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Discrete linear Weingarten surfaces with
singularities in Riemannian and

Lorentzian spaceforms

Wayne Rossman and Masashi Yasumoto

Abstract.

In this paper we define and analyze singularities of discrete lin-
ear Weingarten surfaces with Weierstrass-type representations in
3-dimensional Riemannian and Lorentzian spaceforms. In particular,
we discuss singularities of discrete surfaces with non-zero constant
Gaussian curvature, and parallel surfaces of discrete minimal and max-
imal surfaces, and discrete constant mean curvature 1 surfaces in de
Sitter 3-space, including comparisons with different previously known
definitions of such singularities.

§1. Introduction

In this paper we examine discrete surfaces withWeierstrass-type rep-
resentations in spaceforms, taking advantage of the more general setting
of Lie sphere geometry and discrete Legendre immersions (see Definition
2.1 here), and with helpful motivations coming from the developing field
of Ω surfaces. There are numerous Weierstrass-type representations in
3-dimensional spaceforms in addition to the classical representation for
minimal surfaces in R

3, for example, for

Received October 13, 2015.
Revised September 29, 2016.
2010 Mathematics Subject Classification. Primary 53A10, Secondary

52C99.
Key words and phrases. discrete differential geometry, Weierstrass-type rep-

resentation, singularity.
The first author was partly supported by the Grant-in-Aid for Scientific

Research (C) 15K04845 and (S) 24224001, Japan Society for the Promotion of
Science, and the second author was supported by the Grant-in-Aid for JSPS
Fellows Number 26-3154. Both authors were supported by the JSPS/FWF bi-
lateral joint project “Transformations and Singularities” between Austria and
Japan.



384 W. Rossman and M. Yasumoto

(1) maximal surfaces (spacelike immersion with mean curvature
identically 0) in Minkowski 3-space R2,1 by Kobayashi [18], see
also works of Fujimori, Saji, Umehara and Yamada [10], [26],

(2) constant mean curvature (CMC, for short) 1 surfaces in hyper-
bolic 3-space H3 by Bryant [6] (see also [25]),

(3) flat surfaces in H
3 by Gálvez, Mart́ınez, Milán [11], with

separate different representations by Kokubu, Umehara and
Yamada [20], [21],

(4) CMC 1 surfaces in de Sitter 3-space S
2,1 by Aiyama, Akuta-

gawa [1],
(5) linear Weingarten surfaces of Bryant type (BrLW surfaces, for

short) in H3 by Gálvez, Mart́ınez, Milán [12], and Kokubu and
Umehara [19],

(6) linear Weingarten surfaces of Bianchi type (BiLW surfaces, for
short) in S

2,1 by Aledo, Espinar [2].

Regarding the last two examples above, Izumiya and Saji [17] showed
that a necessary and sufficient condition for an immersion in H3 to be
BrLW is that its unit normal vector field is BiLW (see §4).

Recently, there has been work on discretization of the above rep-
resentations. Bobenko, Pinkall [3] described discrete isothermic sur-
faces in the Euclidean 3-space R3, and as an application, they de-
rived the Weierstrass representation for discrete isothermic minimal sur-
faces in R3, using integrable systems techniques. In the same vein,
Hertrich-Jeromin [13] gave the Weierstrass-type representation for dis-
crete isothermic CMC 1 surfaces in H3.

Burstall, Hertrich-Jeromin and the first author [8] described discrete
linear Weingarten surfaces in any 3-dimensional spaceform using Lie
sphere geometry, which we briefly introduce in §5. Using that method,
we can treat discrete linear Weingarten surfaces in any 3-dimensional
spaceform. They did not consider singularities of discrete surfaces, how-
ever, as we will do here.

Returning to smooth surfaces, unlike the minimal and (non-zero)
CMC surfaces in R

3, general linear Weingarten surfaces will have singu-
larities. In fact, singularities of maximal surfaces in R

2,1, flat and BrLW
surfaces in H3, and BiLW surfaces in S2,1 are investigated in [10, 19, 26].
Thus, it is natural to still consider singularities when discretizing these
surfaces. However, difficulties occur with this (Definition 3.1), and over-
coming those difficulties is our primary task here.
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Hoffmann, Sasaki, Yoshida and the first author [16] described dis-
crete BrLW surfaces in H

3, and furthermore treated singularities of dis-
crete flat surfaces in H3. For that, they considered the behavior of caus-
tics of smooth flat surfaces at a singular point, via the Weierstrass-type
representation. Such a caustic contacts the surface at a singular point,
which lead to a natural definition of singularities in the discrete case, i.e.
that a singularity of a discrete flat surface is a vertex that contacts the
(discrete) caustic. We will define singular vertices in a more direct way
that applies to a wider variety of discrete surfaces, and show equivalence
of the definitions in the case considered just above (Theorem 6.1).

The second author [28] described discrete maximal surfaces in the
Minkowski 3-space R

2,1 and analyzed their singular faces, that is, non-
spacelike faces (Definition 8.1). This is also a natural way to define
singular behavior, because the tangent plane of a smooth maximal sur-
face is non-spacelike precisely at singular points.

Thus, singularities of discrete surfaces could be either vertices or
faces, and two of our primary results here are about relating those two
viewpoints, in particular, in the cases of discrete maximal surfaces in
R

2,1 and discrete CMC 1 surfaces in S
2,1.

Smooth 2-dimensional Legendre immersions in Lie sphere geometry
project to surfaces in spaceforms that can have singularities. However,
those surfaces considered together with their unit normal maps become
immersions (by definition), and they are called fronts. The most typical
singularities on fronts are cuspidal edges of 3/2 type, and next perhaps
are swallowtails. At such singularities, exactly one of the principal cur-
vatures will diverge (see [24]), and equivalently, one of the principal
curvature spheres will become a point sphere. Using that the notion
of principal curvature spheres in Lie sphere geometry is independent of
the choice of projection to a 3-dimensional spaceform, we define singular
vertices on projections of discrete Legendre immersions.

While typical singularities on smooth surfaces can be found by lo-
cating the points where one principal curvature blows out to infinity,
on discrete surfaces the principal curvatures are discrete functions from
the set of edges to the real numbers, and thus we can only identify the
vertices at which a principal curvature changes sign. As a result, it is
not so immediate to distinguish the points that are singular from the
points that are parabolic (at which exactly one of the two bounded prin-
cipal curvature becomes zero) or flat (at which both principal curvatures
become zero). This is why we will use a particular terminology “FPS
vertices” in Definition 3.1. This is the first of our three goals:
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(1) We will find and examine cases where the distinction between
singular and parabolic or flat points is possible. Such cases
include surfaces of constant Gaussian curvature (CGC) K �= 0
(see §6), and some particular discrete linear Weingarten sur-
faces for which Weierstrass type representations exist (§7, §8,
§9).

(2) We will confirm that the discrete Weierstrass type representa-
tions are compatible with other ways of defining discrete sur-
faces with specific curvature properties. In particular, they are
compatible with the definitions given by Burstall, Hertrich-
Jeromin and the first author in [8] (Proposition 5.1).

(3) We will find relationships between singular vertices and singu-
lar faces in particular cases (Theorem 8.1, Theorem 9.1, Corol-
lary 9.1).

§2. Discrete Legendre immersions

First we recall smooth Legendre immersions in the context of Lie
sphere geometry, that is, maps Λ of 2-manifolds M2 into the collection
of null planes in R4,2, with metric signature (−,+,+,+,+,−), i.e.

(X,Y )R4,2 = (X,Y ) := −x1y1 + x2y2 + x3y3 + x4y4 + x5y5 − x6y6

for X = (x1, x2, x3, x4, x5, x6)
t, Y = (y1, y2, y3, y4, y5, y6)

t ∈ R4,2. Then

L
5 := {X ∈ R

4,2|(X,X) = 0}
denotes the light cone of R4,2.

Let Λ ⊂ L
5 be a 2-dimensional null subspace, which projectivizes to

a line in the projectivized light cone PL
5 called a contact element. This

line will represent a family of spheres (a pencil) that are all tangent
(with same orientation) at one point.

If Λ is a (smooth) map from M = M2 to the collection of null planes
in R

4,2, where M is a 2-dimensional manifold, then Λ is a Legendre
immersion if,

(1) for any pair of sections X1, X2 of Λ,

dX1 ⊥ X2 (contact condition), and

(2) for any m ∈ M and any choice of Y ∈ TmM , dX(Y ) ∈ Λ(m)
for all sectionsX of Λ(m) implies Y = 0 (immersion condition).

The immersion condition can be restated in terms of a basis of sec-
tions for the null planes Λ as follows: If

Λ = span{X1,X2} ,
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with basisX1,X2 : M2 → L5, then the immersion condition is equivalent
to

dX1(Y ), dX2(Y ) ∈ Λ(m) implies Y = 0

for all Y ∈ TmM , and one can then check that this condition is inde-
pendent of the choice of basis X1,X2.

By choosing two nonzero perpendicular vectors p, q in R4,2 (p not
null), we can project Λ to a surface f : M2 → M3 in the 3-dimensional
spaceform

M3 = M3
p,q := {X ∈ R

4,2 | (X,X) = (X, p) = 0, (X, q) = −1}

with sectional curvature −(q, q), by taking f ∈ Sec(Λ) such that

(1) (f, p) = 0 and (f, q) = −1 ,

where Sec(Λ) denotes the set of all sections of Λ. Note that, when
we choose a constant timelike (resp. spacelike) vector p ∈ R4,2 and
a constant vector q ∈ R

4,2, M3 becomes a 3-dimensional Riemannian
(resp. Lorentzian) spaceform. For details, see [23], and for a particular
choice of p and q, see Section 4.

Let n denote the unit normal to f in M3, i.e. n ∈ Sec(Λ) and

(n, q) = 0 and (n, p) = −1.

The sections of Λ = span{f, n} represent the sphere congruences of f ,
and then f , resp. n, is the point sphere, resp. tangent geodesic plane,
congruence. Let sα for α = 1, 2 be sections of Λ that represent the
principal curvature sphere congruences, which can be defined by

sα = καf + n

using the principle curvatures κα of f , or equivalently by the directional
derivative conditions that D�vα

sα ∈ Sec(Λ) for some tangent vector fields
�vα on M2.

For Λ above to be a Legendre immersion, both immersion and con-
tact conditions must be satisfied. For a discrete Legendre map Λ as in
Definition 2.1 below, discretized versions of the immersion and contact
conditions are needed. We also assume the existence of “discrete curva-
ture line coordinates”, that is, we require that the four vertices of each
quadrilateral be concircular, which is called a principal net. In this way,
the properties of smooth Legendre immersions motivate the following
definition of discrete Legendre immersions:
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Definition 2.1 ([8]). A map

Λ : Z2 (or some subdomain of Z2) → {null planes in R
4,2}

is a discrete Legendre immersion if, for any quadrilateral , with vertices
i, j, k, � ordered counterclockwise about the quadrilateral and with i in the
lower left corner in Z

2, and with corresponding surface vertices fi, fj ,
fk, fl defined like in (1),

(1) (principal net condition) dim(span{fi, fj , fk, f�}) = 3,
(2) (first immersion condition) There exist p, q such that the dif-

ference of any two of fi, fj , fk, f� is non-null ,
(3) (second immersion condition) For some p, q as in item (2)

above, fk − fi and f� − fj are not parallel ,

(4) (contact condition) Λi ∩ Λj �= {�0}, Λi ∩ Λ� �= {�0}.
Remark. Item (1) in Definition 2.1 and (f∗, q) = −1 imply

fi, fj , fk, f�

all lie in some 2-dimensional plane. Item (3) implies any two or three
vertices amongst fi, fj , fk, f� span a 2 or 3 dimensional subspace of R4,2,
respectively, with nondegenerate induced metric (+,−) or (+,+,−).

§3. FPS vertices of projections of discrete Legendre immer-
sions

Generically, a smooth surface (section) f ∈ Sec(Λ) will have a sin-
gularity when one of the principal curvature spheres sα becomes a point
sphere [24], i.e. when sα ⊥ p for α = 1 or 2. Also, where f does not
have a singularity, it will have a parabolic or flat point if one of the sα
becomes a tangent geodesic plane, i.e. sα ⊥ q.

In the case of discrete Legendre immersions, the domain becomes
Z
2, or some subdomain of Z2, rather than M2. We define the curvature

spheres as those spheres represented by nonzero vectors ([8])

s1 ∈ Λi ∩ Λj and s2 ∈ Λi ∩ Λ� .

Thus we have spheres in M3, associated to edges, that lie in both of the
sphere pencils defined at the two endpoints of the edges. In particular
the normal geodesics (i.e. the geodesics through the vertices and perpen-
dicular to the spheres in the sphere pencils) emanating from the adjacent
vertices, when they do intersect, will intersect at equal distances from
the two vertices.
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Thus, s1 = s(m,n),(m+1,n) will be defined on horizontal edges from

vertex i = (m,n) ∈ Z2 to vertex j = (m+1, n) ∈ Z2 as the representative
(for a sphere) that is common to both the null planes Λi and Λj , and
s2 = s(m,n),(m,n+1) is defined analogously on vertical edges from i to
� = (m,n+ 1). We then define the principal curvatures by ([4], [8])

(2) κij =
(s1, q)

(s1, p)
, κi� =

(s2, q)

(s2, p)
.

As the principal curvature spheres sα and principal curvatures καβ

are defined on edges, not vertices, we lose the ability to look for points
in the domain where sα is exactly perpendicular to p or q. Thus we
reformulate the conditions for singularities and parabolic or flat points
by finding vertices in the domain at which the καβ change sign in at
least one direction:

Definition 3.1. For a Λ as in Definition 2.1, together with a choice
of spaceform determined from a choice of p and q, we say that (m,n) is
a flat-or-parabolic-or-singular (FPS) vertex if

κ(m−1,n),(m,n) · κ(m,n),(m+1,n) ≤ 0 or κ(m,n−1),(m,n) · κ(m,n),(m,n+1) ≤ 0.

When both p and q are non-null, switching p and q will result in
the projected surface f changing to its Gauss map n. In the smooth
case, generically, a parabolic or flat point on one of the two surfaces
corresponds to a singular point on the other, thus it is not surprising
that these notions appear together in Definition 3.1.

In certain special cases, we can distinguish the singular points from
the parabolic or flat points, which we will see here.

As another approach for considering singularities on discrete sur-
faces, motivated by the second author’s work [28], we can define singular
faces. We come back to this in Definition 8.1, and examine criteria for
singular faces, and also their relationships with singular vertices in some
special cases.

§4. Smooth linear Weingarten surfaces of Bryant and Bianchi
type in H

3 and S
2,1

We include this section to motivate the discretizations in §5. In R3,1

with signature (−,+,+,+), with points (x0, x1, x2, x3) ∈ R
3,1 described

in matrix form as

X =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,



390 W. Rossman and M. Yasumoto

Fig. 1. Examples of FPS vertices in R
3 on the left and right,

and a non-example in the middle. The figure on the
left shows a situation we should regard as a singu-
larity, and the figure on the right shows what should
be regarded as a flat or parabolic point. The figure
in the middle is neither. Here, if i = (m,n), then
we have either i+ = (m + 1, n), i− = (m − 1, n) or
i+ = (m,n+ 1), i− = (m,n− 1).

the metric is 〈X,Y 〉 = −1

2
tr

(
X

(
0 −i
i 0

)
Y t

(
0 −i
i 0

))
. We define

H
3 := {X ∈ R

3,1|〈X,X〉 = −1} = {±FF
t|F ∈ SL2C},

S
2,1 := {X ∈ R

3,1|〈X,X〉 = 1} = {F
(
1 0
0 −1

)
F

t|F ∈ SL2C}.

We call a surface f̂ in H3 a linear Weingarten surface of Bryant type

(BrLW surface, for short) if f̂ satisfies

(3) 2t(Hf̂ − 1) + (1− t)(Kext,f̂ − 1) = 0,

where Kext,f̂ and Hf̂ are the extrinsic Gaussian and mean curvatures of

f̂ with respect to H
3, and we call a surface n̂ in S

2,1 a linear Weingarten
surface of Bianchi type (BiLW surface, for short) if n̂ satisfies

(4) 2t(Hn̂ − 1)− (1 + t)(Kext,n̂ − 1) = 0.
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Solving

dE = E

(
0 g′

(g′)−1 0

)
dz

for E ∈ SL2(C), where g is a holomorphic function with nonzero deriva-
tive g′ = ∂zg on a Riemann surface M2 with local coordinate z, we take,
for any constant t ∈ R,

(5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L =

(
0

√
T

−1√
T

−tḡ√
T

)
(T := 1 + tgḡ),

f̂ = sgn(T )ELEL
t
, n̂ = sgn(T )EL

(
1 0
0 −1

)
EL

t
,

making the genericity assumption T �= 0.

Then f̂ is a BrLW surface in H3 with unit normal vector field n̂,

since 〈f̂ , n̂〉 = 〈df̂ , n̂〉 = 0. Moreover, n̂ is a BiLW surface in S2,1. Here
we outline a proof of this.

The three fundamental forms of f̂ become, with h := |g′|−2T −2,

I = h
{
((1− t)|g′|2 + T 2)2dx2 + ((1− t)|g′|2 − T 2)2dy2

}
,

II = −h
{
(|g′|4 − (t|g′|2 − T 2)2)dx2 + (|g′|4 − (t|g′|2 + T 2)2)dy2

}
,

III = h
{
((1 + t)|g′|2 − T 2)2dx2 + ((1 + t)|g′|2 + T 2)2dy2

}
.

The principal curvatures of f̂ and n̂ are then

k1,f̂ = − (1 + t)|g′|2 − T 2

(1− t)|g′|2 + T 2
, k2,f̂ = − (1 + t)|g′|2 + T 2

(1− t)|g′|2 − T 2
,

k1,n̂ =
1

k1,f̂
, k2,n̂ =

1

k2,f̂
, Hf̂ =

Hn̂

Kext,n̂
, Kext,f̂ =

1

Kext,n̂
,

and so f̂ satisfies Equation (3) and n̂ satisfies Equation (4). In fact, all
BrLW and BiLW surfaces without umbilics (g′ would be zero at umbilics)
can be constructed this way, using holomorphic functions g.

Thus sufficient conditions for f̂ and n̂, respectively, to have singu-
larities are

T 4 = (1− t)2|g′|4 , T 4 = (1 + t)2|g′|4 ,
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respectively. For certain special values of t these conditions simplify as
follows:

f̂ with t = 0 : |g′| = 1,

n̂ with t = 0 : |g′| = 1,

f̂ with t = 1 : null condition,

n̂ with t = −1 : |g| = 1.

Because f̂ and n̂ are smooth well-defined maps that can have sin-
gularities, it is natural to lift to Lie sphere geometry in R

4,2, with

(6) f = (f̂ , 1, 0)t , n = (n̂, 0, 1)t

determined by

p = (0, 0, 0, 0, 0, 1)t , q = (0, 0, 0, 0,−1, 0)t .

For a BrLW surface f̂ ∈ H
3 = M3

p,q with BiLW normal n̂ ∈ S
2,1 = M3

q,p,
we can define the Legendre lift Λ = span{s+, s−} for

s± = b±f + n with b+ = 1 and b− =
t+ 1

t− 1
,

and then s± have constant conserved quantities

q+ = (0, 0, 0, 0, 1, 1)t , q− = (0, 0, 0, 0, t− 1, t+ 1)t .

in the sense that (s±, q±) = 0, equivalently the equations Γ±q± = 0 for
the associated families of flat connections hold (see [7], [23]). Further-
more, because b± are constant and because the elements gij of the first

fundamental form of f̂ satisfy (using Equation (3))

±
√
g11√
g22

=
1− κ2

1− κ1
=

−t− 1 + (t− 1)κ2

t+ 1− (t− 1)κ1
,

all of Equations (4.5) and (4.10) and (4.11) in [23] hold, and so s± are
isothermic sphere congruences. Thus Λ is an Ω surface with a pair of
constant conserved quantities.

Conversely, if we start with an Ω surface with constant conserved
quantities q± for isothermic sphere congruences s± = b±f + n respec-
tively, we can reverse the above arguments to see that we obtain a BrLW

surface f̂ with BiLW normal n̂ in the spaceforms M3
p,q and M3

q,p, with p
and q as above.

This proves the next lemma, which was already understood in [7]:
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Lemma 4.1 ([7]). All smooth BrLW and BiLW surfaces in H3 and
S
2,1 are projections of Ω surfaces with constant conserved quantities, at

least one of which is lightlike. Conversely, for any smooth Ω surface with
constant conserved quantities1 q±, at least one of which is lightlike, its

projections f̂ and n̂ given by choosing p, q ∈ span{q±} are BrLW and
BiLW surfaces, respectively.

The same result holds for general linear Weingarten f̂ and n̂, even
without the condition that at least one of the q± is lightlike, again see
[7]. However, here we consider only the cases given in Lemma 4.1.

§5. Discrete surfaces with Weierstrass-type representations

First we give Weierstrass-type representations for discrete surfaces
using the more symmetric form of the base equation as in §6 of [16].

Let g : Z2 → C be a function satisfying

cr(gi, gj , gk, g�) :=
(gi − gj)(gk − g�)

(gj − gk)(g� − gi)
=

αij

αi�
< 0 ,

where αij (resp. αi�) is a scalar function defined on the horizontal edges
(resp. vertical edges) and unchanging with respect to vertical (resp.
horizontal) shifts. A complex-valued function g satisfying the above
condition is called a discrete holomorphic function and αij , αi� are called
cross ratio factorizing functions. Now we assume the discrete analog of
g′ �= 0, i.e. dgij := gj − gi �= 0 and dgi� �= 0 for all quadrilaterals. We
again make the genericity assumption

Ti := 1 + tgigi �= 0

for all vertices i, for the chosen constant t ∈ R. Take λ ∈ R to be any
non-zero constant so that 1− λαij �= 0 on all edges. Solving

E−1
i Ej =

1√
1− λαij

(
1 dgij

λαij

dgij
1

)

and the analogous equation with j replaced by �, for Ei ∈ SL2C for all
i, and defining

Li =

(
0

√
Ti

−1√
Ti

−tḡi√
Ti

)
,

1We assume q+, q− are not parallel, and that span{q±} is not a null plane.
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the surface f̂ and its normal n̂

f̂i = sgn(Ti)EiLiEiLi
t
, n̂i = sgn(Ti)EiLi

(
1 0
0 −1

)
EiLi

t
,

we will see that these are discrete BrLW surfaces and BiLW surfaces
in H3 and S2,1, respectively. Direct computations confirm the following
lemma:

Lemma 5.1. For any choice of t, we have the following :

• df̂ij ||dn̂ij , df̂i�||dn̂i� in R3,1 for all edges ij, i�, and the prin-
cipal curvatures κi∗ satisfy

dni∗ = −κi∗dfi∗ ,

and furthermore

(7) κi∗ =
−|dgi∗|2(1 + t) + (1 + t|gi|2)(1 + t|g∗|2)λαi∗
−|dgi∗|2(−1 + t) + (1 + t|gi|2)(1 + t|g∗|2)λαi∗

,

for ∗ = j, �.

• 1 + t|gi|2 > 0, resp. 1 + t|gi|2 < 0, if and only if f̂i lies in the
upper, resp. lower, sheet of H3.

• f̂i, f̂j , f̂k, f̂� lie in a plane in R
3,1, and thus are concircular in

H3.

Corollary 5.1. For any choice of t, the parallel surfaces

cosh θ · f̂ + sinh θ · n̂ , cosh θ · n̂+ sinh θ · f̂

are concircular for all θ ∈ R.

Proof. df̂i∗||dn̂i∗ and the fact that corresponding quadrilaterals of
f and n lie in parallel planes imply that corresponding quadrilaterals

of cosh θ · f̂ + sinh θ · n̂ also lie in parallel planes, proving the corollary.
Q.E.D.

Like in Equation (6), we can lift f̂ and n̂ to f, n ∈ R4,2, producing
a discrete Legendre immersion Λ = span{f, n}. We define

A(f, f)ijk� :=
1

2
dfik ∧ dfj� ,

and we can define real-valued functions H = Hf̂ and K = Kf̂ on faces

by

(8) A(f, n)ijk� :=
1

4
{dfik ∧ dnj� + dnik ∧ dfj�} = −H · A(f, f)ijk� ,
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(9) A(n, n)ijk� =
1

2
dnik ∧ dnj� = K · A(f, f)ijk� .

We have the following definition:

Definition 5.1 ([8]). We call Kf̂ and Hf̂ the (extrinsic) Gaussian

and mean curvature of the projection f̂ of Λ to the spaceform given by
p, q.

Proven similarly to the corresponding result for R3 in [4], using item
1 of Lemma 5.1, we have:

Lemma 5.2. For all choices of spaceforms, we have

Hf̂ =
κijκk� − κi�κjk

κij − κi� − κjk + κk�
,

Kf̂ =
κijκjkκk�κi�

κij − κi� − κjk + κk�

(
− 1

κij
+

1

κjk
+

1

κi�
− 1

κk�

)
.

Proof. The compatibility condition n̂ij + n̂jk = n̂i� + n̂�k for n̂
implies

κijdf̂ij + κjkdf̂jk = κi�df̂i� + κk�df̂�k .

Thus

κijdf̂ij + κjk(df̂ik − df̂ij) = κi�df̂i� + κk�(df̂ik − df̂i�)

⇒ df̂ik = c1df̂ij + c2df̂i� ,

where

(10) c1 =
−κij + κjk

κjk − κk�
, c2 =

−κlk + κi�

κjk − κk�
.

Similarly, by the compatibility condition for f̂ and the condition
dn∗∗ = −κ∗∗df∗∗, we have dn̂ik = c3dfij + c4dfil, where

(11) c3 =
κk�(κjk − κij)

κk� − κjk
, c4 =

κjk(κi� − κk�)

κk� − κjk
.

Note that df̂j� = df̂i� − df̂ij , dn̂j� = dn̂i� − dn̂ij , and we have

(12) Hf̂ =
κi�c1 + κijc2 − c3 − c4

2(c1 + c2)
, Kf̂ = −κi�c3 + κijc4

c1 + c2
.

Substituting Equations (10) and (11) into Equation (12), we have Hf̂

and Kf̂ as in Lemma 5.2. Q.E.D.
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We can similarly define the Gaussian and mean curvatures Kn̂, Hn̂

of n̂, and we see that

(13) Kn̂ =
1

Kf̂

, Hn̂ =
Hf̂

Kf̂

, κij,n̂ =
1

κij,f̂

, κil,n̂ =
1

κil,f̂

.

One can confirm the next lemma via Lemma 5.2 and Equations (7), (13):

Lemma 5.3. The mean and Gaussian curvatures Hf̂ and Kf̂ of a

discrete surface f̂ with Weierstrass-type representation in H
3 satisfy

(14) 2t(Hf̂ − 1) + (1− t)(Kf̂ − 1) = 0 ,

and the mean and Gaussian curvatures Hn̂ and Kn̂ of a discrete surface
n̂ with Weierstrass-type representation in S2,1 satisfy

(15) 2t(Hn̂ − 1)− (1 + t)(Kn̂ − 1) = 0 .

Thus we know that the discrete surfaces with Weierstrass-type rep-
resentations defined here are included amongst the discrete BrLW and
BiLW surfaces defined in [8], by the following Proposition 5.1 from [8].
This proposition also includes discrete minimal surfaces in R3 and their
parallel surfaces in R

3, as well as parallel surfaces of discrete maximal
surfaces in R2,1.

Proposition 5.1 ([8]). All discrete BrLW and BiLW surfaces in
H

3 and S
2,1, and all parallel surfaces of discrete minimal surfaces in

R3 and discrete maximal surfaces in R2,1, are projections of discrete
Ω surfaces with constant conserved quantities, at least one of which is
lightlike. Conversely, for any discrete Ω surface with constant conserved

quantities2 q±, at least one of which is lightlike, its projections f̂ and n̂
given by choosing p, q ∈ span{q±} are discrete BrLW and BiLW surfaces,

respectively, or f̂ is either a parallel surface of a discrete minimal surface
in R

3 or maximal surface in R
2,1.

In the smooth case, as mentioned in [19], parallel surfaces of BrLW
surfaces in H3 are also BrLW surfaces, and BrLW surfaces are classified
into the following three types:

(1) flat surfaces (BrLW surfaces with t = 0),
(2) linear Weingarten surfaces of hyperbolic type (BrLW surfaces

with t > 0),

2Again we assume q+, q− are not parallel, and that span{q±} is not a null
plane.
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Fig. 2. One example of a discrete BrLW surface in H3 with
t = −2. Solid gray vertices are the FPS vertices of the
surface. In order to draw the surface, we use stere-
ographic projection from the south pole (0, 0, 0,−1).
When 1 + t|gi|2 > 0, the surface is projected to the
inside of the unit ball B3, whose boundary is drawn
in gray above. When 1+ t|gi|2 < 0, it is projected to
the outside of B3. One-third of the surface is shown
on the right.

(3) linear Weingarten surfaces of de Sitter type (BrLW surfaces
with t < 0).

Parallel surfaces of each type belong to the same type. Thus parallel
surfaces of a flat front are also flat. Likewise, parallel surfaces of the
other two types again belong to the same types.

Here we see that the same result as in the smooth case holds also in
the discrete case. Let f̂ be a discrete BrLW surface in H

3. From [22],
we have that the Gaussian and mean curvatures Kθ

f̂
, Hθ

f̂
of the parallel

surface f̂θ at oriented distance θ are

Kθ
f̂
=

Kf̂ cosh
2 θ −Hf̂ sinh 2θ + sinh2 θ

cosh2 θ −Hf̂ sinh 2θ +Kf̂ sinh
2 θ

,

Hθ
f̂
= −

(Kf̂ + 1) sinh(2θ)− 2Hf̂ cosh(2θ)

2{cosh2 θ −Hf̂ sinh(2θ) +Kf̂ sinh
2 θ}

.
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Observing that f̂ = (f̂θ)−θ, we have

(16)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kf̂ =
Kθ

f̂
cosh2 θ +Hθ

f̂
sinh 2θ + sinh2 θ

cosh2 θ +Hθ
f̂
sinh 2θ +Kθ

f̂
sinh2 θ

,

Hf̂ =
(Kθ

f̂
+ 1) sinh(2θ) + 2Hθ

f̂
cosh(2θ)

2{cosh2 θ +Hθ
f̂
sinh(2θ) +Kθ

f̂
sinh2 θ}

.

Substituting Equation (16) into Equation (14), we have

2T (Hθ
f̂
− 1) + (1− T )(Kθ

f̂
− 1) = 0,

where T = e−2θt. Thus discrete BrLW surfaces in H
3 are classified into

the three types (1) − (3) mentioned above. Similarly, discrete BiLW
surfaces in S

2,1 are classified into three types.

§6. Singular vertices on discrete nonzero CGC surfaces in M3

When a smooth surface has CGC K = κ1κ2 �= 0, then when one of
the κα passes through zero, the other passes through infinity, and we can
always call this a singular point. This is precisely what allowed for the
description of singularities of discrete flat (i.e. K ≡ 1) surfaces in H3 as
given in [16]. Here we develop that into a definition without reliance on
a Weierstrass type representation, extending it to all discrete surfaces in
any M3 with nonzero constant Gaussian curvature.

Definition 6.1. Consider Λ as in Definition 2.1, together with a
choice of spaceform determined by choosing p and q, that has projection

f̂ with nonzero constant discrete Gaussian curvature Kf̂ . We say that

(m,n) is a singular vertex of f̂ if

κ(m−1,n),(m,n) ·κ(m,n),(m+1,n) ≤ 0 or κ(m,n−1),(m,n) ·κ(m,n),(m,n+1) ≤ 0.

For a K ≡ 1 surface with Weierstrass-type representation in H
3, it

was shown in [16] that, without loss of generality, |κ(m,n),(m,n+1)| > 1
and |κ(m,n),(m+1,n)| < 1 for all m and n, which we note in the following
theorem:

Theorem 6.1. In the case of a K ≡ 1 surface in H
3 with

Weierstrass-type representation so that the horizontal edges have prin-
cipal curvatures with absolute value greater than 1, the first inequality
in Definition 6.1 is equivalent to the definition of singular vertices for
discrete flat surfaces in H

3 as given in [16].
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Proof. By Lemma 5.1, for t = 0 we have

κi∗ =
−|dgi∗|2 + λαi∗
|dgi∗|2 + λαi∗

.

Let p−, p and p+ be three consecutive vertices in one direction in the
lattice domain. We can define singularities on discrete flat (i.e. K ≡ 1)
surfaces in H

3, now without referring to caustics as in [16], by simply
using the condition

−|dgp−p|2 + λαp−p

|dgp−p|2 + λαp−p
· −|dgpp+ |2 + λαpp+

|dgpp+ |2 + λαpp+

< 0,

as understood in [16]. Q.E.D.

However, our definition allows the second inequality in Definition
6.1, which allows us to include more singular vertices (see Figure 3).

§7. Discrete minimal surfaces and their parallel surfaces

7.1. Smooth minimal surfaces in R3

We can always take a smooth constant mean curvature (CMC) sur-
face in a 3-dimensional Riemannian spaceform to have local isothermic
coordinates z = u + iv on M2, u, v ∈ R (away from umbilic points),
and then the Hopf differential becomes rdz2 for some real constant r.
Rescaling the coordinate z by a constant real factor, we may assume
r = 1. So we now assume we have an isothermic minimal surface in R3

with Hopf differential Q = dz2. Then

(17)
Q

dg
=

dz

g′
,

where g is the stereographic projection of the Gauss map to the complex
plane, and g′ = dg/dz. The map g taking z in the domain of the
immersion (of the surface) to C is holomorphic. We avoid umbilics, so we
have g′ �= 0. We are concerned with only local behavior, so we can ignore
the possibility that g has poles. Then the Weierstrass representation is

(18) f̂ = Re

∫ z

z0

(1− g2, i+ ig2, 2g)t
dz

g′
,

with the last factor coming from (17). The metric of f̂ is

(19)
(1 + |g|2)2

|g′|2 dzdz̄ .

By direct computation, we have:
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Fig. 3. A flat surface in H3 with its singular vertices in the
sense of [16] shown with solid gray dots, and the extra
singular vertices that would be included by Definition
6.1 shown with hollowed-out dots.

Lemma 7.1. For a smooth minimal surface f̂ as given in Equation

(18), the partial derivatives of f̂ are

f̂u = Re

(
1− g2

gu
,
i(1 + g2)

gu
,
2g

gu

)t

,

f̂v = −Re

(
1− g2

gv
,
i(1 + g2)

gv
,
2g

gv

)t

.

Furthermore, the principal curvatures of the surface are

(20) ±κ1 = ∓κ2 =
2|g′|2

(1 + |g|2)2 .

The next lemma will be used as motivation for the discussion about
discrete minimal surfaces that follows it:
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Lemma 7.2. Any parallel surface of a minimal surface in R3 with-
out umbilics will have constant harmonic mean curvature, and will have
neither parabolic nor flat points.

Proof. For surfaces in R
3 with Gaussian and mean curvatures K

and H, the parallel surfaces at distance ρ have Gaussian and mean
curvatures

K̂ =
K

1− 2ρH + ρ2K
, Ĥ =

H − ρK

1− 2ρH + ρ2K
,

so when we have a minimal surface (H = 0) in R
3,

K̂ =
K

1 + ρ2K
, Ĥ =

−ρK

1 + ρ2K
.

If the minimal surface has no umbilics, then K �= 0, which implies no
parallel surface can have any parabolic or flat points.

The parallel surfaces all have constant harmonic mean curvature

since Ĥ
K̂

= −ρ. Q.E.D.

7.2. Discrete minimal surfaces in R3

Analogously to the smooth case, a suitable representation (or defi-
nition, see [3], [13]) for discrete minimal surfaces (equivalently, defined
as discrete surfaces with Hf̂ ≡ 0) is, with ∗ = j, �,

(21) f̂∗ − f̂i =
αi∗
2

Re

(
1− g∗gi
g∗ − gi

,

√
−1(1 + g∗gi)

g∗ − gi
,
g∗ + gi
g∗ − gi

)t

,

where the map g from a domain in Z
2 to C is a discrete holomorphic

function with cross ratio factorizing function αi∗. As in the smooth case
where we avoided umbilics, likewise here we assume

g∗ − gi �= 0 .

Example 7.1. The discrete holomorphic function g = c(m+n
√
−1)

for c a complex constant will produce a discrete minimal Enneper sur-

face. The discrete holomorphic function g = ec1m+c2n
√
−1 for choices

of real constants c1 and c2 so that the cross ratio is identically −1 will
produce a discrete minimal catenoid. (See [3] for graphics.)

Furthermore, the principal curvatures κi∗ defined on edges (similarly
to (20)) are

κi∗ = − 4|dgi∗|2
αi∗(1 + |gi|2)(1 + |g∗|2)

.

Based on Lemma 7.2, we can justify the following definition:
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Fig. 4. A discrete higher-order Enneper minimal surface in
R

3, its parallel surface at distance 20, and a one-third
piece of the parallel surface, with singular vertices
marked.

Definition 7.1. For any discrete minimal surface, we say that
(m,n) is a singular vertex of any given parallel surface if the princi-
pal curvatures κ∗∗ of that parallel surface satisfy

κ(m−1,n),(m,n) · κ(m,n),(m+1,n) ≤ 0 or

κ(m,n−1),(m,n) · κ(m,n),(m,n+1) ≤ 0 .

§8. Discrete maximal surfaces and their parallel surfaces

Here we give the analogous situation as in §7, but now in Lorentz
3-space.

8.1. Smooth maximal surfaces in R2,1

First we briefly review smooth maximal surfaces. Let

R
2,1 := ({(x1, x2, x0)

t|xj ∈ R}, 〈·, ·〉)

be 3-dimensional Minkowski space with the Lorentz metric signature
(+,+,−).

Note that, for fixed d ∈ R and vector n ∈ R2,1 \ {0}, a plane P =
{x ∈ R

2,1 | 〈x, n〉 = d} is spacelike or timelike or lightlike when n is
timelike or spacelike or lightlike, respectively. Furthermore, a smooth
surface in R

2,1 is called spacelike if its tangent planes are spacelike. Let

f̂ : M2 → R
2,1
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be a conformal immersion, where M2 is a simply-connected domain in

C with complex coordinate z = u + iv (u, v ∈ R). f̂ is a maximal sur-
face if it is spacelike (which follows automatically from the conformality
condition) with mean curvature identically 0.

Defining

H
2
+ := {x = (x1, x2, x0)

t ∈ R
2,1|〈x, x〉 = −1, x0 > 0},

H
2
− := {x = (x1, x2, x0)

t ∈ R
2,1|〈x, x〉 = −1, x0 < 0},

we have the following statement, analogous to the case of smooth mini-
mal surfaces in R

3, as in (18) (and having a similar proof): Away from
umbilic points, smooth maximal surfaces lie in the class of isothermic
surfaces, and each such surface can be represented with isothermic co-
ordinates (u, v), z = u+ iv, as

(22) f̂ = Re

∫ (
1 + g2, i(1− g2),−2g

)t dz
g′

for some choice of smooth holomorphic function g : M2 → C. The Gauss

map of f̂ lies in H2
+ ∪H2

−, and its stereographic projection to C is g.
Differentiating Equation (22) gives the following equations (analo-

gous to Lemma 7.1):

f̂u = Re

(
1 + g2

gu
,
i(1− g2)

gu
,−2g

gu

)t

,

f̂v = −Re

(
1 + g2

gv
,
i(1− g2)

gv
,−2g

gv

)t

.

Remark. Unlike the case of the Weierstrass representation for min-
imal surfaces in R3, smooth maximal surfaces in R2,1 have singularities
when |g| = 1, because the metrics

(23)
(1− |g|2)2

|g′|2 dzdz̄

of the smooth maximal surfaces can degenerate, due to the minus sign
in the numerator in Equation (23), unlike the plus sign we have for the
metrics of minimal surfaces in R3, as in (19).

The principal curvatures of f̂ are (analogous to (20))

±κ1 = ∓κ2 =
2|g′|2

(1− |g|2)2 .

By exactly the same proof as for Lemma 7.2, we have:



404 W. Rossman and M. Yasumoto

Lemma 8.1. Any parallel surface of a maximal surface in R2,1

without umbilics will have constant harmonic mean curvature, and will
have neither parabolic nor flat points.

8.2. Discrete maximal surfaces in R
2,1

The following theorem was proven in [28] (analogous to (21)):

Proposition 8.1. Discrete maximal surfaces f̂ (defined as discrete
surfaces with Hf̂ ≡ 0 in R2,1), maps from Z2 (or some subdomain) to

R
2,1, can be constructed using discrete holomorphic functions g from the

same domain to the complex plane C by solving

(24) f̂∗ − f̂i =
αi∗
2

Re

(
1 + g∗gi
g∗ − gi

,

√
−1(1− g∗gi)

g∗ − gi
,−g∗ + gi

g∗ − gi

)t

,

with αi∗ the cross ratio factorizing functions for g. Conversely, any
discrete maximal surface satisfies (24) for some discrete holomorphic
function g.

Lemma 8.2. The principal curvatures κi∗ of f̂ defined on edges are

κi∗ = − 4|dgi∗|2
αi∗(1− |gi|2)(1− |g∗|2)

.

We recall the following definition of singular faces as in [28]:

Definition 8.1. A face of f̂ with vertices f̂i, f̂j , f̂k, f̂� is singular if
those four vertices lie in a non-spacelike plane.

It was proven in [28] that a quadrilateral of f̂ is singular if and only
if the corresponding circumcircle of g intersects the unit circle S1 ⊂ C.
From this we can conclude the following theorem:

Theorem 8.1. Let p−, p and p+ be three consecutive vertices in

one direction in the lattice domain of a maximal surface f̂ in R
2,1, with

corresponding values g−, g and g+ for the discrete holomorphic function
in the Weierstrass type representation (24). Suppose p is an FPS vertex.
Then the pair of faces adjacent to the edge p−p are singular, or the pair
of faces adjacent to the edge pp+ are singular, including the possibility
that all four faces are singular.

Proof. Because

κp−pκpp+ = (nonnegative term)(1− |gp− |2)(1− |gp+ |2) ,

κp−pκpp+ < 0 implies at least one of (1 − |gp|2)(1 − |gp− |2) or
(1 − |gp|2)(1 − |gp+ |2) is negative, and so at least one of the edges p−p
or pp+ has two adjacent singular faces. Q.E.D.
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Theorem 8.1 indicates one reason why we should regard, in the case
of discrete maximal surfaces, all FPS vertices as singular. In fact, like in
the case of discrete minimal surfaces, Lemma 8.1 indicates we can say
the same of parallel surfaces of discrete maximal surfaces as well:

Definition 8.2. For any discrete maximal surface, we say that
(m,n) is a singular vertex of any given parallel surface (allowing also
for the initial maximal surface itself ) if the principal curvatures of the
parallel surface satisfy

κ(m−1,n),(m,n) · κ(m,n),(m+1,n) ≤ 0 or

κ(m,n−1),(m,n) · κ(m,n),(m,n+1) ≤ 0 .

§9. Singular faces on discrete CMC 1 surfaces with
Weierstrass-type representations in S

2,1

As in Definition 8.1, a quadrilateral of a discrete CMC 1 surface n̂
with Weierstrass-type representation in S

2,1 is singular if it does not lie
in a spacelike plane. We give a geometric condition (Theorem 9.1) for
when a quadrilateral of n̂ is singular, analogous to a condition in the
case of discrete maximal surfaces (see [28]). We then prove a relation
(Corollary 9.1) between FPS vertices and singular faces on discrete CMC
1 faces in S

2,1 (similar to Theorem 8.1), a relation that helps indicate
which of the FPS vertices are actually singular.

The condition for a singular face to occur is

(25) (df̂ij , df̂ij)(df̂i�, df̂i�)− (df̂ij,df̂i�)
2 ≤ 0 .

In the smooth CMC 1 case, with g as in §4, the singularities occur
exactly where |g| = 1. The condition is still |g| = 1 even under the co-

ordinate transformation z →
√
λαz. The next proposition and theorem

are the corresponding condition in the discrete case to |g| = 1, and can
be proven by computationally spelling out Equation (25). We define

h1 = (1− |gj |2)|dgi�|2(1− λαij) ,

h2 = (1− |g�|2)|dgij |2(1− λαi�) ,

h3 = (1− |gi|2)|dgj�|2 .

Proposition 9.1. A face of a discrete CMC 1 surface n̂ with
Weierstrass-type representation in S

2,1 is singular if and only if

H := h2
1 + h2

2 + h2
3 − (h2 − h1)

2 − (h3 − h1)
2 − (h3 − h2)

2 ≤ 0 .
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Fig. 5. A discrete higher-order Enneper-type maximal sur-
face in R

2,1, its parallel surface at distance 20, and a
one-third piece of the parallel surface, with singular
vertices marked.

Theorem 9.1. A quadrilateral of n̂ as in Proposition 9.1 is singular
for all λ sufficiently close to zero if the corresponding circumcircle of g
intersects S1 transversally. The converse holds as well under the generic
assumption that ∂λH �= 0.

Proof. If the four points gi, gj , gk, gl lie on a circle with radius
r ∈ R and center p ∈ C, the condition for H < 0 at λ = 0 is

(|p|2 − (r − 1)2)(|p|2 − (r + 1)2) < 0 .

The result follows. Q.E.D.
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Fig. 6. From top to bottom: A discrete harmonic mean cur-
vature 1 surface in S2,1, a discrete flat surface in S2,1

and a discrete CMC 1 surface in S2,1, each shown
twice. In order to draw the surfaces, we project to
the hollow ball model for S2,1. (For an explanation
of the hollow ball model, see [9] for example.)
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Fig. 7. A counterexample to the converse in Corollary 9.1.
Numerical data for a discrete holomorphic function
is shown. The four faces of a discrete CMC 1 surface
determined from the four gray faces above are singu-
lar faces. On the other hand, for sufficiently small λ,
the marked vertex is not singular.

Theorem 9.2. Let p−, p and p+ be three consecutive vertices in one
direction in the lattice domain of a CMC 1 surface n̂ with Weierstrass-
type representation in S

2,1, with corresponding values g−, g and g+ for
the discrete holomorphic function in the Weierstrass type representation.
Under the genericity assumption |g| �= 1, then κp−p · κpp+ < 0 for all λ
sufficiently close to zero if and only if exactly one of |g−|2 and |g+|2 has
value less than 1 and the other has value greater than 1.

Proof. Because the surface is CMC 1 in S
2,1, we have t = −1. Then

Equations (7) and (13) imply the result. Q.E.D.

This theorem tells us that we will find FPS vertices roughly where g
(discretely) crosses S1. Because of Theorem 9.2, we can now regard these
points as singular vertices and not parabolic nor flat points. Combining
Theorems 9.1 and 9.2, the following rigorous statement is immediate:

Corollary 9.1. Under the conditions of Theorem 9.2, for all λ suf-
ficiently close to zero, the pair of faces adjacent to the edge p−p are
singular, or the pair of faces adjacent to the edge pp+ are singular, in-
cluding the possibility that all four faces are singular.
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The converse of this corollary does not hold, that is, it is possible
to have four singular faces (for all λ sufficiently close to 0) adjacent
to a given vertex that is non-singular for all λ sufficiently close to 0
(see Figure 7). Furthermore, taking λ → 0, the example in Figure 7
demonstrates that the converse to Theorem 8.1 also does not hold.
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