XVI. Large Ideals on Ny
from Smaller Cardinals

§0. Introduction

We give here better consistency strength than in XIII for having some large
ideal on wy; possibly without adding a real using e.g. a Woodin cardinal. By
this we keep old promises from 84 — 85, mentioned in [Sh:253], Shelah and
Woodin [ShWd:241], (part of the delay was because it was originally intended
to be part of [ShWd:241] which later was splitted to three). This will be
continued elsewhere - getting suitable axioms in 2.4, 2.5, 2.642.10. Woodin
told the author that the results (in 2.4 — 2.6(4+2.7)) threw some light on the
structure of universes of set theory satisfying AD. In §2 we use from §1 only
1.2(1),(2), 1.3(1), 1.8 for 2.1; weakening somewhat the results in §2, we can use
2.8, 2.9 instead of 2.1 (so replace (x)2,[\] by “X is a Woodin cardinal” in 2.4,
2.4A, 2.5, 2.6 thus using only 1.14, 1.15, 2.2 - 2.10).
The large cardinals from [ShWd:241] are defined in 1.14, 1.15.

§1. Bigness of Stationary T C S<y,()

1.1 Notation. 1) X a fixed regular cardinal > Ro.

2) For sets a,b let a <, bmean: aNk =bNk and a C b and let a <, b means:
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aCbandank =bNsup(lank) le.a€ank=aN(a+1)=bN(a+1)), so
a <. b a<,b And a <. a holds!
3) H(«) is the family of sets x whose transitive closure has cardinality < «, and
if a is not cardinal we add: z of rank < a. Let <}, be some well ordering of H(c)
increasing with o. We let N denote a model (usually N < (H(x),€,<3}), N
countable), |N| its universe, and ||N| its cardinality. We write N; <, N
instead |Ni| <, |N2|, similarly for <.
4) S<,(A)={b: bC B, |b| < u}

D<,.(B) is the filter on S<,,(B) generated by the closed unbounded subsets
of 8<,,(B) (similarly D, (A) for u regular uncountable).
5) S, T denote subsets of some S<,(A). We concentrate on p = Ro.

1.2 Definition. 1) T' C Sc<x,(A) is (6, C*)-big (where Rg < 8 = cf(f) < A and
C* C X closed unbounded) if:

for every a < A there is 8, a < 8 < Min(C* \ (o + 1)) such that for every
C € D<y,(B) the set {a € S<y,(a) : (Fb € CNT)[a <g b]} belongs to D<y, ().

We say T is (< o,C*)-big if for each § < o we have T is (8T, C*)-big.

We define T is (6, f)-big where f : A — A similarly only “8 < f(a)” replace
“B < Min(C* \ (a +1))”. If =(Xg < 6 = cff) we mean the first such * > 6.
2) T C S<ro(B), is 6—*big (where § C B) if for every x regular large
enough and countable N < (H(x), €,<}) to which 7', B, 6 belong there is
N',N <¢ N' < (H(x), €, <},) such that N'n B e T.
3) Let A C B and § C B. We say T C S<x,(B) is 6-big (for B; if the identity
of X not clear we add “in A”) if: for every C € D<y,(B) and a < X such that
[6 < X = a > 6] we have: {a: a € S<x,(a), and for some b € T N C we have
a <g b} € Dy, (@).

If & = A we may omit 6 (remember that X is fixed (see 1.1(1))). If B = A
we may omit it.
4) We say T is (6, x)-big if T C S<n,(A) is (6, f)-big for some f : A — X;
equivalently (6, C*)-big for some club C* of ).

If not said otherwise, and A is strongly inaccessible, then we assume: (here as
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well as in 1.11, 1.13) for 8 € C*, we have f(5) (or Min(C*\ (8+1))) is a strong
limit of cofinality > 8.

1.3 Definition.
(1) For cardinals p > A > 6 we say T C S<x,(X) is (u, 6)-big or big for (u,0)
if. for every C! € Dcy, (1) for some C € Dy, (1):

(VaeC)(3b)aCbeC ' &a<pb&bnNAeT]
(2) We say T is (< p,0)-big if it is (uy, 0)-big for every ui, A < py < p.

1.4 Definition. Suppose A C B. We say T' C S<y,(B) is f-essentially end
extension closed set (for B) if for some E € D<y,(B) :

e E&beE&a<pb&acT=beT)

In short we write -EEEC and we call E a witness for T'. If E = S<y, (B) then
we say T is f-end extension closed set (for B), in short §-EEC.

1.5 Definition. 1) Pry(\) means: every -EEEC 6-big (see Definition 1.2(3))
set T' C S<y,()) is also (2%, 6)-big (see Definition 1.3(1)).
2) Prj()\) means:

for every semiproper forcing notion P of cardinality < A,
IFp “Pro(\)”

3) Prg(\) means Pr§(\).

1.6 Fact. 1) In Definition 1.3(1) we can replace u by any set A satisfying
ACA, |Al = p.

2)If 01 <0 < X< pp < pgand T C S<no(N) is (p2,02)-big (see Definition
1.3(1)) then T is (u1,6,)-big.
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3)If AC B,6; <0y and T C S<y,(B) is 02-big (see Definition 1.2(3) so for B,
in A) then it is 6;-big.

1.7 Fact. 1) If A is weakly compact, T C S<y,()) is 6-big (see Definition
1.2(3)) and 6 < X then T is (), 0)-big (see Definition 1.3(1)).
2) If X is weakly compact, T' C S<r, () is big (i.e. A-big) then T is (), *)-big.

Proof. 1) Let C! € Dy, ()\) be given. Let
E={aeC':-(3d € Cl)a<gad € C'&d' N ) eT]}

If E =0 mod D<y,(A) we finish.

Otherwise by weak compactness, for some A* < \ (inaccessible, § < A =
A* = 6) we have E N S<io(A*) # 0 mod D<yy(A*). As T is 6-big we get a
contradiction.

2) Easy too. Oy

1.8 Fact. 1) If T C S<x,()) is big for (2*,60) (see definition 1.3(1)) then T is
6—*big (see Definition 1.2(2)).
2) If T C S<ry(A) is 0—*big, and p > X then T is (u, 6)-big.

1.8A Remark. So the two conditions in 1.8(1) are equivalent.

Proof. 1) We check definition 1.2(2), so say x > 2*. Clearly H(\t) €
N, |[H(AY)| = 2*, and Sb ¥ {M < (H(\"),€,<5,) : |M]| = Ro and T, ), 6
belong to M} € N and Sb € D<x,(H(A)). By the assumption of 1.8(1) for
some C € Dy, (H(AT)) :

(Va € C)(3a')[a <g a’ € Sb)

As all the parameters in the requirements on C belong to NN, without loss of
generality C € N. As C € N is a club of Scx, (H(AY)), clearly NNH(A*) € C.
So there is N’ € Sb,NNH(At) <¢ N'.



782 XVI. Large Ideals on X; from Smaller Cardinals

Now A N Skolem Hull [NU(N'NA)] = NNA (Skolem Hull - in (H(), €, <%))
and this implies the conclusion. [Why the equality holds? Enough to look at
7(x,y) for 7 a term, z € N,y € N’ N X such that Vzy[r(z,y) € A)]. In N there
are ' € NN H(AY) and a term 7’ such that (Vy € \)[r(z,y) = 7'(2’,y)]. Now
z' € N' and we ﬁnish.}

2) Easy. Ois

1.9 Fact. Suppose T is big for (), 8),2* = A+ and
(*) for every u C S<x,(A*) such that u # @ mod D<y,(AT) for some B C A,
N S<ry(B) # 0 mod Dy, (B) and |B| < A.

Then T is 6—*big.

Proof. Like the proof of 1.7 (remembering 1.8).

Similarly we can prove

1.9A Fact. Suppose for every u, such that A < u < 2* we have:
(¥)1 (Vstat E C Sen,(1))(34 C p)[|A| <p&<r=60CA&EN

SSNO (A) 71: @ mod DSNO (A)]
Then every 6-big T is (2*, 8)-big (equivalently, §—*big.)

1.10 Fact. If Pro()) (see Definition 1.5(3) and 1.5(1)) and A = k* = 2% then

D<o (k) is precipitous; moreover, semiproper (see below).
Proof. Let x be regular large enough, N < (H(x), €, <}) countable.

It suffices to prove D<y, (k) is semiproper; i.e.:

1.10A Definition. D<y, (k) is semiproper provided that the following holds.
If (B; : i <)) is a maximal antichain of stationary subsets of S<x,(x) which
belongs to N where N < (H(x),€,<}) and x large enough then there is a
countable M, M < (H(x),€<}), N < M,N <.+ M and MNk € U,cp Bi [ie.

sealing forcing is semiproper].
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(Hence by repeating one such M works for every such (B; : i < A) which

belongs to it; this definition is what we need; from this precipitousness follows).

Continuation of the proof of 1.10: So let N < (H(x),€,<}) and (B; :i < \) €
N be as in Definition 1.10A. Let T = {a € S<x,(A) : a Nk € U, Bi}. We
shall first prove that for « in the interval [k, ) the set E, = {NNa: N <
(H(x),€,<3), NNk € ey Bi} belongs to Dy, (a).

If Eq ¢ D<y,o() let f: o — & be one to one onto, let

C'={aCa: f'la)=anaand a= f~Y(ana)}.

Clearly C’ € D<y, () and

[(S<ro (@) \ Eq) N C")]lk is stationary (i.e. # @ mod D<y,(k))

(where E*[k &ef {a Nk : a € E*}), hence this set is not disjoint to
some B, and then we get an easy contradiction. So E, € D<y, () for
a € [k, &%), Let 0 & A(= x*), clearly T is 6 — EEEC (see Definition 1.4,
use as witness C = S<x,(A), noting that B = X here). Also as E, € D<y, ()
for a € [k, k™), clearly T is 6-big (see Definition 1.2(3)). But by an assumption
Pro()\) = Prg(\) (as & = )) hence we can deduce T is (2*,)-big (Definition
1.3(1)), hence by Fact 1.8(1), T" is 6—*big. So by Definition 1.2(2) there is N’,
N <¢ N' < (H(x), €,<}) such that N'N X € T. By the choice of T there is
i € N’ N\, such that N’ Nk € B;, as required in Definition 1.10A.

So we have proved semiproperness. Oi.10

1.11 Definition. 1) PrZ()\, D,C*) means: C* a club of \, D is a normal filter
on A concentrating on regular cardinals and for every §-EEEC (6, C*)-big
T C S<ry(A) we have:

{k <X: TNS<x,(k)is (27,6 Nk)—big} € D

(so here we use Def. 1.3(1) with X replaced by &.)
We may replace C* by a function f : A — X as in Definition 1.2(1).

1.11A Remark. for “6-EEEC” see Definition 1.4.
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1.12 Definition. 1) Pr3()\, D, C*) means that: for every semiproper forcing P
of power < \, we have I “Prg(\, D,C*)”.
(D generates a normal filter in VP and we do not strictly distinguish

between the two).

1.13 Definition. 1) Prj()\) means (3D)(VC*)Pra(\, D, C*).
2) Pr3(A,C) means: for some fixed D, for every semiproper P of power
< A, IFp Pr2(A\, D, C).

From Shelah and Woodin [ShWd:241]:

1.14 Definition. (Shelah) 1) Pr,(x) means: Pr,(k, f) for every f : k — &,
where

2) Pry(k, f) means: f : k — K and there is j : V — M (elementary
embedding into a transitive class) with critical point k (i.e. j is the identity on
k hence on H(k)) such that H(j(f)(n)) C M and M<% C M. Let Pry(k, f, D)
means Pry(k, f) is witnessed by j and D = {A C k : k € j(A)}. Note « is

necessarily measurable in all those cases.

1.15 Definition. (Woodin) Pry(k), now called “sk is a Woodin cardinal”
means:
for every f : k — k there is A\ < k such that Pry (A, fIA); equivalently
for every f : kK — K, there is an elementary embedding j : V — M with critical
point A < k, such that H(j(f)()\)) CMand M<* =M.
So k is a Mahlo cardinal, but not necessarily a weakly compact cardinal.
We can add

1.16 Definition. For W C k, we can add:

1) Pr,(k, W) means Pr,(k, W, f) for every f : K — &, which means Pr,(x, f, D)
for some D to which W belongs.

2) Let Pry(k, W) mean for every f : kK — & there is A < & such that Pry(A\,Wn
A, fIA) (so in particular Rang(f[A) C A)
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§2. Getting Large Ideals on N;

Note = is a maximal antichain of D,,, if & C P(w;) and for no stationary S C w;
do we have (VA € E)(ANS =0 mod D, ); we do not strictly distinguish A € =
and A/D,, or E and {A/D,,, : A € E}.

Remember B = P(w1)/D.,; on seal(Z) and variations see XIII 2.4(2).

2.1 Lemma. A Sealing is a Semiproper Criterion: Let A be strongly inacces-
sible, C C X closed unbounded, [0 € C = (H(d),€,<}) < (H()),€,<3})] (so
each § € C is a strong limit cardinal). The following conditions satisfy (B)* =
(C)=(A) = (B)".

(4)

(B)”

®)*

(©)

Let C be an end segment of C*. For every Levy(R;, < A)- name Z =
{A; : i < A} of a maximal antichain of DYLew®<N] the forcing notion

Levy(Ry, < A)* seal(E) is semiproper, provided that:

@4 for 6 € C, (H(&), €, <5EN H(6)) < (H()\), €, <;,g).

Let C be an end segment of C*. If T C S<x,()) is (< A, C)-big (see
Definition 1.2(1)) and ) - EEEC (see Definition 1.4) then T is (2*,w;)-big
(see Definition 1.3(1)) provided that:

®p for d € C, (H(a), &<3Tn (| sSNO(a))) < (H(A), €, <f\,T).
a<d ’

Let C be an end segment of C*. If T C S<r,(A) is (Rg, C)-big (a weaker
assumption see Definition 1.2(1)) A-EEEC and then T is (2*,ws)-big pro-
vided that @& p holds.

Let C be an end segment of C*. Suppose P = (P; : i < \) is <¢-increasing,
for i < A\, P, € H(\),P; < P\ where Py def Ua<x Pa, and the forcing
notions P;, P\/P; are semiproper, Py satisfies the A - c.c., IFp, “A = Ry”,

and Z = {4;/D,, : it < A} a Py - name of a maximal antichain of D, .
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Then Py* seal(Z) is semiproper provided that:

®c for 6 € C, (H(é), e, <%, P18, 2N H(6)) < (H(A), €, <;,P,g)

2.1A Definition. Assume ) is strongly inacessible, P = (P; : i < A), P are

as in clause (C) of 2.1 or P, = Levy(®y,< i), P = |J P, (for some closed
i<

unbounded C C \). If A is a P-name of a subset of w; let

i(4/D.,) = min{i : for some P;-name A’,IFp “A = A" mod D,,}
(note i(A) < X as P satisfies the A-c.c.). Let us redefine

A/D,, = {B: B is a Pj(4)-name of a subset of w; such that IFp, “B = A”}.

Proof. Clearly (B)* = (B)~, just read Definition 1.2(1).

2(A) = ~(C)

Immediate: use P = Levy(R;, < A), and P; = Levy(Ry, < 1).

-(B)” — ~(A)

Let T, C be a counterexample to (B)~, in particular @p holds and we can
choose a club E C Scy, (M) witnessing T is EEEC ie.a € E& be E & a <y
b&acT=beT.

Let

w {5 <A: (Va < 6)(Va € Sy (@)

[(Elb)[b €T &a<)bl= (3)beT &sup(b) <6 & a <y b]] }

So W is a club of A, definable in (H()),€,<3,T) hence by ®&p for § € C we
have sup(W N é) =4,and W 2 C.

For § < X after forcing with Levy(R;, < |6]*) we have (az 1 ¢ < wp)
increasing continuous, each af countable, |, ,, al = 4. Let (a2 : ¢ <wi) be a

Levy(Ry, < |6]*)-name for such a sequence, and B; def {¢: g‘z € T}, thisis a
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Levy(Ry, < |§|*)-name; and then let (again a Levy(Ry, < |§|1)-name):

As def Bs — V(s Bq (V-diagonal union, actually well defined only mod D, ).
As T isaj\-EEEC, clearly in VIewW®u<N  Bo/D, (6§ € W) is increas-

ing and is the least upper bound of {A4/D,, : a@ € (6 +1) N W} (in

(P(w1)/Du, ) e i<N)) Let W* = {a : @ € W, and A4y # @ mod D, }

(it is a Levy(XN1, < A)-name)
Clearly £ = {Aa/D., : «a € W*}is an antichain (we should not mind

the §/D,,,’s, i.e. some A,’s are not stationary).

Clearly E is a Levy(X;, < A)-name satisfying @ 4.

2.1B Fact. = is a maximal antichain.

Suppose toward contradiction that A is a Levy(R;, < A)-name of a sta-
tionary subset of wq, but p € Levy(R;, < A) force it is a counterexample. So for
some f < \, AisaLevy(R;, < #)-name, and p € Levy(R;, < 6). Let ; = (29)+,
w=2% and

Yy def {a € S<x,(H(u)) : there is ¢ € Levy(Ry, < 8) such that: p < g,
q is an (a,Levy(®y, < 6))-generic condition,

and ¢ IF “anNw; € A”.}

Clearly Y} # 0 mod D<y,(H(u)).

Now, as A is strongly inaccessible, 2 < A, and as T is (81,C)-big (as T
exemplifies —(B)), there is § satisfying 2 < 8 < A (and moreover 2* < § <
min(C'\ (8 + 1))), such that: for every E € D<y,(8) we have:

{a € S<io(2#) : there is b such that a <g, b and b € ENT} € Dy, (24).

Hence, as |[H(u)| < 2#, for every E € D<y,(8)

{a € S(H(u)) : there is b such that a <g, band b € E,
and bN B € T} € Deny (H(1)).
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Let

E, def {N : N is a countable elementary submodel of (H(3,(\)"), €, <*)

to which p, A, 8, u, B, 4, (Bay4a):a < A)

and ((a¢ : ( <wi) 1 a < A) belong}.

Clearly it is a club of Sc<x, (H(37(A)1)), and let

EY¥{(NnB: NecE),

clearly it belongs to Dy, (H(8)). So we can use Ey as E above hence

Ej def {N : N is a countable, elementary submodel of (H(u), €),

such that p, 8, A, 5 belong to it and for some My € E; we have
MNﬁﬁeTandN<91 MNET}

belongs to Dy, (H(u)). Hence we can find N € E3NY})', hence by the definition
of Y}}* there is a condition g € Levy(Ry, < 6) such that p < g € Levy(Ry, < 6)
and q is (N, Levy(Ny, < 6))-generic and ¢ IF “N Nw; € A”. As N € Ej3 clearly
My is well defined (see the definition of E3), so My € E;, N < My € E;
and N <g, My, hence N N2% = My N 2% hence N NLevy(R;,< 6) = My N
Levy(Ry, < 6) and moreover N N P(Levy(Ry, < 8)) = My N P(Levy(Ry, < 0));
hence as ¢ is (N,Levy(Ry, < 6))-generic we know that g is (Mn,Levy(R;, <
0))-generic. As Levy(R;, < A)/Levy(R;, < 6) is Rj-complete there is q; €
Levy(R;, < A) such that ¢; |0 = q and q; is (Mn, Levy(Ry, < p))-generic, hence
clearly ¢; IF “My N g = gf,,anl = a?\mw,” but My N B € T (see the definition
of E3) hence ¢; IF “NNw; € B,”.

There is C’ such that IFpeyyr,,<x) “if Bg N A is not stationary then
BsNANC =0, and C' is a club of w;”. So as Bg, A € N C My, clearly
w.lo.g. C' € My hence q; IF “NNw; € C” hence q1 IF “BgnNANC # 0
hence q; IFpevy(r,,<n) “Bp N A is stationary” which is enough for the fact 2.1B
as Bg = aZB Ay mod D, . Os1B
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Continuation of the proof of 2.1.
Lastly to show that —(A) holds, we still have to show that:
the forcing notion Q def Levy(Ri, < A) # seal(Z) is not semi proper.

Suppose it is semiproper, x large enough. Let N < (H (X),€,<;‘() be
countable, Q,T,E,C € N. Let § = N Nw;.

So there is p € Q which is (N, Q)-semi generic. So for some ¢ satisfying
p < qe€Q,and a, we have q kg “a € W*, § € Ay, o € N[Gg]”, (W* was
defined just before Z); so Aa, Ba € N[Gq| and clearly g Ik “af = N[Gq]na”,
hence necessarily also g IFg “6 € B,”.

Hence g¢lrg “N[Gg]Na € T” (read the definition of By).

Hence w.l.o.g. for some b € T we have ¢ l- “N[Gg]Na=1b".

Let N; be the Skolem Hull of [N|U b in (H(x), €, <}). Clearly Ny na =
beT and N1 Nw; =bNw; =6 so N <y, N;. This shows T is a Ry — *big (see
Definition 1.2(2)), which by 1.8 is equivalent to “T" is (2*, X2)-big”; but this is

a contradiction to our assumption “T" exemplifies =(B)~".

—(C) = ~(B)*t

We also prove —(A4) — —=(B)™*

Let P,E = {A; : i < A} and C contradict (C) or (A) (in the later case
P; = Levy(Ry, < 4)). Let, for each p € Py:

Tp def {NnNX:pe N, for some strong limit cardinal o < },

N < (H(0),€,<3},Plo,Zl0, Alo) so we consider
P,Z, A as predicates, and N is countable,
{P,Z,(A; : i < \)} belongs to N,

and there are j,i € NNo and ¢ € P;, such that
p < q,q is (N, P;)-semi-generic, 4; is a P;-name,

and ¢ lkp, “NNw; € 4; and j € N[Gp,]”}.

T; def {b € S<x,(A) : for some a € Tp,,a <y b}.
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Assume first that every le‘ is (2%, Ry)-big. So for every x > 2* and countable
N < (H(x),€,<%), to which P, Z, (A; : i < \) belong, and p € NN Py,
we know A € N hence H(A) € N and <}€ N hence T, € N. By 1.8(1)
we know T, hence T} is Ro—*big, hence (Definition 1.2(2)) we can find M,
N <, M < (H(x), €,<}), M countable, MNA € T}, hence for some M; € T,
we have M3 N A <) M N A. Clearly for o, |beta € M1 N A we have

M E “a is cardinal” & M F “a is a cardinal,”

M1 |= “2(1 — ﬂ” =N M k: “2(! — /3“;

and so (Vo € MiNA)(27 € MiNA); as [0 € MiN A = H(o) is an initial
segment by <} of H(M)], easily 0 € My N A= My N H(o) = M N H(c), hence
M—1<) M.Let q, 0,1, j witness M; € T, (see the definition of T},), and easily
we can deduce what semiproperness would have required. But Pj x seal(E) is
not semiproper (as P,Z contradict (C)). So the assumption above was wrong,
i.e., for some p € Py, T;} is not (2%, Ry)-big. Let j(x) = min{j € C : p € H(j)},
and let C" = C'\ j(*), we shall prove that T, C’ exemplify ~(B)*, renaming
C' = C ie. p € H(min(C)). Also ®p holds for T} easily. Let j(*) = min{j €
C :p € H(j)}, and let C* = C'\ j(+), we shall prove that T,f, C* exemplify
—(B)*, renaming C* = C ie. p € H(min(C)). Also T,} is \-EEEC by its
definition. To complete the proof of “T;' exemplifies =(B)*” we need only to
prove “T,} is (< X, C)-big” (see Definition 1.2(1)). So let § < A, 6 > R,, and
we shall prove that T}, is (6, C)-big; this suffices. We can find i(*) such that
IFp,., “|0] = R1”. So let @ < A be given such that a > i(x), 6. We define in
(H()\),€,<3, P,E) a function g from P(S<y,(a)) to A, g(X) is: the first strong
limit cardinal of uncountable cofinality 5 < A such that 8 > i(x), 8> a, 8> 0
and:
(*)‘;{"’3 for every U € D<xr,(B), the set {a € X : (Ib € UNTp)a <p b]} is
# 0 mod D<y, () if there is such 3, and a + 1 otherwise.
So g is definable in (H()\),€,<},P,E) with the parameters 6, a, i(*)
hence §* = supRang(g) < Min(C \ (a + 1)) (remember ®¢ is assumed). If
B* is not as required in Definition 1.2(1), then there is U* € D<x,(8*), such
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that X % {0 € Scny(@) : =(3b € U* NT,)[a <g b]} is # 0 mod Dy, (a). Now
we know IFp “|la| < R;”, and as P satisfies the A-c.c., there is a name for a
function exemplifying this mentioning only members of some P;(i < \), but

P, < P, so IFp, “la] < Ry”, say h is P;-name of a function from w; onto a.

As P; is semiproper, by the assumption on X we have IFp, “Y def {e<w:
there is a € X, € C a C h”(¢),e = aNuw;} is a stationary subset of wy”.
Hence IFp “Y C wy is stationary” hence I-p “ for some § < A, Y N4 C w
is stationary”. Hence for some j € (i,A) and Pj-name £ of an ordinal < j we
have: Y, { and A¢ are Pj-names and Ikp, “Y' N Ag C wy is stationary”.

Hence there is a strong limit j; € (j, A) such that
(H(]l)v €, <; TH(]1)7PT117§TH(11)) < (H()‘)’ €, <K’ < P’g),

cf(j1) > No, and Y, &, 4, 4, o, 8%, U* € H(j1). Now there are § < w; and
countable N < (H(X),€,<;‘(,P,§) and ¢ such that: {Y,§,4,j,,51} € N,
p < q € Pj, g is (N, P;)-semi generic, NNwy = 4, g Ikp, “0 € Y N 4",
and (remember the definition of Y) there is a* € X, § C a* C N. Clearly
Jj1 € N, NIH(j;) < (H(x),€,<;,}_’,§) and NTH(j1) € T, ( see the definition
of Tp). As j1 € N, X € N this implies that for every U € D<y,(j1) we have
{ae X :(3beUNnTp)la <x, b} # 0 mod Dey,(a). So ()57 holds; hence
by the definition of g and 8* without loss of generality j; < *, hence (check
definition) (*)?‘(ﬂ " hold, but this contradicts the choice of of X. So together we

have gotten a counterexample to (B)™. Oz.1

2.2 Definition. 1) (x)?[), C] means condition (C) of 2.1 holds for P and C (so
C satisfies ®¢) such that

{6 < A: if ¢ is strongly inaccessible then Ps = U P}
i<é
contains a club of A (so for many C’s this is empty demand).

2) (%)% [\, C] means that for every semiproper forcing @ from H(MinC) we
have IFg “(x)2[\, C]".



792 XVI. Large Ideals on X; from Smaller Cardinals

3) We omit C if this holds for every club C of A.

2.3 Conclusion. Suppose (x)%[A, C], A strongly inaccessible. If P, C and Z
are as in 2.1(C) and i < ), then in Vi the forcing notion (Py/P;)* seal (E) is
semiproper.

2.3A Remark. So if Q is a semiproper iteration, (P41 : i < A),C, E as in

U1l

2.1(C) then Q" (Rlim@, seal(Z)) is a semi proper iteration.

2.4 Theorem. Suppose « is strongly inaccessible, and:
(¥)2,[K] for every closed unbounded C C k, for some A € C (strongly in-
accessible) we have A = sup(C' N A), and (*)%,[A, C N A].
Let S C w; be stationary.
Then for some semiproper forcing P of cardinality A satisfying the A-c.c., we
have lFp “D,, + S is Ra-saturated”.
Also P is (wy \ S)-complete hence if w; \ S is stationary it does not add

w-sequences of ordinals.
Moreover

2.4A Lemma. 1) The following homogeneous forcing can serve in 2.4. We
define by induction on a a semiproper iteration Q% = (Pi,Qi 1 i < ) with
|P;| < A (and, for simplicity, Q¢ € H(\)) for i < o (see XIII 1.8) as follows. If P;
is defined, 7 strongly inaccessible and j < i = |P;|, then let, in VP Q, be the
product with countable support of {seal(Z) : E € E;} ULevy(Ry, 2“2)Vpi where
E;is {E: Z (in V) is a maximal antichain of D, and for every j < 1, IFp,,,
“P;/Pjt1 * seal(Z) is semiproper”, such that w; \ S € Z if it is stationary }.

Otherwise Q; is Levy(Ry, 2N2)VPi-
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2) Moreover we can replace E; by

E, = {E: E (in V) is a maximal antichain of D,
which is semi proper (that is seal(Z) is semi proper)

such that w; \ S € E if it is stationary}
provided that A is Woodin.

2.4B Remark. 1) We can e.g. use Levy(N1,2N2)VPi when 4 is not strongly
inaccessible and the CS product of {seal(E) : = € E;} otherwise.

2) By 2.7(3) below if k is Woodin then it satisfies the assumption of Theorem
2.4. Similarly in 2.5 and 2.6 concerning the p in the definition of W*.

3) If wy \ S is stationary, the iteration is essentially CS (as the condition with
a “real” support are dense).

4) Homogeneity is actually gotten also in the other proofs, in particular 2.5,

2.6 (and results in Chapter XIII).
Proof of 2.4. Follow by 2.4A.

Proof of 2.4A. By XIII 2.13(1) clearly Q' = (Pj,Qj :Jj <) is a semiproper
iteration (P; = RlimQ*) and if j < i then IFp, , “(P;/P;41)*Q; is semiproper”.
Also the (w; \ S)-completeness and A-c.c. are clear. Why IFp, “D,,, + S is Rp-
saturated”? Let E be a Py-name of a maximal antichain of D, (to which w;\S

belongs if stationary), so let £ = {4, : 1 < A}. Let

C={p<X:(H(p),e < {(Q4i/Du): i <p})
=< (H()‘)’ €, <;v {(Qi’Ai/Dw1) s < )‘})
and u is strong limit}
So by the assumption of 2.4 for some regular (hence strongly inaccessible)

u € C we have p = sup(u N C), and (%)% [n, C N p]. For part (1), by 2.3,
{A; :i € I} € E,, and the rest is easy. For part (2) similarly using 2.8. 2.4

2.5 Theorem. Suppose \ is strongly inaccessible, S = (Si, S, S3) a partition

of wy, 81 stationary and
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of \.

1)

2)
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« 9ef {w < X: ustrongly inaccessible and (x)?,[u]} is a stationary subset
Then for some forcing notion P:

(a) |P| = A, P satisfies the A-c.c.

(b)
(€) Ikp “P(w1)/(Du, + S1) is W*-layered” (see XIII 3.1A(4), (5)).
)

(d) P is Ss-complete hence if S; is stationary, then P adds no new w-

P is semiproper.

sequences of ordinals.
(e) IFp “W* is a stationary subset of {§ < Ry = A: cf(d) = R;}”.
Hence, if Q is the forcing notion of shooting a club through {§ < R, :
cf(8) = Ro}UW* in the universe VP then in VP*Q we have: P(w1)/(Duw, +
S1) is layered (see XIII 3.1A(4),(5)) (and hence e.g. there is a uniform
ultrafilter E on w; such that Rg* /E = R; so E not regular; by [FMSh:252]).

Proof. 1) Similar to XIII 3.1 (see on history there).

(A)

(B)

(©)

We define by induction on i < k&, P;, Q;i, t; such that:

Q* = (Pi,Qj,t; : tj 1 i < @,j < ) is an Si-suitable iteration (see
Definition XIIT 2.1).

t, is 1 iff: o is strongly inaccessible, [i < @ = |P;| < a] and IFp, “gvVrs,
satisfies the a-c.c. i.e. Np-c.c.”.

Qo is defined , in VP as (where kg1 is the first strongly inaccessible
> |Py|) Q%% SSeal((BF: : i < a,t; = 1),51,Ka+1) (see Definition XIIT
2.4(5)) where QY is the product with countable support of {seal(Z) : E €
Za} (defined as in the proof of 2.4(1); or use E” from 2.4A(2)).

We should prove by induction on o that Q% is an S;-suitable iteration.
first case for o = 0 - this is trivial.

second case for a limit - this holds by XIII 2.3(1).

third case fora =g+ 1,tg =0.

We should repeat the proof of XIII 2.14(1); we do this case in details.

Let x be regular large enough, i < 8,G;+1 € P41 generic over V, in

V[Git1], N is a countable elementary submodel of (H(x)[Gi+1], €,<5) such
that Qa €N,pe P,/Giy1,p € N.
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We should find q,p < g € P,/Gi41, and q is (N[Gi+1], Pa/Gi+1)-generic.
By repeating the use XIII 2.12 w times, we can find g9 € P3/Gi+1,p18 < qo
such that if Gg C Pg is generic over V,G,+1 U{q} C G then:
(¥) in V[Gpg], there is N', N C N’ < (H(x)[Ggl, €,<},), N’ countable, N' N

w1 = N Nwy, and: for every Z € N' N H(k) a dense subset of B, for some

v € N'N B, such that t, =1 we have N' Nw; € e ninz 4

In V[Gg] we can find p, € Q%[Gg],pn € N'.pp < ppt1,po the Q%[G]-
component of p(8), such that

(a) if Z € N' is a dense subset of Q}[Gp] then for some n,p, € .

(b) if Z is a Q}[Gp]-name of a pre-dense subset of BP v e NNt =1,

then for some n and A, p, “_Q%[Gpl “AeE and N'Nwi € A.

By standard bookkeeping there are no problem; taking care of an instance
of (b) is just like the proof of XIII 2.9, as
(*+) ify € BNAN',t, = 1,Z € N’ is a pre-dense subset of B, w; \ S € = then
N'Nwi € Ugeznn 4

Why does this hold? As g is strongly inaccessible A |P,| < B, we know
v<B
B =, .5 B5+, hence [t, = 1= BP < BF] and |BF| =R, in V.
fourth case o = 8+ 1,t5 = 1.
Q% is semiproper by XIII 2.8(3) and SSeal((B : v < 8,t, = 1), S1,Kp41) is

the same as SSeal(B#, S, kg41) which is semiproper by XIII 2.14(1).

* * *

Now if A € W*, A [|Py| < A], then exactly as in the proof of Theorem 2.4,
F<A
IFp, “BF» satisfies the A-c.c.”, hence t) = 1, hence B < BFx.
As B = B and (%Qr"‘ : a < K) is increasing continuous with limit
BP=, clearly Py is as required.
2) No problem ( or see proof of XIII 3.1). Oas
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2.5A Remark. Of course, we know |P;| < first strongly inaccessible > |P;| (by

a variant could have gotten |P;| < J;,;).

2.6 Theorem. Suppose A strongly inaccessible and the set
W* ={p<X: umeasurable and (x)%,[u].}
is not only stationary, but for stationarity many x < A, W* N k is stationary.
Let (S1,S2,S3) be a partition of wy, 5] is stationary.
Then for some forcing notion P
(a) |P| = A, P satisfies the A- cc.,
(b) P is semiproper.
(¢) IFp “P(w1)/(Dw, + S1) is the Levy algebra” (i.e. as isomorphic to the
complete Boolean algebra which Levy (Ro, < Ng) generate).
(d) P is pseudo (*,S3)-complete hence if S is stationary then P adds no

reals.

Proof. Similar to XIII 3.7.

* * *

Of course we can translate our assumptions to a standard large cardinal

hierarchy, essentially by Shelah and Woodin [ShWd:241], i.e. we note:

2.7 Fact. 1) Suppose Pr, (), f) (see Definition 1.14), C aclubof A, [§ € C =
(H(u),€,<}) < (H(N), €,<3)] and f(i) < Min(C \ (i + 1)). Then (x)*[A,C]
(see Definition 2.2(1)).

2) As Pry(), f) is preserved by forcing of cardinality < A, we can deduce in (1)
also (x)%,[A, C] (see Definition 2.2(2)).

3) If X is a Woodin cardinal i.e. Pry()\) (see Definition 1.15) then (x)8,[\] (see

definition in Theorem 2.4).

Proof. 1) By 2.8 below, condition (C) of 2.1 holds in the cases refered to in
Definition 2.2, hence (see Definition 2.2(1)) we get (x)*[), C].
2) Easy.
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3) See Definition 1.15 and part (2) of 2.7. Oa.7

2.7A Remark. If you want to get versions of 2.4, 2.5, 2.6 without §1 + 2.1,
you can use 2.8 below (+2.9).

2.8 Claim. Sealing is Semiproper Criterion.

Suppose

(i) P = (P, : i < \) is <-increasing sequence of forcing notion, P; € H())
and IFp, “NY is a cardinal”, and for any j < X for some i, j < i < A and
282 of VP is collapsed to R; in VFi,

(ii) Pro(A, f, D) (defined in Definition 1.14).

(ili) {6 <A:Ps=U;,cs i} € D [hence P; < Py where Py e Uicx P and
P, satisfies the A-c.c.]

Hence

Be ¥ {u < X:(a) pis a strong limit

(b) Pu=J P
i<p
(c) P, satisfies the p-c.c.
(d) IFp, “pu=2Re" and
(e) for A € P(wl)vp" the statement

“A C w; is stationary”

is preserved by P/P,} € D

hence

B def {6 < X : P/P;s preserves the stationarity of A € ’P(wl)vpa}

is unbounded in A.

(iv) B = {a < X\: P\/P, is semiproper} is unbounded in .

(v) {6 < X : P\/Ps does not destroy semi stationarity (see Definition XIII
1.1(3)) of subsets of Scx,(2¥?)) (where 2% is computed in V#)} € D.
By Claim XIII 1.4, (Py/Ps) being semiproper is enough.
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(vi) IFp, “A = (A;:1 <)) is a maximal antichain of D,,” and

(vii) The following set belongs to D:
{6 < XA : f(d) is a strong limit and for some J satisfying § < 8 < f(4)
we have I-p, “(2“2)‘/P‘s is collapsed to X,”, Pg € H(f(6)) and for every
Pg-name A of a subset of w; stationary in VP, for some a(*) € B (see
clause (iv)) and i we have: A; N A is forced to be stationary, i and 4; are
Py (x)-names, p < a(*) < f(8), and {4, Py(x), a(*),i, 4;} € H(f(8))}.

Then I-p, “A is semiproper” (see XIII 2.4(6)).

Proof. Assume the conclusion fails. Let j : V — M  be an elementary
embedding, M a transitive class, and

[H((j(f))(,\))]v CMand D={ACX: Xej(A)}and M<*C M

(exists as Prq (A, f, D) holds by assumption (ii)).

By assumption (iii) we have M = “Py = (j(P)) (\)”, let j(P\) = (P; :
i < j(A) and Pi) = j(Pr) = Ui Pi (Note: the two definitions of P;
for i+ < X are compatible by the beginning of this sentence). Similarly let
J(A) = (4i i <j(N).

By (vii) we have M = “(j(f))(}) is strong limit”, so as [H((j(f))(\)]V €
M, really j(f)()) is strong limit in V' so for statements in H(j(f)())) we can
move freely between V and M. Let Gj\) € Pj(x) be generic over M, so we let
G: ¥ G0y N B

Clearly G1 C Pa1 is generic over V because, generally P; € H(j(f)(X))
implies G; is generic over V and Py+1 € H((j(f))()\)) by (vii). Until almost the
end we shall use G only. Note: in V[G)] we have M[G,]<* C M[G,] because
P, satisfies the A-c.c. (see (iii)).

Remembering (vi), in V[G,], A[G)] = (4:[G)] : i <)) is a maximal an-
tichain of D,,, and seal(4) has cardinality (2% )VIGA = X = N;/ (6] (remember
(i)). Let
5 % {N:N < (H\1)VIG:] €, <*), N countable, and there is no Ny,

N < Ny < (H(\T)VIGA e, <*), Nq countable and Ny Nwy =
N w1 € Usen, AlGA)
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In V[G,] the set S is semi-stationary (subset of S<x,(H(A+)VIGA) as we
are assuming that the conclusion failed — by XIII 1.3; we note: H(At)VIGAl =
H(A)MIGA], Clearly X belongs to the set defined in assumption (vii), so in
M there is (3 as there, so A < B8 < f(}), IFp, “(QNZ)VPA is collapsed to R;”,
Pg € H((j(f))(N)) and the last condition there hold.

So there is a Pg-name (g¢ : ¢ < wp) such that:

IFp, “(a¢ : ¢ <wi) is increasing continuous, each g; countable,
Upcun 8¢ = HOF)VIGA,
Let A={¢: (3N € S)wiNac C|N|Cacl}, clearly it is a Pg-name.

By assumption (v), IFp, “A is a stationary subset of w; ” hence by the
last condition in (vii) for some i, a(*) we have: a(*) € j(B), i and A4; are Py.-
names, § < a(+) < j(f)(N) and {i,a(x), 4 4, Paw} € H(GF)N)- So
for some regular p (in M and in V') we have p < (j(f))(A) and this set € H(p) =
H(u)™ moreover P(Py(x)) € H(k). So in M[Gq(x)], we have 4;[G o] N A[Gg]
is a stationary subset of w;. Again this holds in V[G’a(*)] too, (and of course in
V[Gqa(xy] R1isnot collapsed). Let, in M, w = {i < a(x) : A; is a P,(s)-name},
sow € H(uM = H(u).

So in M[G)]

Sy ¥ N < (H(u)M®) € ,<* M, G)) : N is countable
{i(Q)fa(x), Alw, 4;} € N
and for some p € Py(4)/G\,
p is (N, Py(x)/Gx)-semi-generic
and pl- “N Nw; € AN 4"}

MI[Ga]
is stationary subset of [SSNO (H (u))] i M [G)), hence in V[G] too. Note

that j induces a unique elementary embedding j* from V[G)] into M[Gj)), j*
is really j*, a Pj(\)-name, and if z € H(AT)MICGA then j*(z) € M(G)], that is

the name belong, and it can be considered a Pj(y)/Gx-name (but j* ¢ M[G,]).
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In V[G,],

S, &f {N < (H[33(j(A+))+]M[G*],€,<*,M, G,\) : N countable, and

(a¢ : ¢ <wi), J(P), af*),
Av A_;L'a and j+ TH(A+), H[jZ(j(’\+))]7 pv G/\
belong to N}.

is in [DSNO (H(:g(j(A+)))+)M[GA])]V[GA] and is a subset of M[G,] (though
not a member) as V[G,] F “M[G,|<* C M[G,]”.

So there are Ny € 51, Np € Sy, such that Np[H ()" = N, and
P € Py(x)/G witnessing N1 € S; (see the definition of S;). Let & def NiNws.
Note: N1, Ny € M[G,].
Now aspl-p, . /G, “6 € A7, by the definition of A there are g and b satisfying

p < q € Pay/Gy, and N € S, such that letting b < |N|, we have ¢ I

“9CbCas”sobe M[Gy]lasbe S.
Also as g is (N1, Py(x)/Gx)-semi-generic (being above p, as p witness Ny €
S1) and (g¢ : ¢ <wi) € N (as it belongs to Np and to H(u)MGA) clearly

qIF “as = M[Gp,.,/c\] N HAF)MIG,

[Why? As (a¢ : ¢ < w) € Ny and H(AT)MIG:] € Ny, clearly the function h; :
HO\HMIGA 5 ), hy(x) = min{¢ < w; : T € g} belongs to Ny GP...,

also some function hg : wy xw — H(AT)MIGA such that a¢ = {h2(¢,n) : n < w}

/c,) and

belongs to Ny [Gpa(,)/cx]-]
Hence

4P, y/ex 0 E N [GPam/G;] N H()‘+)M[G*]”.

As N1 N P(Pyx)/Gr) = N2 N P(Pyx)/Gx) (power set in M[G,]), we can also
replace in those statements Ny by Na. As Pj(n)/Pa(x) is semiproper in M[G),]
(a(*) being in j(B)) there is ¢’, ¢ < ¢’ € Pj) such that ¢’ is (N2, Pj(x)/G)
semi-generic in M[G,].

W.lo.g. ¢’ € Gy as only G was used. Work in M[Gj(»)], remember N €
M(G}]. So really b C N3[Gjy], now as j© maps N2[Gp,,,/c,] N H(\T)MIGA
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into N2[Gp,,,/c,] (see the definition of S3) clearly by = j*"(b) = {j*(z) : z €
b} C N3[Gj(n)]- Now as M[G)] F “b is countable”, necessarily by = j*(b). By
the properties of j*, by = j*(b) € M[Gj(»)]; remember j* is the elementary
embedding j induces from V[G)] into M[Gj(»)], so as b € S we have: M[Gjn)] =
“by € §7(9)”,
But as ¢ < ¢’ € Gj), N2[Gj(n)/G], i[Gjn)/G] contradicts this. So we have
finished proving 2.8. Os g
When you want to accomplish other things by forcing remember XIII 1.10

(2):

2.9 Conclusion. 1) Assume
(i) P = (P, : i < \) is <-increasing sequence of forcing notion, P; € H(\)
and IFp, “NY is a cardinal”, and for any j < A for some i, j < i < A and
2%z of VFi is collapsed to Ry in VP let Py = U P;,
(ii) Prp(A), i.e. A is a Woodin cardinal, <
(iii) for a club of cardinals p < A, if y is strongly inaccessible then P, = U P,
P, /P, is semiproper. e
Then in VP2, every maximal antichain Z of D, is semiproper i.e. seal(Z) is a
semiproper forcing.
2) We can above replace (ii), (iii) by
(ii)" Pry(A, W),
(i) W={d<A:Ps= Uépi and P /P;s is semiproper}.
i<

2.10 Concluding Remarks. Can we improve 2.67?

Note: we do not know imitate XIII 3.9 (on the Ulam property) as the super-
compactness was used more deeply. But even trying to imitate XIII 3.7 (getting
the Levy algebra, that is weakening the assumption of 2.6 to “for stationary
many po < A, for stationary many p; < po we have (*)2,[¢1]) we have a prob-
lem: Is Nm semi proper? In 2.6 the measurability demand in the definition of
W* solves the problem. But it is natural and better to use W* = {u < A : p
strongly inaccessible and ()7, [u]} or W** = {u < X : Pry(u)}



802 XVI. Large Ideals on R; from Smaller Cardinals

To get such a theorem it is natural to use XV §3 to prove that the forcing
does not collapse R; and does not destroy stationary subsets of wy. If S5 = ) we
finish. To prove (d) - relativize Chapter XI to S; (as done in XI §8, or see XV).
Still we have to check the parallel of 2.8. We intend to continue in [Sh:311].





