A note on bounds for VC dimensions

Aad van der Vaart and Jon A. Wellner

Abstract: We provide bounds for the VC dimension of class of sets formed by unions, intersections, and products of VC classes of sets C_1, \ldots, C_m.

1. Introduction and main results

Let C be a class of subsets of a set X. An arbitrary set of n points $\{x_1, \ldots, x_n\}$ has 2^n subsets. We say that C picks out a certain subset from $\{x_1, \ldots, x_n\}$ if this can be formed as a set of the form $C \cap \{x_1, \ldots, x_n\}$ for some $C \in C$. The collection C is said to shatter $\{x_1, \ldots, x_n\}$ if each of its 2^n subsets can be picked out by C. The VC-dimension $V(C)$ is the largest cardinality of a set shattered by C (or $+\infty$ if arbitrarily large finite sets are shattered); more formally, if

$$\Delta_n(C, x_1, \ldots, x_n) = \# \{ C \cap \{x_1, \ldots, x_n\} : C \in C \},$$

then

$$V(C) = \sup \left\{ n : \max_{x_1, \ldots, x_n} \Delta_n(C, x_1, \ldots, x_n) = 2^n \right\},$$

and $V(C) = -1$ if C is empty. (The VC-dimension $V(C)$ defined here corresponds to $S(C)$ as defined by [5] page 134. Dudley, and following him ourselves in [11], used the notation $V(C)$ for the VC-index, which is the dimension plus 1. We have switched to using $V(C)$ for the VC-dimension rather than the VC-index, because formulas are simpler in terms of dimension and because the machine learning literature uses dimension rather than index.)

Now suppose that C_1, C_2, \ldots, C_m are VC-classes of subsets of a given set X with VC dimensions V_1, \ldots, V_m. It is known that the classes $\sqcup_{j=1}^m C_j$, $\sqcap_{j=1}^m C_j$ defined by

$$\sqcup_{j=1}^m C_j \equiv \{ \cup_{j=1}^m C_j : C_j \in C_j, \ j = 1, \ldots, m \},$$

$$\sqcap_{j=1}^m C_j \equiv \{ \cap_{j=1}^m C_j : C_j \in C_j, \ j = 1, \ldots, m \},$$

are again VC: when $C_1 = \cdots = C_m = C$ and $m = k$, this is due to [2] (see also [3], Theorem 9.2.3, page 85, and [5], Theorem 4.2.4, page 141); for general C_1, C_2 and $m = 2$ it was shown by [3], Theorem 9.2.6, page 87, (see also [5], Theorem 4.5.3, page 153), and [9], Lemma 15, page 18. See also [8], Lemma 2.5, page 1032. For a summary of these types of VC preservation results, see e.g. [11], page 147. Similarly,
if \(\mathcal{D}_1, \ldots, \mathcal{D}_m \) are VC-classes of subsets of sets \(\mathcal{X}_1, \ldots, \mathcal{X}_m \), then the class of product sets \(\bigotimes_{j=1}^m \mathcal{D}_j \) defined by
\[
\bigotimes_{j=1}^m \mathcal{D}_j \equiv \{ D_1 \times \cdots \times D_m : D_j \in \mathcal{D}_j, \ j = 1, \ldots, m \}
\]
is a VC-class of subsets of \(\mathcal{X}_1 \times \cdots \times \mathcal{X}_m \). This was proved in [1], Proposition 2.5, and in [3], Theorem 9.2.6, page 87 (see also [5], Theorem 4.2.4, page 141).

In the case of \(m = 2 \), consider the maximal VC dimensions \(\max V(\mathcal{C}_1 \cup \mathcal{C}_2) \), \(\max V(\mathcal{C}_1 \cap \mathcal{C}_2) \), and \(\max V(\mathcal{D}_1 \otimes \mathcal{D}_2) \), where the maxima are over all classes \(\mathcal{C}_1, \mathcal{C}_2 \) (or \(\mathcal{D}_1, \mathcal{D}_2 \) in the last case) with \(V(\mathcal{C}_1) = V_1, V(\mathcal{C}_2) = V_2 \) for fixed \(V_1, V_2 \). As shown in [3], Theorem 9.2.7, these are all equal:
\[
\max V(\mathcal{C}_1 \cup \mathcal{C}_2) = \max V(\mathcal{C}_1 \cap \mathcal{C}_2) = \max V(\mathcal{D}_1 \otimes \mathcal{D}_2) \equiv S(V_1, V_2).
\]

[3] provided the following bound for this common value:

Proposition 1.1. \(S(V_1, V_2) \leq T(V_1, V_2) \) where, with \(r, \mathcal{C} \leq \nu \equiv \sum_{j=0}^v \binom{\nu}{j} \),

\[
(1.1) \quad T(V_1, V_2) \equiv \sup \{ r \in \mathbb{N} : r, \mathcal{C} \leq V_1, r, \mathcal{C} \leq V_2 \geq 2^r \}.
\]

Because of the somewhat inexplicit nature of the bound in (1.1), this proposition seems not to have been greatly used so far.

Furthermore, [4] (Theorem 4.27, page 63; Proposition 4.38, page 64) showed that \(S(1, k) \leq 2k + 1 \) for all \(k \geq 1 \) with equality for \(k = 1, 2, 3 \).

Here we give a further more explicit bound for \(T(V_1, V_2) \) and extend the bounds to the case of general \(m \geq 2 \). Our main result is the following proposition.

Theorem 1.1. Let \(V \equiv \sum_{j=1}^m V_j \). Then the following bounds hold:

\[
(1.2) \quad \begin{cases}
V(\bigcup_{j=1}^m \mathcal{C}_j) \\
V(\bigcap_{j=1}^m \mathcal{C}_j) \\
V(\bigotimes_{j=1}^m \mathcal{D}_j)
\end{cases} \leq c_1 V \log \left(\frac{c_2 m}{\bar{\text{Ent}}(V) / \sqrt{V}} \right) \leq c_1 V \log (c_2 m),
\]

where \(\bar{\text{Ent}}(V) \equiv (V_1, \ldots, V_m), c_1 \equiv \frac{e}{(e-1) \log(2)} \equiv 2.28231 \ldots, c_2 \equiv \frac{e}{\log(2)} \equiv 3.92165 \ldots, \)

\[
\bar{\text{Ent}}(V) \equiv m^{-1} \sum_{j=1}^m V_j \log V_j - V \log V
\]
is the “entropy” of the \(V_j \)'s under the discrete uniform distribution with weights \(1/m \) and \(\bar{V} = m^{-1} \sum_{j=1}^m V_j \).

Corollary 1.1. For \(m = 2 \) the following bounds hold:

\[
S(V_1, V_2) \leq T(V_1, V_2) \leq \left[c_1 (V_1 + V_2) \log \left(\frac{2c_2}{\exp(\bar{\text{Ent}}(V) / \sqrt{V})} \right) \right] \equiv R(V_1, V_2)
\]

where \(c_1, c_2, \bar{\text{Ent}}(V), \) and \(\bar{V} \) are as in Theorem 1.

Proof. The subsets picked out by \(\cap_i C_i \) from a given set of points \(\{x_1, \ldots, x_n\} \) in \(\mathcal{X} \) are the sets \(C_1 \cap \cdots \cap C_m \cap \{x_1, \ldots, x_n\} \). They can be formed by first forming all different sets of the form \(C_1 \cap \{x_1, \ldots, x_n\} \) for \(C_1 \in \mathcal{C}_1, \) next intersecting each of these sets by sets in \(\mathcal{C}_2 \) giving all sets of the form \(C_1 \cap C_2 \cap \{x_1, \ldots, x_n\}, \) etc. If \(\Delta_n(C, y_1, \ldots, y_n) \equiv \# \{ C \cap \{y_1, \ldots, y_n\} : C \in \mathcal{C} \} \) and \(\Delta_n(C) \equiv \max_{y_1, \ldots, y_n} \Delta_n(C, y_1, \ldots, y_n) \) for every collection of sets \(\mathcal{C} \) and points \(y_1, \ldots, y_n \) (as
in [11], page 135), then in the first step we obtain at most \(\Delta_n(C_1) \) different sets, each with \(n \) or fewer points. In the second step each of these sets gives rise to at most \(\Delta_n(C_2) \) different sets, etc. We conclude that

\[
\Delta_n(\bigcap_i C_i) \leq \prod_i \Delta_n(C_i) \leq \prod_i \left(\frac{en}{V_i} \right)^{V_i},
\]

by [11], Corollary 2.6.3, page 136, and the bound \((en/s)^s\) for the number of subsets of size smaller than \(s \) for \(n \geq s \). By definition the left side of the display is \(2^n \) for \(n \) equal to the VC-dimension of \(\bigcap_i C_i \). We conclude that

\[
2^n \leq \prod_{i=1}^m \left(\frac{en}{V_i} \right)^{V_i},
\]

or

\[
n \log 2 \leq \sum_{i=1}^m V_i \log(e/V_i) + \left(\sum_{i=1}^m V_i \right) \log n.
\]

With \(V \equiv \sum_i V_i \), define \(r = en/V \). Then the last display implies that

\[
r V \frac{\log 2}{e} \leq \sum_i V_i \log(e/V_i) + V \log(rV/e),
\]

or

\[
r \frac{\log 2}{e} \leq \log r + \log V - \sum_i V_i \log V_i \leq \log r + \log m - \frac{\text{Ent}(V)}{V} = \log \left(\frac{mr}{e^{\text{Ent}(V)/V}} \right),
\]

and this inequality can in turn be rewritten as

\[
x \log x = \frac{mr/e^{\text{Ent}(V)/V}}{\log \left(\frac{mr/e^{\text{Ent}(V)/V}}{e^{\text{Ent}(V)/V}} \right)} \leq \frac{m}{e^{\text{Ent}(V)/V}} \cdot \frac{e}{\log 2} \equiv y.
\]

Now note that \(g(x) \equiv x/\log x \leq y \) for \(x \geq e \) implies that \(x \leq (e/(e-1))y \log y \); \(g \) is minimized by \(x = e \) and is increasing; furthermore \(y \geq g(x) \) for \(x \geq e \) implies that

\[
\log y \geq \log x - \log \log x = \log x \left(1 - \frac{\log \log x}{\log x} \right) \geq \log x \left(1 - \frac{1}{e} \right)
\]

so that

\[
x \leq y \log x \leq y \left(1 - \frac{1}{e} \right)^{-1} \log y = \frac{e}{e-1} y \log y.
\]

Thus we conclude that

\[
\frac{mr}{e^{\text{Ent}(V)/V}} \leq \frac{e}{e-1} \cdot \frac{me}{e^{\text{Ent}(V)/V} \log 2} \log \left(\frac{m}{e^{\text{Ent}(V)/V}} \cdot \frac{e}{\log 2} \right),
\]

which implies that

\[
r \leq \frac{e^2}{(e-1) \log 2} \log \left(\frac{m}{\exp(\text{Ent}(V)/V)} \cdot \frac{e}{\log 2} \right).
\]
Expressing this in terms of \(n \) yields the first inequality (1.2). The second inequality holds since \(\text{Ent}(V) \geq 0 \) implies \(\exp(\text{Ent}(V)/V) \geq 1 \).

The corresponding statement for the unions follows because a class \(\mathcal{C} \) of sets and the class \(\mathcal{C}^c \) of their complements possess the same VC-dimension, and \(\cup_i C_i = (\cap_i C_i^c)^c \).

In the case of products, note that
\[
\Delta_n(\mathbb{E}_{i=1}^m D_j) \leq \prod_{i=1}^m \Delta_n(D_j) \leq \prod_{j=1}^m \left(\frac{e V}{V_j} \right)^{V_j},
\]
and then the rest of the proof proceeds as in the case of intersections.

It follows from concavity of \(x \mapsto \log x \) that with \(p_j \equiv V_j/\sum_{i=1}^m V_i \),
\[
\sum_{j=1}^m \frac{V_j \log V_j}{\sum_{j=1}^m V_j} = \sum_{j=1}^m p_j \log V_j \leq \log \left(\sum_{j=1}^m p_j V_j \right) \leq \log \left(\sum_{j=1}^m V_j \right)
\]
and hence
\[
1 \leq \frac{m}{e^{\text{Ent}(V)/V}} \leq m,
\]
or \(0 \leq \text{Ent}(V)/V \leq \log m \), or
\[
0 \leq \text{Ent}(V) \leq V \log m.
\]

Here are two examples showing that the quantity \(m/e^{\text{Ent}(V)/V} \) can be very close to 1 (rather than \(m \)) if the \(V_i \)'s are quite heterogeneous, even if \(m \) is large.

Example 1.1. Suppose that \(r \in \mathbb{N} \) (large), and that \(V_i = r^i \) for \(i = 1, \ldots, m \). Then it is not hard to show that
\[
\frac{m}{e^{\text{Ent}(V)/V}} \rightarrow \frac{r}{r - 1} r^{1/(r-1)} = \frac{r}{r - 1} \exp((r - 1)^{-1} \log r)
\]
as \(m \rightarrow \infty \) where the right side can be made arbitrarily close to 1 by choosing \(r \) large.

Example 1.2. Suppose that \(m = 2 \) and that \(V_1 = k \), \(V_2 = rk \) for some \(r \in \mathbb{N} \). Then
\[
\text{Ent}(V)/V = \log 2 - \frac{1}{r + 1} \log((r + 1)(1 + 1/r)^r) \rightarrow \log 2
\]
as \(r \rightarrow \infty \) for any fixed \(k \). Therefore
\[
\frac{2}{e^{\text{Ent}(V)/V}} \rightarrow 1
\]
as \(r \rightarrow \infty \) for any fixed \(k \).

Our last example shows that the bound of Theorem 1.1 may improve considerably on the bounds resulting from iteration of Dudley’s bound \(S(1, k) \leq 2k + 1 \).

Example 1.3. Suppose \(V_1 = V(C_1) = k \) and \(V_j = V(C_j) = 1 \) for \(j = 2, \ldots, m \). Iterative application of Dudley’s bound \(S(1, k) \leq 2k + 1 \) yields \(V(\cap_{j=1}^m C_j) \leq 2^{m-1}(k + 1) - 1 \), which grows exponentially as \(m \rightarrow \infty \). On the other hand, Theorem 1.1 yields \(V(\cap_{j=1}^m C_j) \leq c_1 (m + k - 1) \log(c_2 m) \) which is of order \(c_1 m \log m \) as \(m \rightarrow \infty \).
Although we have succeeded here in providing quantitative bounds for $V(\bigcup_{j=1}^{m}C_j)$, $V(\bigcap_{j=1}^{m}C_j)$, and $V(\bigoplus_{j=1}^{m}D_j)$, it seems that we are far from being able to provide quantitative bounds for the VC - dimensions of the (much larger) classes involved in [6], [7], and [10].

Acknowledgement

We owe thanks to a helpful referee for pointing out [4] and for suggesting Example 1.3.

References