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Escape of mass in zero-range processes

with random rates

Pablo A. Ferrari 1,∗ and Valentin V. Sisko 2,†

Universidade de São Paulo

Abstract: We consider zero-range processes in Z
d with site dependent jump

rates. The rate for a particle jump from site x to y in Z
d is given by λxg(k)p(y−

x), where p(·) is a probability in Z
d, g(k) is a bounded nondecreasing function

of the number k of particles in x and λ = {λx} is a collection of i.i.d. random
variables with values in (c, 1], for some c > 0. For almost every realization
of the environment λ the zero-range process has product invariant measures
{νλ,v : 0 ≤ v ≤ c} parametrized by v, the average total jump rate from
any given site. The density of a measure, defined by the asymptotic average
number of particles per site, is an increasing function of v. There exists a
product invariant measure νλ,c, with maximal density. Let µ be a probability
measure concentrating mass on configurations whose number of particles at site
x grows less than exponentially with ‖x‖. Denoting by Sλ(t) the semigroup
of the process, we prove that all weak limits of {µSλ(t), t ≥ 0} as t → ∞ are
dominated, in the natural partial order, by νλ,c. In particular, if µ dominates
νλ,c, then µSλ(t) converges to νλ,c. The result is particularly striking when
the maximal density is finite and the initial measure has a density above the
maximal.

1. Introduction

In the zero-range process there are a finite number of particles at each site of Z
d.

At a rate depending monotonically on the number of particles at the site, one of the
particles jumps to another site chosen independently with a transition probability
function. The rate at which particles leave any site is bounded. When the rate at
each site x is multiplied by a random variable λx chosen at time zero independently
of the process, the system may show a phase transition in the density. For almost
every realization of the environment λ the zero-range process has product invariant
measures {νλ,v : 0 ≤ v ≤ c} parametrized by v, the average total jump rate from
any given site. The density of a measure is the asymptotic number of particles per
site (when this exists). For each v ≤ c the invariant measure νλ,v has density ρ(v),
which is an increasing function of v. Our main result is to start the system with a
measure concentrating mass in configurations not growing too fast (see (3) below)
and show that the distribution of the process as time goes to infinity is dominated
by the maximal measure νλ,c. This is particularly interesting when ρ(c) < ∞ and
the initial density of µ is strictly bigger than ρ(c). In this case we say that there is

∗Supported in part by FAPESP.
†Supported by FAPESP (2003/00847–1) and CNPq (152510/2006–0).
1Departamento de Estat́istica, Instituto de Matemática e Estat́istica, Universidade de São

Paulo, Caixa Postal 66281, CEP 05311–970 São Paulo, SP, Brazil, e-mail: pablo@ime.usp.br, url:
www.ime.usp.br/~pablo

2IMPA, Estrada Dona Castorina 110, CEP 22460-320 Rio de Janeiro, Brasil, e-mail:
valentin@impa.br, url: www.ime.usp.br/~valentin

AMS 2000 subject classifications: 60K35, 82C22.
Keywords and phrases: random environment, zero-range process.

108



Zero range processes with random rates 109

an “escape of mass”. When the initial distribution dominates the maximal invariant
measure, the process converges to the maximal invariant measure.

The zero-range process appeared first as a network of queues when Jackson [13]
showed that the product measures are invariant for the process in a finite number of
sites. Spitzer [22] introduced the process in a countable number of sites as a model
of infinite particle system with interactions. The existence of the process has been
proved by Holley [12] and Liggett [17, 19]. We use Harris [11] direct probabilistic
construction which permits the particles to be distinguishable, so one can follow the
behavior of any particular particle. Using Liggett’s [18] approach, Andjel [1] gave
a description of the set of invariant measures for the zero-range process in some
cases. Balázs, Rassoul-Agha, Seppäläinen, and Sethuraman [4] studied the case of
rates bounded by an exponential function of k in a one dimensional asymmetric
model.

The study of conservative interacting particle systems in random environment
was proposed simultaneously by Benjamini, Ferrari and Landim [5] and Evans [7],
who observed the existence of phase transition in these models; see also Krug and
Ferrari [15]. Benjamini, Ferrari and Landim [5], Krug and Seppäläinen [20] and
Koukkous [14] investigated the hydrodynamic behavior of conservative processes in
random environments; Landim [16] and Bahadoran [3] considered the same prob-
lem for non-homogeneous asymmetric attractive processes; Gielis, Koukkous and
Landim [9] deduced the equilibrium fluctuations of a symmetric zero-range process
in a random environment; Andjel, Ferrari, Guiol and Landim [2] proved the conver-
gence to the maximal invariant measure for a one-dimensional totally asymmetric
nearest-neighbor zero-range process with random rates. This phenomenon is stud-
ied by Seppäläinen, Grigorescu and Kang [10] in one dimension. Evans and Hanney
[8] have recently published a review paper on the zero-range process which includes
many references to the mathematical physics literature.

Section 2 includes definitions, results and at the end a summary of the contents
of the other sections.

2. Results

We study the zero-range process with site dependent jump rates. Let N = {0, 1,

2, . . . } and give N the discrete topology. It would seem natural to take X = N
Z

d

for the state space, but for topological reasons, let us begin by setting

N = N ∪ {∞}.

We give N the topology of one point compactification and take X = N
Z

d

with the
product topology for the state space. The set X is compact. We associate with X the
Borel σ-field. The product topology on X is metrizable. For x = (x1, . . . , xd) ∈ Z

d,
denote the sup-norm of x by

‖x‖ = max
i=1,...,d

|xi|.

Let γ : N → [0, 2] be such that γ(0) = 2, γ(n) = 1/n, n = 1, 2, . . . , and γ(∞) = 0.
For instance, the metric

d(η, ξ) =
∑
x∈Zd

1
2‖x‖

∣∣γ(η(x)) − γ(ξ(x))
∣∣
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is compatible with the product topology on X . The set X is a complete separable
metric space.

Fix 0 < c < 1 and consider a collection λ = {λx}x∈Zd taking values in (c, 1] such
that c = infx∈Zd λx. We call λ the environment. Let p : Z

d → [0, 1] be a probability
on Z

d:
∑

x∈Zd p(x) = 1. We assume that the range of p is bounded by some M > 0:
p(x) = 0 if ‖x‖ > M . Moreover, suppose that the random walk with transition
function p(x, y) = p(y − x) is irreducible.

Let g : N → [0, 1] be a nondecreasing continuous function with 0 = g(0) < g(1)
and g(∞) = lim g(k) = 1.

The zero-range process in the environment λ is a Markov process informally
described as follows. Initially distribute particles on the lattice Z

d, then if there
are k particles at site x, at rate λxg(k)p(y − x) a particle jumps from x to y. In
Section 5 we recall the construction of a process ηt with this behavior as a function
of a Poisson process in Z

d × R, à la Harris. Let {Sλ(t), t ≥ 0} be the semigroup
associated to this process, that is,

Sλ(t)f(η) = E[f(ηt) | η0 = η].

where E is expectation and ηt = ηλt is the process with fixed environment λ. The
corresponding generator Lλ, defined by

Lλf(η) =
d

dt
Sλ(t)f(η)

∣∣∣
t=0

,

acts on cylinder continuous functions f : N
Z

d

→ R as follows:

(Lλf)(η) =
∑
x∈Zd

∑
y∈Zd

λx p(y − x) g(η(x)) [f(ηx,y) − f(η)].

where ηx,y = η− δx + δy and δz ∈ X is the configuration with just one particle at z
and no particles elsewhere; addition of configurations is performed componentwise.
We set ∞± 1 = ∞.

The natural state space for this Markov process is X rather than X . From the
construction à la Harris it is possible to see that if the standard Markov process
whose semigroup is given by Sλ(t) is started in X , then it never leaves X : if µ(X ) =
1, then µSλ(t)(X ) = 1 for any t.

For each v ∈ [0, c] and environment λ, denote νλ,v the product measure with
marginals

(1) νλ,v{ξ : ξ(x) = k} =
1

Z(v/λx)
(v/λx)k

g(k)!
,

where we use the notation g(k)! = g(1) · · · g(k) and g(0)! = 1;

(2) Z(u) =
∑
k≥0

uk

g(k)!

is the normalizing constant. These measures are invariant for the process [1, 13, 22].
In some cases it is known that all invariant measures (concentrated on X ) are convex
combinations of measures in {νλ,v : 0 ≤ v ≤ c} (see [1, 2]).

To define the standard partial order for probability measures on X let η ≤ ξ if
η(x) ≤ ξ(x) for all x ∈ Z

d. A real valued function f defined on X is increasing
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if η ≤ ξ implies that f(η) ≤ f(ξ). If µ and ν are two probability measures on X ,
µ ≤ ν if

∫
fdµ ≤

∫
fdν for all increasing continuous functions f . In this case we

say that ν dominates µ. This is equivalent to the existence of a probability measure
ν̄ on X × X with marginals µ and ν such that

ν̄{(η, ξ) : η ≤ ξ} = 1,

(coupling); see Theorem 2.4 of Chapter II in [19].
Since X is compact, any sequence of probability measures on X is tight, and

therefore, has a weakly convergent subsequence.
Our main theorem holds for measures µ on X giving total mass to configurations

for which the number of particles in x increases less than exponentially with ‖x‖.
That is, measures satisfying

(3)
∞∑

n=1

e−βn
∑

x:‖x‖=n

η(x) < ∞ µ-a.s. for all β > 0.

The product measure νλ,v obviously satisfies (3).
We consider random rates λ = {λx}x∈Zd , a collection of independent identically

distributed random variables in (c, 1]. Call P and E the probability and expectation
induced by these variables. Assume that for any ε > 0, P(λ0 ∈ (c, c + ε)) > 0.

Theorem 1. Let µ be a probability measure on X satisfying (3). Then P-a.s.

(i) Every weak limit of µSλ(t) as t tends to infinity is dominated by νλ,c.
(ii) If νλ,c ≤ µ then µSλ(t) converges to νλ,c as t goes to infinity.

The result is better understood using the notion of density of particles. Recall
that lim g(k) = 1 and notice that the function Z : [0, 1) → [0,∞) defined in (2) is
analytic. Let R : [0, 1) → [0,∞) be the strictly increasing function defined by

R(u) =
1

Z(u)

∑
k≥0

k
uk

g(k)!
= u

Z ′(u)
Z(u)

.

It is easy to see that R is onto [0,∞). Under the measure νλ,v the expected number
of particles (density) at site x is

(4) νλ,v[η(x)] = R(v/λx),

and the expected value of the jump rate is

νλ,v[λxg(η(x))] = v.

Since v/λx < 1, for any v ∈ [0, c] and x,

(5) νλ,c[η(x)] = lim
v→c

R(v/λx) < ∞.

Since the rate distribution is translation invariant, taking the average with respect
to the rates, the mean number of particles per site is

ρ(v) :=
∫

P(dλ0)R(v/λ0).

For v ∈ [0, c), ρ(v) < ∞. Depending on the distribution of λ0, two cases are possible:
ρ(c) < ∞ and ρ(c) = ∞. Since R(u) is a nondecreasing nonnegative function,

(6) ρ(c) = lim
v↗c

ρ(v),
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The equation also holds when ρ(c) = ∞.
For v ∈ [0, c], denote mv :=

∫
P(dλ) νλ,v the measure obtained by first P-

choosing an environment λ and then choosing a configuration η with νλ,v. Under
this law {η(x)}x∈Zd are independent identically distributed random variables with
average number of particles per site given by mv[η(0)] = ρ(v). By the strong law of
large numbers,

(7) lim
n→∞

1
(2n + 1)d

∑
‖x‖≤n

η(x) = ρ(v) mv-a.s.

Thus, P-a.s., the limit (7) holds νλ,v-a.s.; it also holds when ρ(v) = ∞.
For η ∈ X , the lower asymptotic density of η is defined by

(8) D(η) := lim inf
n→∞

1
(2n + 1)d

∑
‖x‖≤n

η(x),

and the upper asymptotic density of η is defined by

(9) D(η) := lim sup
n→∞

1
(2n + 1)d

∑
‖x‖≤n

η(x).

Take some probability measure µ satisfying (3) and some environment λ. Let µ̃
be a weak limit of µSλ(t) along a convergent subsequence. Then Theorem 1 (i)
implies

(10) D(η) ≤ ρ(c) µ̃ -a.s.

Suppose that ρ(c) < ∞ and µ concentrates mass on configurations with lower
asymptotic density strictly bigger than ρ(c), that is,

(11) D(η) > ρ(c) µ-a.s.

Inequality (10) says that weak limits of µSλ(t) are concentrated on configurations
with the upper asymptotic density of η not greater than ρ(c). This behavior is
remarkable as the process is conservative, i.e., the total number of particles is con-
served, but in the above limit there is an “escape of mass”. Heuristically, a fraction
of the particles get stacked at further and further sites with lower and lower rates.

Sketch of proof. The proof is based on the study of a family of zero-range
processes indexed with α > 0; we call them the α-truncated process. The α-
truncated process behaves as the original process but at all times there are infinitely
many particles in sites x with λ(x) ≤ c + α. The measure να

λ is invariant for the
process. Let the measure µα be the law of a configuration chosen with µ modified by
putting infinitely many particles in sites x with λ(x) ≤ c+α and leaving the other
sites unchanged. We use the fact that there is a density of sites with infinitely many
particles to show that the α-truncated process starting with µα for µ satisfying (3)
converges weakly to να

λ . We prove the convergence using coupling arguments. Two
α-truncated processes starting respectively with µα and the invariant law να

λ are
jointly realized using the so called “basic coupling” [19] which amounts to use the
same Poisson processes to construct both marginals. The coupling induces first and
second class particles, the last represent the discrepancies between both marginals.



Zero range processes with random rates 113

A key element of the proof is the study of the motion of a single tagged second
class particle in the α-truncated process. The skeleton of the trajectory of each par-
ticle is a simple random walk with jump probabilities p(·) absorbed at sites x with
λ(x) ≤ c + α. The interaction with the other particles and with the environment λ
governs the waiting times between jumps but does not affect the skeleton of the
motion. We show that with probability one (a) only a finite number of second class
particles will visit any fixed site x: particles starting sufficiently far away will be
absorbed before arriving to x and (b) the finite number of particles hitting x will
be eventually absorbed. The weak convergence and the uniqueness of the invariant
measure for the α-process is a consequence of this result. The α-process dominates
stochastically the original process (which corresponds to α = 0) when both start
with the same configuration. Since να

λ converges to the maximal invariant measure
as α → 0, this will conclude the proof.

In Section 3 we introduce the α-truncated process, and state the two main results
which lead to the proof of Theorem 1: the ergodicity of the α-truncated process
and the fact that it dominates the original process. In the same section we prove
Theorem 1. In Section 4 we prove results for the random walk absorbed at sites x
with λx ≤ c + α, and in Section 5 we graphically construct the process, introduce
the relevant couplings and prove the ergodicity and domination results.

3. The α-truncated process

We introduce a family of zero-range process with infinite number of particles at
sites with sufficiently slow rates. Let α > 0, cα = c + α and λα = {λα

x}x∈Zd the
truncation given by

λα
x =

{
cα if λx ≤ cα,
λx if λx > cα.

For each α ≥ 0 consider a X -valued zero-range process ηα
t in the environment

λα. We call it the α-truncated process or just the truncated process when α is clear
from the context. When α = 0 we have the original process: η0

t = ηt. Partition
Z

d = Λ(λ, α) ∪ Λc(λ, α) with

Λ(λ, α) = {x ∈ Z
d : λx > c + α} and Λc(λ, α) = {x ∈ Z

d : λx ≤ c + α}.

We impose that ηα
t (x) = ∞ for all t for all x ∈ Λc(λ, α). The truncated process ηα

t is
defined in the same way as ηt from Section 2 with the following differences. Particles
jump as before to Λc(λ, α), but since there are infinitely many particles in Λc(λ, α),
the rate of jump from x ∈ Λc(λ, α) to y is (c+α)g(∞)p(y−x). Since the number of
particles in x is always infinity, this jumps can be interpreted as creation of particles
in y. Hence the process ηα

t can be thought of as evolving in Xα := N
Λ(λ,α) with

boundary conditions “infinitely many particles at sites in Λc(λ, α)”.
Let Lα

λ be the generator of the α-truncated process ηα
t and {Sα

λ (t), t ≥ 0} be the
semigroup associated to the generator Lα

λ . We construct this process à la Harris in
Section 5.

We consider measures on configurations of the processes ηt and ηα
t as measures

on X . The product measure να
λ with marginals

να
λ {ξ : ξ(x) = k} =




1
Z(cα/λα

x)
(cα/λα

x)k

g(k)!
if x ∈ Λ(λ, α),

1{k = ∞} if x ∈ Λc(λ, α),
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is invariant for the process ηα
t . Since cα → c and λα(x) → λ(x) as α goes to zero,

(12) lim
α→0

να
λ = νλ,c weakly.

Let Tα : X → X be the truncation operator defined by

(13) Tαη(x) =

{
η(x) if λx > c + α,
∞ if λx ≤ c + α.

The operator Tα induces an operator on measures that we also call Tα. Define
µα := Tαµ. We clearly have

(14) µ ≤ µα.

This domination is preserved by the respective processes:

Lemma 1. Let α > 0 and t ≥ 0. Then µSλ(t) ≤ µαSα
λ (t).

The truncated process converges to the invariant measure:

Proposition 1. Let µ be a probability measure on X satisfying (3). Then for any
α > 0,

(15) lim
t→∞

µαSα
λ (t) = να

λ P-a.s.

We prove Lemma 1 and Proposition 1 in Section 5.

Proof of Theorem 1. For any α > 0, Lemma 1 and Proposition 1 imply

lim sup
t→∞

µSλ(t) ≤ lim sup
t→∞

µαSα
λ (t) = να

λ .

Item (i) follows by taking α → 0 and applying (12).
To prove item (ii), take µ such that νλ,c ≤ µ. In the same way as in the proof of

Lemma 1, it is easy to see that the semigroup Sλ(t), acting on measures, preserves
the ordering: νλ,cSλ(t) ≤ µSλ(t) for any t. Since νλ,c is invariant, νλ,c = νλ,cSλ(t).
Therefore, by item (i),

νλ,c = lim sup
t→∞

νλ,cSλ(t) ≤ lim sup
t→∞

µSλ(t) ≤ νλ,c.

Our task is to prove Proposition 1. The point is that the skeleton of each particle
is just a discrete-time random walk with absorption at the sites where λx ≤ c + α.
Since there is a positive density of those sites, only a finite number of particles
will arrive at any fixed finite region. On the other hand, the absorbing sites create
new particles. We couple the process with initial measure µα with the process with
initial invariant measure να

λ in such a way that new particles are created at the
same time in the same sites to both processes. New created particles jump together
at both marginals. We show that as time goes to infinity, in both processes only
new particles will be present in any finite region.
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4. Family of independent random walks

Fix η such that the inequality in (3) holds. Fix α > 0. Since η and α are fixed, we
omit them in the notation when it is possible. For example, Λc(λ) := Λc(λ, α).

For each x ∈ Z
d, enumerate the η(x) particles at site x in some way and let

ζ =
{
ζn(x, i) : x ∈ Z

d, i ∈ N ∩ [1, η(x)]
}

be a family of independent discrete-time random walks with starting points
ζ0(x, i) = x, x ∈ Z

d, i ∈ N ∩ [1, η(x)] and transitions governed by p(·). We use
the notation P and E for the law and expectation induced by ζ. Recall P and E
are the law and expectation induced by the environment λ. By P × P denote the
product measure with marginals P and P.

For each (x, i) and for each subset A of Z
d, denote

τ(x, i; A) = min{n ≥ 0 : ζn(x, i) ∈ A}

the first time the walk hits the set A (this could be ∞).
Let us prove that if we consider the random walks in time [0, τ(x, i; Λc(λ))] only

a finite number of walks visit the origin and the number of visits of the origin by
each of the walks is finite. More formally, by N(λ, ζ) denote the last time any walk
visits the origin before entering in Λc(λ):

N(λ, ζ) = sup
⋃
x

⋃
i

{m : m ∈ [0, τ(x, y; Λc(λ))] and ζm(x, i) = 0}.

Proposition 2.

(16) (P × P){(λ, ζ) : N(λ, ζ) < ∞} = 1.

Proof. Denote θ = P(λ0 ≤ c + α). If α is small enough, then 0 < θ < 1. Call Ex,i

the subset of Z
d visited by the walk ζn(x, i) in the time interval [0, τ(x, i; Λc(λ))]

and denote
Cx,i,N = {(λ, ζ) : |Ex,i| ≥ N}

where N ≥ 0 and |Ex,i| is the number of elements in the set Ex,i. Since each site
of Ex,i has probability θ to be in the set Λc(λ),

(17) (P × P)(Cx,i,N ) ≤ (1 − θ)N → 0 as N → ∞.

By hypothesis the random walk with transitions governed by p(·) is irreducible,
hence it cannot be confined to a finite region. This implies that the number of new
sites visited by time n goes to infinity as n increases. This and (17) implies that

(18) (P × P)
( ⋂

(x,i):i≤η(x)

{
τ(x, i; Λc(λ)) < ∞

})
= 1.

Define
Dx,i =

{
(λ, ζ) : τ(x, i; {0}) < τ(x, i; Λc(λ))

}
.

Since the range of the random walk is M < ∞, we see that the random walk ζn(x, i)
visits at least (the integer part of) ‖x‖/M different sites before it reaches the origin.
Therefore,

(19) (P × P)(Dx,i) ≤ (1 − θ)‖x‖/M .
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Thus ∑
(x,i):i≤η(x)

(P × P)(Dx,i) ≤
∑

k

(1 − θ)k/M
∑

x:‖x‖=k

η(x) < ∞

because we assumed η satisfies (3). Borel-Cantelli then implies that with (P × P)
probability one only a finite number of events Dx,i happen. Thus, if we consider
the random walks in time [0, τ(x, i; Λc(λ))], then only a finite number of walks visit
the origin, and by (18), each walk visits the origin a finite number of times.

5. Construction and coupling

We construct à la Harris a Markov process ηt on X = N
Z

d

corresponding to the
above description. Let (Nx,y, x, y ∈ Z

d) be a collection of independent Poisson
process such that Nx,y has intensity p(y − x). If a Poisson event s belongs to a
Poisson process Nx,y, then we say that the event has the origin x and the end y. To
tune the rate with the environment and the number of particles, we associate to each
Poisson event s ∈ ∪x,yNx,y a random variable U(s), uniform in [0, 1], independent
of the Poisson processes and independent of the other uniform variables. Since the
probability that any two Poisson events from ∪x,yNx,y happen at the same time is
zero, all the Poisson events can be indexed by their times, in other words, they can
be ordered by their time of occurrence.

The evolution of the process ηt = ηλt in the environment λ is given by the
following (deterministic) rule: if the Poisson process Nx,y has an event at time s
and

(20) U(s) < λxg(ηs−(x)),

then one particle is moved from x to y at that time. Since g(0) = 0, if no particle
is in x, then the Poisson event produces no effect in the process in this case.

Using that p is finite range, a percolation argument shows that, for h sufficiently
small, Z

d can be partitioned in finite (random) subsets with the following property:
all Poisson events in the interval [0, h] have the origin and the end in the same subset.
Since there is a finite number of Poisson events in time interval [0, h] in each of the
subsets, the Poisson events can be well ordered by their time of occurrence and the
value of ηh for each subset can be obtained with the rule (20) proceeding from the
first event to the last in each subset. Starting at ηh, we repeat the construction in
the interval [h, 2h] and so on. Thus, for any t, the process ηt is well defined as a
function of the Poisson processes and the uniform random variables.

The α-truncated process ηα
t in the same environment λ is also realized as a

function of the Poisson processes and uniform variables with a similar rule: if the
Poisson process Nx,y has an event at time s and

(21) U(s) < λα
xg(ηα

s−(x)),

then one particle is moved from x to y at that time. Rules (20) and (21) induce a
natural coupling between the processes ηt and ηα

t . This is the key of the proof of
Lemma 1.

We use the notation P and E for the probability and expectation induced by the
Poisson processes and corresponding uniform associated random variables. Notice
that this alea does not depend on λ.
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Proof of Lemma 1. Fix a configuration η0 and an environment λ and let ηα
0 (x) =

η0(x) if x ∈ Λ(λ, α) and ηα
0 (x) = ∞ if x ∈ Λc(λ, α). Let (ηt, η

α
t ) be the cou-

pling obtained by constructing each marginal as a function of the Poisson processes
(Nx,y, x, y ∈ Z

d) and uniform random variables (U(s), s ∈ ∪x,yNx,y) following
rules (20) and (21).

It suffices to show that each jump keeps the initial order. Consider the jump
associated to a Poisson event at time s ∈ Nx,y with uniform variable U(s). There
are two possibilities:
(1) If x ∈ Λ(λ, α), then λx = λα

x . Since the function g(·) is monotone and the
random variable U(s) is the same for both marginals, the order is kept.
(2) If x ∈ Λc(λ, α), then λx < λα

x . In this case a ηs−(x) particle jumps from x to y if
U(s) < λxg(ηs−(x)) and a ηα

s−(x) particle jumps from x to y if U(s) < λα
xg(ηα

s−(x)).
Hence, if ηs−(x) ≤ ηα

s−(x) and ηs−(y) ≤ ηα
s−(y), then ηs(y) ≤ ηα

s (y). On the other
hand, ηs(x) ≤ ηα

s (x) = ∞.

To prove Proposition 1, we need the following result. It helps to prove that
the second class particles do not stop forever at some place: eventually every such
particle either move or coalesce.

Lemma 2. Fix an environment λ and consider the stationary process (ηα
t , t ∈ R)

with time-marginal distribution να
λ and fix x ∈ Λ(λ, α). Then ηα

t (x) = 0 infinitely
often with probability one:

(22) lim inf
t→∞

ηα
t (x) = 0.

Proof. Consider the discrete time stationary process (ηα
n(x), n ∈ N) —this is just

the process (ηt(x), t ∈ R) observed at integer times. It is sufficient to show

(23) lim inf
n→∞

ηα
n(x) = 0

with probability one. A theorem of Poincaré (Chapter IV in [21] or Theorem 3.4 of
Chapter 6 in [6]) implies that for every k ∈ N,

P
(
ηα

n(x) = k infinitely often in n | ηα
0 (x) = k

)
= 1.

Returning for a moment to the continuous time process ηα
t , if at time t site x has at

least one particle, then one of the particles at x will jump with probability bounded
below by g(1)λx/(1 + λx) > 0, this is the probability the exponential jump time
of x is smaller than the jump-times of particles from the other sites to x, whose rate
is bounded by g(∞)

∑
y p(y, x) = 1. Fix k ∈ N. By the same reasoning, for any m,

if ηα
m(x) = k, then there is a positive probability to be visiting 0 at time m + 1

independently of previous visits and uniformly in the configuration outside x at
time m. Since these are independent attempts, Borel–Cantelli implies

P
(
ηα

n(x) = 0 infinitely often in n | ηα
0 (x) = k

)
= 1.

This implies (23).

Proof of Proposition 1. In an environment λ, consider the coupling process of two
versions of the process ηα

t obtained by using the same family of Poisson processes
(Nx,y : x, y ∈ Z

d) and uniform random variables (U(s), s ∈
⋃

x,y Nx,y). By {S̄α
λ (t) :

t ≥ 0} denote the semigroup of the process and by P the probability associated to
the process.
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Since να
λ is invariant for ηα

t , it is enough to show that, for any α > 0, any µ
satisfying (3), any λ (P-a.s.), and for any x ∈ Λ(λ, α),

(24) lim
t→∞

(µα × να
λ ) S̄α

λ (t) {(ξ, η) : ξ(x) 	= η(x)} = 0.

In coupling terms, (24) reads

(25) lim
t→∞

∫ ∫
µα(dξ) να

λ (dη) P
(
ξt(x) 	= ηt(x) | (ξ0, η0) = (ξ, η)

)
= 0,

where we have denoted ξt the first coordinate of the coupled processes and ηt the
second. Therefore, to prove the proposition it is enough to prove that, for any α > 0,
any µ satisfying (3), any λ (P-a.s.), any ξ0 (µ-a.s.), any η0 (να

λ -a.s.), and for any
x ∈ Λ(λ, α),

(26) lim
t→∞

P
(
ξt(x) 	= ηt(x) | (ξ0, η0) = (ξ0, η0)

)
= 0.

Without loss of generality we assume x = 0 and α small enough such that
0 ∈ Λ(λ, α). Fix α, λ, ξ0 and η0. The configurations ξ0 and η0 are in principle
not ordered: there are sites y ∈ Λ(λ, α) such that (ξ0(y) − η0(y))+ > 0 and sites
z ∈ Λ(λ, α) such that (ξ0(z) − η0(z))− > 0. We say that we have ξη-discrepancies
in the first case and ηξ-discrepancies in the second one.

Denote ξ̄t(z) := min{ξt(z), ηt(z)} the number of coupled particles at site z at
time t. The ξ̄-particles move as regular zero-range particles; they are usually called
first class particles. There is at most one type of discrepancy at each site at any
time. Discrepancies of both types move as second class particles, i.e., ξη-discrepancy
jumps from y to z with rate

(27) λα
y p(z − y)[g(ξ(y)) − g(ξ̄(y))]

and ηξ-discrepancy jumps from y to z with rate

(28) λα
y p(z − y)[g(η(y)) − g(ξ̄(y))]

that is, second class particles jump with the difference rate. For instance, in the case
g(k) ≡ 1, the second class particles jump only when there are no coupled particles
in the site.

If a ξη-discrepancy jumps to a site z occupied by at least one ηξ-discrepancy,
then the ξη-discrepancy and one of the ηξ-discrepancies at z coalesce into a coupled
ξ̄-particle in z. Analogously, for the case when a ηξ-discrepancy jumps to a site z
occupied by at least one ξη-discrepancy. The coupled particle behaves from this
moment on as a first class particle. If a discrepancy of any type jumps to a site
z with infinite number of particles, that is, z ∈ Λc(λ, α), then the discrepancy
disappears. All particles in sites x ∈ Λc(λ, α) are first class ξ̄-particles. Therefore,
any particle that jump from any site x ∈ Λc(λ, α) is a first class particle.

At time zero there are |ξ0(y)− η0(y)| discrepancies at site y. To the ith discrep-
ancy at site y at time zero, that is, discrepancy (y, i), we associate the random walk
ζn(y, i) from the model of Section 4.

Since the interaction with the other particles and the environment λ governs the
waiting times between jumps but does not affect the skeleton of the discrepancy
motion until coalescence or absorbing time, it is possible to couple the skeleton of
the discrepancy (y, i) with the random walk ζn(y, i) in such a way that they perform
the same jumps together until (a) the coalescence of the discrepancy with another
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discrepancy of different type or (b) the absorption of the discrepancy at some site of
Λc(λ). In any case, the number of discrete jumps is at most τ(y, i; Λc(λ)). Therefore,
the full trajectory of discrepancy (y, i) is shorter (visits not more sites and has not
more number of visits to each site) than the trajectory of the random walk ζn(y, i)
in the time interval [0, τ(y, i; Λc(λ))]. Thus, Proposition 2 implies that only a finite
number of discrepancies visit x and the number of visits of site x by each of the
discrepancies is finite.

Lemma 2 implies that there are no η-particles at x infinitely often. There-
fore, there are no ηξ-discrepancies at x infinitely often. This means that every
ηξ-discrepancy that at some moment is at x will eventually jump out or coalesce.
It follows that after some random time there is no ηξ-discrepancies in x forever.

Moreover, if at time t site x ∈ Λ(λ, α) has no η-particles, then a ξη-discrepancy
at x will jump with probability bounded below by g(1)λx/(1 + λx) > 0. Therefore,
using Lemma 2, we see that after some random time there is no ξη-discrepancies
in x forever.
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