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A representative sampling plan for

auditing health insurance claims∗

Arthur Cohen1 and Joseph Naus1
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Abstract: A stratified sampling plan to audit health insurance claims is of-
fered. The stratification is by dollar amount of the claim. The plan is represen-
tative in the sense that with high probability for each stratum, the difference
in the average dollar amount of the claim in the sample and the average dollar
amount in the population, is “small.” Several notions of “small” are presented.
The plan then yields a relatively small total sample size with the property that
the overall average dollar amount in the sample is close to the average dollar
amount in the population. Three different estimators and corresponding lower
confidence bounds for over (under) payments are studied.

1. Introduction

Auditing health insurance claims is of necessity, extensively practiced. Statistical
sampling plans and analysis of data from such plans is also extensive and diverse.
One recent bibliography is Sampling for Financial and Internal Audits compiled by
Yancey [5]. An annotated bibliography is given in Statistical Models and Analysis in
Auditing (SMAA) [3] compiled by the Panel on Nonstandard Mixtures of Distribu-
tions, Committee on Applied and Theoretical Statistics of the Board on Mathemat-
ical Sciences, National Research Council. Most standard sampling methodologies
have been considered. Namely, simple random sampling, stratified random sam-
pling, and dollar unit sampling. In addition a variety of estimators of overpayments
(underpayments) have been considered. (See SMAA [3].) These include the mean-
per-unit estimator, the difference estimator, two types of ratio estimators, weighted
averages of the above three, dollar unit estimator based on estimating the pro-
portion of items in which overpayment occurs and Stringer estimators based on
an estimator of the above proportion and also the data corresponding to actual
overpayments (underpayments).

In this study we seek a stratified sampling plan whose main objective is to pro-
duce a lower confidence bound for the amount of overpayments (underpayments).
Stratification is done on dollar amount of the claim (book). It is envisioned that this
lower bound could justify a repayment by a health care provider to a client whose
employees are covered by the provider’s health insurance plan. Desirable features
sought include simplicity, representativeness, relatively small total sample size yet
somewhat adequate sample size in each stratum, no samples from zero dollar claims
and relatively larger samples from strata with high dollar claims. Furthermore the

∗Research supported by NSF Grant DMS-0457248 and NSA Grant H 98230-06-1-007.
1Department of Statistics and Biostatistics, Rutgers University, Hill Center,

Busch Campus, 110 Frelinghuysen Road, Piscataway NJ 08854-8019, USA, e-mail:
artcohen@rci.rutgers.edu; naus@rci.rutgers.edu

AMS 2000 subject classifications: primary 60K35; secondary 60K35.
Keywords and phrases: stratified sampling plan, dollar amount of claim, over (under) pay-

ments, unbiased estimator, separate ratio estimator, combined ratio estimator, lower confidence
bound.

121



122 A. Cohen and J. Naus

plan should audit all extremely high dollar claims and treat them separately. That
is, such claims should not be included as part of the statistical sample.

To achieve the stated objectives we propose a “dollar representative stratified
sampling plan” and refer to it as RepStrat sampling. The strata are class intervals
of dollar amounts of claims. Class boundaries of strata are chosen according to
typical guidelines (ample number of claims in each stratum, rounded numbers for
boundaries, not too few, not too many). In addition the strata are adjustable so
that the sample from each stratum is chosen in such a way that the average dollar
amount of the claim for the population is “close” to the average dollar amount of
the claim in the sample. The notion of “close” is made explicit in the next section.
The closeness of the average dollar amounts of claims in sample and in population
is what we mean by representativeness. Sample sizes for each stratum are chosen to
ensure this closeness with high probability. We demonstrate that closeness within
each stratum guarantees a higher degree of closeness between the averages in the
overall population and overall sample.

Representativeness, as measured by closeness of average dollar amounts in sample
and population, is important for several reasons. First, it is intuitively desirable.
Second, oftentimes estimates of overpayments are needed by an agency or com-
pany in order to recover money that was excessively paid out. Since larger dollar
amounts of claims have more opportunity for larger overpayments the agency would
welcome higher average dollar amounts in the sample strata than in the popula-
tion strata. On the other hand the agency’s adversary would prefer smaller average
dollar amounts in the sample. Since there is always a chance of litigation for the
sake of recovering money, the least biased situation is to have representativeness in
terms of the closeness notion.

Representativeness is not the only feature of the plan proposed here. We want
the sample size to be moderate. Not too large because of auditing expense and
yet large enough to get an estimate of overpayment whose variance is not too
large. Furthermore choosing samples within strata randomly allows for plausible
estimators of means and variances in an unbiased way. Still further the plan offered
here is not model based and does not require distributional or other assumptions.
Thus the plan offered here is a balance of a sense of fairness in a litigation setting.
Representativeness, randomness, distributional robustness, and adequate sample
size.

In Section 2 several different definitions of closeness will be offered and their
properties will be studied. In Section 3 we will display customary formulas for lower
confidence bounds based on several different estimators of overpayments. Section 4
contains an example. Standard textbook references containing sections on stratified
sampling are Cochran [1], Scheaffer, Mendenhall, and Ott, 6th edition [4], and Lohr
[2].

2. Determination of strata and sample sizes

Let N be the total number of claims in the population under study. Each claim has a
dollar amount (book) and the first step in a stratified sampling plan is to determine
L strata. The L strata will be formed as class intervals (Ai, Bi), i = 1, 2, . . . , L.
These L strata can be determined iteratively if necessary so that certain properties
of the sample (prior to auditing) are achieved. Justification for stratification is an
intuitive impression that higher book values are correlated with higher or greater
likelihood of overpayments. In our case representativeness is easier to achieve with
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stratification. In addition we want to assure that relatively more samples are drawn
from higher dollar strata.

Once strata boundaries are determined (not necessarily finalized) sample sizes for
each stratum need to be determined. In general, the researcher seeks to estimate a
population parameter (say µ) within a certain precision g, with a certain confidence
level, 1 − α. In stratified sampling ni is the sample size for each stratum and
the total sample size is n =

∑L
i=1 ni. Let Yij be the known dollar amount of

the jth claim in the ith stratum, i = 1, . . . , L; j = 1, . . . , Ni, where Ni is the
number of claims in stratum i. Let Ȳi =

∑Ni

i=1 Yij/Ni and Vi =
∑

(Yij − Ȳi)2/Ni

be the mean and variance respectively of the Yij in stratum i. Let yij and xij be
respectively the sample book amount and audited amount of the jth claim in the ith
stratum, i = 1, . . . , L; j = 1, . . . , ni. Also let dij = max(0, yij − xij) be the sample
amount overpaid on an audited claim. The ith stratum mean and variance of dij

are respectively denoted by µi and σ2
i , and the mean of the overpayment variable

for the population is denoted by µ where µ =
∑

Niµi/N . Finally let Wi = Ni/N
and wi = ni/n.

Note that when xij �= yij that means the auditor has detected an error in treating
the claim. A desirable or even acceptable error rate (that includes underpayments
as well as overpayments) is 1%, which is the standard in some industries. However
it is not uncommon to see higher rates of 3 to 5 or even 8 percent. In the latter cases
overpayments or even overpayments minus underpayments can be in the millions
of dollars. In [3] the dij ’s are modeled as coming from a mixture distribution. One
distribution of the mixture is degenerate at the point {0}. More discussion regarding
the other distribution is given in [3] where it is mentioned that the distribution may
depend on the book amount. In our study no distributional assumptions are made.

There are a variety of ways sample sizes are determined or allocated to the strata.
These include equal allocation (wi = 1/L), proportional allocation (wi = Wi) and
Neyman allocation (wi = Wiσi/

∑
Wiσi). Neyman allocation is “optimal” in the

sense of requiring the least total sample size to achieve the required overall precision.
However knowledge of σi is rarely available and proportional allocation is often
preferred to Neyman allocation since it offers a type of “representativeness” in the
sense that each stratum appears in the sample the same fraction of the time that it
appears in the population. Researchers are sometimes willing to take a somewhat
larger sample for “representativeness” and for the simplicity gained.

In RepStrat sampling we allocate the sample to gain representativeness in the
dollar amount of the claims in each stratum and in the overall population. Toward
this end the researcher specifies a level of precision gi and a confidence level 1 − γ
such that the sample is representative for each stratum in the sense that

(2.1) P
{
|ȳi − Ȳi| ≤ gi

}
≥ 1 − γ, i = 1, . . . , L.

The practitioner may specify equal absolute precision in estimating stratum
means, by choosing equal values for gi. This is considered in more detail under
case (a) below. Alternatively, the practitioner may specify equal relative precision
in estimating stratum means, i.e., gi = fȲi, 0 < f < 1; case (b) below deals with
this case. Other choices for specifying stratum precision are considered in cases
(c) through (e) below. We show that certain types of specifications are related to
proportional allocation in stratified random sampling (case c), or Neyman optimal
allocation (case d). We first deal with general {gi}.

Given the practitioner specifies the desired stratum precisions in terms of the
{gi} and the confidence 1 − γ, then the stratum sizes {ni} can be determined
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as follows. Strata boundaries are chosen so that the sample sizes determined will
hopefully be adequate enough so that ȳi will be approximately normal. In light of
this and (2.1) we find ni so that

(2.2) P

{
|Z| < gi

√
ni

Vi

Ni − 1
(Ni − ni)

}
≥ 1 − γ,

where Z is a standard normal variable. This leads to

(2.3) ni = z2
γ/2ViNi

/[
g2

i (Ni − 1) + z2
γ/2Vi

]
,

where zγ/2 is the 1 − γ/2 percentile of a standard normal.
Should Ni be large so that the finite population correction factor (fpc) be close

to 1, then (2.3) reduces to

(2.4) ni = z2
γ/2Vi/g2

i .

Remark 2.1. Typically strata with larger dollar amounts of claims will also have
larger values of Vi. Thus from (2.3) we see that relatively larger samples will be
drawn from such strata. This was one of the properties felt to be desirable in a
sampling plan of this type.

Now let ȳst =
∑

Niȳi/N and Ȳ =
∑

NiȲi/N be respectively the sample estimate
of and true population mean of book dollar amounts. Given the stratum {ni} are
determined from the stratum precisions {gi} and 1−γ, and given the known stratum
variances Vi of the Yij ’s yields the variance of ȳst. We can use this to approximate the
distribution of |ȳst−Ȳ |. For a specified value of g, we can approximate P{|ȳst−Ȳ | ≤
g}; we will denote this probability by 1 − α. For a chosen value of g we consider

(2.5) P
{
|ȳst − Ȳ | ≤ g

}
= P

{
|ȳst − Ȳ |

/√∑
W 2

i Vi/ni ≤ g

/√∑
W 2

i Vi/ni

}
.

If we ignore the fpc and substitute (2.4) in (2.5), we find that (2.5) is approxi-
mately

(2.6) P

{
|Z| ≤ zγ/2

/√√√√ L∑
i=1

W 2
i (gi/g)2

}
.

Thus if

(2.7)
L∑

i=1

W 2
i (gi/g)2 ≤ 1

it follows from (2.6) that the probability that the overall sample mean of claims is
close to the population mean of claims is at least 1 − γ. That is, if (2.7) holds

(2.8) P{|ȳst − Ȳ | ≤ g} = 1 − α ≥ 1 − γ.

Clearly in this instance α ≤ γ. Note that (2.7) and (2.8) are easily satisfied in
the case where gi = g, for all i; they are also satisfied if gi = fȲi and g = fȲ
for constant f . Thus, in the case where the stratum mean estimates precisions are
equal (either absolutely or relative to the means), the combined stratum estimate
has at least as good precision.
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In the auditing application considered in this paper, claims are stratified by
claim amount Yi into L strata. A special type of stratified random sample is picked
with ni claims from the Ni claims within the ith stratum, for i = 1, . . . , L. The
stratum sample sizes are chosen to make the sample “representative” in that for
every stratum, there is a high probability 1− γ that the stratum sample mean will
be “close” (for the ith stratum, within gi) of the true stratum mean. Given the {gi}
and γ, the {ni} are completely determined, as is P

{
|ȳst − Ȳ | ≤ g

}
, for any g. The

formula (2.1) through (2.8) detail this.
In general stratified random sampling the desired closeness of ȳst to Ȳ is specified

together with some type of allocation to determine the {ni}. This in turn determines
the within stratum precision which is typically of minor or secondary interest.
By contrast, the representative stratified random sampling approach specifies the
desired “closeness” (of ȳi to Ȳi) within individual stratum to find the {ni}. In the
next section we relate these two approaches to specifying sample sizes in stratified
random sampling.

3. Relation between representative and general stratified sampling
approaches

In general stratified random sampling, some particular method of allocating the
total sample size n to the L individual strata is chosen. In equal allocation, ni =
n/L. In proportional allocation, ni = nNi/

∑
Ni; that is the ni are proportional to

the Ni.
How does representative stratified random sampling relate to various other types

of allocation in stratified random sampling? To analyze this, fix the precision of the
estimator ȳst.; that is specify g and α in equation (2.8). Various ways to specify
the within stratum precision (the gi’s and γ) are related to types of allocation
(proportional, optimal and other) in stratified random sampling. For a given desired
precision of the estimator ȳst given by α and g, and choice of spcification of gi, and
γ, we can find the total sample size n, as well as the sample weights wi = ni/n. For
example, we will show that if the gi are all taken to be equal, then wi is proportional
to the stratum variances, and the overall n is given by equation (3.4) below. More
generally, we show how to determine {ni} and n given any three of {gi}, α, γ, g.

Divide both the |ȳst − Ȳ | and g in (2.8) by
√∑L

i=1 W 2
i Vi/ni; use the normal

approximation and ignore the fpc, to find that approximately

L∑
i=1

W 2
i Vi/ni = g2/z2

α/2.

Thus choosing ni as in (2.4) yields

(3.1)
∑

W 2
i g2

i = g2z2
γ/2/z2

α/2.

At this point we present a variety of choices of gi.
Case (a): gi = C for all i = 1, . . . , L.

Then from (3.1)

(3.2) C2 = g2z2
γ/2/z2

α/2

L∑
i=1

W 2
i ,
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and should we want ni to satisfy both (2.1) and (2.8), we have from (2.4) that

(3.3) ni = Viz
2
α/2

L∑
i=1

W 2
i /g2.

That is, ni is proportional to Vi. The overall sample size in this case is

(3.4) n = (zα/2/g)2
L∑

i=1

W 2
i

L∑
j=1

Vj

and the sample weights wi = ni/n are given by

(3.5) wi = Vi

/ L∑
i=1

Vi.

Case (b): gi = fȲi for all i = 1, . . . , L.
If gi is a fixed proportion of strata mean book amount, then from (3.1) we have
approximately

(3.6) f2 = g2z2
γ/2

/
z2
α/2

( L∑
i=1

W 2
i Ȳ 2

i

)
and thus if we want ni to satisfy both (2.1) and (2.8), we have from (2.4)

(3.7) ni = z2
α/2Vi

( L∑
j=1

W 2
j Ȳ 2

j

)/
g2Ȳ 2

i .

Thus in this case ni is proportional to Vi/Ȳ 2
i , which is the squared coefficient of

variation of the book value for the ith situation. The sample weights wi = ni/n are

(3.8) Vi/Ȳ 2
i

( L∑
i=1

Vi/Ȳ 2
i

)
.

Case (c): gi = f
√

Vi/Wi.
From (2.4)

(3.9) ni = z2
γ/2Wi/f2 = KWi,

when K is constant. This amounts to proportional allocation related to the number
of claims in a stratum. This method of sample size determination does not really
satisfy our goals.

Case (d): gi = fV
1/4
i

/√
Wi.

From (2.4)

(3.10) ni = z2
γ/2Wi

√
Vi /f2.

From (3.1)

(3.11) f = gzγ/2/zα/2

√∑
WiV

1/2
i .
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This is Neyman-optimum allocation for estimating mean claim size. For this case
using (3.10) and (3.11)

(3.12) n =
( L∑

i=1

WiV
1/2
i

)2

z2
α/2

/
g2

and

(3.13) wi = WiV
1/2
i

/ L∑
i=1

WiV
1/2
i .

Case (e): gi = fȲ
1/2
i .

This designation of strata precision is a compromise between case (a) which seeks
the same absolute precision for each stratum and case (b) which seeks the same
relative precision. Here, using (2.4) and (3.1)

f = gzγ/2/zα/2

√∑
W 2

i Ȳi,

ni = Viz
2
α/2

L∑
j=1

W 2
j Ȳj

/
Ȳig

2(3.14)

so

(3.15) wi = (Vi/Ȳi)
/ L∑

j=1

Vj/Ȳj .

Remark 3.1. In deriving most formulas for ni we have been ignoring the fpc.
Should the fpc not be close to 1 a modification of the formulas may be necessary. The
modification entails replacing Vi by Vi(Ni − ni)/(Ni − 1) and solving the resulting
equation for ni. So for example in case (a), (3.3) would be replaced by

(3.16) ni = Niz
2
α/2

L∑
j=1

W 2
j

/[
Ni − 1 + Viz

2
α/2

L∑
j=1

W 2
j

]
.

In case (b) the ni of (3.7) would be replaced by

(3.17) ni =
[
Viz

2
α/2Ni

( L∑
j=1

W 2
j Ȳ 2

j

)]/[
(Ni − 1)g2Ȳ 2

i + Viz
2
α/2

L∑
j=1

W 2
j Ȳ 2

j

]
.

Of course if we were concerned only with ni satisfying (2.1), recognizing the impli-
cations this has for (2.8), then ni can be determined from (2.3) which includes the
fpc.

4. Estimating overpayments

In this section we describe several point estimators and corresponding lower con-
fidence bounds for (OP ), the total amount overpaid. Most of the material here is
essentially drawn from the cited SMAA [3] article appearing in Statistical Science,
and Cochran [1]. We focus on three of the estimators although the SMAA article
discusses others as well. It would not be an unreasonable approach, when seeking
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recovery of money, to give several estimates of (OP ) to see if they agree. If they do
not, the parties might choose to compromise among the competing estimators.

We are somewhat guided in the selection of the three estimators by the findings
of the SMAA committee in the sense that some of the following estimators lead to
conservative lower bounds. The three estimators are

The difference estimator:

(4.1) (ÔP )d =
∑

Nid̄i,

where

d̄i =
ni∑

j=1

dij/ni.

The separate ratio estimator:

(4.2) (ÔP )RS =
L∑

i=1

NiȲiri,

where
ri = d̄i/ȳi.

The combined ratio estimator:

(4.3) (ÔP )RC = rc

L∑
i=1

NiȲi,

where

(4.4) rc =
L∑

i=1

Nid̄i/
L∑

i=1

Niȳi.

Denote the sample variance of dij by s2
di

, where

(4.5) s2
di

=
ni∑

j=1

(dij − d̄i)2/(ni − 1).

Then the estimated variance of (ÔP )d is

(4.6) V̂ (ÔP )d =
L∑

i=1

Ni(Ni − ni)s2
di

/ni.

A (1 − β) lower confidence bound based on an estimate θ̂ for total overpayment is

(4.7) θ̂ − zβ

(
V̂ (θ̂)

)1/2
.

Note that V̂ (ÔP )d depends on the s2
di

which can be computed from (4.5), or in the
case where many of the di’s are zero, more simply from

s2
di

=
{

ni

ni∑
j=1

d2
ij −

( ni∑
j=1

dij

)( ni∑
j=1

dij

)}/
ni(ni − 1),
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where
ni∑

j=1

dij and
ni∑

j=1

d2
ij

can be computed from just the non-zero dij . This type of simplification is of even
greater help for the ratio estimates that follow.

The estimated variance of (ÔP )RS is

(4.8) V̂ (ÔP )RS =
L∑

i=1

Nis
2
RSi(Ni − ni)/ni,

where

s2
RSi =

ni∑
j=1

(dij − riyij)2/(ni − 1)

= s2
di

+ r2
i s2

yi
− 2risdiyi(4.9)

and

ri = d̄i/ȳi,

s2
diyi

=
ni∑

j=1

(di − d̄i)(yi − ȳi)/(ni − 1)

=
{ ni∑

j=1

dijyij − ȳi

ni∑
j=1

dij

}/
(ni − 1).

Note that s2
diyi

and s2
di can be computed from

∑
dij ,

∑
d2

ij , and
∑

dijyij , which
can be computed from just the non-zero dij . Thus, just knowing (dij , yij) for the
non-zero dij , and ȳi and s2

yi
are sufficient to compute (4.8).

The estimated variance of (ÔP )RC is

(4.10) V̂ (ÔP )RC =
L∑

i=1

Nis
2
ri(Ni − ni)/ni,

where

s2
ri =

ni∑
j=1

(dij − rcyij)2/(ni − 1)

=
{ ni∑

j=1

d2
ij + r2

c

ni∑
j=1

y2
ij − 2rc

ni∑
j=1

dijyij

}/
(ni − 1)(4.11)

and rc is defined in (4.4).
Knowing ȳi and s2

yi
gives

∑ni

j=1 y2
ij , and knowing these together with the (dij , yij)

for non-zero dij is sufficient to compute (4.10).

5. Example

We have constructed the following fictitious data set to be similar in number of
claims, and book and audited amount of claims in data sets we have seen. Table 1
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contains population data broken down by class intervals (strata) of designated dollar
amount of claims. For each stratum we give the number of claims, the population
mean (Ȳi) and variance (Vi) of dollar amount of claim, and the sample sizes (ni)
determined from (2.3) for γ = .05, and gi = .05Ȳi. Table 2 contains sample data for
those pairs (dij , yij) with positive overpayment, dij > 0. Note that there are several
sample pairs (dij , yij) where yij − dij = xij = 0. Such cases result when payments
were made on claims that shouldn’t have been paid. Table 3 contains the stratum
sample means and variances for the dij and yij .

Table 4 compares the difference estimate (4.1), the separate ratio estimator (4.2),
and the combined ratio estimate (4.4) for the total amount of overpayment. Also
included are the 95% lower confidence bounds for total overpayment based on each
estimator derived using (4.7). First we note that |ȳst− Ȳ | = |418.7500−417.9375| =
0.812475 < 0.02Ȳ . This indicates that RepStrat has accomplished one of its main
goals. Namely that the average dollar amount of the claims in the sample is very
close to the average dollar amount of claims in the population.

From Table 4 we note that all three estimation procedures yield results that are
very close to each other. In light of the SMAA report on conservativeness of the
lower confidence bounds and the closeness of the three estimation procedures we
feel that RepStrat has provided a satisfactory analysis of the data set.

Table 1

Population data and sample sizes

Strata Dollar Value Number Population Population
Number Strata of Claims Mean Variance

Ni Ȳi Vi ni

(1) 0–199 4000 120 703 74
(2) 200–499 2200 313 3,500 54
(3) 500–999 1000 620 10,000 39
(4) 1,000–1,999 500 1148 30,000 33
(5) 2,000–3,999 200 2374 110,000 27
(6) 4,000–6,999 100 5061 250,000 14

8000 241

Table 2

Sample Pairs: (dij , yij) when dij > 0

Strata
1 (9, 44), (105, 105), (57, 57), (143, 143)
2 (8, 288), (422, 422), (115, 380), (93, 455), (495, 495), (359, 359)
3 (530, 530), (76, 516), (12, 736), (124, 540), (54, 711), (96, 674)
4 (804, 1804), (628, 1000), (718, 1000), (475, 1000), (500, 1500), (800, 1500)
5 (1120, 2520), (2607, 2607), (389, 3456), (1990, 3265), (3900, 3900), (100, 3900),

(1550, 3000), (500, 3000)
6 (1220, 6102), (1750, 6999), (3, 5232), (6900, 6900), (100, 6671), (1220, 6102)
height

Table 3

Sample Statistics

Strata ni ȳi d̄i s2
yi

1 74 115 4.2432 680
2 54 300 27.6296 3400
3 39 650 22.8718 10500
4 33 1200 118.9394 30300
5 27 2400 450.2222 111000
6 14 5000 799.5000 250000
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Table 4

Estimators and Lower 95% Confidence Bound

Type of Estimator Estimator Lower Confidence Bound
Difference 330,094 214,037

Separate Ratio 329,833 220,286
Combined Ratio 329,453 215,323
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