.8) lim
n→∞

P0[Ωn,∗] = 1.

Observe now that, on the event Ωn,∗, the estimator λ̂n is no null and maxi-
mizes Ln(·; Xn

1 ), so that the likelihood equation ∂λLn(λ̂n; Xn
1 ) = 0 holds; see Re-

mark 5.1(ii). Via (7.2) it follows that

on Ωn,∗, B̃n

√
nλ̂n|λ̂n|r =

√
n

∂r+1
λ Ln(0+; Xn

1 )
(r + 1)!

+
√

nÃn,

and then, from (7.8)

B̃n

√
nλ̂n|λ̂n|r =

√
n

∂r+1
λ Ln(0+; Xn

1 )
(r + 1)!

+
√

nÃn + op(1)

=
√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ Op(λ̂n) + op(1)

=
√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ op(1),

where (7.3) was used to set the second equality, and the third one stems from
P0[λ̂n → 0] = 1, by consistency; via (6.5) this yields that B̃n

√
nλ̂n|λ̂n|r = Op(1),

and then (7.4) leads to

(7.9) Vr+1

√
n λ̂n|λ̂n|r =

√
n

∂r+1
λ Ln(0+; Xn

1 )
(r + 1)!

+ op(1).

(i) Using that
√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
d−→ N (0, Vr+1) (see (5.9) and (6.5)), the

above display yields

(7.10)
√

nVr+1 λ̂n|λ̂n|r d−→ Z where Z has standard normal distribution;
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since the inverse of the function x �→ x|x|r is the continuous mapping x �→ |x|1/(r+1)

sign(x), it follows that

(nVr+1)1/(2(r+1))λ̂n
d−→ |Z|1/(r+1)sign(Z).

(ii) Since
√

nλ̂n|λ̂n|r = Op(1), by part (i), Lemma 7.1(ii), (7.3), (7.4) and (7.9)
together yield

2n[Ln(λ̂n; Xn
1 ) − Ln(0; Xn

1 )]

= 2nλ̂n|λ̂n|r
[
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ An − Bn

2
λ̂n|λ̂n|r

]
+ op(1)

= 2
√

nλ̂n|λ̂n|r
[√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+

√
nAn − Bn

2
√

nλ̂n|λ̂n|r
]

+ op(1)

= 2
√

nλ̂n|λ̂n|r
[√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
+ Op(λ̂n)

− Vr+1 + op(1)
2

√
nλ̂n|λ̂n|r

]
+ op(1)

= 2
√

nλ̂n|λ̂n|r
[√

n
∂r+1

λ Ln(0+; Xn
1 )

(r + 1)!
− Vr+1

2
√

nλ̂n|λ̂n|r
]

+ op(1)

= 2
√

nλ̂n|λ̂n|r
[
Vr+1

√
nλ̂n|λ̂n − Vr+1

2
√

nλ̂n|λ̂n|r
]

+ op(1)

=
(√

nVr+1 λ̂n|λ̂n|r
)2 + op(1);

together with (7.10), this yields that 2n[Ln(λ̂n; Xn
1 )−Ln(0; Xn

1 )] d−→ Z2, completing
the proof.
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