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On the false discovery rates of a

frequentist: Asymptotic expansions
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Abstract: Consider a testing problem for the null hypothesis H0 : θ ∈ Θ0.
The standard frequentist practice is to reject the null hypothesis when the p-
value is smaller than a threshold value α, usually 0.05. We ask the question how
many of the null hypotheses a frequentist rejects are actually true. Precisely,
we look at the Bayesian false discovery rate δn = Pg(θ ∈ Θ0|p − value < α)
under a proper prior density g(θ). This depends on the prior g, the sample
size n, the threshold value α as well as the choice of the test statistic. We
show that the Benjamini–Hochberg FDR in fact converges to δn almost surely
under g for any fixed n. For one-sided null hypotheses, we derive a third order
asymptotic expansion for δn in the continuous exponential family when the test
statistic is the MLE and in the location family when the test statistic is the
sample median. We also briefly mention the expansion in the uniform family
when the test statistic is the MLE. The expansions are derived by putting
together Edgeworth expansions for the CDF, Cornish–Fisher expansions for
the quantile function and various Taylor expansions. Numerical results show
that the expansions are very accurate even for a small value of n (e.g., n = 10).
We make many useful conclusions from these expansions, and specifically that
the frequentist is not prone to false discoveries except when the prior g is too
spiky. The results are illustrated by many examples.

1. Introduction

In a strikingly interesting short note, Sorić [19] raised the question of establishing
upper bounds on the proportion of fictitious statistical discoveries in a battery of
independent experiments. Thus, if m null hypotheses are tested independently, of
which m0 happen to be true, but V among these m0 are rejected at a significance
level α, and another S among the false ones are also rejected, Sorić essentially
suggested E(V )/(V + S) as a measure of the false discovery rate in the chain of m
independent experiments. Benjamini and Hochberg [3] then looked at the question
in much greater detail and gave a careful discussion for what a correct formulation
for the false discovery rate of a group of frequentists should be, and provided a
concrete procedure that actually physically controls the groupwise false discovery
rate. The problem is simultaneously theoretically attractive, socially relevant, and
practically important. The practical importance comes from its obvious relation to
statistical discoveries made in clinical trials, and in modern microarray experiments.
The continued importance of the problem is reflected in two recent articles, Efron
[7], and Storey [21], who provide serious Bayesian connections and advancements
in the problem. See also Storey [20], Storey, Taylor and Siegmund [22], Storey and
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Tibshirani [23], Genovese and Wasserman [10], and Finner and Roters [9], among
many others in this currently active area.

Around the same time that Sorić raised the issue of fictitious frequentist dis-
coveries made by a mechanical adoption of the use of p-values, a different debate
was brewing in the foundation literature. Berger and Sellke [2], in a thought pro-
voking article, gave analytical foundations to the thesis in Edwards, Lindman and
Savage [6] that the frequentist practice of rejecting a sharp null at a traditional
5% level amounts to a rush to judgment against the null hypothesis. By deriving
lower bounds or exact values for the minimum value of the posterior probability of a
sharp null hypothesis over a variety of classes of priors, Berger and Sellke [2] argued
that p-values traditionally regarded as small understate the plausibility of nulls, at
least in some problems. Casella and Berger [5], gave a collection of theorems that
show that the discrepancy disappears under broad conditions if the null hypothesis
is composite one-sided. Since the articles of Berger and Sellke [2] and Casella and
Berger [5], there has been an avalanche of activity in the foundation literature on
the safety of use of p-values in testing problems. See Hall and Sellinger [12], Sel-
lke, Bayarri and Berger [18], Marden [14] and Schervish [17] for a contemporary
exposition.

It is conceptually clear that the frequentist FDR literature and the foundation
literature were both talking about a similar issue: is the frequentist practice of
rejecting nulls at traditional p-values an invitation to rampant false discoveries? The
structural difference was that the FDR literature did not introduce a formal prior
on the unknown parameters, while the foundation literature did not go into multiple
testing, as is the case in microarray or other emerging interesting applications. The
purpose of this article is to marry the two schools together, while giving a new
rigorous analysis of the interesting question: “how many of the null hypotheses a
frequentist rejects are actually trues” and the flip side of that question, namely,
“how many of the null hypotheses a frequentist accepts are actually falses”. The
calculations are completely different from what the previous researchers have done,
although we then demonstrate that our formulation directly relates to both the
traditional FDR calculations, and the foundational effort in Berger and Sellke [2],
and others. We have thus a dual goal; providing a new approach, and integrating
it with the two existing approaches.

In Section 2, we demonstrate the connection in very great generality, without
practically any structural assumptions at all. This was comforting. As regards to
concrete results, it seems appropriate to look at the one parameter exponential
family, it being the first structured case one would want to investigate. In Section 3,
we do so, using the MLE as the test statistic. In Section 4, we look at a general
location parameter, but using the median as the test statistic. We used the median
for two reasons. First, for general location parameters, the median is credible as a
test statistic, while the mean obviously is not. Second, it is important to investigate
the extent to which the answers depend on the choice of the test statistic; by
studying the median, we get an opportunity to compare the answers for the mean
and the median in the special normal case.To be specific, let us consider the one
sided testing problem based on an i.i.d. sample X1, . . . , Xn from a distribution
family with parameter θ in the parameter space Ω which is an interval of R. Without
loss of generality, we assume Ω = (θ, θ̄) with −∞ ≤ θ < θ̄ ≤ ∞. We consider the
testing problem

H0 : θ ≤ θ0 vs H1 : θ > θ0,

where θ0 ∈ (θ, θ̄). Suppose the α, 0 < α < 1, level test rejects H0 if Tn ∈ C, where
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Tn is a test statistic. We study the behavior of the quantities,

δn = P (θ ≤ θ0|Tn ∈ C) = P (H0|p − value < α)

and
εn = P (θ > θ0|Tn �∈ C) = P (H1|p − value ≥ α).

Note that δn and εn are inherently Bayesian quantities. By an almost egregious
abuse of nomenclature, we will refer to δn and εn as type I and type II errors in this
article. Our principal objective is to obtain third order asymptotic expansions for
δn and εn assuming a Bayesian proper prior for θ. Suppose g(θ) is any sufficiently
smooth proper prior density of θ. In the regular case, the expansion for δn we obtain
is like

δn =
P (θ ≤ θ0, Tn ∈ C)

P (Tn ∈ C)
=

c1√
n

+
c2

n
+

c3

n3/2
+ O(n−2),(1)

and the expansion for εn is like

εn =
P (θ > θ0, Tn �∈ C)

P (Tn �∈ C)
=

d1√
n

+
d2

n
+

d3

n3/2
+ O(n−2),(2)

where the coefficients c1, c2, c3, d1, d2, and d3 depend on the problem, the test
statistic Tn, the value of α and the prior density g(θ). In the nonregular case,
the expansion differs qualitatively; for both δn and εn the successive terms are in
powers of 1/n instead of the powers of 1/

√
n. Our ability to derive a third order

expansion results in a surprisingly accurate expansion, sometimes for n as small as
n = 4. The asymptotic expansions we derive are not just of theoretical interest; the
expansions let us conclude interesting things, as in Sections 3.2 and 4.5, that would
be impossible to conclude from the exact expressions for δn and εn.

The expansions of δn and εn require the expansions of the numerators and the
denominators of (1) and (2) respectively. In the regular case, the expansion of the
numerator of (1) is like

An = P (θ ≤ θ0, Tn ∈ C) =
a1√
n

+
a2

n
+

a3

n3/2
+ O(n−2)(3)

and the expansion of the numerator of (2) is like

Ãn = P (θ > θ0, Tn �∈ C) =
ã1√
n

+
ã2

n
+

ã3

n3/2
+ O(n−2).(4)

Then, the expansion of the denominator of (1) is

Bn = P (Tn ∈ C) = An + λ − Ãn = λ − b1√
n
− b2

n
− b3

n3/2
+ O(n−2),(5)

where λ = P (θ > θ0) =
∫ θ̄

θ0
g(θ)dθ and assume 0 < λ < 1, b1 = ã1−a1, b2 = ã2−a2

and b3 = ã3 − a3, and the expansion of the denominator of (2) is

B̃n = P (Tn �∈ C) = 1 − Bn = 1 − λ +
b1√
n

+
b2

n
+

b3

n3/2
+ O(n−2).(6)

Then, we have

c1 =
a1

λ
, c2 =

a1b1

λ2
+

a2

λ
, c3 =

a3

λ
+

a1b2 + a2b1

λ2
+

a1b
2
1

λ3
,

(7)
d1 =

ã1

1 − λ
, d2 =

ã2

1 − λ
− ã1b1

(1 − λ)2
, d3 =

ã3

1 − λ
− ã2b1 + ã1b2

(1 − λ)2
+

ã1b
2
1

(1 − λ)3
.
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We will frequently use the three notations in the expansions: the standard normal
PDF φ, the standard normal CDF Φ and the standard normal upper α quantile
zα = Φ−1(1 − α).

The principal ingredients of our calculations are Edgeworth expansions, Cornish–
Fisher expansions and Taylor expansions. The derivation of the expansions became
very complex. But in the end, we learn a number of interesting things. We learn that
typically the false discovery rate δn is small, and smaller than the pre-experimental
claim α for quite small n. We learn that typically εn > δn, so that the frequentist is
less vulnerable to false discovery than to false acceptance. We learn that only pri-
ors very spiky at the boundary between H0 and H1 can cause large false discovery
rates. We also learn that these phenomena do not really change if the test statistic
is changed. So while the article is technically complex and the calculations are long,
the consequences are rewarding. The analogous expansions are qualitatively differ-
ent in the nonregular case. We could not report them here due to shortage of space.
We should also add that we leave open the question of establishing these expan-
sions for problems with nuisance parameters, multivariate problems, and dependent
data. Results similar to ours are expected in such problems.

2. Connection to Benjamini and Hochberg, Storey and Efron’s work

Suppose there are m groups of iid samples Xi1, . . . , Xin for i = 1, . . . ,m. Assume
Xi1, . . . , Xin are iid with a common density f(x, θi), where θi are assumed iid with
a CDF G(θ) which does not need to have a density in this section. Then, the prior
G(θ) connects our Bayesian false discovery rate δn to the usual frequentist false
discovery rate. In the context of our hypothesis testing problem, the frequentist
false discovery rate, which has been recently discussed by Benjamini and Hochberg
[3], Efron [7] and Storey [21], is defined as

FDR = FDR(θ1, . . . , θm) = Eθ1,...,θm

{ ∑m
i=1 ITni∈C,θi≤θ0

(
∑m

i=1 ITni∈C) ∨ 1

}
,(8)

where Tni is the test statistic based on the samples Xi1, . . . , Xin. It will be shown
below that for any fixed n as m → ∞, the frequentist false discovery rate FDR goes
to the Bayesian false discovery rate δn almost surely under the prior distribution
G(θ).

We will compare the numerators and the denominators of FDR in (8) and δn

in (1) respectively. Since the comparisons are almost identical, we discuss the com-
parison between the numerators only. We denote Eθ(·) and Vθ(·) as the conditional
mean and variance given the true parameter θ, and we denote E(·) and V (·) as
the marginal mean and variance under the prior G(θ). Let Yi = ITni∈C,θi≤θ0 . Then
given θ1, . . . , θm, Yi (i = 1, , . . . ,m) are independent Bernoulli random variables
with mean values µi = µi(θi) = Eθi(Yi), and marginally µi are iid with expected
value An in (3). Let

Dm =
1
m

m∑
i=1

ITni∈C,θi≤θ0 − An =
1
m

m∑
i=1

(Yi − µi) +
1
m

m∑
i=1

(µi − An).

Note that we assume that θ1, . . . , θm are iid with a common CDF G(θ). The sec-
ond term goes to 0 almost surely by the Strong Law of Large Numbers (SLLN)
for identically distributed random variables. Note that for any given θ1, . . . , θm,
Y1, . . . , Ym are independent but not iid, with Eθi(Yi) = µi, Vθi(Yi) = µi(1−µi) and
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∑−∞
i=1 i−2Vθi(Yi) ≤

∑∞
i=1 i−2 < ∞. The first term also goes to 0 almost surely by a

SLLN for independent but not iid random variables [15]. Therefore, Dm goes to 0
almost surely. The comparison of denominators is handled similarly. Therefore, for
almost all sequences θ1, θ2, . . . ,∑m

i=1 ITni∈C,θi≤θ0

(
∑m

i=1 ITni∈C) ∨ 1
→ δn

as m → ∞.
Since

∑m
i=1 ITni∈C,θi≤θ0 ≤ (

∑m
i=1 ITni≤C)∨ 1, their ratio is uniformly integrable.

And so, FDR as defined in (8) also converges to δn as m → ∞ for almost all
sequences θ1, θ2, . . . .

This gives a pleasant, exact connection between our approach and the estab-
lished indices formulated by the previous researchers. Of course, for fixed m, the
frequentist FDR does not need to be close to our δn.

3. Continuous one-parameter exponential family

Assume the density of the i.i.d. sample X1, . . . , Xn is in the form of a one-parameter
exponential family fθ(x) = b(x)eθx−a(θ) for x ∈ X ⊆ R, where the natural space
Ω of θ is an interval of R and a(θ) = log

∫
X b(x)eθxdx. Without loss of generality,

we can assume Ω is open so that one can write Ω = (θ, θ̄) for −∞ ≤ θ < θ̄ ≤
∞. All derivatives of a(θ) exist at every θ ∈ Ω and can be derived by formally
differentiating under the integral sign ([4], p. 34). This implies that a′(θ) = Eθ(X1),
a′′(θ) = V arθ(X1) for every θ ∈ Ω. Let us denote µ(θ) = a′(θ), σ(θ) =

√
a′′(θ),

κi(θ) = a(i)(θ) and ρi(θ) = κi(θ)/σi(θ) for i ≥ 3, where a(i)(θ) represents the i-th
derivative of a(θ). Then, µ(θ), σ(θ), κi(θ) and ρi(θ) all exist and are continuous at
every θ ∈ Ω ([4], p. 36), and µ(θ) is non-decreasing in θ since a′′(θ) = σ2(θ) ≥ 0 for
all θ.

Let µ0 = µ(θ0), σ0 = σ(θ0), κi0 = κi(θ0) and ρi0 = ρi(θ0) for i ≥ 3 and assume
σ0 > 0 . The usual α (0 < α < 1) level UMP test ([13], p. 80) for the testing
problem H0 : θ ≤ θ0 vs HA : θ ≥ θ0 rejects H0 if X̄ ∈ C where

C = {X̄ :
√

n
X̄ − µ0

σ0
> kθ0,n},(9)

and kθ0,n is determined from Pθ0{
√

n(X̄−µ0)/σ0 > kθ0,n} = α; limn→∞ kθ0,n = zα.
Let

β̃n(θ) = Pθ

(√
n

X̄ − µ0

σ0
> kθ0,n

)
(10)

Then, using the transformation x = σ0
√

n(θ − θ0) − zα under the integral sign
below, we have

(11) An =
∫ θ0

θ

β̃n(θ)g(θ)dθ =
1

σ0
√

n

∫ −zα

x

β̃n(θ0 +
x + zα

σ0
√

n
)g(θ0 +

x + zα

σ0
√

n
)dx

and

Ãn =
1

σ0
√

n

∫ x̄

−zα

[1 − β̃n(θ0 +
x + zα

σ0
√

n
)]g(θ0 +

x + zα

σ0
√

n
)dx,(12)
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where x = σ0
√

n(θ − θ0) − zα and x̄ = σ0
√

n(θ̄ − θ0) − zα.
Since for an interior parameter θ all moments of the exponential family exist and

are continuous in θ, we can find θ1 and θ2 satisfying θ̄ < θ1 < θ0 and θ0 < θ2 < θ̄
such that for any θ ∈ [θ1, θ2], σ2(θ), κ3(θ), κ4(θ), κ5(θ), g(θ), g′(θ), g′′(θ) and
g(3)(θ) are uniformly bounded in absolute values, and the minimum value of σ2(θ)
is a positive number. After we pick θ1 and θ2, we partition each of An and Ãn into
two parts so that one part is negligible in the expansion. Then, the rest of the work
in the expansion is to find the coefficients of the second part.

To describe these partitions, we define θ1n = θ0 + (θ1 − θ0)/n1/3, θ2n = θ0 +
(θ2 − θ0)/n1/3, x1n = σ0

√
n(θ1n − θ0) − zα and x2n = σ0

√
n(θ2n − θ0) − zα. Let

An,θ1n =
1

σ0
√

n

∫ −zα

x1n

β̃n(θ0 +
x + zα

σ0
√

n
)g(θ0 +

x + zα

σ0
√

n
)dx(13)

Rn,θ1n
=

1
σ0

√
n

∫ x1n

x

β̃n(θ0 +
x + zα

σ0
√

n
)g(θ0 +

x + zα

σ0
√

n
)dx,(14)

Ãn,θ2n =
1

σ0
√

n

∫ x2n

−zα

[1 − β̃n(θ0 +
x + zα

σ0
√

n
)]g(θ0 +

x + zα

σ0
√

n
)dx,(15)

and

R̄n,θ2n =
1

σ0
√

n

∫ x̄

x2n

[1 − β̃n(θ0 +
x + zα

σ0
√

n
)]g(θ0 +

x + zα

σ0
√

n
)dx.(16)

Then, An = An,θ1n+Rn,θ1n
and Ãn = Ãn,θ2n+R̄n,θ2n . In the appendix, we show that

for any � > 0, limn→∞ nlRn,θ1n
= limn→∞ nlR̄n,θ2n = 0. Therefore, it is enough to

compute the coefficients of the expansions for An,θ1n and Ãn,θ2n . Among the steps
for expansions, the key step is to compute the expansions of β̃n(θ0+(x+zα)/(σ0

√
n))

when x ∈ [x1n,−zα] and 1 − β̃n(θ0 + (x + zα)/(σ0
√

n)) when x ∈ [−zα, x2n] under
the integral sign, since the expansion of g(θ0 + (x + zα)/(σ0

√
n)) in (13) and (15)

is easily obtained as

(17) g(θ0 +
x + zα

σ0
√

n
) = g(θ0) + g′(θ0)

x + zα

σ0
√

n
+

g′′(θ0)
2

(x + zα)2

σ2
0n

+ O(n−2).

After a lengthy calculation, we have

An,θ1n =
1

σ0
√

n

∫ −zα

x1n

[Φ(x) +
φ(x)g1(x)√

n
+

φ(x)g2(x)
n

]

× [g(θ0) + g′(θ0)
x + zα

σ0
√

n
+

g′′(θ0)
2

(x + zα)2

σ2
0n

]dx + O(n−2),
(18)

and

Ãn,θ2n =
1

σ0
√

n

∫ x2n

−zα

[1 − Φ(x) − φ(x)g1(x)√
n

− φ(x)g2(x)
n

]

× [g(θ0) + g′(θ0)
x + zα

σ0
√

n
+

g′′(θ0)
2

(x + zα)2

σ2
0n

]dx + O(n−2).
(19)
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where

g1(x) =
ρ30

6
x2 +

zαρ30

2
x +

z2
αρ30

3
(20)

and

g2(x) =
ρ2
30

72
x5 − zαρ2

30

12
x4 + (

ρ40

8
− 13z2

αρ2
30

72
− 7ρ2

30

24
)x3 + (

zαρ40

6
− z3

αρ2
30

6

− zαρ2
30

12
)x2 + [(

z2
α

4
− 7

24
)ρ40 −

z4
αρ2

30

18
− 13z2

αρ2
30

72
+

4ρ2
30

9
]x

+ [(
z3
α

8
− zα

24
)ρ40 − (

z3
α

9
− zα

36
)ρ2

30].

(21)

The expressions for g1(x) and g2(x) are derived in the Appendix; the derivation
of these two formulae forms the dominant part of the penultimate expression and
involves the use of Cornish–Fisher as well as Edgeworth expansions.

On using (18), (19), (20) and (21), we have the following expansions

An,θ1n =
a1√
n

+
a2

n
+

a3

n3/2
+ O(n−2),(22)

where

a1 =
g(θ0)
σ0

[φ(zα) − αzα],

a2 =
ρ30g(θ0)

6σ0
[α + 2αz2

α − 2zαφ(zα)] − g′(θ0)
2σ2

0

[α(z2
α + 1) − zαφ(zα)]

a3 =
g′′(θ0)
6σ3

0

[(z2
α + 2)φ(zα) − α(z3

α + 3zα)] +
g′(θ0)

σ2
0

[
αρ30

3
(z3

α + 2zα)(23)

− ρ30

3
(z2

α + 1)φ(zα)] +
g(θ0)
σ0

[(−z4
αρ2

30

36
+

4z2
αρ2

30

9
+

ρ2
30

36

− 5z2
αρ40

24
+

ρ40

24
)φ(zα) + α(−5z3

αρ2
30

18
− 11zαρ2

30

36
+

z3
αρ40

8
+

zαρ40

8
)].

Similarly,

Ãn,θ2n =
ã1√
n

+
ã2

n
+

ã3

n3/2
+ O(n−2),(24)

where ã1 = [g(θ0)/σ0][φ(zα) + (1 − α)zα], ã2 = [g′(θ0)/(2σ2
0)][(1 − α)(z2

α + 1) +
zαφ(zα)]− [ρ30g(θ0)/(6σ0)][(1−α)(1 + 2z2

α) + 2zαφ(zα)], ã3 = [g′′(θ0)/(6σ3
0)][(z2

α +
2)φ(zα) + (1 − α)(z3

α + 3zα)] − [g′(θ0)ρ30/(3σ2
0)][(z2

α + 1)φ(zα) + (1 − α)(z3
α +

2zα)]+[g(θ0)/σ0][φ(zα)(−z4
αρ2

30/36+4z2
αρ2

30/9+ρ2
30/36−5z2

αρ40/24+ρ40/24)−(1−
α)(−5z3

αρ2
30/18 − 11zαρ2

30/36 + z3
αρ40/8 + zαρ40/8)]. The details of the expansions

for An,θ1n and Ãn,θ2n are given in the Appendix. Because the remainders Rn,θ1n

and R̄n,θ2n are of smaller order than n−2 as we commented before, the expansions
in (22) and (24) are the expansions for An and Ãn in (3) and (4) respectively.

The expansions of δn and εn in (1) and (2) can now be obtained by letting
λ =

∫ θ0

θ
g(θ)dθ, b1 = ã1 − a1, b2 = ã2 − a2 and b3 = ã3 − a3 in (7).
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3.1. Examples

Example 1. Let X1, . . . , Xn be i.i.d. N(θ, 1). Since θ is a location parameter, there
is no loss of generality in letting θ0 = 0. Thus consider testing H0 : θ ≤ 0 vs H1 :
θ > 0. Clearly, we have µ(θ) = θ, σ(θ) = 1 and ρi(θ) = κi(θ) = 0 for all i ≥ 3.

The α (0 < α < 1) level UMP test rejects H0 if
√

nX̄ > zα. For a continuously
three times differentiable prior g(θ) for θ, one can simply plug the values of µ0 = 0,
σ0 = 1, ρ30 = ρ40 = 0 into (23) and the coefficients of the expansion in (24) to
get the coefficients a1 = g(0)[Φ(zα) − αzα], a2 = −g′(0)[α(z2

α − 1) − zαφ(zα)],
a3 = g′′(0)[(zα +2)φ(zα)−α(z3

α +3zα)]/6, ã1 = g(0)[φ(zα)+φ(zα)], ã2 = g′(0)[(1−
α)(z2

α+1)+zαφ(zα)]/2, ã3 = g′′(0)[(zα+2)φ(zα)+(1−α)(z3
α+3zα)]/6. Substituting

a1, a2, a3, ã1, ã2 and ã3 into (7), one derives the expansions of δn and εn as given
by (1) and (2) respectively.

If the prior density function is also assumed to be symmetric, then λ = 1/2
and g′(0) = 0. In this case, the coefficients of the expansion of δn in (1) are given
explicitly as follows: c1 = 2g(0)[φ(zα) − αzα], c2 = 4zα[g(0)]2[φ(zα) − αzα], c3 =
2φ(zα){4z2

α[g(0)]3 + g′′(0)(z2
α + 2)/6}−α{g′′(0)(z3

α + 3zα)/3 + 8z3
α[g(0)]3}, and the

coefficients of the expansions of εn in (2) are as d1 = 2g(0)[(1 − α)zα + φ(zα)],
d2 = −4zα[g(0)]2[(1 − α)zα + φ(zα)], d3 = 2φ(zα){4z2

α[g(0)]3 + g′′(0)(z2
α + 2)/6} +

(1 − α){g′′(0)(z3
α + 3zα)/3 + 8z3

α[g(0)]3}.
Two specific prior distributions for θ are now considered for numerical illustra-

tion. In the first one we choose θ ∼ N(0, τ2) and in the second example we choose
θ/τ ∼ tm, where τ is a scale parameter. Clearly g(3)(θ) is continuous in θ in both
cases.

If g(θ) is the density of θ when θ ∼ N(0, τ2), then λ = 1/2, g(0) = 1/[
√

2πτ ],
g′(0) = 0 and g′′(0) = −1/[

√
2πτ3].

We calculated the numerical values of c1, c2, c3, d1, d2 and d3 as functions of α
when θ ∼ N(0, 1). We note that c1 is a monotone increasing function and d1 is also
a monotone decreasing function of α. However, c2, d2 and c3, d3 are not monotone
and in fact, d2 is decreasing when α is close to 1 (not shown), c3 also takes negative
values and d3 takes positive values for larger values of α.

If g(θ) is the density of θ when θ/τ ∼ tm, then λ = 1/2, g′(0) = 0, g(0) =
Γ(m+1

2 )/[τ
√

mπΓ(m
2 )] and g′′(0) = −Γ(m+3

2 )/[τ
√

mπΓ(m+2
2 )]. Putting those values

into the corresponding expressions, we get the coefficients c1, c2, c3 and d1, d2, d3 of
the expansions of δn and εn. When m = 1, the results are exactly the same as the
Cauchy prior for θ.

Numerical results very similar to the normal prior are seen for the Cauchy case.
From Figure 1, we see that for each of the normal and the Cauchy prior, only about
1% of those null hypotheses a frequentist rejects with a p-value of less than 5% are
true. Indeed quite typically, δn < α for even very small values of n. This is discussed
in greater detail in Section 4.5. This finding seems to be quite interesting.

The true values of δn and εn are computed by taking an average of the lower
and the upper Riemann sums in An, Ãn, Bn and B̃n with the exact formulae for
the standard normal pdf. The accuracy of the expansion for δn is remarkable, as
can be seen in Figure 1. Even for n = 4, the true value of δn is almost identical to
the expansion in (1). The accuracy of the expansion for εn is very good (even if it
is not as good as that for δn). For n = 20, the true value of εn is almost identical
to the expansion in (2).

Example 2. Let X1, · · · , Xn be iid Exp(θ), with density fθ(x) = θe−θx if x > 0.
Clearly, µ(θ) = 1/θ, σ2(θ) = 1/θ2, ρ3(θ) = 2 and ρ4(θ) = 6. Let θ̃ = −θ. Then,



198 A. DasGupta and T. Zhang

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

n=1

n
True(normal)
Estimated(normal)
True(Cauchy)
Estimated(Cauchy)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

n=2

n

True(normal)
Estimated(normal)
True(Cauchy)
Estimated(Cauchy)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

n=4

n

True(normal)
Estimated(normal)
True(Cauchy)
Estimated(Cauchy)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

n=8

n

True(normal)
Estimated(normal)
True(Cauchy)
Estimated(Cauchy)

Fig 1. True and estimated values of δn as functions of α for the standard normal prior and the
Cauchy prior.

one can write the density of X1 in the standard form of the exponential family
as fθ̃(x) = eθ̃x+log |θ̃|. The natural parameter space of θ̃ is Ω = (−∞, 0). If g(θ)
is a prior density for θ on (0,∞), then g(−θ̃) is a prior density for θ̃ on (−∞, 0).
Since θ is a scale parameter, it is enough to look at the case θ̃0 = −1. In terms
of θ, therefore the problem considered is to test H0 : θ ≥ 1 vs H1 : θ < 1. The α
(0 < α < 1) level UMP test for this problem rejects H0 if X̄ > Γα,n,n, where Γα,r,s

is the upper α quantile of the Gamma distribution with parameters r and s. If
g(θ) is continuous and three time differentiable, then we can simply put the values
µ0 = 1, σ0 = 1, ρ30 = 2, ρ40 = 6, and λ =

∫ 1

0
g(θ)dθ into (23) and the coefficients

of the expansion in (24) to get the coefficients a1, a2, a3, ã1, ã2 and ã3, and then
get the expansions of δn and εn in (1) and (2) respectively.

Two priors are to be considered in this example. The first one is the Gamma prior
with prior density g(θ) = srθr−1e−sθ/Γ(r), where r and s are known constants. It
would be natural to have the mode of g(θ) at 1, that is s = r − 1. In this case,
g′(1) = 0, g(1) = (r − 1)re−(r−1)/Γ(r) and g′′(1) = −(r − 1)r+1e−(r−1)/Γ(r).

Next, consider the F prior with degrees of freedom 2r and 2s for θ/τ for a fixed
τ > 0. Then, the prior density for θ is g(θ) = Γ(r+s)

Γ(r)Γ(s)
r
sτ ( rθ

sτ )r−1(1 + rθ
sτ )−(r+s). To

make the mode of g(θ) equal to 1, we have to choose τ = r(s + 1)/[s(r − 1)]. Then
g′(1) = 0, g(1) = Γ(r+s)

Γ(r)Γ(s) (
r−1
s+1 )r(1+ r−1

s+1 )−(r+s), and g′′(1) = − Γ(r+s)
Γ(r)Γ(s) (

r−1
s+1 )r+1(r+

s)(1 + r−1
s+1 )−(r+s+2).

Exact and estimated values of δn are plotted in Figure 3. At n = 20, the ex-
pansion is clearly extremely accurate and as in example 1, we see that the false
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Fig 2. True and estimated values of εn as functions of α for the standard normal prior and the
Cauchy prior.

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n=5

n

True(Gamma)
Estimated(Gamma)
True(F)
Estimated(F)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

n=10

n

True(Gamma)
Estimated(Gamma)
True(F)
Estimated(F)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
04

0.
08

0.
12

n=20

n

True(Gamma)
Estimated(Gamma)
True(F)
Estimated(F)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

0.
06

0.
08

n=40

n

True(Gamma)
Estimated(Gamma)
True(F)
Estimated(F)

Fig 3. True and estimated values of δn as functions of α under Γ(2, 1) and F (4, 4) priors for θ
when X ∼ Exp(θ).
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discovery rate δn is very small even for n = 10.

3.2. The frequentist is more prone to type II error

Consider the two Bayesian error rates

δn = P (H0| Frequentist rejects H0)

and
εn = P (H1| Frequentist accepts H0).

Is there an inequality between δn and εn? Rather interestingly, when θ is the normal
mean and the testing problem is H0 : θ ≤ 0 versus H1 : θ > 0, there is an
approximate inequality in the sense that if we consider the respective coefficients
c1 and d1 of the 1/

√
n term, then for any symmetric prior (because then g′(0) = 0

and λ = 1 − λ = 1/2), we have

c1 = 2g(0)[φ(zα) − αzα] < d1 = 2g(0)[(1 − α)zα + φ(zα)]

for any α < 1/2. It is interesting that this inequality holds regardless of the exact
choice of g(·) and the value of α, as long as α < 1/2. Thus, to the first order, the
frequentist is less prone to type I error. Even the exact values of δn and εn satisfy
this inequality, unless α is small, as can be seen, for example from a scrutiny of
Figures 1 and 2. This would suggest that a frequentist needs to be more mindful of
premature acceptance of H0 rather than its premature rejection in the composite
one sided problem. This is in contrast to the conclusion reached in Berger and Sellke
[2] under their formulation.

4. General location parameter case

As we mentioned in Section 1, the quantities δn, εn depend on the choice of the
test statistic. For location parameter problems, in general there is no reason to use
the sample mean as the test statistic. For many non-normal location parameter
densities, such as the double exponential, it is more natural to use the sample
median as the test statistic.

Assume the density of the i.i.d. sample X1, . . . , Xn is f(x− θ) where the median
of f(·) is 0, and assume f(0) > 0. Then an asymptotic size α test for

H0 : θ ≤ 0 vs H1 : θ > 0

rejects H0 if
√

nTn > zα/[2f(0)], where Tn = X([ n
2 ]+1) is the sample median ([8],

p. 89), since
√

n(Tn−θ) L⇒ N(0, 1/[4f2(0)]). We will derive the coefficients c1, c2, c3

in (1) and d1, d2, d3 in (2) given the prior density g(θ) for θ. We assume again that
g(θ) is three times differentiable with a bounded absolute third derivative.

4.1. Expansion of type I error and type II error

To obtain the coefficients of the expansions of δn in (1) and εn in (2), we have to
expand the An and Ãn given by (3) and (4). Of these,

(25) An = P (θ ≤ 0,
√

nTn >
zα

2f(0)
) =

1√
n

∫ 0

−∞
{1 − Fn[zα − 2xf(0)]}g(

x√
n

)dx
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where Fn is the CDF of 2f(0)
√

n(Tn − θ) if the true median is θ. Reiss [16] gives
the expansion of Fn as

Fn(t) = Φ(t) +
φ(t)√

n
R1(t) +

φ(t)
n

R2(t) + rt,n,(26)

where, with {x} denoting the fractional part of a real x, R1(t) = f11t
2 + f12, f11 =

f ′(0)/[4f2(0)], f12 = −(1 − 2{n
2 }), and R2(t) = f21t

5 + f22t
3 + f23t, where f21 =

−[f ′(0)/f2(0)]2/32, f22 = 1/4+(1/2−{n
2 })[f ′(0)/(2f2(0))]+f ′′(0)/[24f3(0)], f23 =

1/4−(1−2{n
2 })2/2. The error term r1,t,n can be written as rt,n = φ(t)R3(t)/n3/2 +

O(n−2), where R3(t) is a polynomial.
By letting y = 2xf(0) − zα in (25), we have

An =
1

2f(0)
√

n

∫ −zα

−∞
{Φ(y) − φ(y)√

n
R1(−y) − φ(y)

n
R2(−y) − r−y,n}

(27)
× [g(0) + g′(0)

y + zα

2f(0)
√

n
+

g′′(0)
2

(y + zα)2

4f2(0)n
+

(y + zα)3

48f3(0)n3/2
g(3)(y∗)]dy,

where y∗ is between 0 and (y + zα)/[2f(0)
√

n].
Hence, assuming supθ |g(3)(θ)| < ∞, on exact integration of each product of

functions in (27) and on collapsing the terms, we get

An =
a1√
n

+
a2

n
+

a3

n3/2
+ O(n−2),(28)

where

a1 =
g(0)
2f(0)

[φ(zα) − αzα],(29)

a2 =
g′(0)

8f2(0)
[zαφ(zα) − α(z2

α + 1)] − g(0)
2f(0)

{f11[zαφ(zα) + α] + f12α}(30)

and

a3 =
g′′(0)

48f3(0)
[(z2

α + 2)φ(zα) − α(z3
α + 3zα)]

− g′(0)
4f2(0)

{f11[αzα − 2φ(zα)] + f12[αzα − φ(zα)]}

− g(0)
2f(0)

{f21[(z4
α + 4z2

α + 8)φ(zα)] + f22[(z2
α + 2)φ(zα)] + f23φ(zα)}.

(31)

We claim the error term in (28) is O(n−2). To prove this, we need to look at its
exact form, namely,

−O(n−2)
2f(0)

∫ −zα

−∞
φ(y)R3(−y)g(θ0 +

y + zα

2f(0)
√

n
)dy + O(n−2)

∫ 0

−∞
g(θ0 + y)dy.

Since g(θ) is absolutely uniformly bounded, the first term above is bounded by
O(n−2). The second term is O(n−2) obviously. This shows that the error term in
(28) is O(n−2).
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As regards Ãn given by (4), one can similarly obtain

Ãn = P (θ > 0,
√

Tn ≤ zα

2f(0)
) =

1√
n

∫ ∞

0

Fn[zα − 2f(0)x]g(
x√
n

)dx

=
ã1√
n

+
ã2

n
+

ã3

n
3
2

+ O(n−2),
(32)

where y∗ is between 0 and (zα−y)/[2f(0)
√

n], ã1 = [g(0)/(2f(0))][(1−α)zα+φ(zα)],
ã2 = [g′(0)/(8f2(0))][(1 − α)(z2

α + 1) + zαφ(zα)] + [g(0)/(2f(0))]{f11[(1 − α) −
zαφ(zα)] + f12(1−α)}, ã3 = [g′′(0)/(48f3(0))][(z2

α + 2)φ(zα) + (1−α)(z3
α + 3zα)] +

[g′(0)/(4f2(0))]{f11[(1−α)zα +2φ(zα)]+f12[(1−α)zα +φ(zα)]}− [g(0)/(2f(0))]×
{f21[(z4

α + 4z2
α + 8)φ(zα)] + f22[(z2

α + 2)φ(zα)] + f23φ(zα)}. The error term in (32)
is still O(n−2) and this proof is omitted.

Therefore, we have the the expansions of Bn given by (5) Bn = λ−b1/
√

n−b2/n−
b3/n3/2 + O(n−2) where λ =

∫ ∞
0

g(θ)dθ as before, b1 = ã1 − a1 = zαg(0)/[2f(0)],
b2 = ã2 − a2 = g′(0)(z2

α + 1)/[8f2(0)] + g(0)(f11 + f12)/[2f(0)], b3 = ã3 − a3 =
g′′(0)(z3

α +3zα)/[48f3(0)]+ zαg′(0)(f11 + f12)/[4f2(0)]. Substituting a1, a2, a3, ã1,
ã2, ã3, b1, b2 and b3 into (7), we get the expansions of δn and εn for the general
location parameter case given by (1) and (2).

4.2. Testing with mean vs. testing with median

Suppose X1, . . . , Xn are i.i.d. observations from a N(θ, 1) density and the statis-
tician tests H0 : θ ≤ 0 vs. H1 : θ > 0 by using either the sample mean X̄ or
the median Tn. It is natural to ask the choice of which statistic makes him more
vulnerable to false discoveries. We can look at both false discovery rates δn and εn

to make this comparison, but we will do so only for the type I error rate δn here.

We assume for algebraic simplicity that g is symmetric, and so g′(0) = 0 and
λ = 1/2. Also, to keep track of the two statistics, we will denote the coefficients
c1, c2 by c1,X̄ , c1,Tn , c2,X̄ and c2,Tn respectively. Then from our expansions in section
3.1 and section 4.1, it follows that

c1,Tn − c1,X̄ = g(0)(φ(zα) − αzα)(
√

2π − 2) = a(say),

and

c2,Tn − c2,X̄ = g2(0)zα(φ(zα) − αzα)(2π − 4) − g(0)
√

2πf12α

≥ g2(0)zα(φ(zα) − αzα)(2π − 4) = b(say) as f12 ≤ 0.

Hence, there exist positive constants a, b such that lim infn→∞
√

n(
√

n(δn,Tn −
δn,X̄)−a) ≥ b, i.e., the statistician is more vulnerable to a type I false discovery by
using the sample median as his test statistic. Now, of course, as a point estimator,
Tn is less efficient than the mean X̄ in the normal case. Thus, the statistician is
more vulnerable to a false discovery if he uses the less efficient point estimator as
his test statistic. We find this neat connection between efficiency in estimation and
false discovery rates in testing to be interesting. Of course, similar connections are
well known in the literature on Pitman efficiencies of tests; see, e.g., van der Vaart
([24], p. 201).
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4.3. Examples

In this subsection, we are going to study the exact values and the expansions for
δn and εn in two examples. One example is f(x) = φ(x) and g(θ) = φ(θ); for the
other example, f and g are both densities of the standard Cauchy. We will refer
to them as normal-normal and Cauchy-Cauchy for convenience of reference. The
purpose of the first example is comparison with the normal-normal case when the
test statistic was the sample mean (Example 2 in Section 3); the second example
is an independent natural example.

For exact numerical evaluation of δn and εn, the following formulae are necessary.
The pdf of the standardized median 2f(0)

√
n(Tn − θ) is

(33) fn(t) =

√
n
(

n−1
[ n
2 ]−1

)
2f(0)

f(
t

2f(0)
√

n
)F [ n

2 ]−1(
t

2f(0)
√

n
)(1 − F (

t

2f(0)
√

n
))n−[ n

2 ].

We are now ready to present our examples.

Example 3. Suppose X1, X2, . . . , Xn are i.i.d. N(θ, 1) and g(θ) = φ(θ). Then,
g(0) = f(0) = 1/

√
2π, g′(0) = f ′(0) = 0 and g′′(0) = f ′′(0) = −1/

√
2π. Then,

we have f11 = 0, f12 = −(1 − 2{n
2 }), f21 = 0, f22 = 1/4 − π/12 and f23 =

1/4 − (1/2 − {n
2 })2. Plugging these values for f11, f12, f21, f22, f23 into (29), (30),

(31) and (7), we obtain the expansions for δn, and similarly for εn in the normal-
normal case.

Next we consider the Cauchy-Cauchy case, i.e., X1, . . . , Xn are i.i.d. with density
function f(x) = 1/{π[1 + (x − θ)2]} and g(θ) = 1/[π(1 + θ2)]. Then, f(0) = 1/π,
f ′(0) = 0 and f ′′(0) = −2/π. Therefore, f11 = 0, f12 = −(1 − 2{n

2 }), f21 =
0, f22 = 1/4 − π2/12, and f23 = 1/4 − (1/2 − {n

2 })2. Plugging these values for
f11, f12, f21, f22, f23 in (29), (30), (31), we obtain the expansions for δn, and similarly
for εn in the Cauchy-Cauchy case.

The true and estimated values of δn for selected n are given in Figure 4 and
Figure 5. As before, the true values of δn and ε are computed by taking an average
of the lower and the upper Riemann sums in An, Ãn, Bn and B̃n with the exact
formulae for fn as in (33). It can be seen that the two values are almost identical
when n = 30. By comparison with Figure 1, we see that the expansion for the
median is not as precise as the expansion for the sample mean.

The most important thing we learn is how small δn is for very moderate values
of n. For example, in Figure 4, δn is only about 0.01 if α = 0.05, when n = 20.
Again we see that even though we have changed the test statistic to the median,
the frequentist’s false discovery rate is very small and, in particular, smaller than
α. More about this is said in Sections 4.4 and 4.5.

4.4. Spiky priors and false discovery rates

We commented in Section 4.1 that if the prior density g(θ0) is large, it increases
the leading term in the expansion for δn (and also εn) and so it can be expected
that spiky priors cause higher false discovery rates. In this section, we address the
effect of spiky and flat priors a little more formally.

Consider the general testing problem H0 : θ ≤ θ0 vs H1 : θ > θ0, where the
natural parameter space Ω = (θ, θ̄).

Suppose the α (0 < α < 1) level test rejects H0 if Tn ∈ C, where Tn is the test
statistic. Let Pn(θ) = Pθ(Tn ∈ C). Let g(θ) be any fixed density function for θ and
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Fig 4. True and estimated values of δn when the test statistic is the median for the normal-normal
case.
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Fig 5. True and estimated values of δn when the test statistic is the median for the Cauchy-
Cauchy case.

let gτ (θ) = g(θ/τ)/τ , τ > 0. Then gτ (θ) is spiky at 0 for small τ and gτ (θ) is flat
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for large τ . When θ0 = 0, under the prior gτ (θ),

δn(τ) = P (θ ≤ 0|Tn ∈ C) =

∫ 0

θ/τ
Pn(τy)g(y)dy∫ θ̄/τ

θ/τ
Pn(τy)g(y)dy

,(34)

and

εn(τ) = P (θ > 0|Tn �∈ C) =

∫ 0

θ/τ
[1 − Pn(τy)]g(y)dy∫ θ̄/τ

θ/τ
[1 − Pn(τy)]g(y)dy

.(35)

Let as before λ =
∫ 0

−∞ g(θ)dθ, the numerator and denominator of (34) be denoted
by An(τ) and Bn(τ) and the numerator and denominator of (35) be denoted by
Ãn(τ) and B̃n(τ). Then, we have the following results.

Proposition 1. If P−
n (θ0) = limθ→θ0− Pn(θ) and P+

n (θ0) = limθ→θ0+ Pn(θ) both
exist and are positive, then

lim
τ→0

δn(τ) =
λP−

n (0)
λP−

n (0) + (1 − λ)P+
n (0)

(36)

and

lim
τ→0

εn(τ) =
(1 − λ)[1 − P+

n (0)]
λ[1 − P−

n (0)] + (1 − λ)[1 − P+
n (0)]

.(37)

Proof. Because 0 ≤ Pn(τy) ≤ 1 for all y, by simply applying the Lebesgue Domi-
nated Convergence Theorem, limτ→0 An(τ) = λP−

n (0), limτ→0 Bn(τ) = λP−
n (0) +

(1−λ)P+
n (0), limτ→0 Ãn(τ) = (1−λ)[1−P+

n (0)] and limτ→0 B̃n(τ) = λ[1−P−
n (0)]+

(1 − λ)[1 − P+
n (0)]. Substituting in (34) and (35), we get (36) and (37).

Corollary 1. If 0 < λ < 1, limτ→∞ Pn(τy) = 0 for all y < 0, limτ→∞ Pn(τy) = 1
for all y > 0, then limτ→∞ δn(τ) = limτ→∞ εn(τ) = 0.

Proof. Immediate from (36) and (37).

It can be seen that P−
n (0) = P+

n (0) in most testing problems when the test
statistic Tn has a continuous power function. It is true for all the problems we
discussed in Sections 3 and 4. If moreover g(θ) > 0 for all θ, then 0 < λ < 1.
As a consequence, limτ→0 δn(τ) = λ, limτ→0 εn(τ) = 1 − λ, and limτ→∞ δn(τ) =
limτ→∞ εn(τ) = 0. If θ is a location parameter, θ0 = 0 and g(θ) is symmetric about
0, then limτ→0 δn(τ) = limτ→0 εn(τ) = 1/2.

In other words, the false discovery rates are very small for any n for flat priors
and roughly 50% for any n for very spiky symmetric priors. This is a qualitatively
informative observation.

4.5. Pre-experimental promise and post-experimental honesty

We noticed in our example in Section 4.4 that for quite small values of n, the
post-experimental error rate δn was smaller than the pre-experimental assurance,
namely α. For any given prior g, this is true for all large n; but clearly we cannot
achieve this uniformly over all g, or even large classes of g. In order to remain
honest, it seems reasonable to demand of a frequentist that δn be smaller than
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Fig 6. Plots of nα(τ) as functions of τ for normal-normal test by mean and Cauchy-Cauchy test
by median for selected α.

α. The question is, typically for what sample sizes can the frequentist assert his
honesty.

Let us then consider the prior gτ (θ) = g(θ/τ)/τ with fixed g, and consider the
minimum value of the sample size n, denoted by nα(τ), such that δn ≤ α. It can be
seen from (36) that nα(τ) goes to ∞ as τ goes to 0. This of course was anticipated.
What happens when τ varies from small to large values?

Plots of nα(τ) as functions of τ when the population CDF is Fθ(x) = Φ(x − θ),
g(θ) = φ(θ) and the test statistic is X̄ are given in the left window of Figure 6. It is
seen in the plot that nα(τ) is non-increasing in τ for the selected α-values 0.05 and
0.01. Plots of nα(τ) when Fθ(x) = C(x − θ) and g(θ) = c(θ), where C(·) and c(·)
are standard Cauchy CDF and PDF respectively, are given in the right window of
Figure 6.

In both examples, a modest sample size of n = 15 suffices for ensuring δn ≤ α if
τ ≥ 1. For somewhat more spiky priors with τ ≈ 0.5, in the Cauchy-Cauchy case,
a sample of size just below 30 will be required. In the normal-normal case, even
n = 8 still suffices.

The general conclusion is that unless the prior is very spiky, a sample of size
about 30 ought to ensure that δn ≤ α for traditional values of α.

Appendix: Detailed expansions for the exponential family

We now provide the details for the expansions of An,θ1n in (13) and Ãn,θ2n in (15)
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and we also prove that Rn,θ1n
in (14) and R̄n,θ2n in (16) are smaller order terms.

Suppose g(θ) is a three times differentiable proper prior for θ. The expansions are
considered for those θ0 so that the exponential family density has a positive variance
at θ0. Then, we can find two values θ1 and θ2 such that θ < θ1 < θ0 < θ2 < θ̄
and the minimum value of σ2(θ) is positive when θ1 ≤ θ ≤ θ2. That is if we let
m0 = minθ1<θ<θ2 σ2(θ), then m0 > 0. Since σ2(θ), ki(θ), ρi(θ) and g(3)(θ) are all
continuous in θ, each of them is uniformly bounded in absolute value for θ ∈ [θ1, θ2].
We denote M0 as the common upper bound of the absolute values of σ2(θ), κi(θ)
(i = 3, 4, 5), ρi(θ) (i = 3, 4, 5), g(θ), g′(θ), g′′(θ) and g(3)(θ).

In the rest of this section, we denote θ1n = θ0 + (θ1 − θ0)/n1/3, θ2n = θ0 + (θ2 −
θ0)/n1/3, x1 = σ0

√
n(θ1 − θ0) − zα, x2 = σ0

√
n(θ2 − θ0) − zα, x1n = σ0

√
n(θ1n −

θ0)− zα and x2n = σ0
√

n(θ1n − θ0)− zα. As in (13), (14), (15) and (16), we define
An,θ1n = P (θ1n ≤ θ ≤ θ0, X̄ ∈ C), Rn,θ1n

= An − An,θ1n , Ãn,θ2n = P (θ0 < θ ≤
θ2n, X̄ �∈ C) and R̄n,θ2n = Ãn − Ãn,θ2n , where An and Ãn are given by (3) and (4)
respectively. We write Bn,θ1 = P (θ ≥ θ1n, X̄ ∈ C) and B̃n,θ2 = P (θ ≤ θ2n, X̄ �∈ C).
Then, one can also see that Rn,θ1n

= Bn − Bn,θ1 and R̄n,θ2n = B̃n − B̃n,θ2 from
definition, where Bn and B̃n are given by (5) and (6) respectively.

The following Proposition and Corollary claim that Rn,θ1n
and R̄n,θ2n are the

smaller order terms. Therefore, the coefficients of the expansions of An and Ãn are
exactly the same as those of An,θ1n and Ãn,θ2n .

Proposition 2. Let θ1,τ,n = θ0 +(θ1−θ0)/nτ and θ2,τ,n = θ0 +(θ2−θ0)/nτ . If 0 ≤
τ < 1/2, then for any � < ∞, limn→∞ nlβ̃n(θ1,τ,n) = limn→∞ nl[1− β̃n(θ2,τ,n)] = 0.

Proof. A proof of this can be obtained by simply using Markov’s inequality. We
omit it.

Corollary 2. For any l > 0, limn→∞ nlRn,θ1n
= limn→∞ nlR̄n,θ2n = 0.

Proof. Since β̃n(θ) is nondecreasing in θ, we have

nlRn,θ1n
= nl

∫ θ1n

θ

β̃n(θ)g(θ)dθ ≤ nlβ̃n(θ1,1/3,n)
∫ θ1n

θ

g(θ)dθ ≤ nlβ̃n(θ1,1/3,n)

and similarly nlR̄n,θ2n ≤ nl[1 − β̃n(θ2,1/3,n)]. The conclusion is drawn by taking
τ = 1/3 in Proposition 2.

In the rest of this section, we will only derive the expansion of An,θ1n in detail
since the expansion of Ãn,θ2n is obtained exactly similarly.

Using the transformation x = σ0
√

n(θ − θ0) − zα in the following integral, we
have

An,θ1n =
1

σ0
√

n

∫ −zα

x1n

β̃n(θ0 +
x + zα

σ0
√

n
)g(θ0 +

x + zα

σ0
√

n
)dx.(38)

Note that

β̃n(θ0 +
x + zα

σ0
√

n
) = Pθ0+

x+zα
σ0

√
n

(
√

n
X̄ − µ(θ0 + x+zα

σ0
√

n
)

σ(θ0 + x+zα

σ0
√

n
)

≥ k̃θ0,x,n

)
,(39)

where

k̃θ0,x,n =

[
√

n
µ0 − µ(θ0 + x+zα

σ0
√

n
)

σ0
+ kθ0,n

]
σ0

σ(θ0 + x+zα

σ0
√

n
)
.(40)
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We obtain the coefficients of the expansions of An,θ1n in the following steps:

1. The expansion of g(θ0 + x+zα

σ0
√

n
) for any fixed x ∈ [x1n,−zα] is obtained by

using Taylor expansions.
2. The expansion of k̃θ0,x,n for any fixed x ∈ [x1n,−zα] is obtained by jointly

considering the Cornish-Fisher expansion of kθ0,n, the Taylor expansion of√
n[µ0 − µ(θ0 + x+zα

σ0
√

n
)]/σ0 and the Taylor expansion of σ0/σ(θ0 + x+zα

σ0
√

n
).

3. Write the CDF of X̄ in the form of Pθ[
√

n X̄−µ(θ)
σ(θ) ≤ u]. Formally substitute

θ = θ0 + x+zα

σ0
√

n
and u = k̃θ0,x,n in the Edgeworth expansion of the CDF of

X̄. An expansion of β̃n(θ0 + x+zα

σ0
√

n
) is obtained by combining it with Taylor

expansions for a number of relevant functions (see (47)).
4. The expansion of An,θ1n is obtained by considering the product of the expan-

sions of g(θ0 + x+zα

σ0
√

n
) and β̃n(θ0 + x+zα

σ0
√

n
) under the integral sign.

5. Finally prove that all the error terms in Steps 1, 2, 3 and 4 are smaller order
terms.

We give the expansions in steps 1, 2, 3 and 4 in detail. For the error term study
in step 5, we omit the details due to the considerably tedious algebra.

Step 1: The expansion of g(θ0 + x+zα√
n

) is easily obtained by using a Taylor
expansion:

g(θ0 +
x + zα

σ0
√

n
) = g(θ0) + g′(θ0)

x + zα

σ0
√

n
+

g′′(θ0)
2

(x + zα)2

σ2
0n

+ rg,x,n.(41)

where rg,x,n is the error term.
Step 2: The Cornish–Fisher expansion of kθ0,n ([1], p. 117) is given by

(42) kθ0,n = zα +
(z2

α − 1)ρ30

6
√

n
+

1
n

[
(z3

α − 3zα)ρ40

24
− (2z3

α − 5zα)ρ2
30

36

]
+ r1,n,

where r1,n is the error term.
The Taylor expansion of the first term inside the bracket of (40) is

−(x + zα) − ρ30(x + zα)2

2
√

n
− ρ40(x + zα)3

6n
+ r2,x,n(43)

and the Taylor expansion of the term outside of the bracket of (40) is

1 − ρ30(x + zα)
2
√

n
+

1
n

(
3ρ2

30

8
− ρ40

4

)
(x + zα)2 + r3,x,n,(44)

where r2,x,n and r3,x,n are error terms.
Plugging (42), (43) and (44) into (40), we get the expansion of k̃θ0,x,n below:

k̃θ0,x,n = −x +
1√
n

f1(x) +
1
n

f2(x) + r4,x,n,(45)

where r4,x,n is the error term, f1(x) = f11x + f10 and f2(x) = f23x
3 + f22x

2 +
f21x + f20, and the coefficients for f1(x) and f2(x) are f10 = −(2z2

α + 1)ρ30/6,
f11 = −zαρ30/2, f20 = (z3

α+2zα)ρ2
30/9−(z3

α+zα)ρ40/8, f21 = (7z2
α/24+1/12)ρ2

30−
z2
αρ40/4, f22 = 0, f23 = ρ40/12 − ρ2

30/8.
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Step 3: The Edgeworth expansion of the CDF of X̄ is (Barndorff-Nielsen and
Cox ([1], p. 91) and Hall ([11], p. 45)) given below:

Pθ0+
x+zα
σ0

√
n


√

n
X̄ − µ(θ0 + x+zα

σ0
√

n
)√

σ(θ0 + x+zα

σ0
√

n
)

≤ u




= Φ(u) − φ(u)√
n

(u2 − 1)
6

ρ3(θ0 +
x + zα

σ0
√

n
) − φ(u)

n
[
(u3 − 3u)

24
(46)

× ρ4(θ0 +
x + zα

σ0
√

n
) +

(u5 − 10u3 + 15u)
72

ρ2
3(θ0 +

x + zα

σ0
√

n
)] + r5,n,

where r5,n is an error term. If we take µ = k̃θ0,x,n in (46), then the left side is
1 − β̃n(θ0 + x+zα√

n
) and so

β̃(θ0 +
x + zα

σ0
√

n
) = Φ(−k̃θ0,x,n) +

φ(k̃θ0,x,n)√
n

(k̃2
θ0,x,n − 1)

6
ρ3(θ0 +

x + zα

σ0
√

n
)

+
φ(k̃θ0,x,n)

n
[
(k̃3

θ0,x,n − 3k̃θ0,x,n)
24

ρ4(θ0 +
x + zα

σ0
√

n
)

+
(k̃5

θ0,x,n − 10k̃3
θ0,x,n + 15k̃θ0,x,n)
72

ρ2
3(θ0 +

x + zα

σ0
√

n
)] − r5,n.

(47)

Plug the Taylor expansion of ρ3(θ0 + x+zα

σ0
√

n
)

ρ3(θ0 +
x + zα

σ0
√

n
) = ρ30 +

(x + zα)√
n

(
ρ40 −

3
2
ρ2
30

)
+ r6,x,n(48)

in (47), where r6,x,n is an error term, and then consider the Taylor expansions of
the three terms related to k̃θ0,x,n in (47) and also use the expansion (45). On quite
a bit of calculations, we obtain the following expansion:

β̃n(θ0 +
x + zα

σ0
√

n
) = Φ(x) − φ(x)

[
f1(x)√

n
+

f2(x)
n

]
− xφ(x)

[
f1(x)√

n

]2

+
φ(x)(x2 − 1)

6
√

n
[ρ30 +

(x + zα)√
n

(ρ40 −
3
2
ρ2
30)] +

ρ30

6n
φ(x)(x3 − 3x)f1(x)

+
φ(x)

n
[
(x3 − 3x)

24
ρ40 +

(x5 − 10x3 + 15x)
72

ρ2
30] + r7,x,n

=Φ(x) +
φ(x)√

n
g1(x) +

φ(x)
n

g2(x) + r7,x,n,

(49)

where r7,x,n is an error term, g1(x) = g12x
2+g11x+g10, g2(x) = g20+g21x+g22x

2+
g23x

3 + g24x
4 + g25x

5, and the coefficients of g1(x) and g2(x) are g12 = ρ30/6,
g11 = zαρ30/2, g10 = z2

αρ30/3, g25 = ρ2
30/72, g24 = −zαρ2

30/12, g23 = ρ40/8 −
13z2

αρ2
30/72−7ρ2

30/24, g22 = zαρ40/6−z3
αρ2

30/6−zαρ2
30/12, g21 = (z2

α/4−7/24)ρ40−
z4
αρ2

30/18 − 13z2
αρ2

30/72 + 4ρ2
30/9, g20 = (z3

α/8 − zα/24)ρ40 − (z3
α/9 − zα/36)ρ2

30.
Step 4: The expansion of An,θ1n is obtained by plugging the expansions of

β̃(θ0 + x+zα

σ0
√

n
) and g(θ0 + x+zα

σ0
√

n
). On careful calculations,

An,θ1n =
a1√
n

+
a2

n
+

a3

n3/2
+ r8,n,(50)
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where r8,n is an error term, a1 = (g(θ0)/σ0)[φ(zα) − αzα], a2 = ρ30g(θ0)[α +
2αz2

α − 2zαφ(zα)]/(6σ0)− g′(θ0)[α(z2
α + 1)− zαφ(zα)]/(2σ2

0), and a3 = [h11φ(zα) +
αh12][(g′′(θ0)/(6σ3

0)] + [h21φ(zα) + αh22][g′(θ0)/σ2
0 ] + [h31φ(zα) + αh32][g(θ0)/σ0],

where h11 = z2
α +2, h12 = −(z3

α +3zα), h21 = −(ρ30/3)(z2
α +1), h22 = (ρ30/3)(z3

α +
2zα), h31 = −z4

αρ2
30/36 + 4z2

αρ2
30/9 + ρ2

30/36− 5z2
αρ40/24 + ρ40/24, h32 = −5z3

αρ2
30/

18 − 11zαρ2
30/36 + z3

αρ40/8 + zαρ40/8. These a1, a2 and a3 are the coefficients in
the expansion of (23).

The computation of the coefficients of the expansions of An,θ1n is now complete.
The rest of the work is to prove that all the error terms are smaller order terms. But
first we give the results for the expansion of Ãn,θ2n . The details for the expansions
of Ãn,θ2n are omitted.

Expansion of Ãn,θ2n : The expansion of Ãn,θ2n can be obtained similarly by
simply repeating all the steps for An,θ1n . The results are given below:

Ãn,θ2n =
ã1√
n

+
ã2

n
+

ã3

n3/2
+ r9,n,(51)

where r9,n is an error term, ã1 = g(θ0)[φ(zα) + (1 − α)zα]/σ0, ã2 = g′(θ0)[(1 −
α)(z2

α + 1) + zαφ(zα)]/(2σ2
0) − ρ30g(θ0)[(1 − α)/6 + (1 − α)z2

α/3 + zαφ(zα)/3]/σ0,
and ã3 = (g′′(θ0)/6σ3

0)[h11φ(zα)−(1−α)h12]−(g′(θ0)/σ2
0)[−h21φ(zα)+(1−α)h22]−

(g(θ0)/σ0)[−h31φ(zα) + (1 − α)h32], where h11, h12, h21, h22, h31 and h32 are the
same as defined in Step 3. These ã1, ã2 and ã3 are the coefficients in the expansion
of (24).

Remark. The coefficients of expansions of δn and εn are obtained by simply using
formula (7) with a1, a2 and a3 in (23) and also the coefficient ã1, ã2 and ã3 in (24)
respectively.

Step 5: (Error term study in the expansions of An,θ1n). We only give the main
steps because the details are too long. Recall from equation (38) that the range
of integration corresponding to An,θ1n is x1n ≤ x ≤ −zα. In this case, we have
limn→∞ x1n = ∞ and limn→∞ x1n/

√
n = −zα. This fact is used when we prove the

error term is still a smaller order term when we move it out of the integral sign.
(I) In (41), since g(3)(θ) is uniformly bounded in absolute values, rg,x,n is ab-

solutely bounded by a constant times n−3/2(x + zα)2

(II) From Barndorff-Nielsen and Cox [4.5, pp 117], the error term r1,n in (42) is
absolutely uniformly bounded by a constant times n−3/2.

(III) In (43) and (44), since ρi(θ) and κi(θ) (i = 3, 4, 5) are uniformly bounded
in absolute values, the error term r2,x,n is absolutely bounded by a constant
times n−3/2(x + zα)4 and the error term r3,x,n is absolutely bounded by a
constant times n−3/2(x + zα)3.

(IV) The exact form of the error term r4,x,n in (45) can be derived by consider-
ing the higher order terms and their products in (42), (43) and (44) for the
derivation of expression (45). The computation is complicated but straight-
forward. However, still, since ρi(θ) and κi(θ) (i = 3, 4, 5) are uniformly
bounded in absolute values, r4,x,n is absolutely bounded by n−3/2P1(|x|),
where P1(|x|) is a seventh degree polynomial and its coefficients do not de-
pend on n.

(V) Again, from Barndorff-Nielsen and Cox ([1], p. 91), the error term r5,n in
(46) is absolutely bounded by a constant times n−3/2.

(VI) The error term r6,x,n in (48) is absolutely bounded by a constant times
n−1(x + zα)2 since ρi(θ) and κi(θ) (i = 3, 4, 5) are uniformly bounded in
absolute values.
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(VII) This is the critical step for the error term study since we need to prove
that the error term is still a smaller order term when it is moved out
of the integral in (50). We need to study the behaviors of Φ(−k̃θ0,x,n)
and φ(k̃θ0,x,n) as n → ∞ for all x ∈ [x1n,−zα] uniformly (see (49) in
detail). This also explains why we choose θ1n = θ0 + (θ1 − θ0)/n1/3 and
x1n = σ0

√
n(θ1n − θ0) − zα at the beginning of this section, since in this

case |k̃θ0,x,n + x| is uniformly bounded by |x|/2 + 1 for a sufficiently large
n. Then for sufficiently large n, the error term |r7,x,n| in (49) is uniformly
bounded by |r7,x,n| ≤ φ(x/2 + 1)P2(|x|) where P2(|x|) is a twelveth degree
polynomial of |x| and its coefficients do not depend on n.

(VIII) Finally, we can show that the error term r8,n in (50) in O(n−2). This is
tedious but straightforward. It is proven by considering each of the ten
terms in r8,n separately.

Remark. We can similarly prove that the error term r9,n in (51) corresponding to
Ãn,θ2n is O(n−2). Since the steps are very similar, we do not mention them.
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