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Bayesian transformation hazard models
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Abstract: We propose a class of transformation hazard models for right-
censored failure time data. It includes the proportional hazards model (Cox)
and the additive hazards model (Lin and Ying) as special cases. Due to the
requirement of a nonnegative hazard function, multidimensional parameter
constraints must be imposed in the model formulation. In the Bayesian para-
digm, the nonlinear parameter constraint introduces many new computational
challenges. We propose a prior through a conditional-marginal specification, in
which the conditional distribution is univariate, and absorbs all of the nonlin-
ear parameter constraints. The marginal part of the prior specification is free
of any constraints. This class of prior distributions allows us to easily com-
pute the full conditionals needed for Gibbs sampling, and hence implement
the Markov chain Monte Carlo algorithm in a relatively straightforward fash-
ion. Model comparison is based on the conditional predictive ordinate and the
deviance information criterion. This new class of models is illustrated with a
simulation study and a real dataset from a melanoma clinical trial.

1. Introduction

In survival analysis and clinical trials, the Cox [10] proportional hazards model has
been routinely used. For a subject with a possibly time-dependent covariate vector
Z(t), the proportional hazards model is given by,

(1.1) λ(t|Z) = λ0(t) exp{β′Z(t)},

where λ0(t) is the unknown baseline hazard function and β is the p × 1 parameter
vector of interest. Cox [11] proposed to estimate β under model (1.1) by maxi-
mizing the partial likelihood function and its large sample theory was established
by Andersen and Gill [1]. However, the proportionality of hazards might not be a
valid modeling assumption in many situations. For example, the true relationship
between hazards could be parallel, which leads to the additive hazards model (Lin
and Ying [24]),

(1.2) λ(t|Z) = λ0(t) + β′Z(t).

As opposed to the hazard ratio yielded in (1.1), the hazard difference can be ob-
tained from (1.2), which formulates a direct association between the expected num-
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ber of events or death occurrences and risk exposures. O’Neill [28] showed that use
of the Cox model can result in serious bias when the additive hazards model is
correct. Both the multiplicative and additive hazards models have sound biological
motivations and solid statistical bases.

Lin and Ying [25], Martinussen and Scheike [26] and Scheike and Zhang [30]
proposed general additive-multiplicative hazards models in which some covariates
impose the proportional hazards structure and others induce an additive effect on
the hazards. In contrast, we link the additive and multiplicative hazards models in a
completely different fashion. Through a simple transformation, we construct a class
of hazard-based regression models that includes those two commonly used modeling
schemes. In the usual linear regression model, the Box–Cox transformation [4] may
be applied to the response variable,

(1.3) φ(Y ) =
{

(Y γ − 1)/γ γ �= 0
log(Y ) γ = 0,

where limγ→0(Y γ − 1)/γ = log(Y ). This transformation has been used in survival
analysis as well [2, 3, 5, 7, 13, 32]. Breslow and Storer [7] and Barlow [3] applied
this family of power transformations to the covariate structure to model the relative
risk R(Z),

log R(Z) =
{

{(1 + β′Z)γ − 1}/γ γ �= 0
log(1 + β′Z) γ = 0,

where R(Z) is the ratio of the incidence rate at one level of the risk factor to that
at another level. Aranda-Ordaz [2] and Breslow [5] proposed a compromise between
these two special cases, γ = 0 or 1, while their focus was only on grouped survival
data by analyzing sequences of contingency tables. Sakia [29] gave an excellent
review on this power transformation.

The proportional and additive hazards models may be viewed as two extremes
of a family of regression models. On a basis that is very different from the available
methods in the literature, we propose a class of regression models for survival data
by imposing the Box–Cox transformation on both the baseline hazard λ0(t) and the
hazard λ(t|Z). This family of transformation models is very general, which includes
the Cox proportional hazards model and the additive hazards model as special cases.
By adding a transformation parameter, the proposed modeling structure allows a
broad class of hazard patterns. In many applications where the hazards are neither
proportional nor parallel, our proposed transformation model provides a unified
and flexible methodology for analyzing survival data.

The rest of this article is organized as follows. In Section 2.1, we introduce
notation and a class of regression models based on the Box–Cox transformed haz-
ards. In Section 2.2, we derive the likelihood function for the proposed model using
piecewise constant hazards. In Section 2.3, we propose a prior specification scheme
incorporating the parameter constraints within the Bayesian paradigm. In Section
3, we derive the full conditional distributions needed for Gibbs sampling. In Sec-
tion 4, we introduce model selection methods based on the conditional predictive
ordinate (CPO) in Geisser [14] and the deviance information criterion (DIC) pro-
posed by Spiegelhalter et al. [31]. We illustrate the proposed methods with data
from a melanoma clinical trial, and examine the model using a simulation study in
Section 5. We give a brief discussion in Section 6.
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2. Transformation hazard models

2.1. A new class of models

For n independent subjects, let Ti (i = 1, . . . , n) be the failure time for subject i and
Zi(t) be the corresponding p× 1 covariate vector. Let Ci be the censoring variable
and define Yi = min(Ti, Ci). The censoring indicator is νi = I(Ti ≤ Ci), where
I(·) is the indicator function. Assume that Ti and Ci are independent conditional
on Zi(t), and that the triplets {(Ti, Ci,Zi(t)), i = 1, . . . , n} are independent and
identically distributed.

For right-censored failure time data, we propose a class of Box–Cox transforma-
tion hazard models,

(2.1) φ{λ(t|Zi)} = φ{λ0(t)} + β′Zi(t),

where φ(·) is a known link function given by (1.3). We take γ as fixed throughout
our development for the following reasons. First, our main goal is to model selection
on γ, by fitting separate models for each value of γ and evaluating them through a
model selection criterion. Once the best γ is chosen according to a model selection
criterion, posterior inference regarding (β, λ) is then based on that γ. Second, in
real data settings, there is typically very little information contained in the data
to estimate γ directly. Third, posterior estimation of γ is computationally difficult
and often numerically unstable due to the constraint (2.3) as well as its weak
identifiability property. To understand how the hazard varies with respect to γ, we
carried out a numerical study as follows. We assume that λ0(t) = t/3 in one case,
and λ0(t) = t2/5 in another case. A single covariate Z takes a value of 0 or 1 with
probability .5, and γ = (0, .25, .5, .75, 1). Model (2.1) can be written as

λ(t|Zi) = {λ0(t)γ + γβ′Zi(t)}1/γ .

As shown in Figure 1, there is a broad family of models for 0 ≤ γ ≤ 1. Our
primary interest for γ lies in [0, 1], which covers the two popular cases and a family
of intermediate modeling structures between the proportional (γ = 0) and the
additive (γ = 1) hazards models.

Misspecified models may lead to severe bias and wrong statistical inference. In
many applications where neither the proportional nor the parallel hazards assump-
tion holds, one can apply (2.1) to the data with a set of prespecified γ’s, and choose
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Fig 1. The relationships between λ0(t) and λ(t|Z) = {λ0(t)γ + γZ}1/γ , with Z = 0, 1. Left:
λ0(t) = t/3; right: λ0(t) = t2/5.
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the best fitting model according to a suitable model selection criterion. The need
for the general class of models in (2.1) can be demonstrated by the E1690 data
from the Eastern Cooperative Oncology Group (ECOG) phase III melanoma clini-
cal trial (Kirkwood et al. [23]). The objective of this trial was to compare high-dose
interferon to observation (control). Relapse-free survival was a primary outcome
variable, which was defined as the time from randomization to progression of tu-
mor or death. As shown in Section 5, the best choice of γ in the E1690 data is
indeed neither 0 nor 1, but γ = .5.

Due to the extra parameter γ, β is intertwined with λ0(t) in (2.1). As a re-
sult, the model is very different from either the proportional hazards model, which
can be solved through the partial likelihood procedure, or the additive hazards
model, where the estimating equation can be constructed based on martingale inte-
grals. Here, we propose to conduct inference with this transformation model using
a Bayesian approach.

2.2. Likelihood function

The piecewise exponential model is chosen for λ0(t). This is a flexible and commonly
used modeling scheme and usually serves as a benchmark for the comparison of
parametric and nonparametric approaches (Ibrahim, Chen and Sinha [21]). Other
nonparametric Bayesian methods for modeling λ0(t) are available in the literature
[20, 22, 27]. Let yi be the observed time for the ith subject, y = (y1, . . . , yn)′,
ν = (ν1, . . . , νn)′, and Z(t) = (Z1(t), . . . ,Zn(t))′. Let J denote the number of
partitions of the time axis, i.e. 0 < s1 < · · · < sJ , sJ > yi for i = 1, . . . , n,
and that λ0(y) = λj for y ∈ (sj−1, sj ], j = 1, . . . , J . When J = 1, the model
reduces to a parametric exponential model. By increasing J , the piecewise constant
hazard formulation can essentially model any shape of the underlying hazard. The
usual way to partition the time axis is to obtain an approximately equal number
of failures in each interval, and to guarantee that each time interval contains at
least one failure. Define δij = 1 if the ith subject fails or is censored in the jth
interval, and 0 otherwise. Let D = (n,y,Z(t), ν) denote the observed data, and
λ = (λ1, . . . , λJ)′. For ease of exposition and computation, let Zi ≡ Zi(t), then the
likelihood function is

L(β, λ|D) =
n∏

i=1

J∏
j=1

(λγ
j + γβ′Zi)δijνi/γ

(2.2)
× e

−δij{(λγ
j
+γβ′Zi)

1/γ(yi−sj−1)+
∑j−1

g=1
(λγ

g+γβ′Zi)
1/γ(sg−sg−1)}.

2.3. Prior distributions

The joint prior distribution of (β, λ) needs to accommodate the nonnegativity con-
straint for the hazard function, that is,

(2.3) λγ
j + γβ′Zi ≥ 0 (i = 1, . . . , n; j = 1, . . . , J).

Constrained parameter problems typically make Bayesian computation and analysis
quite complicated [8, 9, 16]. For example, the order constraint on a set of parameters
(e.g., θ1 ≤ θ2 ≤ · · · ) is very common in Bayesian hierarchical models. In these set-
tings, closed form expressions for the normalizing constants in the full conditional



174 G. Yin and J. G. Ibrahim

distributions are typically available. However, for our model, this is not the case;
the normalizing constant involves a complicated intractable integral. The nonneg-
ativity of the hazard constraint is very different from the usual order constraints.
If the hazard is negative, the likelihood function and the posterior density are not
well defined. One way to proceed with this nonlinear constraint is to specify an
appropriately truncated joint prior distribution for (β, λ), such as a truncated mul-
tivariate normal prior N(µ,Σ) for (β|λ) to satisfy this constraint. This would lead
to a prior distribution of the form

π(β, λ) = π(β|λ)π(λ)I(λγ
j + γβ′Zi ≥ 0, i = 1, . . . , n; j = 1, . . . , J).

Following this route, we would need to analytically compute the normalizing con-
stant,

c(λ) =
∫

· · ·
∫

λγ
j
+γβ′Zi≥0 for all i,j

exp
{
−1

2
(β − µ)′Σ−1(β − µ)

}
dβ1 · · · dβp

to construct the full conditional distribution of λ. However, c(λ) involves a p-
dimensional integral on a complex nonlinear constrained parameter space, which
cannot be obtained in a closed form. Such a prior would lead to intractable full
conditionals, therefore making Gibbs sampling essentially impossible.

To circumvent the multivariate constrained parameter problem, we reduce our
prior specification to a one-dimensional truncated distribution, and thus the nor-
malizing constant can be obtained in a closed form. Without loss of generality,
we assume that all the covariates are positive. Let Zi(−k) denote the covariate Zi

with the kth component Zik deleted, and let β(−k) denote the (p − 1)-dimensional
parameter vector with βk removed, and define

hγ(λj , β(−k),Zi) = min
i,j

{λγ
j +γβ′

(−k)Zi(−k)

γZik

}
.

We propose a joint prior for (β, λ) of the form

(2.4) π(β, λ)=π(βk|β(−k), λ)I
(
βk≥−hγ(λj , β(−k),Zi)

)
π(β(−k), λ).

We see that βk and (β(−k), λ) are not independent a priori due to the nonlinear
parameter constraint. This joint prior specification only involves one parameter βk

in the constraints and makes all the other parameters (β(−k), λ) free of constraints.
Let Φ(·) denote the cumulative distribution function of the standard normal

distribution. Specifically, we take (βk|β(−k), λ) to have a truncated normal distri-
bution,

(2.5) π(βk|β(−k), λ)=
exp{− β2

k

2σ2
k

}
c(β(−k), λ)

I
(
βk≥−hγ(λj , β(−k),Zi)

)
,

where the normalizing constant depends on β(−k) and λ, given by

(2.6) c(β(−k), λ) =
√

2πσk

[
1 − Φ

(
−

hγ(λj , β(−k),Zi)
σk

)]
.

Thus, we need only to constrain one parameter βk to guarantee the nonnegativity
of the hazard function and allow the other parameters, (β(−k), λ), to be free.
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Although not required for the development, we can take β(−k) and λ to be
independent a priori in (2.4), π(β(−k), λ) = π(β(−k))π(λ). In addition, we can
specify a normal prior distribution for each component of β(−k). We assume that
the components of λ are independent a priori, and each λj has a Gamma(α, ξ)
distribution.

3. Gibbs sampling

For 0 ≤ γ ≤ 1, it can be shown that the full conditionals of (β1, . . . , βp) are
log-concave, in which case we only need to use the adaptive rejection sampling
(ARS) algorithm proposed by Gilks and Wild [19]. Due to the non-log-concavity
of the full conditionals of the λj ’s, a Metropolis step is required within the Gibbs
steps, for details see Gilks, Best and Tan [18]. For each Gibbs sampling step, the
support for the parameter to be sampled is set to satisfy the constraint (2.3),
such that the likelihood function is well defined within the sampling range. For
i = 1, . . . , n; j = 1, . . . , J ; k = 1, . . . , p, the following inequalities need to be satisfied,

βk ≥ −hγ(λj , β(−k),Zi), λj ≥ −min
i
{(γβ′Zi)1/γ , 0}.

Suppose that the kth component of β has a truncated normal prior as given in
(2.5), and all other parameters are left free. The full conditionals of the parameters
are given as follows:

π(βk|β(−k), λ, D) ∝ L(β, λ|D)π(βk|β(−k), λ)
π(βl|β(−l), λ, D) ∝ L(β, λ|D)π(βl)/c(β(−k), λ)
π(λj |β, λ(−j), D) ∝ L(β, λ|D)π(λj)/c(β(−k), λ)

where

π(βl) ∝ exp{−β2
l /(2σ2

l )}, l �= k, l = 1, . . . , p,

π(λj) ∝ λα−1
j exp(−ξλj), j = 1, . . . , J.

These full conditionals have nice tractable structures, since c(β(−k), λ) has a closed
form with our proposed prior specification. Posterior estimation is very robust with
respect to the conditioning scheme (the choice of k) in (2.4).

4. Model assessment

It is crucial to compare a class of competing models for a given dataset and select
the model that best fits the data. After fitting the proposed models for a set of pre-
specified γ’s, we compute the CPO and DIC statistics, which are the two commonly
used measures of model adequacy [14, 15, 12, 31].

We first introduce the CPO as follows. Let Z(−i) denote the (n−1)×p covariate
matrix with the ith row deleted, let y(−i) denote the (n − 1) × 1 response vector
with yi deleted, and ν(−i) is defined similarly. The resulting data with the ith case
deleted can be written as D(−i) = {(n − 1),y(−i),Z(−i), ν(−i)}. Let f(yi|Zi, β, λ)
denote the density function of yi, and let π(β, λ|D(−i)) denote the posterior density
of (β, λ) given D(−i). Then, CPOi is the marginal posterior predictive density of
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yi given D(−i), which can be written as

CPOi = f(yi|Zi, D
(−i))

=
∫ ∫

f(yi|Zi, β, λ)π(β, λ|D(−i))dβdλ

=
{∫ ∫

π(β, λ|D)
f(yi|Zi, β, λ)

dβdλ

}−1

.

For the proposed transformation model, a Monte Carlo approximation of CPOi is
given by,

ĈPOi =

{
1
M

M∑
m=1

1
Li(β[m], λ[m]|yi,Zi, νi)

}−1

,

where

Li(β[m], λ[m]|yi,Zi, νi) =
J∏

j=1

(λγ
j,[m] + γβ′

[m]Zi)δijνi/γ

× exp
[
−δij

{
(λγ

j,[m] + γβ′
[m]Zi)1/γ(yi − sj−1)

+
j−1∑
g=1

(λγ
g,[m] + γβ′

[m]Zi)1/γ(sg − sg−1)
}]

.

Note that M is the number of Gibbs samples after burn-in, and λ[m] = (λ1,[m], . . . ,
λJ,[m])′ and β[m] are the samples of the mth Gibbs iteration. A common summary
statistic based on the CPOi’s is B =

∑n
i=1 log(CPOi), which is often called the

logarithm of the pseudo Bayes factor. A larger value of B indicates a better fit of
a model.

Another model assessment criterion is the DIC (Spiegelhalter et al. [31]), defined
as

DIC = 2Dev(β, λ) − Dev(β̄, λ̄),

where Dev(β, λ) = −2 log L(β, λ|D) is the deviance, and Dev(β, λ), β̄ and λ̄ are
the corresponding posterior means. Specifically, in our proposed model,

DIC = − 4
M

M∑
m=1

log L(β[m], λ[m]|D) + 2 log L(β̄, λ̄|D).

The smaller the DIC value, the better the fit of the model.

5. Numerical studies

5.1. Application

As an illustration, we applied the transformation models to the E1690 data. There
were a total of n = 427 patients on these combined treatment arms. The covari-
ates in this analysis were treatment (high-dose interferon or observation), age (a
continuous variable which ranged from 19.13 to 78.05 with mean 47.93 years), sex
(male or female) and nodal category (1 if there were no positive nodes, or 2 oth-
erwise). Figure 2 shows the estimated cumulative hazard curves for the interferon
and observation groups based on the Nelson–Aalen estimator.
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Fig 2. The estimated cumulative hazard curves for the two arms in E1690

Table 1

The B/DIC statistics with respect to γ and J in the E1690 data

J
1 5 10

0 −567.43/1129.19 −528.36/1051.84 −555.46/1105.48
.25 −567.96/1131.71 −523.74/1045.68 −534.57/1066.86

γ .5 −568.47/1133.72 −522.55/1043.64 −529.13/1056.44
.75 −568.89/1135.16 −522.66/1043.86 −527.47/1053.17
1 −569.46/1136.54 −523.04/1044.84 −526.80/1052.06

We constrained the regression coefficient for treatment, β1, to have the trun-
cated normal prior. We prespecified γ = (0, .25, .5, .75, 1) and took the priors for
β = (β1, β2, β3, β4)′ and λ = (λ1, . . . , λJ)′ to be noninformative. For example,
(β1|λ, β(−1)) was assigned the truncated N(0, 10, 000) prior as defined in (2.5),
(βl, l = 2, 3, 4) were taken to have independent N(0, 10, 000) prior distributions,
and λj ∼ Gamma(2, .01), and independent for j = 1, . . . , J . To allow for a fair
comparison between different models using different γ’s, we used the same nonin-
formative priors across all the targeted models.

The shape of the baseline hazard function is controlled by J . The finer the
partition of the time axis, the more general the pattern of the hazard function that
is captured. However, by increasing J , we introduce more unknown parameters
(the λj ’s). For the proposed transformation model, γ also directly affects the shape
of the hazard function, and specifically, there is much interplay between J and γ
in controlling the shape of the hazard, and in some sense γ and J are somewhat
confounded. Thus when searching for the best fitting model, we must find suitable
J and γ simultaneously. Similar to a grid search, we set J = (1, 5, 10), and located
the point (J, γ) that yielded the largest B statistic and the smallest DIC.

After a burn-in of 2,000 samples and thinned by 5 iterations, the posterior com-
putations were based on 10,000 Gibbs samples. The B and DIC statistics for model
selection are summarized in Table 1. The two model selection criteria are quite con-
sistent with each other, and both lead to the same best model with J = 5 and γ = .5.
Table 2 summarizes the posterior means, standard deviations and the 95% highest
posterior density (HPD) intervals for β using J = (1, 5, 10) and γ = (0, .5, 1). For
the best model (with J = 5 and γ = .5), we see that the treatment effect has a 95%
HPD interval that does not include 0, confirming that treatment with high-dose
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Table 2

Posterior means, standard deviations, and 95% HPD intervals for the E1690 data

J γ Covariate Mean SD 95% HPD Interval
1 0 Treatment −.2888 .1299 (−.5369, −.0310)

Age .0117 .0050 (.0016, .0214)
Sex −.3479 .1375 (−.6372, −.0962)
Nodal Category .5267 .1541 (.2339, .8346)

.5 Treatment −.1398 .0626 (−.2588, −.0111)
Age .0056 .0024 (.0011, .0103)
Sex −.1464 .0644 (−.2791, −.0254)
Nodal Category .2179 .0688 (.0835, .3529)

1 Treatment −.0655 .0299 (−.1245, −.0078)
Age .0026 .0011 (.0004, .0047)
Sex −.0593 .0293 (−.1155, −.0007)
Nodal Category .0863 .0296 (.0304, .1471)

5 0 Treatment −.4865 .1295 (−.7492, −.2408)
Age −.0036 .0050 (−.0133, .0061)
Sex −.4423 .1421 (−.7196, −.1684)
Nodal Category .1461 .1448 (−.1307, .4298)

.5 Treatment −.1835 .0626 (−.3066, −.0604)
Age .0017 .0024 (−.0030, .0064)
Sex −.1557 .0655 (−.2853, −.0310)
Nodal Category .1141 .0685 (−.0179, .2510)

1 Treatment −.0525 .0274 (−.1058, .0007)
Age .0011 .0009 (−.0006, .0027)
Sex −.0334 .0249 (−.0818, .0148)
Nodal Category .0265 .0224 (−.0169, .0705)

10 0 Treatment −.7238 .1260 (−.9639, −.4710)
Age −.0175 .0047 (−.0269, −.0084)
Sex −.6368 .1439 (−.9158, −.3544)
Nodal Category .1685 .1302 (−.4184, .0859)

.5 Treatment −.2272 .0629 (−.3581, −.1094)
Age −.0009 .0023 (−.0056, .0035)
Sex −.1791 .0649 (−.3094, −.0546)
Nodal Category .0534 .0670 (−.0814, .1798)

1 Treatment −.0610 .0274 (−.1142, −.0070)
Age .0006 .0008 (−.0010, .0021)
Sex −.0334 .0256 (−.0850, .0155)
Nodal Category .0107 .0225 (−.0325, .0569)

interferon indeed substantially reduced the risk of melanoma relapse compared to
observation.

In Figure 3, we present the estimated hazards for the interferon and observation
arms for γ = 0, .5 and 1 using J = 5. It is important to note that, when γ = .5, the
hazard ratio increases over time while the hazard difference decreases.

The proportional hazards model yields a hazard ratio of 1.63, the additive haz-
ards model gives a hazard difference of .05, and the model with γ = .5 shows
hazard ratios of 1.27, 1.36 and 1.61, and hazard differences of .14, .11 and .07 at .5,
1 and 3 years, respectively. This interesting feature between the hazards cannot be
captured through a conventional modeling structure. An opposite phenomenon in
which the difference of the hazards increases in t whereas their ratio decreases, was
noted in the British doctors study (Breslow and Day [6], p.112, pp. 336-338), which
examined the effects of cigarette smoking on mortality. We also computed the half
year and one year posterior predictive survival probabilities for a 48 years old male
patient under the high-dose interferon treatment with one or more positive nodes.
When γ = .5, the .5 year posterior predictive survival probabilities are .8578, .7686
and .7804 for J = 1, 5 and 10; the 1 year survival probabilities are .7357, .6043 and
.6240, respectively. When J is large enough, the posterior inference becomes stable.
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Fig 3. Estimated hazards under models with γ = 0, .5 and 1, for male subjects at age= 47.93
years and with one or more positive nodes, using J = 5.

Table 3

Sensitivity analysis with βk having a truncated normal prior using J = 5 and γ = .5

Truncated Covariate Regression Coefficient Mean SD 95% HPD Interval
Age Treatment −.1862 .0633 (−.3122, −.0627)

Age .0016 .0024 (−.0032, .0063)
Sex −.1551 .0665 (−.2802, −.0187)
Nodal Category .1132 .0697 (−.0229, .2511)

Sex Treatment −.1883 .0634 (−.3107, −.0592)
Age .0017 .0024 (−.0032, .0063)
Sex −.1572 .0651 (−.2801, −.0296)
Nodal Category .1131 .0672 (−.0165, .2448)

Nodal Category Treatment −.1850 .0633 (−.3037, −.0566)
Age .0017 .0024 (−.0030, .0062)
Sex −.1519 .0662 (−.2819, −.0236)
Nodal Category .1124 .0679 (−.0223, .2416)

We examined MCMC convergence based on the method proposed by Geweke
[17]. The Markov chains mixed well and converged fast. We conducted a sensitivity
analysis on the choice of the conditioning scheme in the prior (2.5) by choosing
the regression coefficient of each covariate to have a truncated normal prior. The
results in Table 3 show the robustness of the model to the choice of the constrained
parameter in the prior specification. This demonstrates the appealing feature of
the proposed prior specification, which thus facilitates an attractive computational
procedure.

5.2. Simulation

We conducted a simulation study to examine properties of the proposed model. The
failure times were generated from model (2.1) with γ = .5. We assumed a constant
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Table 4

Simulation results based on 500 replications,
with the true values β1 = .7 and β2 = 1

n c% Mean (β1) SD (β1) Mean (β2) SD (β2)
300 0 .7705 .2177 1.0556 .4049

25 .7430 .2315 1.0542 .4534
500 0 .7424 .1989 1.0483 .3486

25 .7510 .2084 1.0503 .3781
1000 0 .7273 .1784 1.0412 .2920

25 .7394 .1869 1.0401 .3100

baseline hazard, i.e., λ0(t) = .5, and two covariates were generated independently:
Z1 ∼ N(5, 1) and Z2 is a binary random variable taking a value of 1 or 2 with
probability .5. The corresponding regression parameters were β1 = .7 and β2 = 1.
The censoring times were simulated from a uniform distribution to achieve approx-
imately a 25% censoring rate. The sample sizes were n = 300, 500 and 1,000, and
we replicated 500 simulations for each configuration.

Noninformative prior distributions were specified for the unknown parameters as
in the E1690 example. For each Markov chain, we took a burn-in of 200 samples and
the posterior estimates were based on 5,000 Gibbs samples. The posterior means
and standard deviations are summarized in Table 4, which show the convergence
of the posterior means of the parameters to the true values. As the sample size
increases, the posterior means of β1 and β2 approach their true values and the
corresponding standard deviations decrease. As the censoring rate increases, the
posterior standard deviation also increases.

6. Discussion

We have proposed a class of survival models based on the Box–Cox transformed
hazard functions. This class of transformation models makes hazard-based regres-
sion more flexible, general, and versatile than other methods, and opens a wide
family of relationships between the hazards. Due to the complexity of the model,
we have proposed a joint prior specification scheme by absorbing the non-linear
constraint into one parameter while leaving all the other parameters free of con-
straints. This prior specification is quite general and can be applied to a much
broader class of constrained parameter problems arising from regression models. It
is usually difficult to interpret the parameters in the proposed model except when
γ = 0 or 1. However, if the primary aim is for prediction of survival, the best fitting
Box–Cox transformation model could be useful.
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