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Price systems for markets with

transaction costs and control problems

for some finance problems
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Academia Sinica and University of Utah

Abstract: In a market with transaction costs, the price of a derivative can
be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)).
In this paper, we consider a market with binomial model for stock price and
discuss how to generate the price systems. From this, the price formula of
a derivative can be reformulated as a stochastic control problem. Then the
dynamic programming approach can be used to calculate the price. We also
discuss optimization of expected utility using price systems.

1. Introduction

Duality approach is frequently used for financial problems in incomplete markets.
This approach can also be applied to markets with transaction costs. In [12], a
discrete market with transaction costs is considered. In the market studied there
is a stock and a bond that we can trade. Let λ1, λ0 > 0 be the proportional costs
for selling and buying the stock. Then the replication cost at time 0 for a portfolio
Y = (Y 0, Y 1) at time T is given by

(1.1) π∗(Y ) = sup{E[Y 0ρ0 + Y 1ρ1]}.

The supremum is taken over (ρ0, ρ1) ((preconsistent) price systems) which depend
on λ0, λ1. This will be described in details below.

A similar result for diffusion models is given in [3].
Our interest is to use price systems to calculate the price of a derivative and

find optimal strategy for hedging problem. We will also discuss the use of price sys-
tems to study portfolio optimization problem. There is a similarity between these
problems that they can be reformualted as optimization problems. We shall con-
sider binomial model (it can also be extended to multinomial model) and find a
dynamics to generate the price systems (ρ0, ρ1). A price system becomes a con-
trolled process. The optimization problems become stochastic control problems.
Then dynamic programming approach can be used.

The paper is organized as follows. In Section 2, we give notations and give the
framework. In Section 3, we describe price systems and give a price formula for
derivatives in terms of price systems. In Section 4, we discuss the optimization of
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expected utility using price systems. In Sections 5, 6 and 7, we consider binomial
models. We present a dynamics to generate the price systems. We reformulate some
finance problems as stochastic control problems. Then we use dynamic program-
ming to calculate the value functions.

2. Finite market with one stock

The framework can be described as follows.
We consider (Ω,F , P ) a finite probability space and {Fk} a filtration. Let

P 0(k; ω), P 1(k; ω)

be the prices for bond and stock. Then P 0, P 1 are adapted to {Fk}. Define

P̂ (k; ω) = P 1(k, ω)/P 0(k; ω),

the discounted price.
A trading strategy is given by {I(k; ω)}T

k=0, a stochastic process adapted to
{Fk}. I(k; ω) is the number of shares that the stock is bought or sold,

I(k; ω) ≥ 0, buy stock at k,
I(k; ω) < 0, sell stock at k.

The portfolio values for {I(k; ω)}T
k=0 with x = (x0, x1) are given by,

X0(k; x, I) = x0 −
k∑

�=0

h(I(�))P̂ (�)

X1(k; x, I) = x1 +
k∑

�=0

I(�).

Here

h(z) =
{

(1 + λ0)z, z > 0
(1 − λ1)z, z ≤ 0,

where λ1, λ0 > 0 are the proportional costs for selling and buying the stock, respec-
tively.

We are interested in the following finance problems.

Pricing derivative: Let Y = (Y 0, Y 1) be FT measurable. We define π∗(Y ) the
minimum of x0P

0(0) such that for some I,

Y 0 ≤ X0(T ; (x0, 0), I), Y 1 ≤ X1(T ; (x0, 0), I).

We say π∗(Y ) is the price of Y = (Y 0, Y 1). The problem is to calculate π∗(Y ).
Another important problem is to obtain a strategy I(·) such that for x0 = π∗(Y ),

Y 0 ≤ X0(T ; (x0, 0), I), Y 1 ≤ X1(T ; (x0, 0), I).

For the later use, we also define π∗(Y ; x1) the minimum of x0P
0(0) such that for

some I,
Y 0 ≤ X0(T ; (x0, x1), I), Y 1 ≤ X1(T ; (x0, x1), I).

Then π∗(Y ; x1) = π∗(Ỹ ), where Ỹ 0 = Y 0, Ỹ 1 = Y 1 − x1.
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Optimizing expected utility: Let U be a utility function. Let (x0, x1) be given
such that

x0P 0(0) − h(−x1)P 1(0) > 0.

V (x0, x1) is the maximum of

E[U(X0(T ; (x0, x1), I)P 0(T ) − h(−X1(T ; (x0, x1), I))P 1(T ))],

where I(·) is an admissible strategy: k = 0, 1, 2, . . . , T ,

X0(k; (x0, x1), I)P 0(k) − h(−X1(k; (x0, x1), I))P 1(k) ≥ 0.

We want to calculate V (x0, x1) and find a strategy I that attains the maximum.

3. Price systems and a price formula

Definition. We say that (ρ0, ρ1) is a price system if ρ0, ρ1 are positive random
variables such that

(a) E[ρ0] = P 0(0);
(b) Define

R(k; ω) =
ρ1(k; ω)
ρ0(k; ω)

1
P̂ (k; ω)

,

ρ0(k; ω) = E[ρ0|Fk], ρ1(k; ω) = E[ρ1|Fk].

Then
(1 − λ1) ≤ R(k; ω) ≤ (1 + λ0), k = 0, 1, 2, . . . , T.

We denote P(λ0, λ1) the family of price systems.

Remark. Assume there is an equivalent martingale measure Q. Then P(λ0, λ1) �=
∅. In fact, define

ρ0 =
dQ

dP
P 0(0)

ρ1 = ρ0P̂ (T ).

Then

ρ0(k; ω) =
dQ

dP
|Fk

P 0(0)

ρ1(k; ω) = ρ0(k; ω)P̂ (k; ω).

We can show that (ρ0, ρ1) is a price system.
On the other hand, in the case λ0 = λ1 = 0, (ρ0, ρ1) is a price system if and only

if
dQ

dP
= ρ0(T )/P 0(0)

defines an equivalent martingale measure.

Theorem 1 ([12]). Assume P(λ0, λ1) �= ∅. Then

(3.1) π∗(Y ) = sup
P(λ0,λ1)

E[Y 0ρ0 + Y 1ρ1].
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Remark. If λ0 = λ1 = 0, then the above is

π∗(Y ) = sup
ρ

E[ρH
P 0(0)
P 0(T )

]

H = Y 0P 0(T ) + Y 1P 1(T ).

Here
dQ

dP
= ρ

defines an equivalent martingale measure.

A similar result for diffusion models is given in [3].

4. Price system and optimal expected utility

In the following, we assume P 0(k) = 1 for all k.
Let U be a strictly increasing utility function. Define

U∗(y) = sup{U(x) − xy; x ≥ 0}.

Define
V ∗(ξ, x1) = inf{E[U∗(ξρ0(T ))] + x1ξE[ρ1(T )]}

Theorem 2. We have

V (x0, x1) ≤ inf
ξ>0

{V ∗(ξ, x1) + x0ξ}

This is the same as

(4.1) V (x0, x1) ≤ inf
ξ>0,ρ0,ρ1

{E[U∗(ξρ0(T ))] + x1ξE[ρ1(T )] + x0ξ}.

Assume there is ξ̂, ρ̂0, ρ̂1 that attains the infimum. Then the above equality holds.
Moreover, there is an optimal strategy Î for the portfolio optimization problem sat-
isfying the following properties.

(a) X0(T ; (x0, x1), Î) = −U∗′
(ξ̂ρ̂0(T )),

X1(T ; (x0, x1), Î) = 0.
(b) R̂(l) = 1 + λ0 if Î(l) > 0,

R̂(l) = 1 − λ1 if Î(l) < 0.

Here U∗′
(ξ) denotes the derivative of U∗(ξ).

Proof. Let I be a strategy.

(4.2)

U(X0(T ; x, I) − h(−X1(T ; x, I))P 1(T ))
≤ U∗(ξρ0(T )) + ξρ0(T )(X0(T ; x, I) − h(−X1(T ; x, I))P 1(T ))
= U∗(ξρ0(T )) + ξ(X0(T ; x, I)ρ0(T ) − h(−X1(T ; x, I))P 1(T )ρ0(T ))
≤ U∗(ξρ0(T )) + ξ(X0(T ; x, I)ρ0(T ) + R(T )X1(T ; x, I)P 1(T )ρ0(T ))
= U∗(ξρ0(T )) + ξ(X0(T ; x, I)ρ0(T ) + ρ1(T )X1(T ; x, I)).

(4.3)

X0(T ; x, I)ρ0(T ) + X1(T ; x, I)ρ1(T )

= x0ρ
0(T ) + x1ρ

1(T ) + (−
T∑

l=0

h(I(l))P 1(l)ρ0(T )

+
T∑

l=0

I(l)ρ1(T )).
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(4.4)

E[(−
T∑

l=0

h(I(l))P 1(l)ρ0(T ) +
T∑

l=0

I(l)ρ1(T ))]

=
T∑

l=0

E[−h(I(l))P 1(l)ρ0(l) + I(l)ρ1(l)]

=
T∑

l=0

E[(−h(I(l)) + R(l)I(l))P 1(l)ρ0(l)]

≤ 0.

Then we can deduce

(4.5)
E[U(X0(T ; x, I) − h(−X1(T ; x, I))P 1(T ))]

≤ E[U∗(ξρ0(T ))] + ξx1E[ρ1(T )] + ξx0.

This is true for all ρ0, ρ1. The first result follows.
Assume ξ̂, ρ̂0, ρ̂1 attains infimum in (4.1). Then

(4.6) E[U∗′
(ξ̂ρ̂0(T ))ρ̂0(T )] + x1E[ρ̂1(T )] + x0 = 0.

On the other hand, take any (ρ0, ρ1) and 0 < α < 1, we have

E[U∗(ξ̂(αρ0(T ) + (1 − α)ρ̂0(T )))] + x1ξ̂E[αρ1(T ) + (1 − α)ρ̂1(T )] + x0ξ̂

takes minimum at α = 0. We have

(4.7) E[U∗′
(ξ̂ρ̂0(T ))(ρ0(T ) − ρ̂0(T ))]
+x1ξ̂E[ρ1(T ) − ρ̂1(T )] ≥ 0.

Take
Ŷ 0 = −U∗′

(ξ̂ρ̂0(T )), Ŷ 1 = 0.

(4.7) implies

π∗(Ŷ ; x1) = E[−U∗′
(ξ̂ρ̂0(T ))ρ̂0(T )] − x1ξ̂E[ρ̂1(T )] = x0.

Here we use (4.6) and Theorem 1.
By the definition of π∗(Ŷ ; x1), there is a strategy Î such that

x0 −
T∑

l=0

h(Î(l))P 1(l) ≥ Ŷ 0,

x1 +
T∑

l=0

Î(l) ≥ Ŷ 1.

Therefore,

(4.8) X0(T ; (x0, x1), Î) ≥ −U∗′
(ξ̂ρ̂0(T )),

X1(T ; (x0, x1), Î) ≥ 0.

(4.9)
U(X0(T ; x, Î) − h(−X1(T ; x, Î))P 1(T ))

≥ U(−U∗′
(ξ̂ρ̂0(T )))

= U∗(ξ̂ρ̂0(T )) − ξ̂ρ̂0(T )U∗′
(ξ̂ρ̂0(T )).
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Then

(4.10)

E[U(X0(T ; x, Î) − h(−X1(T ; x, Î))P 1(T ))]
≥ E[U∗(ξ̂ρ̂0(T ))] − ξ̂E[ρ̂0(T )U∗′

(ξ̂ρ̂0(T )))]
= E[U∗(ξ̂ρ̂0(T ))] + ξ̂(x1E[ρ̂1(T )] + x0)
≥ V (x0, x1).

Therefore, by the definition of V (x0, x1), the inequalities become equalities in the
above relation. We see (a) follows from the equalities in (4.8),(4.9) and (4.10). On
the other hand, (4.2),(4.3), (4.4) and (4.5) also become equalities for I = Î, then
(b) follows. This completes the proof.

5. Binomial model and price systems

We take P 0
k = 1 for all k. 0 < d < 1 < u, λ0, λ1 > 0.

The sample space is given by

Ω = {(a1, a2, . . . , aT ); ai ∈ {u, d}}.

For ω = (a1, a2, . . . , aT ) ∈ Ω, denote

ωk = (a1, a2, . . . , ak).

The price of stock is
P 1

k (ω) = P 1
0 a1a2 · · · ak.

We also write P 1
k (ω) = P 1

k (ωk).
Fk is the σ-algebra generated by P 1

t , t ≤ k. A function defined on Ω measurable
w.r.t. Fk is given by f(ωk).

For ω = (a1, a2, . . . , aT ) ∈ Ω, the probability is given by

P ({ω}) = pm(1 − p)T−m,

where m is the number of k such that ak = u, 0 < p < 1.
ρ0(k), ρ1(k) are given by

ρ0(k) = E[ρ0|Fk], ρ1(k) = E[ρ1|Fk].

We have the characterization of ρ0(k), ρ1(k):

(PS1)
ρ0(k, ωk) = pρ0(k + 1, (ωk, u)) + (1 − p)ρ0(k + 1, (ωk, d)),

ρ1(k, ωk) = pρ1(k + 1, (ωk, u)) + (1 − p)ρ1(k + 1, (ωk, d)).

(PS2) (1 − λ1)P 1
k ≤ ρ1(k)

ρ0(k)
≤ (1 + λ0)P 1

k , k = 1, 2, 3, . . . , T.

It is convenient to consider

A(k) =
ρ1(k)
ρ0(k)

, k = 0, 1, . . . , T.

We can now describe the price systems in a binomial market. We omit the easy
proof.
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Theorem 3 (Binomial model). Let ω = (a1, a2, . . . , aT ) ∈ Ω. Given A0 a positive
constant such that

(1 − λ1)P 1
0 ≤ A0 ≤ (1 + λ0)P 1

0 .

Denote ρ0(0) = 1, ρ1(0) = ρ0(0)A0. Take positive constants Au, Ad such that

min{Au, Ad} < A0 < max{Au, Ad}

and
(1 − λ1)P 1

0 u ≤ Au ≤ (1 + λ0)P 1
0 u,

(1 − λ1)P 1
0 d ≤ Ad ≤ (1 + λ0)P 1

0 d.

If a1 = u

ρ0(1) =
1
p

A0 − Ad

Au − Ad
,

A1 = Au.

If a1 = d

ρ0(1) =
1

1 − p

Au − A0

Au − Ad
,

A1 = Ad.

Define
ρ1(1) = ρ0(1)A1.

Assume we have defined A0, A1, . . . , Ak and

ρ0(1), ρ0(2), . . . , ρ0(k), ρ1(1), ρ1(2), . . . , ρ1(k).

Take Au, Ad measurable w.r.t. Fk such that

min{Au, Ad} < Ak < max{Au, Ad}

and
(1 − λ1)P 1

k u ≤ Au ≤ (1 + λ0)P 1
k u,

(1 − λ1)P 1
k d ≤ Ad ≤ (1 + λ0)P 1

k d.

If ak+1 = u,

ρ0(k + 1) = ρ0(k)
1
p

Ak − Ad

Au − Ad
,

ρ1(k + 1) = ρ0(k + 1)Au;

if ak+1 = d,

ρ0(k + 1) =
1

1 − p

Au − Ak

Au − Ad
,

ρ1(k + 1) = ρ0(k + 1)Ad.

Then ρ0(k), ρ1(k) satisfy (PS1) and (PS2).



264 T.-S. Chiang, S.-Y. Shiu and S.-J. Sheu

6. Binomial model: control problems for pricing derivatives

Assume Y = (Y 0, Y 1) is given by

Y 0 = Y 0(P 1
T ), Y 1 = Y 1(P 1

T ).

Then the price π∗(Y ) is given by

π∗(Y ) = sup
ρ0(T ),ρ1(T )

E[ρ0(T )Y 0(P 1
T ) + ρ1(T )Y 1(P 1

T )].

This can be rewritten as

π∗(Y ) = sup
ρ0(T ),ρ1(T )

E[ρ0(T )(Y 0(P 1
T ) + AT Y 1(P 1

T ))].

with Ak and ρ0(k) described in Theorem 3. This is viewed as a stochastic control
problem. The state variables are given by P 1

k , Ak, ρ0(k) and the control variables
are Au

k , Ad
k.

The dynamical programming can be described as follows.
For S > 0 and A satisfying

(1 − λ1)S ≤ A ≤ (1 + λ0)S,

define

Wk(S, A) = sup E[
ρ0(T )
ρ0(k)

(Y 0(P 1
T ) + AT Y 1(P 1

T ))|P 1
k = S, Ak = A]

Then
π∗(Y ) = sup

(1−λ1)S≤A≤(1+λ0)S

W0(S, A)

for P 1
0 = S. And for 0 ≤ k < l ≤ T ,

Wk(S, A) = sup E[
ρ0(l)
ρ0(k)

Wl(P 1
l , Al)|P 1

k = S, Ak = A]

It follows a recursive scheme backward in time.

(D1) WT (S, A) = Y 0(S) + AY 1(S);
(D2) For (1 − λ1)S ≤ A ≤ (1 + λ0)S,

Wk(S, A) = sup{ A − Ad

Au − Ad
Wk+1(Su, Au) +

Au − A

Au − Ad
Wk+1(Sd, Ad)},

the maximization is taken over

min{Au, Ad} < A < max{Au, Ad}

(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,

(1 − λ1)Sd ≤ Ad ≤ (1 + λ0)Sd.

(D3) For P 1
0 = S,

π∗(Y ) = sup
(1−λ1)S≤A≤(1+λ0)S

{W0(S, A)}.

It can be restated as follows.
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Theorem 4. We have

Wk(S, A) = sup{αWk+1(Su, Au) + (1 − α)Wk+1(Sd, Ad)},

the maximization is taken over
0 < α < 1,

αAu + (1 − α)Ad = A,

and
(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,

(1 − λ1)Sd ≤ Ad ≤ (1 + λ0)Sd.

Wk(S, A) is piecewise linear in A for all S > 0 and k = 0, 1, . . . , T .

The main questions consist of the following. How to calculate Wk(S, A)? How to
obtain an optimal strategy to super hedge Y from Wk(S, A)? Some answers can be
found in [6].

7. Binomial model: optimizing expected utility and control problem

We take
U(x) =

1
γ

xγ , 0 < γ < 1.

Then
U∗(ξ) = − 1

µ
ξµ,

µ =
γ

γ − 1
.

Then

(7.1) V (x0, x1) = inf
ξ>0

{V ∗(ξ, x1) + x0ξ},

V ∗(ξ, x1) = inf{− 1
µ

ξµE[(ρ0(T ))µ] + ξx1E[ρ1(T )]}.

We shall consider
− 1

µ
ξµE[(ρ0(T ))µ] + ξx1E[ρ1(T )]

conditioning on P 1(0) = S, A(0) = A. This is equal to

− 1
µ

ξµE[(ρ0(T ))µ] + ξx1A.

We consider

Vk(S, A) = inf E[(
ρ0(T )
ρ0(k)

)µ|Fk].

The follwoing is an iterative scheme to calculate Vk(S, A), k = 0, 1, . . . .
(PD1) VT (S, A) = 1,
(PD2) k = 0, 1, 2, . . . ,

(7.2)
Vk(S, A) = inf{p1−µ(

A − Ad

Au − Ad
)µVk+1(Su, Au)

+(1 − p)1−µ(
Au − A

Au − Ad
)µVk+1(Sd, Ad)}
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The inf is taken over the Ad, Au satisfying

min{Au, Ad} < A < max{Au, Ad}

(7.3)
(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,
(1 − λ1)Sd ≤ Ad ≤ (1 + λ)Sd.

(7.2) can be reformulated as follows.

(7.2)′ Vk(S, A) = inf{p1−µαµVk+1(Su, Au) + (1 − p)1−µ(1 − α)µVk+1(Sd, Ad)}

where 0 ≤ α ≤ 1 and (7.3) and (7.4) hold,

(7.4) αAu + (1 − α)Ad = A.

We consider VT−1(S, A):

VT−1(S, A) = inf{p1−µαµ + (1 − p)1−µ(1 − α)µ},

where (7.3), (7.4) hold. Denote V̂T−1(A) = VT−1(S, SA). For

(1 − λ1) ≤ A ≤ (1 + λ0),

V̂T−1(A) = inf{p1−µαµ + (1 − p)1−µ(1 − α)µ},
there are Au, Ad such that

(7.3)′
(1 − λ1) ≤ Au ≤ (1 + λ0),
(1 − λ1) ≤ Ad ≤ (1 + λ0).

(7.4)′ αuAu + (1 − α)dAd = A,

In general,
V̂k(A) = Vk(S, SA), (1 − λ1) ≤ A ≤ (1 + λ0).

Then
V̂k(A) = inf{p1−µαµV̂k+1(Au) + (1 − p)1−µ(1 − α)µV̂k+1(Ad)},

0 ≤ α ≤ 1 satisfies (7.3)′, (7.4)′. From

V̂k(A), (1 − λ1) ≤ A ≤ (1 + λ0),

we have
Vk(S, A) = V̂k(

A

S
), (1 − λ1)S ≤ A ≤ (1 + λ0)S.

Theorem 5. Assume x0 − h(−x1)S > 0. Then for P 1(0) = S,

V (x0, x1) =
1
γ

inf{(x0 + x1SR)γ(V̂0(R))1−γ}

the infimum is taken over (1 − λ1) ≤ R ≤ (1 + λ0).
In particular, if 1 < pu + (1 − p)d and x1 ≤ 0, then

V (x0, x1) =
1
γ

(x0 + x1S(1 + λ0))γ(V̂0(1 + λ0))1−γ .

If 1 > pu + (1 − p)d and x1 ≥ 0, then

V (x0, x1) =
1
γ

(x0 + x1S(1 − λ1))γ(V̂0(1 − λ1))1−γ .
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Proof. By (7.1)

V (x0, x1) = inf{− 1
µ

ξµV̂0(R) + ξx1SR + ξx0},

the inf is taken over ξ > 0, (1 − λ1) ≤ R ≤ (1 + λ0).

ξ̂ = (
1

V̂0(R)
(x0 + x1SR))

1
µ−1

takes minimum. The rest follows from this and Theorem 6 below.

Theorem 6. Assume 1 < pu + (1 − p)d. Then for

(1 − λ1)(pu + (1 − p)d)T−k ≤ A ≤ (1 + λ0),

V̂k(A) = 1. For other A, V̂k(A) > 1 and is decreasing in A.
Assume pu + (1 − p)d < 1. Then for

(1 − λ1)S ≤ A ≤ (1 + λ0)S(pu + (1 − p)d)T−k,

V̂k(A) = 1. For other A, V̂k(A) > 1 and is increasing in A.
V̂k(A) is nonincreasing in k for fixed A.

Proof. We only consider 1 < pu + (1 − p)d. Define

f(α) = p1−µαµ + (1 − p)1−µ(1 − α)µ, 0 < α < 1.

f takes minimum at α = p, f(p) = 1 and f is decreasing on (0, p] and increasing
on [p, 1).
Given A,

(1 − λ1) ≤ A ≤ (1 + λ0).

We consider
inf{f(α)}.

The infimum is taken over α such that there are Au, Ad satisfying

αuAu + (1 − α)dAd = A,

and
(1 − λ1) ≤ Au ≤ (1 + λ0),

(1 − λ1) ≤ Ad ≤ (1 + λ0).

We consider the cases,

(i) (1 − λ1) ≤ A ≤ (1 − λ1)u;
(ii) (1 − λ1)u ≤ A ≤ (1 + λ0)d;
(iii) (1 + λ0)d ≤ A ≤ (1 + λ0).

Assume (i),

α =
A − dAd

uAu − dAd
.

For each (1 − λ1) ≤ Au ≤ (1 + λ0), the range of α defined above taken over

(1 − λ1)d ≤ dAd ≤ A
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is [0, (A − (1 − λ1)d)/(uAu − (1 − λ1)d). Take the union of these sets over all

(1 − λ1) ≤ Au ≤ (1 + λ0),

we have [0, (A−(1−λ1)d)/(1−λ1)(u−d)]. If p is in this interval, then V̂T−1(A) = 1.
The condition p is in this interval is the same as

A ≥ (1 − λ1)(pu + (1 − p)d).

Therefore,

V̂T−1(A) = 1, (1 − λ1)(pu + (1 − p)d) ≤ A ≤ (1 − λ1)u.

On the other hand, if

(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d),

the infimum of f(α) on

[0, (A − (1 − λ1)d)/(1 − λ1)(u − d)]

is

f(
A − (1 − λ1)d
(1 − λ1)(u − d)

).

Therefore,

V̂T−1(A) = f(
A − (1 − λ1)d
(1 − λ1)(u − d)

)

if
(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d).

Assume (ii). We consider A ≤ uAu ≤ (1+λ0)u. The range of α is given by [0, 1].
Therefore, V̂T−1(A) = 1.

Assume (iii). For each A ≤ uAu ≤ (1 + λ0)u, the range of α of

(1 − λ1) ≤ Ad ≤ (1 + λ0)

is

[
A − (1 + λ0)d

uAu − (1 + λ0)d
,

A − (1 − λ1)d
uAu − (1 − λ1)d

].

Take the union of these sets over all Au gives

[
A − (1 + λ0)d
(1 + λ0)(u − d)

, 1].

We can check p is in this set. Then V̂T−1(A) = 1.
We conclude

V̂T−1(A) = f(
A − (1 − λ1)d
(1 − λ1)(u − d)

)

if
(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d),

and
V̂T−1(A) = 1
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if
(1 − λ1)(pu + (1 − p)d) ≤ A ≤ (1 + λ0).

V̂T−1(A) is decreasing in A.
We can continue this argument for other V̂k(A) to prove that V̂k(A) = 1 if

(1 − λ1)(pu + (1 − p)d)T−k ≤ A ≤ (1 + λ0),

and for other A, V̂k(A) > 1. To prove the nonincreasing of V̂k(A) in A needs
additional argument. We have the following observation. Let g be nonincreasing.
Consider

ĝ(A) = inf{p1−µαµg(Au) + (1 − p)1−µ(1 − α)µg(Ad)},
where the “inf” is taken over 0 < α < 1 and Au, Ad satisfying (7.3)′ and (7.4)′. We
define

ḡ(A) = g(A), (1 − λ1) ≤ A ≤ (1 + λ0),

ḡ(A) = ∞, A < (1 − λ1),

ḡ(A) = g((1 + λ0)), A > (1 + λ0).

We claim

(7.5) ĝ(A) = inf{p1−µαµḡ(Au) + (1 − p)1−µ(1 − α)µḡ(Ad)},

where the “inf” is taken over 0 < α < 1 and Au, Ad satisfying (7.4)′. First, it is
easy to see that the quantity defined by the righthand side of (7.5) is not smaller
than ĝ(A). To prove the opposite inequality, we observe that for a given 0 < α < 1
and Au, Ad satisfying (7.4)′, if (7.3)′ does not hold, says

Au > (1 + λ0).

We define Āu = (1 + λ0) and Ād by the relation,

αu(1 + λ0) + (1 − α)dĀd = A.

Then Ād > Ad. We see Āu, Ād satisty (7.3)′ and (7.4)′ and

p1−µαµḡ(Au) + (1 − p)1−µ(1 − α)µḡ(Ad)
≥ p1−µαµg(Āu) + (1 − p)1−µ(1 − α)µg(Ād)

by the property that g is nonincreasing. Using this observation, we can deduce that
the quantity defined by the righthand side of (7.5) is not smaller than ĝ(A).

Now from (7.5) it is easy to see that ĝ is nonincreasing. In fact, let B = λA > 0
for a λ > 1. Let 0 < α < 1 and Au, Ad > 0 satisfying

αuAu + (1 − α)dAd = A.

We take Bu = Auλ, Bd = Adλ. Then

αuBu + (1 − α)dBd = B.

We have
p1−µαµḡ(Au) + (1 − p)1−µ(1 − α)µḡ(Ad)

≥ p1−µαµg(Bu) + (1 − p)1−µ(1 − α)µg(Bd)
≥ ĝ(B).
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This is true for any α, Au, Ad. Therefore, ĝ(A) ≥ ĝ(B).
Finally, we denote ĝ(A) = Hg(A). Then H has the property that g1(A) ≥ g2(A)

for all A implies Hg1(A) ≥ Hg2(A) for all A. Take g = 1. Then

Hg = V̂T−1.

We have proved V̂T−1 ≥ 1. That is,

Hg ≥ g.

We note
V̂k = HV̂k+1.

From these, by induction, we can show V̂k ≥ V̂k+1. This completes the proof.

Corollary 7. Assume 1 < pu + (1 − p)d and

(1 − λ1)(pu + (1 − p)d)T ≤ (1 + λ0).

If x1 ≤ 0, then buy-and-hold is an optimal strategy.
Similarly, assume 1 > pu + (1 − p)d and

(1 + λ0)(pu + (1 − p)d)T ≥ (1 − λ1).

If x1 ≥ 0, then sell-and-hold is an optimal strategy.

Proof. Assume 1 < pu + (1 − p)d and x1 ≤ 0. From Theorem 5 and 6,

V (x0, x1) =
1
γ

(x0 + x1S(1 + λ0))γ .

Buy-and-hold achives this value and hence is an optimal strategy. Other result can
be proved similarly.
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