
Chapter 5
Proof of the Second Main Theorem

Introduction

Here, as promised, we give the proof of the Second Main Theorem. (Cf. Chapter 4.
The theorem is also restated at the end of this introduction.) For purposes of
discussion, we recall two of the consequences of that theorem: The eigenvalues of
an effectively determined self adjoint operator are computable, but the sequence of
eigenvalues need not be.

How do we prove this? As might be expected, the proof is based on the spectral
theorem. However, it does not involve an effectivization of that theorem. Nor does
it involve an effectivization of some weaker version of that theorem. Rather we use
certain consequences of the spectral theorem to develop an effective algorithm. This
algorithm, in fact, embodies a viewpoint directly opposed to that of the spectral
theorem—at least in its most standard form.

The standard form of the spectral theorem gives a decomposition of the Hubert
space H into mutually orthogonal subspaces H{a. ιai] corresponding to an arbitrary
partition of the real line into intervals (flf-u α j . On these subspaces H{a a] the
operator T is "approximately well behaved". More precisely, (i) these subspaces are
invariant under T—i.e. if x lies in the subspace, so does 7x, and (ii) the vectors x in
the subspace are "approximate eigenvectors"—i.e. if {at-u α f] ^ [Λ — ε, Λ + ε] then
\\Tx- λx\\ ^ε| | jc| | .

It turns out that effective computations involving the spectral measure require
the uniform norm, i.e. computability in the sense of Chapter 0. Thus the above
decomposition—involving disjoint intervals—cannot be made effective. What we
have is a classical analytic fact, the existence of such a decomposition, from which
we must attempt to derive effective consequences. To do this we alter the standard
spectral-theoretic decomposition in two ways.

First, we replace the disjoint intervals by intervals which overlap, after the manner
of ... [-2, 0], [ - 1 , 1], [0, 2], [1, 3], . . . . Second, we replace the characteristic
functions of these intervals by "triangle functions" supported on them (cf. Pre-step
B in Section 2). The overlapping intervals are necessary to account for the fact that
a computable real number cannot be known exactly, and the triangle functions,
being continuous, allow effective computations to be made. It is the necessity of
using overlapping intervals and continuous functions which is at variance with the
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standard viewpoint of the spectral theorem—a viewpoint which stresses disjoint
interval decompositions and orthogonal subspaces.

Returning to our original assertion: that the individual eigenvalues are comput-
able but the sequence of eigenvalues need not be. Our overlapping triangles allow
us to compute the individual eigenvalues. Essentially this depends on the fact that
the eigenvalues occur at points where the spectral measure is "especially dense". By
contrast, the sequence of eigenvalues need not be computable: this hinges on the
fact that there is no effective way to distinguish between an eigenvalue and a very
thin band of continuous spectrum.

The remarks given above are, of necessity, extremely brief. The same points will
occur, more fully developed, at appropriate places throughout the proof. Cf. es-
pecially Section 3 (Heuristics).

We turn now to an outline of this chapter. In Sections 1-5 we will prove the
Second Main Theorem for bounded self-adjoint operators. More precisely, we will
prove the positive parts (i) and (ii) of that theorem. The extensions to normal and
unbounded self-adjoint operators are given in Sections 6 and 7. Finally, in Section
8, we give the counterexamples required for the negative parts (iii) and (iv).

Remarks. Of course, it is the unbounded self-adjoint operators which—because of
their applications in quantum mechanics and elsewhere—are the most interesting.
However, the bounded case has to be done first, and it is there that the main
difficulties lie. As we shall see, the extension to unbounded self-adjoint operators is
rather straightforward once the bounded case has been proved.

As noted in Chapter 4, the proof of this theorem is long and arduous. For that
reason, we have included a section on Heuristics (Section 3). The reader is advised
to skim Sections 1 and 2, which give preliminary facts and definitions, and turn to
Section 3 as soon as possible. Sections 4 and 5 spell out in rigorous detail the ideas
sketched in Section 3.

Now for convenience, we restate the theorem. First we recall:
An unbounded operator T: H -> H is called effectively determined if there is a

sequence {en} in H such that the pairs {(en, Ten)} form an effective generating set
for the graph of T. In the case where Γis bounded, this definition can be simplified—
a fact that will prove useful. A bounded operator T is effectively determined if there
is an effective generating set {en} for H such that {Ten} is computable.

Second Main Theorem. Let T.H^H be an effectively determined (bounded or
unbounded) self-adjoint operator. Then there exists a computable sequence of real
numbers {λn} and a recursively enumerable set A of natural numbers such that:

i) Each λn e spectrum(T), and the spectrum of T coincides with the closure of{λn}.
ii) The set of eigenvalues ofT coincides with the set {λn\ n e N — A). In particular,

each eigenvalue of T is computable.
iii) Conversely, every set which is the closure of {λn} as in (i) above occurs as the

spectrum of an effectively determined self-adjoint operator.
iv) Likewise, every set {λn: n e N — A} as in (ii) above occurs as the set of eigenvalues

of some effectively determined self-adjoint operator T. If the set {λn} is bounded,
then T can be chosen to be bounded.
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1. Review of the Spectral Theorem

This section presents those facts about the spectral theorem which are needed in
this chapter. Nothing in it is new, nor has it anything to do with computability. The
reader is advised to skim this section and return to it when necessary.

The basic results from spectral theory, which can be found in virtually any text
on functional analysis, will be stated without proof. Any results that are not
absolutely standard we derive. As references we mention Riesz, Sz.-Nagy [1955],
Halmos [1951], Loomis [1953].

Such a survey, if it is to serve its purpose, cannot be too terse. Consequently we
shall give a detailed review of the spectral theorem for bounded self-adjoint opera-
tors. Then we shall make a quick tour through the corresponding theories for
normal and unbounded self-adjoint operators.

Let T: H -> H be a bounded self-adjoint operator. Corresponding to T there is a
"spectral measure" E, which is a mapping from Borel sets / in the line to operators
Ej defined on H. More precisely: for each Borel subset / of the real line, Ej is the
orthogonal projection onto a closed subspace Hj of H.

These subspaces HI give a decomposition of the Hubert space H which is a natural
extension of the "eigenvector decomposition" for compact operators. (Compact
self-adjoint operators, of course, form a special case—for which, as is well known,
the eigenvectors are plentiful. On the other hand, we recall that a bounded self-
adjoint operator may have no eigenvectors whatsoever. That is why the more
complicated "spectral measure decomposition" is necessary.) The properties of the
Hj, which generalize the elementary eigenvector situation, are:

(i) The subspaces Hj are invariant under Γ, i.e. x e Hj implies T(x) e Hj.
(ii) For disjoint sets /, J in R, the spaces Hι and H3 are orthogonal.
(iii) If / c [Λ, — g, λ + ε] (in words, if / lies in a "thin" interval), then the xeHI

are "approximate eigenvectors"—more precisely, \\Tx — λx\\ < ε||x||.
The properties of the mapping / -+HI which justify the name "measure" are:

A.HInJ = HJnHj
B. ff/uj = Hj + Hj (direct sum)
C. (Countable additivity). If Ix => I2 3 , and f] In = 0, then f] HIn = {0}.

We recall that, in addition, the spectral measure is entirely supported on the
spectrum of T, i.e. if / 3 spectrum(T), then Hj = H.

We have already mentioned above that our construction in this chapter will
require "triangle functions". For this reason we need to recall the "operational
calculus" associated with the spectral theorem. We recall that, corresponding to any
bounded real-valued Borel function/on R, there is a bounded self-adjoint operator
f(T) represented by the "spectral integral"

f(T)= Γ f(t)dE(ή,
J-00

where dE(t) denotes integration with respect to the spectral measure. The use of the
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letter ί, — oo < t < oo, reminds us that the domain of the spectral measure is the set
of Borel subsets of U.

As a special case, if we take the function f(t) = ί, we obtain f(T) = T. That is, we
obtain a representation for the operator T itself. Explicitly:

-Γ
J-α

t dE(t).

[Of course, the integration is really over spectrum(T), a compact set which supports
the spectral measure. The function f(t) = t is bounded on this set. We have written

the integral as for simplicity.]
J-oo

The following considerations, which are important in their own right, also shed
light on the process of spectral integration. More importantly for our purposes,
these results will be needed in this chapter.

The measure dμxy

Let x, y be two vectors in H. It can be proved that, corresponding to x and y, there
is a bounded complex measure dμxy with the following property. For all bounded
real-valued Borel functions /:

-ί:(f(T)(x),y)=\ f{t)dμx,(t).

Here again, the use of the variable ί, t e M, expresses the fact that the measure dμxy

lies on the real line. We emphasize that dμxy (unlike dE) is an ordinary scalar-valued
measure. Furthermore:

D. For x = y, the corresponding measure dμxy is positive (Sometimes we write dμ(x)
for dμxx)

The operational calculus

The operational calculus—i.e. the mapping from functions / to operators f(T)
described above—will play a key role in the proof of our Second Main Theorem.
In fact, as an algorithmic tool, the operational calculus is very powerful. Its power
resides in the fact that it gives a natural isomorphism between the "arithmetic" of
functions and the "arithmetic" of operators.

In what follows, we assume that/and g are bounded real-valued Borel functions;
α and β are real scalars; and / denotes a Borel subset of U.

E. (Linearity), (α/ + βg)(T) = α/(T) + βg(T).
F. (Multiplication). (fg)(T) = f(T)-g(T).
G. (Boundedness). ||/(T)|| ^ sup {|/(vl)|: λ e spectrum(T)}.
H. (Pointwise convergence). Let {/„} be a uniformly bounded sequence of Borel

functions such that, as n -> oo, /π(ί) -> 0 for all t. Then, for any vector x in #,

fn(T)(x) -> 0 in the norm of H.
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I. (Projections). Let χ = χ7 be the characteristic function of/.Then χ(T) coincides
with the projection Ej given by the spectral measure.

This completes our list of standard results. We remind the reader that proofs can
be found e.g. in Riesz, Sz.-Nagy [1955], Halmos [1951], Loomis [1953].

Technical Corollaries

We now reach a transitional stage in this introductory section. The above results
are standard, but they are not in the form that we need. The following list contains
precisely those consequences of the spectral theorem that we will use in proving the
Second Main Theorem. There are seven of them.

Remarks. Of course, all of the results in this section are known to specialists. The
results A-I above are absolutely standard, and we refer the reader to the literature
for their proofs. However, some of the results below are harder to locate in the
textbook literature. They are necessary for our proof, and so, for the convenience
of the reader, we shall work them out.

To aid the reader in skimming through the derivations which follow, it is useful
to stress that two results, taken from the list A-I above, will be used repeatedly.

1) The operational calculus is multiplicative: (fg)(T) = f(T)g(T).
2) Characteristic functions correspond to projections: if χ = χ7 is the characteristic

function of a Borel set / £ R, then χ(T) is the associated projection Eι on the
subspace Hr

We turn now to the seven corollaries of the Spectral Theorem that we need for
our proof. These fall into four categories, wich we have put under appropriate
headings.

Criteria for nullity

SpThm 1. Let I be a Borel set in U, and let x be a vector in Hj. Let f be a bounded
Borel function such that support(f)n 1 = 0. Then f(T)(x) = 0.

Proof Let χ = χι be the characteristic function of/. Then χ(T) is the projection on
Hf. Since x e //7, χ(T)(x) = x. Now / and χ have disjoint supports, so that fχ = 0.
Hence 0 = (fχ)(T)(x) = f(T)χ(T)(x) = f(T)(x). D

SpThm 2 (Pointwise convergence almost everywhere). Let I be a Borel set for which
lίj is the zero subspace. Let {/„} be a uniformly bounded sequence of Borel functions
which is pointwise convergent to zero except on I: i.e.fn(t) -> 0 as n —• oo for all t φ I.
Then, for any vector x,fn(T)(x) -• 0.

Proof Let χ = χ, be the characteristic function of /, so that χ(T) is the projection
on Hj. Since Hj is null, χ(T) = 0. Hence (1 - χ)(T) = identity operator. Now for
all real t:

/ ( ) ( l ( ) ) 0 as n ^ o o ,
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since fn(t) -> 0 for t φ I, and 1 - χ(t) = 0 for t e I. Hence by H. above,

[ / „ ( ! - X ) ] ( Γ ) M - O as n-+α>.

By the multiplicative property of the operational calculus, we deduce:

/ n (Γ)(l-χ)(T)(x)^0 as n^π.

But since (1 - χ)(T) = identity, this means that fn(T)(x) -• 0. Π

The question of whether or not certain subspaces Hj are null will play an
important role in the proof of the Second Main Theorem. For example, even if a
point λ e spectrum(T), the corresponding subspace H^ may be null. However, this
cannot happen for a neighborhood (λ — ε, λ + ε) of λ. Furthermore, we will show
that Hμj itself is non-null if and only if λ is an eigenvalue of T. The key results here
are SpThm 3 and SpThm 5 below.

SpThm 3. Let λ e spectrum(T). Then, for any ε > 0, the subspace H(λ_Efλ+ε) is nonzero.

Proof. Suppose otherwise. Let χ be the characteristic function of (λ — ε, λ + ε),
so that χ(T) is the corresponding projection. By assumption, χ(T) = 0, so that
(1 — χ){T) = identity operator. Let

| θ otherwise.

Since (λ — ε, λ + ε) is a neighborhood of λ, the function g is bounded. Hence
is a bounded operator.

We now show that g(T) = (T — A)"1. Consider the corresponding functions of a
real variable. We have:

(t-λ)g(t)(l-χ(t))=l-χ(tl

since g(t) = (t - λ)'1 for t φ (λ - ε, λ + ε), and 1 - χ(t) = 0 for t e (λ - ε, λ + ε).
Hence, again by the multiplicative property of the operational calculus,

(T-λ)g(T)(l-χ(T))=l-χ(n

But we have seen that 1 - χ(T) = identity operator. Thus (T - λ)g(T) = identity.
Similarly one shows that g(T)(T- λ) = identity. Hence g(T) is an inverse to ( T - λ\
contradicting the fact that λ e spectrum (Γ). •

Eigenvalues

Recall that, by definition, λ is an "eigenvalue" of T if there is some "eigenvector"
x φ 0 with Tx = λx. The eigenvalues form a subset of the spectrum.
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SpThm 4. Let λ be an eigenvalue of T with eigenvector x. Then, for any continuous
function f

f(T)(x) = f(λ)'X.

[Actually, the same thing holds for bounded Borel functions /. This more difficult
result is an easy consequence of SpThm 5 below, but we have no need of it.]

Proof Since x is an eigenvector for λ9 Tx = /be, whence Tnx = λnx, whence
p{T)(x) = p(λ) x for any polynomial p. Now the result extends to continuous func-
tions / by the Weierstrass Approximation Theorem, combined with G. above. •

SpThm 5. A vector x is an eigenvector for λ if and only ifx e i/μj, where H^ is the
subspace corresponding to the point-set {λ}. In particular, λ is an eigenvalue if and
only ifH{λ} is nonzero.

Proof The "if" part is trivial. Ifx e /fμj, then in the spectral measure dE(t\ x belongs
exclusively to the part where t = λ. Thus in the integral representation for Tx.

-ίTx= \t'dE{f)(x\

only the value t = λ is relevant, and x is multiplied by λ.
The converse is a little harder. Let x be an eigenvector for λ. Without loss

of generality, we can asume that λ = 0. We use the "triangle functions" τn (see
Figure 0) defined by the equations:

{1 - nt for 0 ̂  t ^ 1/π,

1 + nt for - 1/n ^ t ^ 0,

0 for|ί |5*l/n.

Let δ be the characteristic function of {0} (i.e. δ(t) = 1 if t = 0, δ(t) = 0 otherwise).

Figure 0
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Then as n -• oo, the functions τn(t) converge pointwise to δ(t). Hence by H. above:

τn(T)(x)^δ(T)(x).

Since x is an eigenvector for λ = 0, and since the functions τn are continuous,
τn(T)(x) = τM(0) x = x by SpThm 4. Hence, since τn(T)(x) - δ{T){x)9 δ(T){x) = x.
But δ(T) is just the projection onto the subspace #{o} Hence x e #{o} •

The measure dμ(x)

Recall the complex measure dμxy discussed above. If we set x = y9 then we obtain a
positive measure dμxx = dμ(x\ determined by the vector x.

In integration formulas, we may want to display the real variable t: then we write
dμ(x) = dμ(x, t). As we saw above for dμxy9 the defining equation for dμxx = dμ(x) is:

f(t)dμ(x,t).

where / is any bounded Borel function, and f(T) is the corresponding operator.

SpThm 6. Let I be any Borel set in U. Let x be any vector in H, and let x0 be the
projection ofx on Hj. Then:

\\xo\\2 = the dμ(x)-measure of I.

(In particular, \\x\\2 = the dμ(x)-measure ofU.)

Proof. Let χ = χ1 be the characteristic function of /, so that χ(T) is the projection
on the subspace Hj. Then:

II2 = (χ(T)(χ\ χ(T)(x))

= (χ(T)2(x\ x) = (χ2(T)(χ\ x) = (χ(T)(xl x\

since χ2 = χ. Now by the defining equation for dμ(x% this becomes:

χ(ή dμ(x, t) = dμ(x, t) = the dμ(x)-measure of /. •
J-oo Jl

Uniform approximation

SpThm 7. For any bounded Borel function f

\\f(T)\\ ^ sup {\f(λ)\: λ e spectrum(T)}.
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Proof. This is just the standard fact G. above. We have restated it here because we
promised to list (in the SpThm N category) every spectral theoretic result needed
for the proof of the Second Main Theorem. This result is the last on our list. Π

Bounded Normal and Unbounded Self-adjoint Operators

Here, as promised above, we shall be brief. We recall that a bounded operator
T: H -• H is said to be normal if TT* = T*T. All of the above results extend to
bounded normal operators, once the following trivial modifications are made:

a) Whereas the spectrum of a self-adjoint operator is real, the spectrum of a bounded
normal operator is a compact subset of the complex plane. Hence, for our Borel
sets /, we take Borel subsets of the complex plane.

b) Similarly, in the operational calculus, we consider complex-valued (as opposed to
real-valued) functions. We continue to assume that these functions are bounded
and Borel. Then all of the identities A-I above continue to hold, and there is one
new entry on the list. If/ denotes the complex conjugate of the function /, and
"*" denotes adjoint, then:

j . Γ(T) = [/(T)]*.

It follows that if / i s real-valued, then the operator/(T) is self-adjoint. In particular,
the projections χ{T) are self-adjoint (since the values of the characteristic function
χ = XJ are real, whether or not the set / lies within the real line). Of course, the
operator T itself need not be self-adjoint, because the function f(z) = z (corre-
sponding to f(T) = T) is not real-valued in the complex plane.

The proofs of A-J for bounded normal operators can be found in standard
references (e.g. Riesz, Sz.-Nagy [1955], Halmos [1951]). The corresponding exten-
sions of SpThm 1-SpThm 7 are then obvious: Again, complex Borel sets / and
functions / replace the real sets/functions discussed above. In SpThm 3, a disk
{z:\z- λ\ < ε} in the complex plane replaces the real interval (λ — ε, λ + ε).
Otherwise, the statements of SpThm 1-SpThm 7 for normal operators are identical
to those given above for self-adjoint operators. The proofs are so similar to those
already given that we leave them to the reader.

Unbounded self-adjoint operators

We recall from the introduction to Chapter 4 that the adjoint of an unbounded
closed operator is defined via its graph, and an unbounded operator T is said to be
self-adjoint if it coincides with its graph-theoretic adjoint.

Only one result concerning unbounded self-adjoint operators will be needed
in this book. Most textbook presentations of operator theory give this result as
a lemma (see e.g. Riesz, Sz.-Nagy [1955]). The result is:

Proposition. Let Tbea (bounded or unbounded) self-adjoint operator. Then the inverse
(T — i)'1 exists and is a bounded normal operator.
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2. Preliminaries

This section presents a number of technical definitions and results which are needed
before we can come to the core of the Second Main Theorem. The reader who prefers
a broad overview may wish to skim this section and then turn directly to Section 3
(Heuristics). The topics in this section are presented in the order in which they occur
in the proofs. However, for skimming purposes, the most important subsection is
Pre-step B (the triangle functions). We begin with:

Lemma (Uniformity in the exponent). Let X be a Banach space with a computability
structure, and suppose that X has an effective generating set {en}. Let T.X^Xbe
an effectively determined bounded linear operator. (Since T is bounded, the hypothesis
"effectively determined" means simply that {Ten} is computable.) Then the double
sequence {TNen} is computable in both variables N and n.

Proof At first glance, this would appear to be a simple induction. The difficulty is
to give a proof which stays within the axioms for computability on a Banach space
(cf. Chapter 2, Section 1). This difficulty is resolved by extending the Effective
Density Lemma of Chapter 2, Section 5, in a manner which reduces the problem to
multilinear algebra. By hypothesis, {Ten} is computable. Hence, by the Effective
Density Lemma, there is a computable triple sequence {ccnkj} of real/complex
rationals and a recursive function d(n, k) such that: If we write

d(n,k)

Pnk 2-< ^nkftp
j=o

then

\\pnk-Ten\\^2-k foralU/c.

We also observe that since T is bounded, there is an integer C such that || T\\ ^ C.
Without loss of generality, we can replace T by T/2C, and thus assume that
II7ΊI < 1/2.

To prove the lemma, we shall construct a computable 4-fold sequence {βNnkj} of
(real/complex) rationals and a recursive function e(N, n, k) such that: If we write

e(N,n,k)

<lNnk = Σ βNnkjCp
j=o

then

ll&vn* - TNen\\ < 2~k for all N, n, k.

This is done by an induction on the (real/complex) rational coefficients βNnkj, using
the sequence {α^ } which we already have. The process operates strictly within
the domain of integers and their quotients.
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We define βNnkj by induction on N.
For N = 0, we set βOnkj = 1 if j = n, 0 otherwise. (This gives qOnk = en for all k.)

Assume that βNnkj is defined for a fixed N, and all n, kj. We now define βN+1,nkj.
[Recall that | |Γ| | < 1/2. Thus from the inductive assumption that \\qNnk - TN'en\\ <

2"fc, we deduce that || TqNnk - TN+1en\\ < 2~kβ. Now we examine qNnk with a view
towards approximating TqΉnk.~]

Consider

e(N,n,k)

QNnk = LJ HNnkjej'
j=θ

Each βNnkj is a real or complex rational; let DNnkj be the least integer greater than

I/W L e t

2 J j

7=0

Let s = s(JV, n, fc) be the least integer such that 2" s ^ 2~k/2ENnk.
Now we define qN+ίfnk by substituting pjs for ^ in the formula for qNnk:

e(N,n,k)

QN+l,nk = ]L βNnkjPjs
j=o

[By the manner in which pjs approximates Tej9 we have \\pjs — Tej\\ < 2~s. Hence
by the definition of DNnkp ENnk, and s, we have \\qN+Unk - TqNnk\\ < 2"k/2.]

Now in the above sum, we replace the index; by i, and then put in the definition

e(N,n,k) d(i,s)

<lN+l,nk = Σ βNnki Σ aisjej
i=0 j=0

Thus we define:

e(N,n,k)

βN+ltnkj= Σ βNnki'<*isj> S = s(N,Π,k).
i=0

The new limit of summation e(N + 1, n, k) is the maximum) for which the above
double sum is nonempty, i.e.

e(N + 1, n, k) = max {d(i, s): 0 < i ^ e(JV, n, fc)}.

This completes the definition of the multi-sequence {βNnkj}.
Now we return to the Banach space X. We must show that the desired inequality,
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extends by induction on N to all N, n, k. For N = 0 it is trivial. Assume that it holds 
for N. On this assumption, we have already seen (in the bracketed remarks above) 
that I (  TqNnk - TN+'e,ll < 2-k/2,  and Ilq,,,,,, - TqNnkll < 2-k/2.  Combining these 
two inequalities gives the desired result. 

Now that we have constructed {BNnkj)  and {q,,,) with the desired properties, 
the rest is easy. The Linear Forms Axiom implies that {q,,,) is computable in X, 
and the Limit Axiom implies that ( T N e , )  is computable. 

Corollary. Let T :  X + X be bounded and effectively determined, and let {y,) be 
a computable sequence in X .  Then { T N y , )  is computable, effectively in N and n. 

Proof. Since { y , )  is computable, the Effective Density Lemma asserts that there is 
a computable double sequence rnk = ankjej such that Ilr,, - y,JJ + 0 as k -r ca, 
effectively in k and n. Since T is bounded and effectively determined, the preceding 
lemma tells us that { T N e n )  is computable, effectively in N and n. Now the Linear 
Forms Axiom implies that { T N r n k )  is computable, effectively in all variables. Finally, 
since T is bounded, 1 1  TNrnk - TNy,II + 0 as k + a, effectively in all variables. H e n ~ e  
by the Limit Axiom, { T N y n }  is computable. 

The interval [- M ,  MI 

Since T is a bounded self-adjoint operator, spectrum(T) is a compact subset of the 
real line. We take an integer M such that 

and then work within the interval [- M, MI in order to give ourselves "room 
around the edges". Throughout the remainder of this proof, M designates the fixed 
integer defined above. 

The sequence { x , )  

We recall that His  an effectively separable Hilbert space with an effective generating 
set { e n } .  In this proof we will use a computable sequence of vectors { x , )  such that: 

1 < llxnll < 1001/1000 for all n, 

and 

{ x , )  is dense on the annulus { x :  1 < ( ( X I (  < 1001/1000). 

It is important to stress that, by these hypotheses, llxnl( > 1. Furthermore, the 
closure of { x , )  in H contains the unit sphere { x :  llxll = 1).  

The construction of { x , )  is very simple. We begin by taking the sequence { x : )  of 
all (real/complex) rational linear combinations of the elements en in the effective 
generating set. Then ( x ; }  is computable by the Linear Forms Axiom. Next we 
effectively list (not necessarily in their original order) all of the elements of {x:} which 
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satisfy 1 < \\x'n\\ < 1001/1000. For the sake of completeness, we indicate precisely
how this is done.

By the Norm Axiom, since {x'n} is computable, the norms {||xil|} form a com-
putable sequence of real numbers. Hence there is a computable double sequence of
rational approximations Rnk with \Rnk - \\x'n\\ | ^ 1/2* for all n, k. Now we effectively
scan the double sequence {Rnk}, using a procedure which returns to each n infinitely
often. Whenever an Rnk shows up with 1 + (l/2k) < Rnk < (1001/1000) - (l/2k),
we add the corresponding vector xf

n to our list. In this way we eventually find all
of those x'n, and only those x'n9 which satisfy 1 < \\x'n\\ < 1001/1000.

The resulting list is the desired computable sequence {xn}.
The constructions of the interval [ — M, M] and the sequence {xn}, while essential,

were rather elementary. The three "Pre-steps" which follow are somewhat more
elaborate.

Pre-step A (the effective operational calculus)

Here we must find the effective content of the operational calculus, as laid out
(noneffectively) in Section 1. More precisely, we must develop—as corollaries of
the spectral theorem—operations which can be made effective and which will allow
us to proceed with our construction.

We begin with the assumption, made in the Second Main Theorem, that T is
an effectively determined self-adjoint operator. Here and until the end of Section 5,
we also assume that T is bounded. Then from the above lemma (Uniformity in the
exponents) and its corollary, we have:

Let {yn} be a computable sequence of vectors in H. Then the double sequence
{TNyn} is computable in H, effectively in N and n.

Now, in terms of the operational calculus, TN is just the action of the function
f{t) = tN on the operator T; i.e. if f(t) = ίN, then f(T) = TN.

Γ 0 0

[For completeness we give the proof. Since T = t dE{t\ T itself corresponds
to the function f{t) = t. Then the extension to powers of t (or T) follows from the
multiplicative law: (fg)(T) = f{T)g{T).~]

Now by the Linear Forms Axiom (cf. Chapter 2) the above extends immediately
to any computable sequence of polynomials. Thus we have:

Let {yn} be a computable sequence of vectors in H, and let {pm} be a computable
sequence of polynomials. Then the double sequence {pm(T) (yn)} is computable in H.

Lemma. Let [ — M, M], M = integer, be an interval containing spectrum(T). Let {fm}
be a sequence of continuous functions on [ — M, M] which is computable in the sense
of Chapter 0. Let {yn} be a computable sequence of vectors in H. Then {fm(T)(yn)}
is a computable double sequence of vectors in H.

Proof We use the result from spectral theory (SpThm 7) that, for any bounded Borel
function /, the operator norm

\\f(T)\\ ̂  sup {\f(λ)\: λ E spectrum(Γ)}.
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We also use the "Weierstrass approximation" variant of the notion of a computable
sequence of continuous functions {/m}. (Cf. Section 3 in Chapter 0). By this definition,
there is a computable double sequence of polynomials {pmk} which converges
uniformly to fm as k -* oo, effectively in k and m.

The rest is easy. A uniform bound on |/m(ί) — pmfc(ί)l gives (by SpThm 7) the same
bound on the uniform operator norm \\fm(T) - pm f e(T)||. We already know that we
can compute {pmk(T)(yn)}, effectively in m, fc, and n. Now we apply the Limit Axiom
(Chapter 2): the uniform convergence in operator norm implies the computability
of {fm(T){y«)}> as desired. D

Corollary. With {fm} and {yn} as above, the sequence of norms

\\fm(T)(yn)\\

is computable, effectively in both m and n.

Proof. This follows immediately from the above lemma, together with the Norm
Axiom of Chapter 2. •

Notes. These arguments break down if we attempt to deal with/(Γ) for discontinuous
functions /. For then we would have to deal with pointwise rather than uniform
convergence, a notion that is frequently not effective.

Pre-step A involves a triple transition from continuous functions fm to operators
fm(T) to vectors fm(T)(yn) to norms | |/m(T)(yn)| | . This is quite natural, since to
compute an operator means to compute its action on vectors, and the easiest thing
to compute about a vector is its norm.

Pre-step B (the triangle functions)

As stated above, in order to obtain computability in our application of the spectral
theorem, we must work with continuous functions. On the other hand, we want
to preserve—so far as is possible—the idea of a decomposition of the interval
[ — M, M] into subintervals. This is achieved by using triangle functions (definitions
to follow). The supports of these triangle functions overlap, in the manner of

. . . [ - 2 , 0 ] , [-1,1], [0,2], [1,3],...

Our construction will proceed in stages, indexed by q = 0,1,2,.... At the 0-th stage,
we pave the interval [ — M, M] with overlapping intervals of length 2, as displayed
above. Then we subdivide these intervals, reducing the mesh by a factor of 1/8 at
each stage. At the q-th stage, we have overlapping intervals of length 2 8"*, the i-th
such interval being

Iq. = l(ί - 1)8^, (ί + 1)8"*], where - M 8« < ί < M 8«.
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Now the corresponding triangle function τqi, whose support is Iqh is given by:

τqi = τ(Sqx - i), - M 8« < i < M 8«,

where

ί l - | x | for |x| < 1,
κ } | 0 elsewhere.

We observe that the triangle functions τqi are symmetrical and rise to a peak at the
midpoints of the intervals Iqi. (Cf. Figures 1 and 2.)

At the initial stage in our construction, which we call the — 1-st stage, we do not
use triangle functions. Instead we use a trapezoidal function σ such that σ(x) = 1
on [ —(M — 1), M — 1], and σ(x) drops linearly to zero at ±M. (See Figure 2.) We
observe that, since spectrum(T) ^ [ —(M — 1), M — 1], σ(x) is identically equal
to 1 on the spectrum of T.

We shall need an identity which shows how each τq-ltj decomposes into triangle
functions τqi of the next generation. Consider a fixed τ€_1 > 7 . To conform with later
notations, we shall denote this fixed τq-u by τ*^. Similarly the interval Iq-ιtj will
be written I*_ί. Finally we set h = 8/.

Note. In the body of the proof, τ*_x will be a particular one of the τq-ίj9 chosen via
an inductive process. The identities of this subsection hold for any), and hence they
hold for the particular j which we eventually select.

As a preface to the first identity, we make some geometric observations. Contained
within the interval τ*_±, there are precisely fifteen subintervals of the g-th generation,
namely

We shall decompose the triangle function τ*_! into a linear combination of the
triangle functions τqi9 h — 7 < i ^ h + 7. This is done as follows:

+ 7 τ<z>/J+1(x) + ••• + 2'τqth+6(x) + τ ^ + ^ x ) ]

(See Figure 1.)

Proof. For the sake of completeness, we prove the above identity. The easiest proof
is via slopes. Firstly, all of the functions in the above identity are continuous.
Therefore is suffices to show that both sides of the equation have the same slope
at all non-partition points x Φ i-$~q (i.e. at all points which are not vertices of the
triangles τqi).

Without loss of generality, we can consider the left hand side of the "big" triangle
τ*_ l 5 i.e. the region where τ * ^ has positive slope. On this region, the slope of τ*_x
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is 8* 1. By contrast, the triangles τqi have slopes 8* on their left sides and slopes — 8*
on their right sides.

In the sum in the above identity: The right side of τq Λ_7 (slope = —8^) is
superimposed on the left side of 2-τqh-β (slope = 2 8ή), giving a resultant slope
of 8*. Similarly, the right side of 2-τqh.6 (slope =• —2 84) is superimposed on
the left side of 3 τ 9 ) Λ _ 5 (slope = 3 8*), giving the same resultant slope 8̂ . And so on.

Finally, the sum is multiplied by 1/8, giving a resultant slope of %q~ι\ exactly as
for the "big" triangle function τ*_x. This proves the identity. •

For the trapezoidal function σ we have the identity:

M - l

σ(x) = £ τOi(x)

(See Figure 2.)
The proof of this identity is similar to the previous proof (and easier), and we leave

it to the reader. •

We conclude this subsection with two inequalities derived from the above iden-
tities. To set the stage, we recall that, for q ^ 1, τ*_x = τq-ίtj decomposes into
a linear combination of the fifteen functions τφ h — 1 ^ i'^ h + 7 (h = 8/).

Now fix a vector xn from the sequence {xn} constructed above. Following the
operational calculus of Pre-step A, we are interested in the norms ||τqί(Γ)(xB)||.

-M 0

Figure 2

M
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We define:

u is the first index, h — 1 ^ u ^ h + 7 (ft = 87),

which maximizes ||τβtt(Γ)(xπ)||.

Then for this u we have:

\\τqu(T)(xn)\\ > (lβ)\\τϊ-ΛT)(xn)\\ (q > 1),

l|τo«(Γ)(x»)ll > l/(2Af - 1).

Proofs. For the first inequality. This follows immediately from the first identity,
τ*_! = (1/8) [τ^ h _ 7 + 2 τ ί f h _ 6 + ], upon observing that the sum of the coefficients
(1/8)[1 + 2 + 3 + + 7 + 8 + 7 + + 3 + 2 + l ] i s equal to 8.

For the second inequality. First we recall that | | x j ^ 1, and that since σ(x) = 1
on spectrum(T), σ(T) = identity operator. Hence ||σ(Γ)(xΛ)|| = | |xj | ^ 1. Now the

M - l

second inequality follows at once from the second identity, σ — £ τO ί, upon
observing that the sum has (2M - 1) terms. • " M + 1

Note. We do not claim that the maximizing index u can be found effectively. In the
formal proof in Section 5, the index u will be replaced by a slightly inferior index v
which is computed effectively.

Pre-step C (the computed norms)

To compute norms, we have to compute real numbers. Of course, a computable
real number is the effective limit of a computable sequence of rationals. Thus when
we "compute" a real number, the things which we actually compute are rational
approximations.

We begin with the final corollary in Pre-step A, which tells us that {||/m(T)(yn)||}
is computable for any computable sequence of continuous functions {/m} and any
computable sequence of vectors {yn}. For {yπ}, we take the sequence of vectors
{χn} constructed prior to Pre-step A. For {/m} we take the double sequence of
triangle functions {τqi} constructed in Pre-step B. Hence we have:

is a computable triple sequence of real numbers. We emphasize that this "comput-
ability" is simultaneously effective in all three variables, q9 ί and n.

Thus there exists a computable triple sequence of rational approximations, which
we denote by CompNorm^π) such that:

| C o m p N o π n > ) - \\τqi(T)(xn)\\ \ ̂  (l/1000)(l/2M)(l/16*) (q ^ 1),

I C o m p N o r m J n ) - | |τo l(Γ)(x.)| | |
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Note. Sometimes, in situations where the variable n is being temporarily held fixed,

we shall write CompNorm^ in place of CompNorm^n).

3. Heuristics

The two subsections Heuristics I and II below treat respectively: I. the construction
itself and II. the proof of its properties.

In this heuristic section, we shall make one simplification. As a result, the "con-
struction" described here is not effective: it contains one non-effective step. (We
will flag the place where this occurs.) Later, in Section 4, we give an effective
construction, followed in Section 5 by detailed proofs.

Heuristics I. A simplified version of the procedure

We now expand upon some comments made in the Introduction.
In order to motivate the steps which follow, it is useful to return momentarily

to the spectral theorem in its traditional (noneffective) setting. We recall that,
associated with any bounded self-adjoint operator T, there is a "spectral measure".
(For details, cf. Section 1.) The spectral measure gives a decomposition of the Hubert
space H into orthogonal subspaces Hj.

Let us now make this decomposition explicit in the most obvious (albeit noti-
effective) way. We begin by taking an interval ( —M, M] containing the spectrum
of T. Next we partition ( —M, M] into "thin" subintervals It = (at-l9 α j in the usual
fashion

— M = ao<a1 < -" < aN = M,

at — a^γ < ε for all i.

Then the corresponding subspaces,

Hi = H ( α |_ l f β | ],

are orthogonal and invariant under T, and the elements of Ht are "approximate
eigenvectors" (i.e. || Tx — atx\\ < ε||x|| for x e Hi). Thus we obtain a rough "picture"
of the operator T, a picture that becomes more precise as we let ε -• 0.

Of course, these steps are wildly nonconstructive. Indeed, even ignoring the
Hubert space aspects, the question of whether a real number t belongs to an
interval (a^-x, α j cannot be decided effectively. Thus we must find an analog of
this procedure—one which has some chance of being effective. To achieve this, we
shall have to abandon the "natural" decomposition of the real line into disjoint
subintervals.

Our modification of the "disjoint interval" procedure involves two main steps.
Firstly, we replace the disjoint intervals by intervals which overlap. Secondly,
we eliminate the intervals altogether! More precisely, instead of considering the
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characteristic functions of these intervals (step functions) we use triangle func-
tions. The necessary triangle functions were introduced in Pre-step B above. Their
advantage over step functions lies in the fact that they are continuous. This, as
we shall see, is what makes effective computation of the spectrum possible.

Now we turn to the details of the "construction". This "construction" is (if we
ignore its one noneίfective step) a universal procedure which begins with any
computable vector x and produces a computable real number λ. Likewise, if we
input a computable sequence of vectors {*„}, it produces a computable sequence of
reals {λn}. In fact we shall input the computable sequence {xn} defined in Section 2.
The resulting sequence {λn} will be the computable sequence of reals whose existence
was asserted in the Second Main Theorem.

We shall describe the procedure for a single vector xn, but in a manner which is
clearly effective in n. Then to deal with the entire sequence {*„}, we merely use
an effective process which returns to each xn infinitely often.

Thus we fix a vector xn from the computable sequence {xn} given in Section 2.
The following procedure will lead to the corresponding real number λn.

Step 1. We recall the computable double sequence of triangle functions τqi defined
in Pre-step B of Section 2. The function τqi is supported on the interval

which has half-width = S~q. These intervals overlap in the manner

. . . [ -2 ,0] , [-1,1], [0,2], [1,3],....

Step 2. We now have, by Pre-step A, that the double sequence of vectors {τqi(T)(xn)}
(recall that xn is fixed) and the double sequence of norms {||T9i(T)(xn)||} are com-
putable. The norms, of course, are a computable double sequence of nonnegative
real numbers.

Step 3. For each q = 0,1, 2,..., we shall choose an index i = ί(q) in a manner to be
described below. This will yield a nested sequence of intervals

where

Γ * —> Γ * - ) Γ * - ) . . .
i 0 — i l — i 2 —

Of course, the sequence {/*} is defined by induction. To obtain the nested
intervals we do the following. At any stage q ^ 1, we consider only those i such that

We recall from Pre-step B that, if we write; = i(q - 1) so that /*_! = / , _ w , then
the allowed values for i = i(q) must come from the finite list:
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Finally, we observe that, corresponding to the intervals /* lqΛq), there is a sequence
of triangle functions τ* = τqiiq).

Step 4. We now define the sequence of intervals {/*} and triangle functions {τ*} by
induction on q. We begin with the vacuous case q = — 1 (for which there are no
triangle functions and no interval /*). Then, subject to the restriction from Step 3,

Iqi c I*_1 (vacuous when q — 1 = — 1),

we choose the value ί = i(q) which

maximizes \\τqi(T)(xn)\\.

In case of ties, we choose the smallest tying i.

[This, of course, is the noneffective step! For the norms ||τg i(T)(xn)|| are com-
putable real numbers, and exact comparisons between computable reals cannot be
made effectively.]

Step 5 (Definition of λn). We define the real number λn as the common intersection
point of the intervals /* ( = I*(n\ where we have suppressed the variable ή). Since
the g-th interval /* has half-width 8~4, the convergence of these intervals as q -> oo
is effective in both q and n.

Notes. Later, in Section 4, we shall obtain an effective procedure by replacing the
norms | |Tg i(r)(xn)| | in Step 4 by the approximations CompNorm^ from Pre-step C.
Since the values {CompNorm^J form a computable double sequence of rationals,
exact comparisons of the CompNormg i can be made effectively.

On the other hand, the use of approximate values complexifies the proof to
a substantial degree. Furthermore, the key ideas of the proof lie elsewhere. That is
why, in this heuristic section, we ignore this painful but necessary step.

Not an eigenvalue]

Now we must define the set A of indices such that the set of eigenvalues coincides
with {λn: n φ A}. Thus A is to be a recursively enumerable set of natural numbers,
whose significance is the following: when an integer n appears on the list A, then λn

will not be counted as an eigenvalue. Thus the statement that ne A corresponds to
the declaration "Not an eigenvalue!" for λn.

[We remark, however, that the sequence {λn} need not be one to one. The same
real number λ may appear as the value λn for several n. In fact, we can have
λ = λn = λm with mΦn and the declaration "Not an eigenvalue!" could be made
for n but not for m. More on this below.]

The idea behind our definition of the set A is embodied in the following two facts:
(i) If λn is not an eigenvalue for T, then the norms ||τ*(T)(xn)|| -> 0 as q -> oo.
(ii) If λn is an eigenvalue, AND if xn is "sufficiently close" to the corresponding

eigenvector, then the norms ||τ*(T)(xw)|| remain bounded away from zero as q -» oo.
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We shall prove these statements in subsequent sections. Accepting their truth for
now, we can see at once what the criterion for "Not an eigenvalue!" should be.

Definition of set A ("Not an eigenvalue!"). We say that n G A if, for some q, the norm
\\τ*{T)(xH)\\ < 1/8.

We conclude this descriptive section with several remarks.
First, it is clear that the set A defined above is recursively enumerable. For we can

compute ||τ*(Γ)(xB)|| for q = 0, 1, 2,..., and if a value of q with \\τ*{T)(xn)\\ < 1/8
ever occurs, we will eventually find it. However, there may be no effective procedure
for listing the complement of A. For it is, of course, impossible to scan the entire
sequence {||τ*(Γ)(Λ;π)||} in a finite number of steps.

What does this mean from the viewpoint of spectral theory? In a deliberately
vague but suggestive fashion, we can describe the situation as follows. We recall
from Section 1 that λ is an eigenvalue if and only if there is a nonzero spectral
measure concentrated in the point-set {λ}. Now the sequence of triangle functions
{τqi} gives us a kind of "microscope" which allows us to examine intervals on the
real line, locating those intervals where the spectral measure is most heavily con-
centrated. However, for each fixed q, the microscope has only a limited amount of
resolving power. This power increases towards infinity as q -» oo. Nevertheless, at
any finite stage, our imperfect microscope is incapable of distinguishing between a
single spectral line and a thin band of continuous spectrum. And, since in any
effective process we are always at some finite stage, this difficulty can never by
resolved. This explains heuristically why, in the case where λn actually is an eigen-
value, we may never possess an effective verification of that fact.

Remark. We have noted that the sequence {λn} need not be one to one. This has the
consequence that, even if λn is an eigenvalue, the declaration "Not an eigenvalue!"
might be made for n. This is because (ii), on which the definition of A was based,
requires that λn be an eigenvalue and that xn be an approximate eigenvector. Even
if λn satisfies this, xn might not. However, if xn fails, then a suitable vector xm will
eventually turn up. The new vector will give the same value λ = λn = λm, but this
time the pair (λm, xm) will pass the "eigenvalue/eigenvector test". For a proof of these
statements, see proposition 4, whose proof is sketched in Heuristics II and then
done carefully in Section 5.

Finally, we repeat that the "almost effective procedure" in this section is only an
approximation to the effective (but more complicated) algorithm given in Section 4.

Heuristics II. Why the Procedure Works

In order to satisfy the conditions of the Second Main Theorem, there are four
things that we must show about the sequence {λn} and the set A "constructed" in
Heuristics I. These are:

1. Every λn e spectrum (T).
2. The sequence {Aw} is dense in spectrum (T).
3. If λn is not an eigenvalue of Γ, then ne A (i.e. the declaration "Not an eigenvalue!"

is made for ή).
4. If λ is an eigenvalue of T, then there exists some n φ A such that λ = λn.
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[Propositions 1. and 2. are virtually identical to the statements about {λn} and
spectrum(T) made in (i) of the Second Main Theorem. Propositions 3. and 4.
combine to give the result: The set of eigenvalues of T coincides with the set
{λn: n φ A}—exactly as in (ii) of the Second Main Theorem. As stated earlier, (iii)
and (iv) will be proved in Section 8.]

Precise proofs of 1., 2., 3., and 4. will be given in Section 5. Here, instead of trying
to be semi-precise, we shall be rather casual. Yet the sketchy "proofs" which we
outline here already contain the key ideas of the detailed proofs which are to come.

Consider the "construction" in Heuristics I. Recall that it begins with a vector xn

and ends with a corresponding real number λn. As a first step, we must unravel
the meaning of this construction in terms of the Spectral Theorem.

[This will require a rather lengthy discussion. We cannot avoid it. The Spectral
Theorem involves three different structures: projections/subspaces/measures, and it
is the interplay between these that is vital to our construction.]

Recall that in the Spectral Theorem there are two types of spectral measures.
Firstly, there is the spectral measure associated with the operator T. It consists of
projections onto subspaces of the Hubert space. Secondly, there are the measures
dμxx = dμ(x) associated with a vector x. These are ordinary positive real-valued
measures.

Here we recall some notation from Section 1: dμ(x) is a measure on the real line,
determined by the vector x. In integration formulas, we may want to display the

real variable t (for example, as in (T2(x), x) = t2 dμ(x, ή). So we sometimes add-L
the variable t and write dμ(x) = dμ(x, t).

The measure dμ(x) = dμ(x, t) is governed by the defining equation:

-r.x) = f{t) dμ(x, t),
J

where / is any bounded Borel function, and f(T) is the corresponding operator.
Now we must recall the connection between the spectral measure of T and that

of x. Begin with T. For each interval (a, b~\ in the real line, the spectral measure of
T gives a projection E{ab] onto a subspace H(afb] of the Hubert space H.

As we showed in Section 1 (SpThm 6), the connection between these projections
and the measure dμ(x) = dμ(x, t) is:

Let x 0 = E(ahλ(x) be the projection of x on the subspace H{Otb]. Then

11*01|2 = the dμ(x)-measure of (α, 6].

In particular,

| |x| |2 = the dμ(x)-measure of IR.

As an easy application of SpThm 6, we obtain a continuous analog of the
Pythagorean Theorem. Suppose we partition R into countably many disjoint inter-
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vals (ah ftj. Let

Xi =

s o t h a t x t is t h e p r o j e c t i o n o f x o n t o t h e s u b s p a c e H(a b]. T h e n :

Σ IWI2 = N I 2

i

Here is the proof. The intervals (ai9 ftj are disjoint and their union is R. Then the
fact that dμ(x) is a measure (i.e. countably additive) means that the dμ(x)-measures
of the (air bj add up to the dμ(x)-measure of U. But the dμ(x)-measure of (ai9 bt~] is
||xt | |

2, and the dμ(x)-measure of U is | |x||2. q.e.d.
Thus we reach a conclusion which can be put into words as follows:
The measure dμ(x) shows the way the vector x breaks down into its orthogonal

components xt—while in a parallel fashion the Hubert space is being broken down
into orthogonal subspaces by the action of the projection-valued measure dE.
More precisely, dμ(x) records the way that the square-norms ||JC£ | |2 add up via the
"Pythagorean Theorem" to give the square-norm of x.

This completes our review of spectral measures.
We apply this now to the vector xn with which we began the construction in

Heuristics I. The spectral measure of xn would seem to be a difficult thing to get our
liands on computationally. Let us worry about that later. For now, let us suppose
that we can somehow "see" the spectral measure, as though it were displayed on
a screen like a computer-graphic.

We know that the spectral measure of xn describes the connection between
intervals on the real line and the orthogonal decomposition of the vector xn.
('•The Pythagorean Theorem"). Thus, for example, consider the interval (α, ft] and
its associated subspace HiOtb]: if xn e H(aM, then all of the spectral measure of xn is
contained in (α, b~\. If xn deviates only slightly from a vector in H(ab], then most of
the spectral measure of xn will lie within (α, b~\. Of course, for most vectors xn,
the spectral measure of xn is spread out all over the place. But, even for such xn as
these, there should be parts of the real line where the spectral measure of xn is
"rnore heavily concentrated". We should be able to find these regions of "heavy
concentration" by partitioning the real line and choosing the subintervals which
have the "heaviest concentration".

All of this, we recall, was under the assumption that we could somehow "see"
the spectral measure of xn. But the triangle functions τqi allow us to do precisely
that. Our procedure in Heuristics I, of choosing the i which maximizes | |τβ ι (T)(xn)||,
allows us to pick out a nested sequence of subintervals of "heavy concentration"
converging down to a point λn of "heavy concentration".

Perhaps it is not clear at a glance that the triangle functions do what we have just
claimed for them. What connection is there between the norms ||τβJ(T)(xB)|| and
the spectral measure dμ(xn91) oϊxnΊ Well,

\K(T)(xn)\\2 = (τqi(T)(xn\ τqi(T)(xn)) = ((τqi)
2(T)(xn), xB),
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and by the defining equation of the spectral measure dμ(x91) (see above), this
becomes

ί (τqi)
2(ήdμ(xn,t).

Thus the value ||T4I(T)(xn)||2 is equal to that gotten by integrating the square of the
triangle function, (τqi)

2, against the spectral measure dμ(xn, t).
[The fact that the square-norm \\τqi(T)(xn)\\2 is the integral of the square (τqi)

2 is,
of course, another variant of the "Pythagorean Theorem".]

Now we return to the procedure in Heuristics I. Recall that, at stage q, it involves
letting ί vary and choosing the i which maximizes \\τqi(T)(xn)\\. We observe that,
for fixed q and varying i, the functions τqi all have the same shape—they are merely
translates of one another. So the integral of (τqi)

2 against dμ(xn, ή will be maximal
only when the support of the function τqi contains "its fair share" of the measure
dμ(xn, t). The procedure is pushing us towards a place λn on the real line where
the spectral measure of xn is "heavily concentrated".

The results of the discussion—which we state in a deliberately vague but intuitively
suggestive fashion—are:

The norms ||ταi(T)(xπ)|| give us a computationally effective way to get our hands
on the spectral measure of xn. Using these norms as in Heuristics I, we have
a procedure which passes from an input vector xn to an output number λn. This
procedure is designed so that λn lies at a place on the real line where the spectral
measure of xn is "heavily concentrated".

Now we ask: what does this say about the propositions 1., 2., 3., 4., listed above.
Let us go through them in order. For convenience, each proposition has been
restated (in parentheses) at the beginning of its paragraph.

[Incidentally, the fact that in the above sentence, the phrase "in parentheses" is
in parentheses, does not lead to a new type of self-referential formula in logic]

This is a good place to pause. We have reached a turning point. The heuristic
descriptions have come to an end, and the time to apply them has begun. We
reemphasize that the arguments given below are intended as proof sketches, and
not as formal proofs. For that reason we have omitted the usual symbol • which
marks the end of a proof. The formal proofs will be given in Section 5.

Remark concerning SpThm N. In Section 1 we gave seven results, SpThm 1 to
SpThm 7, on which this proof would be based. SpThm 6 and 7 have already been
used. The other five results are used in the arguments below.

1. (λn e spectrum(Γ).) Obviously, if λn lies at a point where the spectral measure
is "heavily concentrated", it must lie in the spectrum. For the complement of
spectrum(T) is an open set containing no spectral measure whatsoever.

2. ({λn} is dense in spectrum(Γ).) Take any λ e spectrum(T). We have to show that
there exist λn lying arbitrarily close to λ. Now the position of λn on the real line
depends on the initial vector xn. Obviously we must pick xn correctly. Well, suppose
we take a closed ε-neighborhood \_λ — ε, λ + ε] of A. By SpThm 3 in Section 1, this
neighborhood has nonzero spectral measure. Choose a vector xn whose spectral
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measure lies entirely within [Λ, — ε, λ + ε]. (This can only be done approximately—
a difficulty we ignore for now.)

Let λn be the number corresponding to xn. We want to show that λn e [Λ, — ε, λ + ε].
Suppose otherwise. We recall that the point λn is the intersection, as q -• oo, of
support(τ*). Then as q -• oo, support(τ*) approaches Λπ, and hence becomes disjoint
from [A — ε, λ + ε]. But [λ — ε, λ + ε] contains the entire spectral measure of xn.
So by SpThm 1, for all sufficiently large q, \\τ*{T){xn)\\ = 0.

However, our construction guarantees that the triangle functions τ* are supported
on an interval where the spectral measure of xn is "heavily concentrated". Hence, in
particular, the vector τ*(T)(xH) φ 0, and the norm | |τ*(Γ)(xJ| | > 0. This contradicts
the conclusion of the preceding paragraph.

3. (If λn is not an eigenvalue, then ne A: that is, the declaration "Not an eigenvalue!"
will be made for n.) Here it turns out that the spectral measure of T—involving
projections onto subspaces—is easier to use than the spectral measure of xn. We
saw in Section 1 that a number λ is an eigenvalue of T if and only if the point-set
{λ} has nonzero spectral measure: i.e. if and only if the subspace H^ is nonzero
(SpThm 5).

Suppose that λn is not an eigenvalue. Then the point-set {λn} has zero spectral
measure. Hence, by the countable additivity of spectral measure, the spectral measure
of the interval (λn — ε, λn + ε) shrinks to zero as ε -> 0. Now the triangle functions
τ* are uniformly bounded (0 ^ τ*(ί) ^ 1) and their supports shrink to the point-set
{λn} as q -• oo. Hence for any vector xn9 the vectors τ*(T)(xn) -• 0, and thus the
norms ||τ*(T)(xn)|| -•() (SpThm 2). Since these norms approach zero as q-> oo,
they must eventually drop below the cut-off value of 1/8. When that happens, the
declaration "Not an eigenvalue!" will be made. This finishes proposition 3.

Before coming to 4., there is a caution which we must stress. The converse of 3.
is false. That is, even if the declaration "Not an eigenvalue!" is made, it could still
happen that the value λ = λn is an eigenvalue. This was discussed in the Remark at
the end of Heuristics I. Here we merely recall that the sequence {λn} need not be
one to one. Therefore if λn = λm = λ with m φ n9 we might have the "Not an
eigenvalue!" declaration for n but not for m.

4. (// λ is an eigenvalue of T, then there exists ann φ A with λ = λn) As in 2. above,
the trick is to choose xn correctly. We begin with an xn which is an eigenvector of
T with eigenvalue λ. (Again this can only be done approximately, a difficulty we
ignore for now.) Since xn is an eigenvector for λ, spectral theory (SpThm 4) tells us
that, for any continuous function /,

f(T)(xπ) = f(λ)-xn.

In particular,this holds for the triangle functions τqi:

Assume, for convenience, that xn is a unit vector (again only approximately true).
Then:

xJII = τqi(λ).
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Now τqi(λ) is a much more tractable thing to deal with than | |τβ i(Γ)(xn)| |. We can
simply look at the graphs of the triangle functions τqi and see the way they overlap
(see Figures 1 and 2 in Section 2 above). We see from the graphs of the τqί that:

For any q, there exists an i, such that τqi(λ) ^ 1/2.

Recall that τ* denotes the function τqi which maximizes | | τ ί f (T)(xj | | = τqi(λ). Thus
we have:

τ*(λ) ^ 1/2 for all q.

Recall further that, by definition, λn is the common intersection of the intervals
I* = support (τ*).

The results which we need to show are (i) λ = λn, and (ii) n φ A.
(i) λ = λn. Well, τ*(λ) ^ 1/2 for all q, which puts λ within the support of τ* for all

q. Hence λ e I* for all q, λn e I* for all q (by definition), and since the widths of the
intervals /* shrink to zero, λ = λn.

(ii) n φ A (i.e. the declaration "Not an eigenvalue!" is never made). Well, this
declaration will be made if, for some q, | |τ*(Γ)(xn)| | = τ*(Λ) < 1/8. But we have seen
that τ*(λ) remains always ^ 1/2.

Note. The reader may wonder why we chose the value 1/8 as our cut-off for the "Not
an eigenvalue!" declaration. Actually, any value strictly less than 1/2 would do.
However, for normal operators (c.f. Section 6), we need a value < 1/4. We wanted
a uniform procedure, so we simply took the next power of two below 1/4.

This completes our discussion of proposition 4.
We make one final comment. Throughout this section, we have been rather

cavalier about "approximations". A computable real number can only be known
approximately. For the most part, this is a mere nuisance. However, there is one
place in our construction where the need to approximate plays a pivotal role.
This is the fact that our triangle functions have overlapping supports, after the
manner of

. . . [-2,0] , [-1,1], [0,2]....

Why do we do this? Suppose instead that we used intervals which abut, like

. . . [-1,0] , [0,1], [1,2]....

What would go wrong? The trouble is that something like the following might
happen:

There might be an eigenvalue λ which is slightly greater than 1, but which due to
errors in computation we reckon as being slightly less than 1. Consequently we select
the interval [0, 1] instead of [1, 2]. Well... ? The eigenvalue λ has been lost forever.
For our method requires us to remain within the interval [0,1]. No amount of
partitioning of [0, 1] can bring us back to λ9 which lies outside of [0, 1].

By using overlapping intervals we avoid these difficulties.
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4. The Algorithm

In this section we give the algorithm and prove that it is effective.
We recall that there are two constructions which we must carry out. We must

construct the sequence {λn} of real numbers, and list the set A of indices for which
the declaration "Not an eigenvalue!" is made. We repeat that the algorithm below
is NOT the same as the "construction" given in Heuristics I. The procedure in
Heuristics I was a simplified (noneffective) preview of what we do here.

We shall give this algorithm in the form of a "recipe", simply listing its steps. Any
explanations we include will be of a descriptive nature (to clarify what the recipe is).
As already noted, the properties of this algorithm are proved in Section 5.

Construction of the λn. The number λn will be constructed via a universal effective
process applied to the vector xn. We shall describe this process for a single fixed
value of n. The sequence {λn} is then generated by using a recursive procedure which
returns to each n infinitely often.

The ingredients for this construction are:

The vector xn, which is held fixed.
The operational calculus of Pre-step A.
The triangle functions τqi of Pre-step B.
The approximations CompNormqi of Pre-step C.

We recall that the triangle functions τqί are supported on the intervals Iqi =
l(ί - 1)8"Λ (i + 1)8"*] of half-width S~q. These intervals overlap in the manner:

. . . [-2,0] , [-1,1], [0,2], [1,3]....

[The trapezoidal function σ plays no role in the construction, although it will play
a role in the proofs which follow.]

We recall further that the values CompNorm^ are a computable multi-sequence
of nonnegative rational numbers which approximate the norms ||τqi(Γ)(xπ)|| to
Within an error given by:

|CompNoπnβl - \\τqi(T)(xn)\\ \ < (l/1000)(l/2M)(l/16«).

Now here is the recipe:
We proceed by induction, beginning with the stage q = -1, and going forward

to the stages q = 0, 1, 2, At the stage q = — 1, nothing has been done.
At each stage ^ O w e shall select a single triangle function τ* from among the

xφ — M - 8* < i < M - 8*, defined in Pre-step B. If one wants to be very formal, we
are really selecting an index i = i(q) from the list of indices - M 8* < i < M 8*.
Then we have the triangle τ*, the interval /*, and the computed norm CompNorm*
given by:

τ* = τqi9 i = i(q);

CompNorm* = CompNorm^ , ί = i(q).



176 5. Proof of the Second Main Theorem

Now, at any stage q ^ 1, we impose the following restriction. In selecting τ* = τqi

[i.e. in choosing i = i(q)~\, we consider only those i such that

[This guarantees that the selected interval /* satisfies J* ^ I*_λ. Hence I0,Il9I2,...
form a nested sequence of intervals.]

It may be useful to recall (cf. Pre-step B) that, if /*_x = Iq-ιj, then the allowed
values for i = ί(q) are

It is from this finite list that the actual value i = i(q) will be selected.
Finally, we are ready to describe the selection process for i = i(q). It is this. Subject

to the above restrictions on ί:

Choose the ί for which CompNorm^ is maximal.

In case of ties, we take the smallest tying i.
This is an effective process, since the multi-sequence CompNorm€l is a comput-

able double sequence of rational numbers.
The number λn is defined as the common intersection of the intervals J* (= Iqi for

i = i(q)).

Lemma. The sequence {λn} is computable.

Proof. The I* form a computable nested sequence of intervals of half-widths 8~q.
Clearly these half-widths approach zero effectively. Hence the above furnishes an
effective procedure for computing the real number λn.

What about effectiveness in nt For convenience in description, we have held n
fixed. But, clearly, the procedure is effective in n also. For {xn} is a computable
sequence of vectors, and the procedures in Pre-steps A and B are canonical and
universal. By contrast, the approximation procedure in Pre-step C—giving the
rational approximations CompNorm^—is slightly less canonical. But we took
pains to insure that the computation was effective in n as well as q and i. That is all
we need. •

This completes the construction of {λn}.

Construction of the Set A (Not an eigenvalue). Recall that A is to be a recursively
enumerable set of natural numbers such that the set of eigenvalues of T has the form
{λn: n φ A}. Roughly speaking, A gives the set of indices n for which we make the
declaration "Not an eigenvalue!" The set A, although recursively enumerable, need
not be recursive. Thus, from a computational point of view, we will eventually
compute the n e A—i.e. those n for which the declaration "Not an eigenvalue!" is
made. But the complementary set, listing the sequence of eigenvalues themselves,
may never be known to us.
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Of course, each individual eigenvalue (as opposed to the sequence of all eigen-
values) is computable. For if we hold n fixed, then the set A becomes irrelevant. We
simply fix n and then apply the effective procedure above for computing λn.

We turn now to the effective listing of the set A. Continuing with the notation
used in constructing {λn}, we shall add one detail. All of the previous constructions
depended on the initial vector xn, which we held fixed. Where previously we
suppressed the variable n, now it will be useful to display it. Thus we write:

τj = τ*(n),

and in particular,

CompNorm* = CompNorm* (n).

Now it is easy to describe the set A:

n e A if and only if, for some q = 0, 1, 2,. . . ,

CompNorm* (n) < £.

Lemma. The set A is recursively enumerable.

Proof. Clearly the set A (although not its complement) can be effectively listed. For,
firstly, {CompNorm*(n)} is a computable double sequence of rational numbers.
Thus, to list A, we scan the set of pairs (n, q) in a recursive manner, returning to each
n infinitely often: If CompNorm* (n) < 1/8 for some q, then we shall eventually find
this q, and consequently add the integer n to the set A. Π

5. Proof That the Algorithm Works

We have now given all of the necessary constructions and proved their effectiveness.
But we have not proved that these constructions fulfill the promises made in the
Second Main Theorem. This is our final task.

The proof depends on several inequalities, and we shall begin by deriving these.
Then we will turn to the propositions 1. to 4. discussed in Heuristics II. For
convenience, we will restate each proposition before giving its proof.

There are three inequalities. Analytically, they are not difficult. However, the
combinatorial situation which gives rise to them requires a bit of preface.

Suppose that in our construction we have completed stage (q — 1) and are looking
at stage q. The triangle function τ*_! with support /*_! has already been selected.
We recall that, if we write /*_! = Iq-i,p then the next value of i must be selected from
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the list:

8/ - 7 ^ i ^ 8/ + 7.

We first consider what we would do if we could achieve perfect accuracy. Let u be
an index from the above list which maximizes the norm ||τ^(T)(xπ)||. That is, u is
chosen so that, with i restricted as above:

IMTKxJII > \\τqi(T)(xn)\\ for alii.

(Of course, there is no effective procedure for finding u)
Let v be the least index from the above list which maximizes CompNorm^. That

is, v is chosen so that, with i restricted as above:

CompNorm^ ^ CompNorm^ for all i.

Here, by contrast, we can compute v. In fact, υ is just the value v = i(q) which is
used in the effective algorithm of Section 4. Hence, by the definitions of τ* and
CompNorm* in Section 4:

τq — Tqv

CompNorm* = CompNorm^.

The use of the index υ instead of u can lead to values which are slightly less than
maximal. We must compare these "imperfect" values to ||τίM(T)(xM)||, which is what
we would obtain if we could do perfect computations. We repeat that the reason for
these considerations is that we can find v effectively, but not u.

The key inequalities

ICompNorm* - ||τ*(T)(xπ)|| | < (l/1000)(l/2Λf)(l/16«). (InEq 1)

l|τ*(T)(xπ)|| ^ \\τqu{T){xn)\\ - (2/1000)(1/2M)(1/16*). (InEq 2)

l|τ*(Γ)(xM)|| ^ (l/2Λf)(l/16«). (InEq 3)

Proof of the inequalities. For InEq 1. The error estimates in Pre-step C give us, for
all q and i:

ICompNorm^ - \\τqi(T)(xn)\\\ ^ (l/1000)(l/2M)(l/16«).

Hence, in particular, this inequality holds for i = v. Since CompNorm* =
CompNorm^ and τ* = τqΌ9 this gives InEq 1. Π

For InEq 2, we observe that similarly CompNormg u deviates from ||τg

by less than (l/1000)(l/2M)(l/16«). Now by definition of v = i(q), CompNorm^ ^
CompNormgM. (With the CompNorms, which are effectively computed rational
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numbers, we do, of course, pick the best value.) Hence:

CompNornv ^ \\τqu(T)(xn)\\ - (l/1000)(l/2M)(l/16«).

Again we recall that CompNorm* = CompNorm^. By InEq 1, the transition back
fromCompNorm* to ||τ*(T)(xB)|| introduces another error of (l/1000)(l/2M)(l/16β).
This, added to the identical error above, produces the (2/1000)(l/2M)(l/16«) of
InEq 2. •

For InEq 3. We use induction on q. Assume that the inequality has been proved
for q - 1. First we will deal with the case q ^ 1, and then we shall come back to the
case q = 0. Take q ^ 1. By the induction hypothesis:

Now we use an inequality which has already been proved in Pre-step B. This
inequality was based on the decomposition formulas for triangle functions (see
Figures 1 and 2 above). We proved in Pre-step B that:

\\τqu(T)(xn)\\ >(m\\τt-ΛT)(xn)l

For convenience, let us call (l/2M)(l/16q) "the target value". Our objective is to
show that ||τ*(T)(xπ)|| ^ (the target value).

By combining the two displayed inequalities above, we obtain ||τ4M(T)(xπ)|| ^ 2
(the target value), since ( l / δ H l / l ό ^ M l ^ M ) = 2 (1/16«)(1/2M). We must make the
transition from τqu (the true maximum) to τqv (= τ*, the function we select). Well,
we simply use InEq 2. We have 2 (the target value), and the "error" in InEq 2 forces
us to subtract (2/1000) (the target value). This leaves us with:

\K(T)(xn)\\ >L2- (2/1000)] (the target value).

The coefficient [2 — (2/1000)] exceeds the required value of 1, with room to spare.
Now we must do the case q = 0. This is where the trapezoidal function σ from

Pre-step B comes in. (See Figure 2.) Actually, we already did most of the work in
Pre-step B, where we proved—using σ—that:

l|τOtt(T)(xM)|| > 1/(2M - 1).

Again u is the maximizing index, υ is the slightly inferior index which we select, and

τ * = τ O ι r We need ||τ5(T)(xB)|| > 1/2M. Hence this allows us to use the gap between
1/(2M - 1) and 1/2M.

Now we go back to Pre-step C. There, at stage q — 0, we insisted on an error:

|CompNorm 0 ί - ||τOί(Γ)(xπ)|| |

Well, how convenient!
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Again, our "error" is 1/1000-th of the allowable gap. The rest of the proof is so
similar to that given above (for q ^ 1) that we leave any further details to the
reader. •

This completes our treatment of the inequalities InEq 1 to InEq 3.

The end of the proof

We now give the proofs of the propositons 1. to 4.
Because we have made the right preparations, these proofs are very short. We

recall that "SpThm JV" refers to the JV-th corollary of the spectral theorem, as
developed in Section 1. Of course, "InEq JV" refers to the JV-th inequality in the
preceding subsection.

1. (Every λn e spectrum (T).)

Proof. Suppose not. Since spectrum(T) is a closed set, λn must lie within an open
interval (λn — ε, λn + ε) outside of spectrum(T). Since the supports of the triangle
functions τ* shrink to the point λn9 there must be some q for which support(τ*) ^
(λn - ε, λn + ε).

Thus the support of τ* lies entirely outside of spectrum(T). Since | |τ*(T)|| ^
sup {|τ*(A)|: λ e spectrum(Γ)} (SpThm 7), τ*(T) = 0. Hence \\τ*(T)(xn)\\ = 0. This
contradicts InEq 3. •

2. (The sequence {λn} is dense in spectrum(T).)

Proof Let λ e spectrum (T), and take any ε > 0. We must find a λn such that
\λn -λ\<ε.

Take an integer q such that the interval /* = support(τ*) has length < ε/2, that
is, suchthat2 8"β < ε/2.

From SpThm 3, the open interval (λ — ε/2, λ + ε/2) corresponds to a nonzero
subspace H{λ.ε/2fλ+ε/2) oϊH.

Let x be any unit vector in Hiλ-ε/2tχ+ε/2)
Since {xn} is dense on the spherical shell {x: 1 ^ ||x|| ^ 1001/1000}, there exists

some xn with ||χπ - χ|| < (1/2M)(1/164). Thus we may write:

xn = x + z,

We use this vector xn with its associated triangle functions τ* and its associated value
λn. We recall that λn is the common intersection of the intervals /* = support(τ*)
for q = 0, 1, 2 , . . . . On the other hand, in this argument we are using a fixed value
of q, as defined above. We claim:

support(τ*) intersects (λ — ε/2, λ + ε/2).
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Suppose not. Then the support of τ* lies entirely outside of (λ — ε/2, λ + ε/2),
whereas the vector x lies entirely within the subspace #(λ-ε/2,λ+ε/2) Hence by
SpThm 1, τ*(T){x) = 0. Hence τ*(T)(*J = τ*(T)(z). Now |τ ( ί ) |< 1 for all real ί,
whence ||τ*(T)|| ^ 1 (SpThm 7), whence

\\τ*(T)(xH)\\ = ||τ (T)(z)|| ^ ||z|| < (1/2M)(1/16«).

This contradicts InEq 3.
Consequently /* = support(τ*) does intersect (λ — ε/2, λ + ε/2). Since I* has

length < ε/2, and λn e /*, we obtain \λn — λ\ < ε, as desired. •

Summary of I. and 2. (the spectrum). This is a good place to pause and recall what
went into the proofs of 1. and 2. Begin with 2. There we used a vector xn which
depended on q which in turn depended on ε. We used the inequality InEq 3
CI|τ*(T)(xw)|| ^ (1/2M)(1/16«)], which also depends on q, but is independent of n.
Much of the work in Pre-step B—the careful partitioning of triangles as shown in
Figures 1 and 2 above—was aimed at producing this independence. It is essential.
For the definition of xn implicitly depended on InEq 3. If InEq 3 also depended on
xn, then our definition would be circular.

By contrast, the proof of 1. required only | |T*(T)(X M ) | | > 0. If this were all we
needed, it could be attained much more easily.

We turn now to the "eigenvalue propositions" 3. and 4.

Remarks. Here we shall not need such sharp error estimates as those proved in
InEq 1 to InEq 3 above. Instead of the error term (l/1000)(l/2M)(l/164) of InEq 1,
we can get by with 1/1000. Similarly for InEq 2. Lastly, InEq 3 has served its pur-
pose (in proving 2.) and will not be seen again.

Of course, in this theoretical account, we are not going to alter our construction.
But for the purpose of algorithmic efficiency, it might be well to record the fact: If
one cared only about eigenvalues, and not about the spectrum, then a fixed "error"
such as 1/1000 would suffice.

3. (Ifλn is not an eigenvalue, then ne A, that is, the declaration "Not an eigenvalue!"
is made for n)

Proof. Since λn is not an eigenvalue, the spectral measure of the point-set {λn} is null
(SpThm 5).

The triangle functions are uniformly bounded (0 ^ τ*(ί) ^ 1). Recall that, as
q -* oo, the supports of the τ* shrink to the point-set {λn}. Hence, as q -• oo, the
functions τ*(ί) -> 0 point wise except at the point t = λn.

Now, as we have seen, the point-set {λn} has spectral measure zero. Thus, as
q -• oo, the functions τ*(ί) -• 0 "almost everywhere" in terms of the spectral measure.
Hence by SpThm 2, τ*(T)(xB) -• 0, which means by definition that ||τ*(T)(xn)|| -• 0.

The rest is trivial. Since ||τ*(Γ)(xπ)|| ->0 as q-> oo, eventually ||τ*(T)(xπ)|| be-
comes less than (1/8) - (1/1000). Since ||τ*(T)(xπ)|| and CompNorm* differ by
^(1/1000) (InEq 1), eventually CompNormJ becomes less than 1/8. When that
happens, the declaration "Not an eigenvalue!" is made. •
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4. (Ifλ is an eigenvalue ofT, then there exists some nφ A with λ = λn)

Proof. Let λ be an eigenvalue of T, and let x be a unit eigenvector corresponding to
λ. Since {*„} is dense on the spherical shell {x: 1 < ||x|| ^ 1001/1000}, there exists
some xn with \\xn — x|| < 1/1000. Let λn be the scalar corresponding to xn via our
construction. We wish to show that λ = λn and nφ A. For this we use:

Lemma. Under the above assumptions on xn9 we have τ*(λ) ^ 1/7 and CompNorm* ^
1/7 for all q.

We first show that the lemma implies 4. Recall that λn is the common intersection
point of the intervals /* = support(τ*) for q = 0, 1, 2, Since, by the lemma,
λ e support(τ*) for all q, λ = λn. Since CompNorm* ̂  1/7 > 1/8, the declaration
"Not an eigenvalue!" is never made, whence nφ A.

Proof of lemma. We give the essential points first, and save the details of "approxima-
tion" for the end. Thus for now we work with the true eigenvector x, and ignore its
approximation xn. From SpThm 4 we have:

Ki(Γ)(x)|| = τJLX) 11*11 = τβl(λ) for all q, I

Now the proof hinges on the way the triangle functions τqi overlap. (Here see
Figures 1 and 2 in Section 2 above, and especially Figure 3 below.) Hold λ fixed.
Then for any q, there exists some index i such that τqi(λ) ^ 1/2. However, this
overlooks a crucial point. We are not allowed to pick i with complete freedom. (Here
cf. the closing remarks in Heuristics II.) Specifically, the situation is this:

Suppose at stage g - l w e have selected the function τ*_x = τg_ l f J . Then at stage
q, the index i = ί(q) must come from the list

ί = 8/-7 8/ + 7.

We must show that for one of these ί, τqi(λ) ^ 1/2. Here again we refer to the
geometry of the triangle functions (Figure 3). One readily verifies:

(ooo) τqi(λ) ^ 1/2 for some ϊ = 8/ - 7,..., 8/ + 7 if and only if τ * . ^ ) ^ 1/16—
that is, if and only if λ lies within the middle 15/16-ths of the support of τ*^.

x = (8j - 8)8-q x = 8j 8"q x = (8j + 8)8
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Now the rest of the argument, while analytically simple, involves an induction on
the pair of statements:

(*) For all q, there is some i = 8/ — 7,..., 8/ + 7 such that τqi(λ) ^ 1/2.

(* )τ μ)^l/7.
Assume that both (*) and (**) hold for q — 1. Then by (**), T*_X(X) ^ 1/7, which
exceeds 1/16 with room to space. By (ooo) above, this gives (*) [although not yet
(**)] for q.

We must also verify (*) for q = 0. (Here see Figure 2 above.) This follows
immediately from the fact that spectrum(T) £ [ — (M — 1), M — 1], whence λ e
[_(M-1),M-1].

Now we turn to the derivation of (**). This is a mundane problem of approxima-
tion. Let u be the value of i, 8/ — 7 ̂  i ̂  8/ + 7, which maximizes τgi(A). [We do not
claim that u can be found effectively.] By (*) we know that

τqu(λ) > 1/2,

and since τqu(λ) = ||τ,tt(T)(x)||,

\\τqu(T)(x)\\ > 1/2.

Since ||xπ - x|| < 1/1000 and ||τ,w(T)|| ^ 1 (SpThm 7):

I IMT)(x) | | - \\τqu(T)(xn)\\ I < 1/1000.

Since CompNorm^ differs from \\τqu(T)(xn)\\ by less than 1/1000,

I \Ku(T)(x)\\ - CompNorm, t t | < 2/1000.

Since, by definition, CompNorm* is the maximum of the computed norms,
CompNorm* ^ CompNorm9M, whence

CompNormJ ^ ||τ,M(T)(x)|| - 2/1000

^ (1/2) - (2/1000).

Since CompNorm* differs from ||T*(r)(xB)|| by less than 1/1000,

\\τt(T)(xn)\\ > \\τqu(T)(x)\\ - 3/1000.

Finally, since ||xπ - x|| < 1/1000,

|| - 4/1000

(1/2) - (4/1000).
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Now we are back to the true eigenvector x, but with the "imperfect" triangle function
τ* which our approximate construction furnishes. We have (again by SpThm 4):

||τ (T)(x)|| = τ*{λ) > (1/2) - (4/1000).

The value (1/2) - (4/1000) exceeds the desired target value of 1/7 with room to spare.
This proves (**), and completes the induction from q - 1 to q.

Finally, several steps back, we had CompNorm* ^ (1/2) - (2/1000), which ex-
ceeds 1/7 with slightly more room to space. •

This proves the lemma. As we have seen, the lemma implies proposition 4. This,
in turn, completes the proof of the Second Main Theorem. •

More precisely, we have proved the positive parts (i) and (ii) of the Second Main
Theorem for the case of bounded self-adjoint operators. Normal operators, un-
bounded self-adjoint operators, and the negative parts (iii) and (iv) will be treated
in Sections 6, 7, and 8 respectively.

6. Normal Operators

We recall that a bounded linear operator Tis normal if it commutes with its adjoint,
i.e. if TT* = T*T. The Second Main Theorem extends mutatis mutadis to bounded
normal operators. This extension is needed for the unbounded self-adjoint case.

Theorem 1 (Normal Operators). Let H be an effectively separable Hilbert space. Let
T: H -> H be a bounded normal operator. Suppose that T is effectively determined.
Then there exists a computable sequence {λn} of complex numbers, and a recursively
enumerable set A of integers such that:

each λn G spectrum(T);

the spectrum ofTis the closure in C of the set {λn};

the set of eigenvalues ofT coincides with {λn: n e N — A}.

Before we come to the proof of Theorem 1, we need the following.

Proposition. Let T: H -> H be an effectively determined bounded normal operator.
Then the adjoint T* is effectively determined.

Proof. We wish to show that T*x is computable if x is. It will be obvious that the
procedure is effective, uniformly for computable sequences {xk}.

Let x be computable. Now T is bounded and effectively determined. Hence by
the First Main Theorem (Chapter 3), Tx is computable. Then by the Norm Axiom,
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|| 75c || is computable. Since T is normal, ||75c|| = ||T*x||, for we have | |Tx||2 =
(T*Tx, x) = (7Ύ*x, x) = | |T*x| | 2. Thus | |Γ*x|| is computable.

We recall that by Lemma 7, Section 6, Chapter 4 there exists a computable
orthonormal basis {en} for H. Let {cn} be the sequence of "Fourier coefficients" of
T*x, namely cn = (T*x, en) = (x, Ten). s i n c e τ i s effectively determined, we see that

cn} is computable. Thus the sequence of vectors yn = £ ciei is computable.
/ R \l/2 i=0

The norms | |yj | = ( £ k/l2 ) f o r m a nondecreasing sequence whose limit is
\l/2 V-0 /

ci\2\ = Wτ*χW A s w e h a v e s e e n ' Wτ*χW i s computable. Thus the norms
/

{11̂ 11} form a computable sequence converging monotonically to a computable
limit | |Γ*x||. Hence the convergence is effective (Chapter 0, Section 2). Finally,
H ^ - T*x| | 2 = f \Ci\

2 = | |T*x| | 2 - | | ) J 2 ^ 0 effectively—i.e. yn^T*x effec-
i=n + l

tively in the norm ofH. Since {yn} is computable, it follows by the Limit Axiom that

Γ*x is computable. This proves the proposition. •

Note. This proposition fails for operators which are not normal. That is, there exists
a bounded (non-normal) effectively determined operator T whose adjoint T* is not
effectively determined. Since we do not need this counterexample, we shall not
digress by presenting it.

Proof of Theorem 1

The proof follows so closely the proofs in Sections 1-5 that it is pointless to give it
in detail. Instead we list the few modifications which are necessary in order to pass
from the bounded self-adjoint to the normal case.

First, and obviously, we use the spectral theorem for bounded normal rather than
bounded self-adjoint operators. Here the spectrum of T is a compact set in the
complex plane rather than the real line. All of the (minor) modifications in the proof
are consequence of this circumstance. We now list these modifications, with refer-
ence to the places in Sections 1-5 where they occur.

(Weierstrass approximation theorem in Section 2, Pre-step A). There we had real
polynomials p(ί), where the relevant values of t were the points λ in the spectrum of
T Here we replace polynomials in the real variable λ by polynomials in the two
complex variables λ and λ. We observe that, in the operational calculus, λ corre-
sponds to T and λ corresponds to T*. For the Weierstrass theorem, we note that a
arbitrary polynomial in x_= Re(/l), y = lm(λ) can be expressed in terms of λ and
λ: x = (λ + λ)IX y = (λ- λ)/2ί.

(The two dimensional grid—cf. Section 2). As before, we partition our intervals
into 8 parts at each stage. However, here the spectrum of T is complex. Hence we
have a two dimensional grid on which each square is partitioned like a chessboard
into 64 squares. As this happens at each stage, after q stages the number of squares
is multiplied by 64 .̂
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(The "triangle functions" τqi(x) in Section 2, Pre-step B.) Since the spectrum of T
is complex, we need functions of two real variables x, y. We set:

τβί/(*> y) = SiWτ./y), - 8*M < i < 8*M, - 8*M <j< 8*M.

In Section 2, Pre-step B we had the decomposition identity:

1 7

V u M = o Σ ( 8 - l 7 l ) τ,,Λ+j(x), where h = 8/.
Oj=-7

(As we recall, the coefficients go 1,2,3,..., 7,8,7,..., 3,2,1.) Now by the distributive
law, the product τq_x^(x)!^ j(y) decomposes into a linear combination of terms
V(x)τ ί S (Λ where 8ΐ - 7 < r < 8i + 7, 8/ - 7 < s < 87 + 7.

For the sake of thoroughness, we check that the factor 64* mentioned above is
correct. Consider the passage from q — 1 to q. The function τq-ltU(x9 y) is a linear
combination of products τqr(x)τqs(y). The sum of the coefficients is

Hence the largest of the \\τqr(x)τqs(y)(T)(xn)\\ must be ^1/64 the size of the corre-
sponding term for q — 1.

(The "CompNorms" in Section 2, Pre-step C). Previously, at stage q, the
CompNorms = computed norms approximated the true norms to within an error
of

(l/1000)(l/2M)(l/16*) for q^l.

Here the "1/2M" took care of the length of the interval [ - M , M], and the "1/16*"
was designed to be safely smaller than the natural factor of 1/8* which results from
the partition process.

In the two dimensional case, we replace the "1/2M" by "1/4M2" (area of a square),
and replace the "1/16*" by "1/256*" (again safely smaller than the natural factor of
1/64* which results from the partition process).

The trivial modifications for the case q = 0 are left to the reader.
(The algorithm in Section 4). Once the CompNorms have been found—cf. above

—there is essentially no change in Section 4, other than the obvious fact that the
single index i is replaced by a pair of indices 1, j .

(Section 5, "Not an eigenvalue!") We examine the crucial lemma in step 4. in
Section 5. In the proof of this lemma we had the statement: "There is some index ί
(which we label u) such that τqu(λ) ^ 1/2." Now, because of the two-dimensional
picture, the corresponding statement becomes: There is some pair of indices w, v
such that τquv(λ) ^ 1/4. In the previous proof, we went from 1/2 down to 1/7; the
exact size of these constants did not matter: only the fact that the second was strictly
less than the first. Here we can go from 1/4 to 1/7, so the constant 1/7 still suffices
in the complex case. [Of course, the point of the constant 1/7 is that it is strictly
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greater than 1/8—since the "Not an eigenvalue!" declaration uses the cutoff value
of 1/8.]

This completes our listing of the modifications. •

7. Unbounded Self-Adjoint Operators

Let T: H -> H be an unbounded self-adjoint operator. It is well known (cf. Section
1) that N = (T — Ϊ ) " 1 exists and is a bounded normal operator. Thus, in the classical
(non-computable) case, the theory of unbounded self-adjoint operators reduces to
that of bounded normal operators. A computable treatment of the spectrum for
bounded normal operators was outlined in the preceding section. In this section, we
extend this treatment to unbounded self-adjoint operators.

We recall the difinition. Let X be a Banach space with a computability structure.
A closed operator T is effectively determined if there is a computable sequence of
pairs {(en, Ten)} which spans a dense subspace of the graph of T. Then we also say
that {en} is an effective generating set for T.

The following trivial observation will be used in what follows. If T is effectively
determined, if {en} is an effective generating set for T, and if α is a computable real
or complex constant, then the operator T + α is effectively determined, and {en} is
an effective generating set for T + α. The proof is clear.

The following proposition, which we will use in our proof, may also be of
independent interest.

Proposition. Let T: X-> X be effectively determined, and let {en} be an effective
generating set for T. Suppose that T~ι exists and is a bounded operator. Then T " 1 is
effectively determined.

Proof. Since Γ" 1 is bounded, it suffices to compute T~ιen for any effective generating
set {en}. More generally, we show how to compute {T~1xπ} for any computable
sequence {xn}. To do this we show how to compute T~xx for any computable x; it
will be obvious that our procedure extends effectively to computable sequences {xn}.

Since T " 1 is a bounded operator, the range of T is the whole Banach space X.
That is, the projection of the graph {(u, v): v = Tύ] onto the υ-coordinate is X. Let
v = x, so that u = T~xx. Now to compute u effectively, we proceed as follows.

Let M be an integer such that || T" 11| < M. Let {p j be an effective listing of all
(real/complex) rational linear combinations of the en. Since T is effectively deter-
mined, the set of pairs (ph Tpt) is dense in the graph of T. Hence for any k there exists
an i such that

which immediately gives

\\TPi-v\\<2-k/M.
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To compute u = T~xx to within an error < 2~fc, we set v = x, and then wait until a p{

turns up such that || Tpt - x\\ < 2~k/M. Then since || T" 1 1| < M, \\pt - T^xW < 2'k.
The w-coordinate p( is our desired approximation to T " 1 * . Q

Now we return to the case of unbounded self-adjoint operators on a Hubert space
H. For convenience, we recall the result which we need to show.

Second Main Theorem, unbounded case, parts (i) and (ii). Let T: H -> H be an
effectively determined unbounded self-adjoint operator. Then there exists a computable
sequence {λn} of real numbers, and a recursively enumerable set A of integers such that:

each λn e spectrum (T);
the spectrum ofTis the closure in U of the set {λn};
the set of eigenvalues of T coincides with {λn: n e N — A}.

[Thus the results of Sections 1-5 extend to the case of unbounded self-adjoint
operators.]

Proof We combine the proposition above with Theorem 1, Section 6 (normal
operators). Since T is self-adjoint, the operator N = (T — i ) " 1 is bounded and
normal. From the proposition above, we see that N is effectively determined. Now
we apply Theorem 1 for normal operators. This asserts that there is a computable
sequence of complex numbers {μn} which is dense in spectrum(N) and such that the
eigenvalues of N consist of {μn: n e N — A} for some recursively enumerable set A.

Now the transition from N to T requires three steps.
1. Since N = (T - i)~\ T = Λ Γ ^ l + iN). The spectrum/eigenvalues of N are

mapped onto those of T by the function λ = (1 + iμ)/μ.
2. We observe that 0 is not an eigenvalue of N (else T — i would map zero onto

a nonzero vector). However, since T is unbounded, 0 e spectrum(N), and 0 is a limit
point of the spectrum of N.

3. We have to deal with the possibility that some of the μn = 0. We simply delete
these μn. The set B of n for which μn Φ 0 is recursively enumerable (although perhaps
not recursive). Consequently we keep {μn: n e £}, and replace the set A by A n B.
Since 0 is a limit point of the spectrum, the set {μn: μn φ 0} is still dense in
spectrum (AT).

Combining steps 1. to 3. above, we see that the sequence {λn = (1 + iμn)/μn: ne B}
fulfills the conditions of the theorem. •

8. Converses

Here we prove the converse parts (iii) and (iv) of the Second Main Theorem. We
recall that (iii) is the converse to part (i), and (iv) is the converse to part (ii): the proof
of the "positive" parts (i) and (ii) has occupied most of this chapter—Sections 1 to
7 above. Here, for convenience, we restate all of the parts (i) to (iv).
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Consider an effectively determined (bounded or unbounded) self-adjoint operator
T.H^H. Part (i) asserts that there exists a computable real sequence {λn} such
that the spectrum of T coincides with the closure of {λn}. The converse part (iii)
(Example 1 below) asserts that, given a computable real sequence {λn}, we can
construct an operator T as above such that closure of {λn} coincides with the
spectrum of T. We recall that, since the spectral norm of T equals its norm, if the set
{λn} is bounded then T is bounded.

Now again consider an effectively determined (bounded or unbounded) self-
adjoint operator T.H^H. Part (ii) asserts that there exists a computable real
sequence {λn} and a recursively enumerable set A of natural numbers, such that the
set of eigenvalues of T coincides with {λn: n φ A}. The converse part (iv) (Example
2 below) asserts that given {λn} and A as above, we can construct an effectively
determined self-adjoint operator T such that the set {λn: n φ A} coincides with the
set of eigenvalues of T. When the set {λn} is bounded, the operator T can be chosen
to be bounded.

Example 1. Let {λn} be a computable sequence of real numbers. There exists an
effectively determined, self-adjoint operator T whose spectrum is the closure of {λn}
in(R.

Proof. Let [en] be a computable orthonormal basis for the Hubert space H (cf.
Lemma 7, Section 6 in Chapter 4). In terms of this basis, Tis the self-adjoint operator
defined by the matrix:

/λ° x ^
λ2 0

\ • • • . /

This means that Ten = λnen9 and the domain of T is the set of all vectors x = £ cnen

for which both of the sums | |x| |2 = £ | c π | 2 a n d II ^ l l 2 = Σ I AwcπI
2 are finite. It is easy

to verify (cf. Riesz and Sz-Nagy [1955]) that T, as so defined, is self-adjoint. Since
{λn} is computable, the sequence of pairs {<eM, Ten}} = {<£„, λnen}} is computable
ahd forms an effective generating set for the graph of T. Hence T is effectively
determined.

The eigenvalues λn e spectrum (T), and since spectrum (Γ) is closed, the closure of
{λn} is a subset of spectrum(T). To show that closure{Λ,w} = spectrum(T), consider
any real number α φ closure{λn}. Then the sequence of numbers {l/{λn — α)} is
bounded. These numbers form the elements of the diagonal matrix for (T - α/)"1.
Thus (T — α/)"1 exists and is bounded. Hence α φ spectrum(T). •

Example 2. Let {λn} be a computable sequence of real numbers. Let A be a
recursively enumerable set of natural numbers. Then there exists an effectively
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determined self-adjoint operator T such that the set of eigenvalues of T coincides
with the set {λn: n $ A}. When the sequence {λn} is bounded, the operator T is also
bounded.

Here we give the construction only for the case where {λn} is bounded—so that
the resulting operator Tis also bounded. The extension to unbounded {λn} is purely
mechanical. In fact, the construction for unbounded {λn} is identical to that given
here. However, the verifications (e.g. that T is self-adjoint) require a number of
technicalities associated with unbounded self-adjoint operators. These facts about
unbounded operators can be found e.g. in Riesz and Nagy [1955], p. 314. We add
that, when {λn} is bounded, these technical difficulties disappear. (We also mention
in passing that the example in part (iii) above was done for both the bounded and
unbounded case.) Now here is the construction.

Proof for bounded {λn}. This construction is an extension of the preceding one, but
is a little more complicated. We let H be a countable direct sum of spaces Hn

isomorphic to L 2 [ — 1, 1]. Let enm be the function on the π-th copy of I? [— 1, 1]
given by enm(x) = (l/^/2)eπimx, m = 0, ± 1 , ± 2 , . . . . Then {enm} is a computable
orthonormal basis for H.

As a preliminary step, we begin with the operator To defined by

Tof = λnf for fsHa.

Thus, To restricted to the rc-th copy of L 2 [ — 1, 1] coincides with multiplication by
the constant λn. This makes λn an eigenvalue of To.

The idea behind our construction is that, by perturbing T0\Hn ever so slightly, we
can destroy the eigenvalue λn and replace it by a narrow band of continuous
spectrum. This perturbation can come at any stage; the later it comes, the smaller it
will be.

We now give the details. Let a(k) be a 1-1 recursive function which enumerates
the set A. We start with the operator To defined above. At the /c-th stage, we
introduce the following perturbation. Let Tk denote the operator as it is before the
fc-th stage. Then we define Tk+1 by:

Tk+i = Tk on the orthocomplement of Ha{k) in H.

On Ha(kp we change

Tk = multiplication by the constant λa{k)

into

Tk+ί = multiplication by the function λa(k) + 2~kx.

The resulting operator Tk+ί on Ha(k) has the form:
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where a = λa(k), b = 2~k φ 0. It is well known and easy to verify that such an
operator has only continuous spectrum, and no eigenvalues.

(The spectrum of Tk+1 on Ha(k) coincides with the range of (a + bx) on [ — 1, 1],
i.e. with the interval between λa{k) ± 2~k. Thus the eigenvalue λa(k) is replaced by a
band of continuous spectrum with a band width of 2 2~k.)

Let T = lim Tk. We must verify that the operator Tis effectively determined. Since
T is bounded, it suffices to show that {T(enm)} is computable, where {enm} is the
effective generating set given above. Now it is clear that the triple sequence {Tk(enm}}
is computable in fc, n, m. Since || Tk — Γfc_x || ^ 2~k

9 the operators Tk converge uni-
formly and effectively to T as &-• oo. Hence by the Limit Axiom {T(enm)} is
computable. Thus T is effectively determined.

Finally, the eigenvalues of T are precisely the set of λn not destroyed, i.e.
{λn: n φ A}. This completes the example and finishes the proof of the Second Main
Theorem. •




