
Chapter 8

Set Recursion and Higher Types

Primitive recursive set functions and rudimentary set functions have been around
for some time, see Jensen-Karp [72], Gandy [40], and also Devlin [19] for their
basic properties and further references. The step to a general recursion theory on
sets came rather late. There is, perhaps, a reason why: Primitive recursive and
rudimentary set functions were introduced to elucidate the rather restricted
recursion-theoretic nature of the constructible hierarchy, and in the hands of
Jensen [71] have become an important tool in the fine structure theory of L.

Full set recursion was introduced by D. Normann [124], and later rediscovered
by Y. Moschovakis, as a tool for developing a companion theory for Kleene-
recursion in higher types. The theory has, however, a wider scope and we shall
present a general version in the first part of this chapter. In this we follow the
exposition in Normann [124]. The approach of Moschovakis uses inductive
definability, but the end result is substantially the same.

In Section 3 we work out the detailed connection with Kleene-recursion in
higher types. Some of this work has its origin in the theses of Harrington [53],
MacQueen [98], and Normann [122]. We believe that the general set-theoretic
approach adds both simplicity and insight.

As a testing ground for this belief we turn in Section 4 to the degree theory
in higher types. We present a fairly simple priority argument involving 3E9 allowing
the reader to explore the full intricacies of the general theory for him- or herself.
We just want to make the point that set recursion is a very natural computation
theory to use in the study of degrees of functionals.

8.1 Basic Definitions

Set recursion in a relation R on the universe of sets V is generated by the schemes
for the functions rudimentary in R augmented with the diagonalization scheme.

8.1.1 Definition. Let R c V be a relation. The class of partial functions set-
recursive relative to R is inductively defined by the following clauses

(i) f(xl9 ...,xn) = x i e = <1, n, ί>
(ii) / (* ! , . . . , xn) = Xi - Xj e = <2, n, i,j}

8.1 Basic Definitions 183

(iii) / (* ! , . . . , xn) = {xi9 Xj} e = <3, n, i,y>

(iv) f(xl9..., xn) ~ (J

e = <4, n9 e'} where e' is an index
for A.

(v) / (* ! , . . . , xn) ^ Kgx{xl9..., xn),..., gjxl9..., xn))
*? = <5, n, m, e\ el9...9 em> where
e' is an index for h and e x , . . . , em

are indices for gl9..., gm, respec-
tively.

(vi) f(xl9..., xn) - Λ:, n i? ^ = <6, «,y>
(vii) /(βi, Xx,..., xn, JΊ, . . . , ym) - {ejjίίxi,..., xn)

e = <7, n, m>.

There are a number of comments to make. The functions generated by clauses
(i) to (vi) are the functions rudimentary in R. These functions are all total. In the
general case we get partial functions and we then assume in scheme (iv) that the
computation is defined only if h(y9 x29..., xn) is defined for all yexx.

The index e is always a natural number. This is a limiting feature of this version
of set-recursion which squares with a characteristic feature of Kleene-recursion
in higher types, but makes the theory differ from general admissibility theory.
Note that since for each n e ω the constant function with value n is rudimentary,
these functions will be set-recursive.

The basic theory of the rudimentary set functions is developed in Devlin [19].
We shall use only their most elementary properties: For the more delicate parts
of the theory see Jensen [71] (or the exposition in Devlin [19]); the reader will
also profit from a study of Simpson's lectures [156].

For emphasis we repeat: Let R ^ V. A function/on Fis called set-recursive
in R if there is an index e such that for all xl9..., xn

f(xl9..., xn) ~ {e}R(xl9..., xn)9

where the notation {e}R obtains its meaning through Definition 8.1.1.
The set Θβ = {(e9 σ, z); {e}R(σ) ^ z) is a computation theory in the sense of

part A of this book. From the schemes in Definition 8.1.1 we derive in a canonical
way the notions of

a. length of a computation,
b. subcomputation9

c. computation tree.

These concepts should by now be thoroughly familiar to the reader and we need
not repeat the detailed constructions. (A complete exposition exists in Gurrik
[52], to which any reader who wishes to learn Norwegian can turn.)

We let || α, σ, z||, for (a, σ, z)eΘ Λ , denote the length of the computation
{e}R(σ) - z.

184 8 Set Recursion and Higher Types

Set-recursion in R is p-normal. This is a consequence of the following simple
lemma which combines an application of the schemes (iv) and (vii).

8.1.2 Lemma. There is an index e such that for arbitrary R, x, el9 σ

Jf V j , e x . ̂ j ^ σ) ψ a n d

The proof is simple. By elementary properties of rudimentary functions we
may assume that {e^R takes values 0 (= 0) and 1 (= {0}) only. Let

{e}R(x, el9 σ) ~ (J {e^y, σ).
yex

This is the proof. The lemma shows that we have the crucial property of normality
from recursion in higher types built into set-recursion through the scheme (iv)
of "bounded" union. If x = ω, bounded union means quantification over ω, i.e.
the computability of 2E. This explains the name "^-recursion" rather than "set-
recursion" in Normann [124].

With the usual proof, Lemma 8.1.2 implies/7-normality, i.e. stage comparison,
and the existence of a selection operator over ω. (See Chapter 3 for details.)

8.1.3 Proposition. There is a set-recursive function p such that if σ = (e9 σl9 z) e &R

or σ' = (ef, σi, z) e ΘR then p(σ, σ') j , and

σeθRA H < ||σ'||=>/<σ,σO-0

H I > ||σ'||=>/>(σ,σ')^l.

8.1.4 Proposition. There is an index e such that for arbitrary R, eu σ

M«Oi, <*H iff 3/i e ωίejβί/i, σ) ψ .

And ifln e ω{eλ}R(n, σ) | then {e^R{{e}R(el9 σ), σ) j , and

||e, el9 σ\\ > inf{||β, n, σ\\ : {e}R(n, σ) | } .

As our computations are single-valued we abbreviate in the usual fashion,
i.e. if {e}R(σ) 2̂ z, we let \\e9 σ\\ denote the length of the computation.

8.1.5 Remark. It is also possible to develop a version of the selection principle
of Theorem 4.3.1 in the context of set-recursion. But proving "Grilliot-selection"
once is sufficient for us! The reader should, however, consult a forthcoming paper,
A note on reflection, in Math. Scandinavica by Dag Normann.

8.2 Companion Theory

We aim at a construction generalizing the "next admissible", see the introductory
discussion in Section 5.3 as well as the construction of the abstract 1-section

8.2 Companion Theory 185

corresponding to a Spector theory Θ on ω in Proposition 5.4.20 of the same
chapter.

As always there are some preliminary definitions. For completeness we put
down the somewhat unexciting

8.2.1 Definition. Let R c v, τ e Vm. Let φ be a partial function from Vn to V.
We say that φ is set-recursive in τ relative to R if there is an index e such that for
all σ e Vn

φ(σ) ~ {e}R(σ9 r).

From this we have the obvious notions of sets recursive and semirecursive in σ
relative to R.

The following definition is essential.

8.2.2 Definition. Let A ^ y9 R c y. The set-recursive closure of A relative to R

is the set

M(A R) = {{e}R(σ) : e e ω, σ e An, n e ω}.

If A is set-recursively closed relative to R, we may split up A as follows

; R)>BerA,

where f A is the set of finite subsets of A. This splitting will be of crucial importance
in the following theory. As a first result we shall characterize semicomputability
relative to R in terms of a special kind of Σi-definability over the splitting

; R)}BerA.

But first a linguistic convention. We write R-recursive in τ and R-semirecursive
in T instead of "set-recursive in r relative to R" and "set-semirecursive in τ
relative to R". Similarly we shall use the phrase R-recursive closure of A for the
notion introduced in Definition 8.2.2.

8.2.3 Definition. Assume that A is ^-recursively closed and that B is a finite
subset of A. A set C c A is called Σ%(R)-definable if for some Δ0-formula <p with
parameters from M(B; R)

xeC iff lyeM(Bu{x};R)'ψ(x,y9R).

C c A is called Δ*(7?) if both C and Λ - C are Σ*CR)-definable.
If the correct R is clear from the context we write for simplicity Σ?, ΔJ, and

even Λf (B).

8.2.4 Proposition. Lei ̂ 4 be R-recursively closed and transitive. Then (M(B;
satisfies Σ*-collection: Let φ be a Δ0-formula with parameters from M(B; R) and
let u e M(B). Assume

186 8 Set Recursion and Higher Types

Vx e u ly e M(B u {x}; R) φ(x9 y9 R)9

then

3v e M(B)Vx eulyev- φ(x, y9 R).

The proof is exactly the same as the proof of Proposition 5.4.20. Let σB be a
listing of the finite set B. By assumption

Vx e u 3e e ω <p(x, {e}B(σB, x), Λ).

By Gandy selection, i.e. Proposition 8.1.4, choose one e to each x and use the
union scheme (iv) to find the set v. Formally let v(x) be the index corresponding
to x. Then we can set

which is easily seen to belong to M(B).

8.2.5 Proposition. Well-foundedness is Σ*-definable.

We indicate the proof. By the recursion theorem find an index e such that if
y is a well-founded relation on x9 then {e}R(y9 x) j and {e}R(y9 x) is the rank function
of y. So, for any x9 y9 y is a well-founded relation on x iff 3/e M({x, >>}) such that
/ i s a rank function for y. (Of course, this is independent of, hence uniform in, R.)

8.2.6 Theorem. Let A be R-recursively closed and B a finite subset of A. A set
C c A is R-semirecursive in σB iff C is Σ%(R)-definable.

This is the promised definability characterization of Λ-semirecursive sets. We
shall return to this result in connection with Kleene-recursion in higher types in
the next section.

First, assume that C is Λ-semirecursive in σB, i.e. for some index e9 x e C iff
{e}R(x9 σB) I . By a somewhat lengthy analysis using the recursion theorem we may
prove that if {e}R(x9 σB) j then the associated computation tree will be in
M(B u {x}; R). Therefore,

xeC iff ITG M(B u{x};R)[Tis well-founded and Tis a
computation-tree for {e}R(x, σB)].

By Proposition 8.2.5, this is seen to be a ΣJ(Λ)-definition of C.
For the converse, assume that C is Σ^(Λ)-definable. We may use the same trick

as in the proof of Proposition 8.2.4 to find for each x e C a n index e = v(x) for
the y in the Σ*(Λ)-definition of C. v(x) will diverge if x $ C, hence C = {x : v(x) ψ },
i.e. C is Λ-semirecursive in σB.

8.3 Set Recursion and Kleene-Recursion in Higher Types 187

We conclude this section by a brief discussion of Λ-admissibility.

8.2.7 Definition. A family <M β) β e / i l is called R-admissible if it satisfies the following
three requirements:

(i) each MB is rudimentarily closed in R9

(ii) for B,Ce fA9 MB c Mc iff B c MC9

(iii) the family satisfies Σ*(JR)-collection.

Note that this is an "arbitrary" splitting, i.e. we have a map from fA into the
universe of sets satisfying (i) to (iii) above. We have the following closure result:

8.2.8 Proposition. Let <M β) B e / A be R-admissible, Then each MB is closed under
R-recursion.

The proof proceeds in the following steps. First by induction on the height
of a well-founded relation we prove by Σ*-collection that if y is a well-founded
relation on x, then the rank-function is in M{Xty). Thus well-foundedness is Σ*-
definable over <MByBerA. Next, and by the same method, we prove that if {e}R(σB) j ,
then the computation tree is in MB. We then finish the proof by observing that the
value of a computation is rudimentary in the computation tree. We remark that
this proof also shows that the relation {e}R(σB) ~ z is Σ*(i£)-definable over the
family <MByB^A.

Putting Propositions 8.2.4 and 8.2.8 together we see that if A is transitive and
^-recursively closed, then (M(B; R)}Be

fA is the finest splitting of A into an
Λ-admissible family.

8.3 Set Recursion and Kleene-Recursion in Higher Types

We shall now explain how set-recursion generalizes Kleene-recursion in higher
types. Let / = Tp(fc), i.e. / is the set of all total functions of type k. Tp(0) is then
the set of natural numbers. We note that / has a natural pairing function, hence
we may identify finite subsets of / with elements of /.

In order to get the effect of normality, i.e. the computability of the functional
k+2Eover I, we see from the proof of Lemma 8.1.2 that /must not only be a domain
for the computation theory, we must also have recourse to / as an input to
computations. This motivates the following definition.

8.3.1 Definition. Let / = Tρ(fc) and let R e γ be a relation. By the spectrum of
R over I is understood the family

188 8 Set Recursion and Higher Types

For simplicity we often write Ma(I; R) for M({a9 /}; R)9 and occasionally drop
the / or the R or both, if their presence is clear from the context.

We let

M(I; R) = \J Ma{I; R).
ael

As in Proposition 8.2.4 we see that Spec(i£;/) will satisfy Σ*(R)-collection
over /, i.e. if φ is a Δ0-formula with parameters from Ma(I; R), and if

then

Iv e Ma(I; R)Vb ellyev <p(b9 y9 R).

We further note that each MJJ\ R) will be rudimentarily closed relative to R.
Looking back to Definition 8.2.7 we are led to the following notion of i?-admis-
sibility over /.

8.3.2 Definition. A family <Λfα>αe/ is called R-admίssible over I if it satisfies the
following requirements:

(i) each Ma is rudimentarily closed relative to i?,
(ii) IeMa for all ael, and for all a9bel

aeMb iff Ma <Ξ Mb9

(iii) the family satisfies Σ*(iί)-collection over /.

Obviously the family Spec(i?; /) is inadmissible over /. We shall prove that it
is the minimal family that is inadmissible over /. To do this we need to discuss
how to code elements of the spectrum.

8.3.3 Definition, (i) L e t A c / x / b e a t r a n s i t i v e , ref lexive r e l a t i o n . F o r a,bel
let a ~ b iff A(a, b) and A(b, a). We say that A is a code for a set x if A\~ is iso-
morphic to <TC({x}), e>, where TC as usual denotes the transitive closure.

(ii) Let <Afα>αe/ be a family over /. <Λfα>αe/ is called locally of type I if for
any set x and ael

x e Ma iff x has a code in Ma.

8.3.4 Lemma. Spec(i?; /) is locally of type I.

The proof is an exercise in the use of the recursion theorem. One first establishes
that there is an index ex such that if A is a code for x, then {e^^A, I) = x. From
this, once more by the recursion theorem, one constructs an index e2 such that
given any e e ω, and any sequence of codes Al9..., An for sets yl9..., yn9 if
{e)n(yi, . . . , ; > „) - * > t h e n W « 0 , Al9...9 An) is a code for x.

8.3 Set Recursion and Kleene-Recursion in Higher Types 189

8.3.5 Remark. As the reader will understand from the above hint-of-a-proof we
do not wish to go into details of proofs involving codes for sets. Complete ex-
positions can be extracted from D. Normann [124], and also from Gurrik [52].

We can now prove the minimality of the spectrum.

8.3.6 Theorem. Spec(R; I) is the minimal family R-admissible over I.

It remains to verify that Spec^fi; /) is included in any family <Λfα>αe7 which
is i^-admissible over /. The proof is very similar to the proof of Proposition
8.2.8. We prove by induction on the length of the computation that for any
xl9..., xn9 if xl9..., xn have codes in Ma and {e}B(xl9..., xn) φ , then both the
computation tree and the value will be in Λfα. The use of Σ*-collection over a
set x in 8.2.8 is now replaced by the use of a code for x and Σ*-collection over /.

We come now to the main characterization theorem.

8.3.7 Theorem. Let F be a functional of type k + 2, let I = Tρ(A:) and C c
Tp(& + 1). The following three statements are equivalent:

(i) C is Kleene-semirecursive in k + 2E, F.
(ii) C is F-semirecursive in I.
(iii) CisΣf(F)-definable.

We recall the notion of Σ*(F)-definable. C is Σf^-definable if

xsC iff lyeM{x)(

We note that F is here a relation, / is an element. The equivalence of (ii) and
(iii) follows from Theorem 8.2.6.

The proof that (i) implies (ii) consists in constructing an index e in F-recursion
such that

This is tedious but straightforward. For example the scheme

is handled by rewriting in the following form

{ei}κ(f, σ)~z iff 3x G I Vj e Tp(fc - l)[x(y) = {e2}κ(f, σ, y)

Λ/(*) = *].

A combination of schemes (iv) and (vii) from Definition 8.1.1 will take care of
this case, everything else is rudimentary.

For the converse assume that C is F-semirecursive in /, i.e. for some index e

feC iff

190 8 Set Recursion and Higher Types

The method is now to simulate the computation {e}F(f, I) as a Kleene-computation
in k+2E, F on codes. Again the details are not particularly exciting. The reader
who for some reason wants to reconstruct the details, will need the following
facts.

In Kleene-recursion there is an index e such that i f /and g are characteristic
functions for codes for x and y, respectively, then

(Use the recursion theorem and induction on min(rank(x), rank(j>)).)
From ex we construct a Kleene-index e2 such that if/i,.. .,fk are characteristic

functions of codes for xl9...9xk and {e}F(xl9..., xn) ~ y, then

is the characteristic function of a code for y.
As we remarked in the introduction to this chapter, the sources of this theorem,

as well as for Theorems 8.2.6 and 8.3.6 are the theses of Harrington [53], MacQueen
[98], and Normann [122]. A first version of 8.2.6 can be found in Harrington's
thesis, and the first version of Theorem 8.3.6 stems from MacQueen [98]. Further
developments can be found in Normann [122] as well as in the (unpublished)
lecture notes of Kechris [74].

8.3.8 Examples. We shall separately consider the case k = 0 and the case k > 0.
And we shall first supplement Theorem 8.3.7 with the following observation:
Let F be of type k + 2, let aeI and A c /, then Aek + 1 - sc(fc+2£, F, a) iff
A e Ma(I; F). (The proof is implicit in 8.2.6 and 8.3.7.)

First to the case k = 0. Then / is the set of natural numbers and we are essen-
tially studying Kleene-recursion in 2E, F, where F is a total type-2 functional
over ω. In this case Spec^; ω) reduces to one set, viz. the "next admissible"
set corresponding to the Spector theory PR[2£I, F]. We have recovered the theory
of Section 5.3, and Theorem 8.2.6 is the genuine Gandy-Spector theorem.

In the case k > 0, Spec(F; /) = <Λfα(7; F)}aeI is non-trivial (since not every
ae I = Tp(&) is recursive in k+2E, F). Since the spectrum is locally of type I,
we see that Ma(I; F) consists of exactly those sets which have a code in k + 1-
sc(k+2E, F,ά). (Note, that this was exactly the way we constructed the abstract
1-section of a Spector theory over ω, see Proposition 5.4.20.)

Each set MJJ\ F) is countable, rudimentarily closed in F and satisfies suitable
versions of Δ0-separation and Δ0-dependent choices. These sets thus have all
"good" properties of admissible sets and abstract 1-sections, but they do contain
"gaps", i.e. the sets are not transitive. The gaps are necessarily present to reflect
gap phenomena in computations in higher types.

The sets in the family Spec(F; /) interact via the Σ*(F)-collection principle
which leads to the characterization in Theorem 8.3.7. In this case the equivalence

8.3 Set Recursion and Kleene-Recursion in Higher Types 191

of (ii) and (iii) is the best possible version of the original Gandy-Spector theorem,
the domain of the existential quantifier cannot be chosen independently of the
element we are testing for membership in the given semicomputable set.

Theorem 8.3.7 shows that Kleene-recursion in a normal functional is a special
case of set-recursion relative to some relation. We shall now prove a converse.

The following recursive approximation of the spectrum will prove useful.

8.3.9 Definition. Let α be an ordinal and A a set. The a-approximation to M{A R)
is the set

Ma(A R) = {{e}B(σB) :Be'A,eeω and \\e, σB\\ < <*}.

From this we derive the correct definitions of (Ma(B; R)}B^A and <Mα(7; Λ)>αe/.
We shall also need the following notion of weak Σ*-definability.

8.3.10 Definition. Let <Mα>αe/ be an jR-admissible family over / and let C ^ M,
where M = (J α e / Ma. We say that C is weakly Σ*-definable in a relative to R,
in symbols, C is w~Σ*(R), if for some Δ0-formula <p with parameters from Ma9

xeC iff V* e I (x e M< α,b > =>3yeM<atb> φ(x,y9 R)).

C is w-Δ*(R) if both C and M - C are w-Σ*(Λ).

We shall comment below on why we need the weak notion. Here we first
remark that if C s /, then w-Σ*(R) and Σ*(R) coincide since Λf<βfJC> is the least
M<atb> such that x e M<CLth>. We also have the following lemma.

8.3.11 Lemma. Let R be a relation and <Mα>αe/ = Spec(Λ;/). If C c M is
Σ*(R)-definable9 then C is w-Σ*(R)~definable.

Since C is Σ£(2ί)-deίinable, we have

xeC iff 3yeM({x,a};R)φ(x9y,R).

Let x e Λf<α,b>. Then

xeC iff 3a eM<afb>3yeMa({x9 a}; R)φ(x9y9R).

It is sufficient to show that the relation z = M{Xta)(R) is w-Σ*(R) and that if
a e M<atb> and x e M<a,b>9 then M?Xta} e M< α > b >. This we do by a careful analysis
of the inductive definition of MfXtUY

We need one more lemma.

8.3.12 Lemma. Let Rλ and R2 be relations. If Rλ is w-Δ*(JR2), then Spcc(R1;I) c
Spec(Λ2; 7) and ifC^I is Σ^RJ-definable, then C is also Σ*(R2)-definable.

192 8 Set Recursion and Higher Types

For the proof we note that if Rλ is w-Δ*(R2) then Sρec(i?2; /) will be inadmis-
sible over /; by Theorem 8.3.6 we conclude that SpQc(R1;I) £ Spec(i?2; /).

In connection with Definition 8.3.10 we observe that over / Σ* and w-Σ* are
the same. So it suffices to prove that w-Σ*^) c w-Σ*(R2). But this will follow
if we can prove that w-Δ*(i£2) is closed under bounded quantification.

Since we are not in the admissible case we will give the proof of this closure
property. Or rather, we prove this for Δ*(i?) definability: the w-Δ* case is similar.

Let Θ be Δ*(R) definable, i.e. we have formulas φλ and φ2 such that

θ(z,x) iff 3w e Λr{*,β}0i(x, z9 w)
-ι0(z,x) iff 3w e M{Xt2}φ2(x, z, w).

We want to show that

φ{x) iff Vzeyθ(z,x)

is Δ*(if) definable. But this is an immediate consequence of the following two
equivalences

φ(x) iff
φ(x) iff VfeMix}<yzey[φ1(x,zJ(z)vφ2(x9z,f(z))]

-+Vzeyφ1(x,z,f(z))).

In connection with this argument the reader should appreciate the fact that Σ* is
not closed under bounded quantification.

We are now in a position to prove that Kleene-recursion in a normal type
k + 2 functional over / = Tp(fc) is the same as set-recursion over / relative to
some relation.

8.3,13 Theorem. Let I = Tp(fc) and let R be a relation. Then there is a total type
k + 2 functional F such that

(i) Spec(*;/) = Spec(F;/).
(ii) Over /, Σ*(R) andΣ*(F) are the same.

At this point the reader would do well to recall our discussion of abstract
1-sections in Section 5.4; note that k = 0 is permissible in the above theorem.

We proceed to the proof. Let R be given, by Lemma 8.3.12 it is sufficient to
construct an F such that F and R are w-Δ* in each other.

We define approximations Fa to F by induction on a. If FJJ) is undefined for
all ordinals α, we complete the definition of F by setting F(f) = 1.

We start off by setting Fo equal to the empty function. Let F<cc = {Jγ<a FY.
At stage a we proceed as follows:

If/is F<α-computable by a computation of length < a and F<a(f) is undefined,
let

(i) FJJ) = 0 if/is a pair </i,/2> and/is (the characteristic function of) a
code for a set x such that rank(c) ^ α and xeR.

8.3 Set Recursion and Kleene-Recursion in Higher Types 193

(ii) FJJ) = 1 otherwise.

We separate the proof in four steps.

8.3.14. R is w-Δ*(F).

Let x e Ma(F). Then x will have a code A in Ma(F)9 see Lemma 8.3.4. We
also have that a = rank(x) e Ma(F).

There will be a set B e MJF) which has not been computed before stage a.
Let/ l 5/2 be the characteristic functions of B, A respectively, and p u t / = </i,/2>.
/ will then be in Ma(F) and x e R iff F(f) = 0. For any a such that x e Ma we
then see that

xeR iff 3/ = </l9/2> eMa(F)[f2 is a code for Λ: and
fφ <Ml*»«*\F)>beI and F(/) = 0],

iff V/ = <Λ,/2> e Mα(F)[/2 is a code for x and

Thus R is w>-Δ*CF) and by Lemma 8.3.12 Sρec(/; R) c Sρec(/; F).

The reader should note that this is a point where weak definability is needed.
An arbitrary xeR need not be an element of /. We are not able to prove for
arbitrary x that there is a code for x in M{x}. Therefore, we started out with a
set Ma(F) where a el. Then, as we pointed out, every x e Ma will have a code in
Mα, and codes are needed for the construction of F.

8.3.15. The relation

"{ î}(σ» k+2E, F) ^ n by a computation of length less than α"

is i£-recursive.

The proof is by an analysis of the definition of F using the recursion theorem
for set-recursion relative to R. From this and Σ*-collection over / we further
prove:

8.3.16. If {̂ }(σ, k+2E, F) j , then the length of this computation will be in Ma(R),
where a codes the input sequence σ.

We are now ready for the final stage of the argument.

8.3.17. Fisw-A*(R).

Let fe Ma(R), then by the first part of the proof, fe Ma(F\ hence for some
α, FJJ) is defined. By 8.3.16 we can find such an a in Ma(R). We can then write
for feMa(R)

F(f) = 0 iff 3aeMa(R) Fa(f) = 0,
iff Vα G Ma(R)(Fa(f) is defined => Fa{f) = 0).

194 8 Set Recursion and Higher Types

To complete the proof we note that if a e Ma(R), then Fa is ./^-recursive in α, /,
hence by Lemma 8.3.11 Fa will be w-Δ*(R).

8.3.18. Remark. If we are in the case / = Tρ(A), k > 0, then well-foundedness
is set-recursive relative to /. This fact simplifies the proof of Theorem 8.3.13
considerably, simply define F by

JO if / i s a code for a set x e R,

\ 1 otherwise.

8.4 Degrees of Functionals

We shall in this section use the theory of set-recursion to give a priority argument
relative to 3E. This is but an introduction to a vast topic which the reader is
invited to investigate for him- or herself. In general the setting will be / = Tp(&)
and we study set-recursion relative to some relation R.

8.4.1 Definition. Let / = Tρ(fe) and R be given.

A ^RB iff A is set-recursive in / and some individual ae I relative to
R and B.

This is a very liberal reducibility notion. Harrington in his thesis [53] used
subindividuals instead of individuals (see Sacks [144] for a very informative
exposition). We shall comment on this below.

To simplify the discussion we retreat at once to the case / = Tp(l). In this
case the continuum is assumed given, i.e. we are concerned with the structure
Spec(3is; /) = <Λfα>αej, where / = Tp(l). In order to obtain any results at all
we shall have to introduce the following

8.4.2 Assumption. We assume for the rest of this section that V = L, i.e. there
is a wellordering < of / which is recursive in 3E and has length Hλ. We let || ||
be the norm associated with <.

This assumption is needed if we insist on the liberality of Definition 8.4.1.
If we had restricted ourselves to reducibility relative to sw&individuals there
would have been no need of introducing V = L. This is tied up with the fact that
the set of subindividuals is strongly finite, hence we have an associated admissible
structure, and it is possible to use the full arsenal of techniques of admissibility
theory, such as e.g. the blocking technique (see Chapter 6). On the other hand,
Theorem 8.4.6 fails in the presence of strong assumptions of determinacy. We
would not be surprised if the same theorem proved independent of ZF; see the
similar situation in 6.3.3.

8.4 Degrees of Functionals 195

We shall need some technical results derived from the well-ordering < on /.

8.4.3 Definition. For a e I let a', the a-jump, be the <-least b such that b $ Ma.

8.4.4 Lemma.

(a) If a < b, then Ma c Mb.

(b) ||α'|| is the least ordinal not in Ma.
(c) MaeMa-.
(d) Ma < Σ l Ma'j i.e. Ma is a ̂ -substructure of Ma>.

For the proof of (a) we note that {c e / : c < b} is countable and thus can be
enumerated by an element of /. Using < we may find such an enumeration
{Ciiieω in Mb. Then a = ct for some / e ω, therefore a e Mb and thus Ma £ Mb.

The proof of (b) follows directly from the definition of the α-jump and the
fact that b ε Ma iff \\b\\ e Ma.

Part (c) then follows since Ma can be recursively enumerated up to the ordinal
| |Λ' | |; thus Mae Ma>.

The last part of the theorem is less trivial, being an application of further
reflection, see Theorem 7.1.7. Let c be the characteristic function of a complete
Σ^Ma) subset of ω (= t h e subindividuals). We see that c $ Ma, so a' < c. On
the other hand, c ε Ma>, since Ma e Ma', therefore Ma. = Mc. Further reflection
is now essentially the statement Aίa <Σ± MC, see the Compactness property 7.1.7
and the proof.

We shall need one more technical result. In Section 8.3, see in particular
Theorem 8.3.13, we showed how to translate from set-recursion back to Kleene-
recursion in higher types. In the proof we had to worry about wαfc-definability,
a technical nuisance was the fact that for an arbitrary x ε M there is not necessarily
a code for x in M{x} (see the remark after 8.3.14). We get around this complication
by introducing the set

XM = {(a,x>:xeMa}.

1Af is a Σ*-subset of M and for subsets of 1M the notions Σ* and weak-Σ* coincide.
The use of 1M is unnecessary in the priority argument, but is required for restating
the result in terms of Kleene-recursion in higher types. The facts we use are:

(i) If x e 1M then there is an a e / such that Ma = M({x, /}).
(ii) If x E 1M, then M({x, I}) is locally of type k + 1.

(For definitions see in particular 8.3.3.)

We are in the case / = Tp(fc), where k > 0. We can now use Remark 8.3.18
to simplify the construction of a functional FQ corresponding to a given relation
Q. In detail: let Q c / x M and set

AQ = {<#,/> :/ i s the characteristic function of a code
for a set x and (a, x} ε Q}.

And let

FQ = the characteristic function of AQ.

196 8 Set Recursion and Higher Types

By a suitable coding FQ is a functional of type-2 over the domain /, in our case
FQ is of type 3.

8.4.5 Proposition. Let I = Ίp(k), k > 0, and R a relation. Let SpecCR;/) =

<Ma}aeI and let M = Uasi Ma,
 XM = {<a, x>:xe ΛQ.

Assume that Q £Ξ M, then

(a) Q, Aa n M and FQr\ M are w-Δ*(i?) in each other.
(b) If Qe w-Δ*(R), where a el, then FQ is weakly Kleene-recursiυe in FR,

k+2E9a.
(c) If Q c 1M and QεΣ*(R), then AQ is Kleene-semirecursiυe in FR, k + 2E, a.

For the notion of weakly Kleene-recursive see Definition 4.1.7.
We observe that part (a) is immediate since each Mb in the spectrum is locally

of type k + 1. To prove part (b) we must find an index e in Kleene-recursion
such that

FQ{λb.{e'}κ(FR, k + 2E, a, b, σ)) ~ {e}κ(FR, * + 2E, a, σ, e'\

The proof is a bit messy, but the ideas are rather straightforward and by now
familiar. Q is w-Δ*(R). We first observe that Δ0-formulas can be handled by
k + 2E. And the unbounded quantifiers over Mα > σ needed in the w-Δ*-definition
of FQ from R can be replaced by unbounded quantifiers over k + l-sc(FR,k + 2E, a, σ).
But objects in the k + 1-section have numerical codes, and we may in a familiar
way use Gandy-selection over ω to complete the proof. The proof of (c) is similar
taking account of technical facts (i) and (ii) above.

Before stating the main theorem we note that Assumption 8.4.2 implies that
there is a wellordering of 1M recursive in 3E. Since knowledge of this wellordering
is important for the proof of the main theorem, we shall give a fairly detailed
description of it. The spectrum <Mα>αe/ has an approximation <Λf α>αe/> where

M«a = {{e}(a,I):\\e,a,I\\ ^ «}.

Let 1Ma = {<α, x) : x e Ma

a}.
We note that in a standard way we can introduce a wellordering < * on 1Ma —

\Jβ<a

1Mβ of ordertype Xx; this wellordering is induced from the given well-
ordering of /. Let a(x) = least ordinal a such that x e 1Ma. We then set

x <1 y iff a(x) < a(y) or a(x) = a(y) = a and x is less than y in the
wellordering <*.

We use || | |1 for the associated norm. Note that || ||x will be a set-recursive function
on 1M with a set-recursive inverse.

We can now state the theorem.

8.4.6 Theorem. (V = L). There is a ^definable subset Q of XMsuch that M(Q; I) =
M, but Q is not Δ*-definable over M.

8.4 Degrees of Functionals 197

8.4.7 Corollary. (V = L). There is a set A ^ Tp(2) semirecursive in 3E such that

(i) A is not recursive in 3E and a function.
(ii) IfB <Ξ I is recursive in A, 3E and a function, then B is recursive in 3E and a

function.
(iii) No complete semirecursive subset of I is recursive in A, 3E and a function.

The corollary follows immediately from the theorem using the appropriate
parts of Proposition 8.4.5:

We have constructed a set Q ^ 1M, let A = AQ. By (c) in 8.4.5, A is semi-
recursive in 3E, and since Q is not Δ* in parameters from /, A is not recursive in
32?and a function. Part (ii) of the corollary follows from the equality M(Q; I) = M.
The same equality also gives (iii), but this needs a small supplementary argument.
Let C be a complete semirecursive subset of /, and assume that C is recursive in
A, 3E and a function. Then there will be an ael such that CeMa(Q; I). But
since C is complete, C $ M, i.e. we have the sought for violation of equality
M(Q; I) = M, which proves (iii).

We turn now to a proof of the theorem.

Let We>a be an enumeration of the Σ*-subsets of M and let Wξta be recursive
approximations, σ e On π M. We shall have to worry about two kinds of
conditions :

l e-a M - QΦ Wβta

2-ea Protect the computation {e}Q(a91).

The first set of conditions will secure that Q is not Δ*-definable, the second will
give us the necessary control over Spec(β; /).

Each condition will be coded as a pair <α, ή) = <α, <e9 / » , i = 1,2, and we
order the pairs by the lexicographical ordering on / x ω. The order type will
be Xi. We shall let v denote both a condition and its place in the ordering. This
ordering determines our priorities.

We shall also use the following terminology. Let v < K l5 we say that y is in
row v, or y e row v, if y e XM and for some ordinal β, \\ yW1 = Xx β + v.

We shall also find the following terminology useful:

α-conditions: v = <α, ήy
1 -conditions: v = 1 e a
2-conditions: v = lea.

Recall our dual use of v. Notice that if a < b then all the α-conditions have higher
priority than the 6-conditions.

Qσ will be constructed by an induction on the stage σ e On π M such that
Qσ will be uniformly set-recursive in σ. At each state σ we shall worry about one
"relevant" 1-condition or all "relevant" 2-conditions.

198 8 Set Recursion and Higher Types

The 2-conditions will be met by creating requirements freezing certain com-
putations relative to Q. A requirement x for v is active at stage σ if x n Qσ = 0.

To meet the 1-conditions v = l e a we will see to it that M - Q and We,a

differ on row v. This will be done by putting an element from row v n We,a into
Q if possible. In doing this we must be careful not to destroy other parts of the
construction. This leads to the following stipulation:

8.4.8. y is a candidate for v at stage σ if

(i) y e 1Mσ

(ii) y G row v
(iii) If x is an active requirement for vλ < v at stage σ, then y φ x
(iv) σeMσ

y

 + 1

(v) Let σ0 ^ σ be minimal such that y e W o , then for all σ± such that
σ0 ^ σ! < σ we require that yeMσ

σi.

The first four conditions on y are quite reasonable: since we want Q ^ XM
we must insist on (i) (iii) expresses that we do not want to injure active require-
ments of higher priority, and (iv) expresses our intention to make Q Σ*, therefore
we will not put y into Qσ + 1 unless σ is in My. Only (v) needs a comment, it is in-
cluded purely for technical reasons in order to preserve computations {e}Q(b91)
inside Mb9 or Mv at worst.

8.4.9. A condition v requires attention at stage σ if

(i) v = 1 e - a, Qσ n row v = 0, and there is a candidate for v at stage σ in

^ e ' . α , Or

(ii) v = lea, there is no active requirement for v at stage σ, and {e}Q°(a, I) j
by a computation of length < σ which uses elements from Mσ only in the
subcomputations.

We can now proceed to the construction of Q. As usual, set Q° = 0 and

β λ = L U λ β σ for λ a limit stage.

8.4.10. Assume that Qσ is constructed.

If no condition requires attention at stage σ let Qσ + 1 = Qσ. Otherwise, let
v be the least condition that requires attention at stage σ. There are two cases

(i) v = 1 ea. Let y be the <Meast candidate for v in W%ta and set Qσ + 1 =

(ii) v = lea. Let Qσ + 1 = Qσ and create the following requirements: For
each vλ = 2e1- al9 if v1 requires attention at stage σ, let Mσ — Qσ be a requirement
for i>!.

Finally, set Q = IJσeM β σ

If Λ: is a requirement and we put a yex into β, then we say that x is injured.
A rather trivial cardinality argument leads to

8.4 Degrees of Functionate 199

8.4.11. If v is a condition, there will be created at most countably many require-
ments for conditions ^ v.

A requirement for v is injured at most countably many times.

This simple observation gives one half of the theorem.

8.4.12. M - Q Φ Weta for all e, a.

Let v = l e a and let σ be a stage at which all requirements for vλ < v ever
to be constructed are constructed and all 1-conditions vλ < v to be met are met.
σ exists by 8.4.11 and we may assume that σ = κ% for some b ^ a. (Recall that
/eg = suρ(On n Mb).)

Assume that M — Q and We,a coincide on row v. Let y e row v be the element
with norm <σ, v> in || fl1. If y e Q then y must also be an element of WetCL, other-
wise it would never be put into Q. But this goes against our assumption, therefore
yeM—Q and hence also y e Wβta. Since Wβta is Σ*, there will be a σx e MΛty

such that y e Wσ

e*a. We show that we can choose σλ ^ σ and σλ e My by proving
the

Claim, a e My and σ e My.

Let y e 1M be of the form (b\ y{>. Then σ is minimal such that yx e M%>
so σ e Mv = Λfy. Clearly ae Mv and since y e row v, we may compute v from
σ and y.

So assume that σx ^ σ, σ±e My, and 7 e JFσi. We shall argue that at stage σλ

y is a candidate for v. The troublesome part is (v) of 8.4.8. But by the choice of
σ and y we first see that σ is minimal such that y e 1Mσ. It remains to verify that
if σ ^ σ then j 5 σ e AίJ/, but this follows immediately from the fact that σ is
chosen to be of the form «rg for suitable b. Thus at stage σλ y is a candidate for
v, and v thus requires attention. By choice of σ we do not pay attention to any
vx < v, so at stage σ± something from row v is put into Qσi + 1. But then, after all,
M - Q and Wβta must differ.

The other half of the theorem requires more detailed information about the
construction. (And it is in the proof of the following lemma that the usefulness
of (v) in 8.4.8 will become clear.)

8.4.13. (a) Let x be a requirement for v created at stage σ e Ma, where JC, V e Ma.
If x is injured, then x is injured before stage /eg.

(b) If a = b' and v = 2 ea0 for some a0 < a, then there is a stage σe Ma

such that if σ ^ σλ < /eg no 1-condition v1 < v is met at stage σlβ

For the proof of (a) assume that x is injured by putting a y from row vx into
Q at stage σlβ Since x = M° — Qσ, y will be an element of 1Mσ, so, in particular,

y e 1Mκo.

200 8 Set Recursion and Higher Types

If σx ^ /eg', then y $ Ma. by clause (iv) in 8.4.8. By clause (v) of the same definition

y G Mσ

κl c Ma'- This contradiction shows that σ1 < /eg'. Then

Ma' N 3σ±3y e row v± Π β σ i + 1.

By reflection ((d) of 8.4.4) we get

Ma N 3σx3y e row vλ n β σ i + 1.

This shows that the injury took place before stage /eg, which proves part (a) of
the lemma.

To prove (b) let vλ < v be a 1-condition. If vλ is a ^-condition for some c < a
and if we meet vλ inside Ma, we also meet vx inside Mb since Afb < Σ l Ma and
Vj. 6 Mb.

Thus there could be at most finitely many 1-conditions vλ < v which we meet
between κ% and /eg. This could happen only when a0 = a, i.e. v = {a, n}, and
vx is of the form v1 = <Λ, m>, where m < «. If this were the case, choose σ > κb

Q

such that all these conditions are met before stage σ.

8.4.14. Let j c e ¥ , w e say that

is finally protected at stage σ if for some e e ω the computation {e}Q(a, I) = x
is protected by a requirement active at stage σ which is never injured.

8.4.15. Assume that {^}Q(Λ:15 . . . , xn) \ . Let a,c e I and δ be an ordinal in M< α > c >.
Assume that the statements

x1,...,xneMa(Q),

are finally protected at stage δ. Then there is a σ > δ in Af<αc> such that

3 x e Mσ

a(Qσ; I)-{e}Qo(χl9 . . . , χ n) = χ .

In applications of this lemma xl9..., xn will come from the set / u {/}, in which
case the assumption is trivially true. The assumption seems, however, necessary
in order to make the inductive proof work.

The proof is by induction on the length of the computation {e}Q(x1,..., xn).
We give case iv and case v of 8.1.1, the other cases are either similar or simpler.

Case iv. Here

{e}Q(Xi, , Xn) - U iel}o(y> X2,'"> *n),
yexi

where x± e Ma(Q), ...,xne Ma(Q) all are finally protected at stage δ.

8.4 Degrees of Functionals 201

First note that when xλ is computed from #, /, there will be a function/mapping
/ onto xl9 uniformly recursive in the computation of x±. For each y =f(b) e xl9

y e Mab(Q) will be finally protected at stage δ.
From the induction hypothesis and Σ*-collection we can now claim

G May(3σ G Ma,cVb3σb[γ < σb < σ A 3xb G Mϋ

a\c

We may now define a strictly increasing sequence of ordinals <δ &) b e 7 G Ma>c

such that if ||Z>2|| = U^H + 1, then

Sb2
- xb].

Let σ = sup{δb: b e I}. Since the cofinality of σ is X l9 we may apply the cardinality
argument used in 8.4.11 to the construction up to stage σ. The δb's are chosen such
that for each b{ G / we will cofinally often below σ try to protect the computation
{£I}Q(/(^I)> χ2, > xn)' Thus at stage σ they will all be protected by active require-
ments. But then

3x e MS,c(Qσ)'X = U KW/W, * a , . . . , xn),
b lU
bel

which completes case iv. (At this point the reader will see the usefulness of having
^ rather than < in the definition of the approximations M%9 x is a computation
of length σ.)

Case v. We have composition

{e}Q(Xi, , xn) = W Q ({ > I } Q (* I , ? xn),.. , {em}Q(Xi,. . , xn), Xi, - - , xn)

To be able to use the induction hypothesis we must find a stage where all statements

are finally protected. Since reflection is available we have some freedom to
manoeuver.

Let δ0 = κl'c. By the induction hypothesis there will be stages δ 1 ? . . . , δm in
M<a,cy such that for 1 ̂ i ^ m

3^ eMϋQ^'ie^iiXu . . . , xn) - yt.

The associated conditions will be α-conditions. By 8.4.13 these conditions will
be met by requirements which are never injured at a stage δm + 1 e M<a,cy Thus
at stage δ m + 1 all statements

are finally protected, where yt = {et}Q(xl9..., xn).

202 8 Set Recursion and Higher Types

By the induction hypothesis, once more, there is a δm + 2 ^ δm + 1 in M<atCy

such that

3x E Mδ

a

m + 2(Qδm + 2

And such that

3x e M^m+2(ρ<5m+2).{^}Q<Jm+2(Λ:1,..., xn) ~ x.

Since Λf<α,c> < Σ I ^<α,o- we find an σ in Af<βfC> with the same property as δ m + 2

above.
This completes case v.
The following lemma will now complete the proof of the theorem.

8.4.16. If a = b', then Ma(Q; I) = Ma.

Ma(Ql I) there is an index e such that x = {e}Q(a, I), /and a are elements
of Ma protected at all stages. Let v = lea.

By Lemma 8.4.13 (b) there is a σ0 e Ma such that between σ0 and *g we do not
meet any 1-condition vx < v. By Lemma 8.4.15 there is a σλ > σ0 in Ma such that

3xeMσ

ai'{e}Qσi(a,I) ~ x.

We would then at stage σλ create a requirement to protect this computation, and
by Lemma 8.4.13 (a) this requirement is never injured.

Thus

{e}Q(a, I) = {e}Q*i(a91) e Ma,

and the lemma is proved.

8.4.17 Remark. As noted in the introduction to this chapter we have concentrated
on a fairly simple priority argument to demonstrate the "naturalness" of set-
recursion as a computation theory for the study of degrees of functionals.

Theorem 8.4.6 is due to Dag Normann and is not published in this form else-
where. More advanced results, such as e.g. the splitting theorem, can be found
in Normann [125, 127].

Reducibility relative to subindividuals has been studied by Harrington [53],
see the exposition in Sacks [144].

There are many open problems, e.g. we would like to have a set-recursive
version of the density theorem, see 6.3.1.

8.4.18 Remark. G. E. Sacks has in a forthcoming paper Post9s problem, absolute-
ness and recursion in higher types (Kleene symposium, North-Holland, to appear)
shown that in the case / = Tp(l) the set M = \JaeI Ma is not ΣJ-definable for
any b e Lit is, however, weakly-Σ* definable. Thus there was a need for introducing
the notion of weak-Σ* definability and the set XM in our arguments above.

8.5 Epilogue 203

8.5 Epilogue

It is time to take our farewell of the reader. And let us do so by casting a quick
glance back on the territory covered, pointing out some open problems, some
omissions, and some areas of future research.

8.5.1. Computing in an algebraic context. Except for the introductory Pons
Asinorum we have concentrated on traditional "hard core" recursion theory.
But recursion-theoretic ideas could have wider application, beyond the usual tie-up
with definability theory and descriptive set theory. Algebra is one possibility, we
gave an example and several references in 0.3.4. There is, too, an interesting study
by W. Hodges [63] who uses the Jensen-Karp theory of primitive recursive set
functions to study the effectivity of some field constructions.

8.5.2. Part A of the book gave a reasonably thorough axiomatic analysis of the
notion of computation. Whilst we used many combinatorial tricks first developed
in the context of the λ-calculus, we did not look at recursion theory from the point
of view of the λ-calculus, so let us make good this omission giving a reference
to G. Mitschke, λ-Kalkul, 8-Konversion und Axiomatische Rekursionstheorie [104],
in which the relationship is explicitly studied; see also Barendregt [9].

We also remarked in Section 2.7 on the difficulties in studying computations
relative to & partial higher type objects. We gave some examples, but did not have
an abstract axiomatic analysis to offer. This deserves further study. The reader
should consult the exposition of Platek's thesis in Moldestad [105], and also a
recent study by S. C. Kleene [86]. See also part II of [86] and a paper by D. P.
Kierstead, A semantics for Kleene's j-expressions, to appear in the KLEENE SYM-
POSIUM, North-Holland.

8.5.3. In Chapter 3 we gave an outline of the connection between Spector theories
and the theory of inductive definability. Spector theories is our general version
of hyperarithmetic theory, i.e. of the effective theory of Borel sets, and has many
applications to descriptive set theory, see Moschovakis [118]. Applications beyond
the first levels of the projective hierarchy require extra set-theoretic assumptions
(e.g. the axiom of constructibility, the existence of measurable cardinals, or the
axiom of determinacy). We find these "applications" a bit problematic from a
philosophic point of view, and are more fascinated by the recent "sharper"
applications of the "absolute" theory, see e.g. Louveau [96,97]. And see also
Fenstad-Normann [32] and references therein, where the interest is how far one
can go with certain problems of descriptive set theory within the accepted set-
theoretic foundation.

In Chapter 4 we gave a brief introduction to second-order definability theory,
and referred to Kechris [76] for a fuller exposition. Here one would like to see
applications to "real-life" mathematics.

Our treatment of general hyperarithmetic theory has been both highly selective
and rather brief. We can make good one omission by drawing the reader's attention
to the "omitting types" paper by Grilliot [51].

204 8 Set Recursion and Higher Types

8;5.4. In Part C on admissible prewellorderings and degree structure we were on
several occasions led to the borderline between recursion theory and set theory.
We shall not repeat this discussion here. Interesting problems remain in determining
the " t r u e " domain for degree theory. The reader is referred back to Section 6.3
and the examples, problems, and references there given.

8.5.5. Our discussion of recursion in higher types in Chapters 4, 7, and 8 was
again selective and rather abstract, the reader should consult the book by Hinman
[61] for many interesting examples and further developments.

One example we must mention is the superjump introduced by Gandy [38].
The study of this object has played an important role in shaping the general
theory. The superjump S has a simple definition

i f < e X α ' m

otherwise.

The basic result is that l-sc(S) is exactly LPo n 2ω, where p0 is the first recursively
Mahlo ordinal. There is an extensive literature, Gandy [38], Aczel-Hinman [8],
Harrington [53, 54], Normann [126], and Lavori [95].

Another important concrete example is the type three object 3CL which is
essentially the diagonalization operator for arbitrary inductive definitions on ω.
This was studied by Harrington (unpublished, but see a brief reference in Kechris
[76]). A main result is that l-sc(2ls, 3CL) = Z,σ(πo) n 2ω, where π0 is the least non-
projectible ordinal and σ(τr0) is the least ordinal stable in π0. There is also an
interesting connection to the Kolmogorov i£-operator.

To continue our list of omissions: We have said almost nothing about
hierarchies. Two basic references on the positive aspects of hierarchies in higher
recursion theory are Shoenfield [149], and Wainer [170], where "good" hierarchies
(in the sense of a genuine building up from below) are given for recursion in
an arbitrary total type-2 object; the normal case is due to Shoenfield, the general
case to Wainer.

Moving up in types the situation is more problematic. One can always "after
the fact" extract a hierarchy, since we have ordinals associated with computations.
But a genuine building up from below in the presence of 3E does not exist, see
Schwichtenberg-Wainer [146] for a good discussion. Notice that for certain type-3
objects, e.g. S and 3CL mentioned above, in which 3E is not recursive, we do have
interesting hierarchies.

Let us conclude this list of omissions by drawing attention to the existence of
gap phenomena in computations in higher types, see Moldestad [105] for an in-
troduction. This is a fascinating area which invites further study. One should
also not neglect the further study of reflection phenomena in higher types, see the
brief introduction in Section 7.1 and the exposition in Kechris [74]. Basis results
are discussed in Moldestad-Normann [107].

8.5.6. One growing and important area of general recursion theory has been
entirely absent from our discussion, the theory of countable or continuous functionals.

8.5 Epilogue 205

By way of an introduction let us discuss the following example of Grilliot
[50]. The setting is the total type-2 functionals over ω.

Theorem. 2E is recursive in F iff F is effectively discontinuous.

We indicate the proof of one half of the theorem, viz. that 2E is recursive in
Fif Fis effectively discontinuous. So suppose that <gi>ieω a n d / a r e recursive in
F9 that / = lim, ft, but F(J) Φ lim, F(gt).

By thinning out the sequence <gi>ieω we may assume that F(f) φ F(gt), for
all i e ω and, further, that g{(J) = f(J) for j ^ /.

Introduce an operator / by

g, if h(i) = 0 Λ Vx < i(h(x) φ 0).

J is recursive in F as can be seen from the following equation

if / < ; Ά A(0 = 0 Λ ¥ X < I(Λ(X) * 0).

But then 2E(h) = 1 iff F(J(h)) = F(/) , i.e. 2 £ i s recursive in F.
A corollary of this result is that 2E is recursive in F and a function iff F is

discontinuous.

The topology is here the usual product topology on Baire-space ωω. This
topology is determined by "finite information", i.e. by a neighborhood basis
consisting of sets Nu = {ae ωω : u ^ α}, where u is a sequence number and u ^ a
means that a(i) = ui9 i < lh(w).

We have the following well-known observation

Proposition. F is a continuous map from Baire-space into ω iff there is a function
aF9 called an associate ofF, which satisfies

(i) Va3naF(β(n)) > 0,
(ii) W<aF(β(n)) > 0 =>aF(β(n)) = F(β) + 1).

We see how 2E divides the higher recursion theory: either 2E is recursive in
F and then F is discontinuous and we are in the case of normal recursion in higher
types, i.e. finite theories in the sense of Chapters 3 and 4 or 2E is not recursive in
F which leads to the non-normal case. And a major part of the non-normal case
is concerned with the countable or continuous functionals, where computations
are determined by finite information, i.e. by an associate aF in the sense of the
above proposition.

We have mostly been concerned with the full type structure in Part D. But
in the countable/continuous case it makes good sense to go to a thinner hierarchy.
This is the appropriate notion. A type structure is a collection of sets {Aτ: T a

206 8 Set Recursion and Higher Types

type symbol} such that (i) Ao = ω, and (ii) if τ is of the form τ x x . . . x τ n -> 0,
then Aτ is a set of maps (but not necessarily all maps) from Aτi x . . . x AH to ω.

One important example of a type hierarchy different from the full type structure
is the hierarchy

C = {Cτ: T is a type symbol},

of countable objects where Co = ω, d = Tp(l), but where, from C2 on, we
restrict ourselves by roughly requiring that a map F: Cn -> ω should be allowed in
Cn + 1 only if its value at a g in Cn is determined by a finite amount of information
about g. In the case of C2 we can take this to mean that F should have an associate
aF, or, equivalently, that F is continuous.

At higher types the connection with topology is more problematic. Lifting
the idea of having an associate presents, however, no difficulties. We let a map
Φ: C2 -> ω belong to C 3 iff it has an associate αφ satisfying

(i) VβVFe C2[β is an associate for F => 3naφ(β(n)) > 0],
(ii) VβVrίiFe C2[β is an associate for F Λ ccφφ(n)) > 0 => aφ(β(n)) = Φ(F) 4- 1].

And so we continue.

Associated with the hierarchy C we have two natural notions of recursiveness.
One can be quickly explained:

1. A countable functional F is recursively countable if it has a recursive
associate aF.

The other notion makes sense for arbitrary type structures {Aτ: τ a type symbol},
provided the structure is sufficiently closed. It is simply the notion of computation
obtained by relativizing the standard Kleene schemes S1-S9 (see Kleene [83] or
Chapter 4) from the full hierarchy to the thin hierarchy {Aτ}. It is easy to convince
oneself that C is sufficiently closed, hence we have a notion of Kleene-computation
relative to C.

2. A countable functional F is Kleene computable if it has an index, i.e. there
is an e e ω such that F(σ) = {e}(σ)9 where the right-hand side is determined by
the relativized schemes S1-S9 over C.

Both notions are natural. But they do not coincide. It is easy to show that
Kleene computable functional have recursive associates. The converse is false.

Let [γ] = {0 e d : Vx e ω(β(x) ^ γ(x))}. We see that [γ] for any γ e d is a
compact subset of d The fan functional Φ(F, γ) computes a uniform modulus
of continuity for F on [γ], i.e.

Φ(F, γ) = (μn)(Vβ, β' E [γ])[β(n) = β\ή) -* F(β) = F(β%

Φ is recursively countable (by Kδnig's lemma), but the fan functional is not
Kleene computable. We indicate the proof.

8.5 Epilogue 207

Let y Ξ 1 and F = 0, then Φ(F, γ) = 0. Assume that Φ is Kleene computable,
i.e. there is an index e such that

for all G. Select a non-recursive δ in [γ]. Choose a "restricted associate" a for /%
i.e. an a such that: (a) For all recursive β, 3na(β(ri)) > 0, but (b) V«α(δ(«)) = 0.

One can now prove that there exist sequence numbers σl9..., σk such that

(i) «(**)> 0, ί = l , . . . , f c ,
(ii) if G = F on JVffl u . . . u Nσk9 then {e}(G, γ) = {<>}(/% γ).

This one proves by reflecting on the meaning of {e}(F, γ) j , taking into account
that a is a restricted associate of F.

We can now choose an n such that N-δin) π Nσi = 0 for ί = 1, . . . , k. Define
a functional G by

It is immediate from the definition of the fan functional Φ that Φ(G, γ) = n.
But from (ii) above it equally follows that {e}(G, γ) = {e}(F, γ) = ΦCF, γ) = 0.
This contradicts (*) and shows that Φ is not Kleene computable.

A good epilogue is always an introduction to something beyond. And an
introduction is an invitation not a complete story. In particular, in the case of
countable functionals we urge the reader to go beyond these introductory remarks
and here are a few basic references on this topic.

The study of countable functionals was opened up by the papers of Kleene
[82] and Kreisel [88] in 1959 which introduced the countable hierarchy, the notion
of an associate and the two ways of approaching the notion of recursiveness in
C. The non-computability of the fan functional is due to Tait (unpublished), for
an exposition see Gandy-Hyland [42] which is an excellent introduction to the
field. Hinman [60] taking a lead from the theorem of Grilliot quoted above made
a first contribution to the degree theory of continuous functionals.

The theory was further advanced by several contributions of Yu. L. Ershov
[22, 23]. The "obvious" axiomatization problem, i.e. how to extend S1-S9 to a
set of schemes giving all recursively countable functionals has been discussed by
Feferman [25], see also Hyland [66]. Further results here may have an interesting
feed-back on the general axiomatics of the notion of computation.

Of many more recent contributions we mention the theses of Bergstra [15]
and Hyland [64], and the further contributions of Gandy-Hyland [42], Hyland
[67], Normann [123, 128] and Normann-Wainer [131]. A systematic introduc-
tion to part of the pure theory can be found in the Lecture Notes of Normann
[129]. There is also an applied part of the theory, viz. the application of countable
functionals to constructivity and proof theory, see the original paper of G. Kreisel
[88]. A survey is given in Troelstra [167]; a recent contribution is Hyland [65].

