
Chapter 2

General Theory: Subcomputations

This chapter adds a new notion to the general theory, viz. the notion of sub-
computation. We develop the elementary theory including a general version of the
first recursion theorem, and ending up with a representation theorem which is
"faithful" in the sense that it preserves the full structure of subcomputations.

2.1 Subcomputatίons

In Chapter 1 we took as our basic relation

asserting that the computing device a acting on the input sequence σ gives z as
output. We wrote down for the set Θ of all computation tuples (a, σ, z) a set of
axioms and were able to derive within this framework a number of results of
elementary recursion theory, leading up to a simple representation theorem for
any such Θ.

However, many arguments from the more advanced parts of recursion theory
seem to require an analysis not only of the computation tuple, but of the whole
structure of "subcomputations" of a given computation tuple. In fact, such an
analysis was involved in the proof of the first recursion Theorem 1.7.9 via the
representation Theorem 1.6.3 (see Definition 1.5.9).

In his paper Axioms for computation theories—first draft [113] Moschovakis
emphasized the fact that whatever computations may be, they have assigned a
well-defined length, which is always an ordinal, finite or infinite. Thus he proposed
to add as a further primitive a map from the set Θ of computation tuples to the
ordinals, denoting by \a, σ, z\e the ordinal associated with the tuple (a, σ, z) e Θ.

We shall, in addition, abstract another but related aspect of the notion of
computation and add as a further primitive a relation between computation tuples

which is intended to express that (a', σ', z') is a "subcomputation" of (a, σ, z),
i.e. the computation (a, σ, z) depends upon the previous computation (af, σ, z').

44 2 General Theory: Subcomputations

2.1.1 Definition. Let 31 = (A, C, N s, M, K9L) be a computation domain. A
computation structure <Θ, < θ> over 91 is a pair where Θ is a computation set and
< θ is a transitive and well-founded relation on Θ.

Remark. The notation <Θ, < θ > is clumsy. Whenever the context permits we shall
write < rather than < θ and use the shorter Θ for <Θ, < θ> or <Θ, < >.

Note that if (a, σ, z) e Θ, the set

S(βfσ..) = {(*', σ\ z') : (a'9 σ'9 z') < (a, σ, z)},

is a well-founded transitive set, the set of "subcomputations" of (a9 σ, z). S(α>(J>2)

has an associated ordinal \a9 σ, z | θ , which may be called the "length" of the
computation (a, σ, z).

The notion of computable function carries over unchanged to the present
setting. In the definition of Θ-computable functional we make an addition.

2.1.2 Definition. Let <Θ, <> be a computation structure on a domain 91. A
consistent functional φ is called weakly θ-computable if there exists a φ e C such
that for all el9..., ex e C and all sequences σ = (χl9..., xn) from A we have

(a) ψ{{exγQ\ . . . , fe}8«, σ) ~ z iff {9% + n (ei , . . . , eh σ) - z.
(b) If ^({e!}©1,..., {^Iθ'j σ) — z-> then there exist functions gi,...9gι such that
(i) gi c {^Jgi,.. ., g, c fe}s« and φ(g, σ) - z ;

(ii) for all i = 1 , . . . , /, if gt(tl9..., tn) ~ ui9 then (e i 9 ί 1 ?..., tni, u{) <
(φ9el9...9ehσ9z).

2.1.3 Remark. We may motivate clause (b) of the above definition by reflecting
on how we compute in a theory PR[f], where f = fl9.. .,/i is a list of partial
functions, see Definitions 1.5.6-1.5.9. Let (a, σ, z) e PR[f] and consider its sub-
computation tree. Among the subcomputations of (a, σ, z) are various tuples
(/, h9..., tnt, uλ where/ is the code in PR[f] of ft and ft(tl9..., tn) - «,. For
each ί = 1, . . . ,/ let gi = {(ίi,..., ίnt, wf) : (Ji9 tl9...9 tn%9 ut) < P R [f] (a, σ, z)}. Then
gu'—ygi a r ^ subfunctions of/ l 5 . . . , / z encoding all the information necessary
to compute {a}(σ) ~ z, and, moreover, (α, σ, z) G PR[g].

We are now ready for the definition of a computation theory.

2.1.4 Definition. A computation structure <Θ, < θ> on the domain 31 is called a
computation theory on 31 if there exist Θ-computable mappings pl9 p2, and p3 such
that

(a) the functions s, M, K9 L9 DC are Θ-computable with Θ-codes s, m, k9 /, d9

respectively;
(b) the functionals Cn and ¥%tj are weakly Θ-computable with Θ-codes cn =

p^ή) and pnJtm = p2(n9j, m);

2.2 Inductively Defined Theories 45

(c) Θ satisfies the following iteration property: For all n9m p3(n9m) is a
Θ-code for a mapping S£(a, xl9..., xn) such that for all a,σinC and τ in A, where
lh(σ) = n and lh(τ) = m9

() { } S () { () } g ()
(ii) if {fl}g+m(σ, T) ~ z, then (α, σ, r, z) < (S»(β, σ), r, z).

Note that (c), (ii) is the only point where the -definition reads differently from the
precomputation case (Definition 1.5.3). And further that the condition enforced
axiomatically in (c), (ii) is one which is naturally satisfied for constructed recursion
theories, in particular, theories of the type PR[f] where {a}(σ9 τ) ~ z occurs as
a "subcomputation" of {S£(a9 σ)}(τ) ~ z.

2.1.5 Remark. Elementary results about precomputation theories extend in an
obvious fashion to computation theories, in particular, the results of Section 1.2
do so.

2.2 Inductively Defined Theories

In Section 1.5 we constructed from a given list of functions f = f l 9 . . .9fx a theory
PR[f], the prime computation theory generated by the list f. Using the Definition
1.5.9 of subcomputation for PR[f] it is obvious that the theory there constructed
is a computation theory in the sense of Definition 2.1.4.

We will now extend the construction to cover also the case of functionals.
In this section we restrict ourselves to functionals defined only on total functions.
The general case leads into several knotty problems concerning subcomputations
in partial objects of higher types.

2.2.1 Construction of Γ/ Φ(Θ). Let % be a computation domain,/a partial function
on A, and φ a functional on A defined only on total functions. A monotone operator
ΓftΦ is introduced by the following set of clauses:

2. «290y9x9y9M(x9y))eΓftφ(Θ).

3. (Q,0}9x,K(x))eΓftφ(®).
4. «4,0>,x,L(x))eΓΛφ(Θ).
5. «5 , 0> x, a9 b9 c, DC(x> a9 b9 c)) e ΓΛ φ(Θ).
6. If M(g, σ,u)eΘ and (/, u, σ, z) e Θ], then «6,0>,/, g9 σ, z)e ΓΛ φ(Θ).
7. Let 0 ^ j < n and T any w-tuple from A9 if (/, xj+l9 xl9..., xj9 xj+2,

...9xn9z)eθ9 then «7,y>,/, xu . . . , xn9 r, z) e ΓΛα)(Θ).
8. If a,xl9...,xneC and (a, xl9..., xn, yu..., yn, z) e Θ, then

«8, a9 xl9..., xn}9 yl9...9 ym, z) e Γ/>(P(Θ).
9. l ί / (/ l f . . . , tn) - z, then «9,0>, tl9.. .,>n, z) e Γ/tΦ(Θ).

46 2 General Theory: Subcomputations

10. If for all u e A there is a v e A such that (g, u,v)eθ and φ({g}) ~ z,

then«10,0>,g,z)eΓ Λ φ (Θ).

We note that clauses 1-9 are exactly the same as those in Definition 1.5.6.

Clause 10 introduces the functional φ. For partial φ we would instead have a

clause

10'. If there exists a partial function g on A such that VwVι;[g(w) ~ v =>
(g, u, v) e Θ] and Ψ(g) ~ z, then «10, 0>, g, z) e ΓftΦ(Θ).

This is actually the format of clauses 6 and 7. For 6 the subfunctions asserted to
exist can simply be taken as {<σ, w>} and {<w, σ, z>}, respectively.

2.2.2 Remark. As Moschovakis has pointed out in [113], in many connections
it may be more natural to use a stronger notion of computable functional. Let
ψ be a functional acting on one unary function and which is weakly Θ-computable
for some theory Θ. Let g(x, y) be a Θ-computable function. Consider the function

f(x) = Ψ(λyg(x9y)).

If A = C, this is Θ-computable; we have/(x) = {φ}(S\(g, x)). If A Φ C we may
need the following stronger notion: Let <p(f) be a consistent unary functional
on unary functions. For each n we define ψn by

φ is called uniformly (weakly) ^-computable if there is a Θ-computable mapping
p(n) such that for each n, <pn is weakly Θ-computable with Θ-code p(n). It is
immediate how to change clause 10 to accommodate the stronger notion.

2.2.3 Definition. The computation set generated by / and φ over % which will
be called the prime computation set in / and φ and be denoted by PR[/, φ]9 is
defined as the least fixed-point of the operator ΓftΦ.

For each (a, σ, z) e PR[/, <p] we set

\a, σ, z | P R [/ f φ] = least ξ such that (a, σ, z) e Θξ

ftΦ.

The ordinal number \a, σ, z |P R [/ t Φ] is called the length of the computation (a, σ, z).

Note that Definition 2.2.3 makes sense whether we restrict ourselves to ψ
acting on total functions, i.e. clause 10 of 2.2.1 or allow partial ψ as in clause
10'. In either case the notion of length is well defined, even if there is no unique
choice of subfunction (as in clauses 6 and 7).

In the next definition we restrict ourselves to functional acting only on total
functions.

2.2 Inductively Defined Theories 47

2.2.4 Definition. For each {a, σ, z) e PR[/, ψ] we introduce the set of immediate
subcomputations.

(i) If a = <1, 0>, <2, 0>, <3, 0>, <4, 0>, <5, 0>, or <9, 0>, then (a, σ, z) has no
immediate subcomputations.

(ii) «6, 0>,/, g, σ, z) has (g, σ, w) and (/, w, σ, z) as immediate subcomputa-
tions. (Note that u is uniquely determined.)

(iii) «7,y>,/, * ! , . . . , xn, r, z) has (/, xj+l9 xl9..., xj9 xj+29..., * n , z) as im-
mediate subcomputation.

(i v) « 8 , a , x l 9 . . . , x n) , y l 9 . . . 9 y m , z) h a s (a , x l 9 . . . , x n , y l 9 . . . 9 y m , z) a s i m -

mediate subcomputation.
(v) «10,0>, g, z) has as immediate subcomputations the set of all tuples

(g> w, v), where u runs over the whole domain A. (Note that by clause 10 in 2.2.1
\g,u,v\ < |<10,0>,£,z | fora lUι; .)

The subcomputation relation is the transitive closure of the immediate sub-
computation relation, and is denoted by <PR[/,Φ].

We note that if (a, σ, z) <P R [/, (P] (6, r, w), then \a9 σ, z|PR[/>α)] < \b, T, w| P R [Λ φ]

but not conversely.

2.2.5 Proposition. The prime computation set PR[/, ψ] is a computation theory on
31 in which f is computable and φ is weakly computable.

We verify that φ is weakly PR[/> φ]-computable with code <10, 0>. First we
must show that

φ({g})~Z iff «1050>,g,z)GPR[/,<p].

Assume ψ({g}) ^ z. Then {g} satisfies the premiss of clause 10 with Θ = PR[/, φ].
Thus «10, 0>, g9 z) G ΓΛ Φ(PR[/, φ]) = PR[/, φ], as PR[/, φ] is a fixed-point for
TftΦ. For the converse assume that «10, 0>, g, z) e PR[/, 9]. But this is the case
only if ψ({g}) ^ z.

The condition on subcomputations follows immediately from clause (v) in
Definition 2.2.4.

We make one final construction.

2.2.6 Definition. Let H be computation theory on a domain % and let f and φ
be lists of functions and functionals over A. We define a theory i/[f, φ] on 31
in the following way. Let Γ£>Φ be the operator of Definition 2.2.1. Set

Θξ = Γ f i Φ ((J Θ") u {«11, a\ σ, z) : (a, σ,z)eH and \a, σ, z\H < ξ}
\v<ξ /

We now define

H[t, φ] = U Θ '

48 2 General Theory: Subcomputations

The length function for H[i9 φ] is defined as in 2.2.3. In defining the subcomputa-
tion relation we add the following clause to Definition 2.2.4.

(b, T, w) <H[f,φ] «11, a}9 σ, z) iff b is of the form <11, b'} and
(b'9 τ9w) <H(a9σ9z).

We should expect that H[f9 ψ] is in some suitable sense the "least extension"
of H in which/and φ are computable. A first step is to introduce the appropriate
modification of Definition 1.6.1.

2.2.7 Definition. Let <Θ, < θ> and (H, <H> be two computation theories on a
common domain 31. We say that (H9 <H> extends <Θ, < θ>, in symbols,

<Θ, < θ> < <H9 < H > ,

if there is an //-computable mapping p(a9 ή) such that

1. (a9σ,z)eθ iff (p(a9ή)9σ9z)eH9

where n = lh(σ), and

2. if (α, σ, z)e& and (b9 τ,w) < θ (a, σ, z), then (p(b, m\ T, W) <H

(p(a9 ή)9 σ9 z).

If <Θ, < θ) ^ (H, <Hy and <#, < H > < <Θ, < θ>, we say that the theories are
equivalent, <Θ, <H> ~ (H9 < θ>.

Definitions 2.2.6 and 2.2.7 combine to give the following elementary proposition.

2.2.8 Proposition. Let <Θ, <θ> be a computation theory on a domain % and let
the lists f and φ be given. Then <Θ[f, φ], <θ[f,φ]> is an extension of <Θ, < θ>.

The imbedding map is simply p(a,ή) = <ll,β>. That the extension is the
least one in which f and φ are computable will be proved in Section 2.6.

2.3 The First Recursion Theorem

The following recursion theorem will play a central role in our theory. In its
present form it is due to Moschovakis [113]. The reader may find it instructive to
compare the present version with the corresponding result 1.7.9 for precomputation
theories.

2.3.1 First Recursion Theorem. Let <Θ, < > be a computation theory on %. Let

2.3 The First Recursion Theorem 49

φ(f, x) be a consistent weakly Θ-computable functional. Let f* be the least solution
of the equation

ψ(f,x)=f(x), all xeA.

Thenf* is ©-computable.

For the proof we first remark that a least solution exists and can be defined
inductively as/* = {Jfξ

9 where

U
and (LΛ/*)(*) - * iff ̂ lU\x) - A- We will show that/*(x) is Θ-computable.

First construct a Θ-computable function g(a, b, x) with Θ-code g such that
for all a, be C and all xe A

(i) g(a,b,x) = {a
(ii) if g(a, b, x) ~ z, then (α, {6}θ(0)5 x, z) < θ (g, α, fe, x, z).

Let φ be a Θ-code for φ and choose by the second recursion theorem a code p

such that for all t

Finally, set

We will show that

/ * (*) - z iff {cUx)~z.

We do this by showing: (a) {c}θ is a fixed-point for φ, and (b) {c}θ ^ / * .
(a) Let {φ}θ(c, x) ~ z; by (i) above, noting that c = {p}θ(0), we get g(φ, p, x) ~

z. Thus {Sf(g, Φ,β)}e(x) — z, i.e. {c}B(x) ~ z. Running the argument in reverse,
we see that {c}θ is a fixed-point for ψ.

(b) The proof that {c}θ £ / * proceeds by induction on subcomputations. Let
{c}θ(x) ^ z. This means that g(φ, p, x) ~ z, and hence {φ}θ(c, x) ^ z. By (ii)
above

(φ,c,x,z) <e(g^,p,x,z).

Since (g, φ,p, x9 z) < θ (S?(g, φ,p\ x, z) and c = S2

λ(g, φ,p), we get

(φ9c,x,z) < Θ (C,Λ:,Z).

50 2 General Theory: Subcomputations

φ is Θ-computable. Hence there is a partial function h £ {c}θ such that ψ(h9 x) ~ z
and (c, u9v) < θ (φ, c, x, z) for all pairs w, v such that A(w) ~ v. This means that

if h(u) ~ #, then {c}θ(w) ~ t? and (c, w, v) < θ (c, Λ:, Z).

By the induction hypothesis we thus get:

if h(u) ^ v9 then /*(w) ^ r,

i.e. h £ / * . The consistency of φ then gives φ(f*9 x) ^ z, which by the fixed-point
property of/* further entails that/*(x) ^ z. This proves that {c}θ c / * .

2.4 Semicomputable Relations

At this point it may be appropriate to include a brief discussion of Θ-computable
and Θ-semicomputable relations. For comparison the reader should refer back
to the discussion in Section 1.3. We will in later parts deal with the topic in greater
depth. Here are a few rather superficial preliminary remarks.

2.4.1 Definition. Let <Θ, < > be a computation theory on a domain 31. A relation
R(σ) is called Θ-semicomputable if there exists a Θ-computable (partial) function
/such that

R(σ) iff /(σ) - 0.

A relation R(σ) is called ^-computable if there is a Θ-computable mapping/such
that

R(σ) iff /(σ) = 0.

We note that the condition /(σ) ~ 0 in the definition of semicomputable could
have been replaced by the condition/(σ) j , i.e. "is defined".

There are (at least) three basic properties a decent notion of semicomputability
and computability for relations should satisfy.

A. If R(x, σ) is Θ-semicomputable, then so is 3xR(x, σ).
B. If iφc, σ) and S(x9 σ) are Θ-semicomputable, then so is R(x9 σ) v

S(x9 σ).

C. A relation R is Θ-computable iff R and —\R are both Θ-semicomput-
able.

In Section 1.3 we showed in Theorem 1.3.4 that these properties hold if the theory
in question has selection operators. The discussion there carries over without any
significant change to the present context.

2.4 Semicomputable Relations 51

As we remarked in 1.3 it would be extremely restrictive to require a single-
valued selection operator. And we are not inclined to save the situation by making
our theories multiple-valued as in 1.3. This would lead to unwanted complications
in analyzing the subcomputation relation.

Short of introducing property A axiomatically, there seems to be no way of
saving it without a selection operator. The 3-quantifϊer ranges over the whole
domain A.

B can be saved if the Θ-semicomputable relations are closed under 3-quanti-
fication over the natural numbers N. The proof is essentially the same as in
1.3.4.

2 4.2 Proposition. Let Θ be a computation theory on 31 and assume that the Θ-semi-
computable relations are closed under existential quantification over N. If both
R(σ) and S(σ) are β^semicomputable, then so is R(σ) v S(σ).

For the proof, let r and s be Θ-codes for R and S, respectively. Let/(r, s) be
a Θ-code, Θ-computable in r, s9 for a Θ-computable mapping such that
if(r,sM0) = r and {f(r9s)}θ(x) = s, x Φ 0. Then R(σ) v S(σ) iff 3n e
N[{{f(r,s)Un)}(σ)~0].

In a similar way we see that C will be saved if Θ admits a selection operator
over N.

2.4.3 Definition. Let Θ be a computation theory on 91. An «-ary selection operator
for Θ over N is an n + 1-ary Θ-computable function q(a, σ) with Θ-code q such that

(i) if q(a, σ) | , then q(a, σ) e N;
(ii) if 3n e N{a}θ(n, σ) ^ 0, then q(a, σ) j and {a}θ(q(a, σ), σ) ^ 0.
(iii) if {a}θ(n9 σ) ~ 0 and q(a, σ) ~ n, then (a, n, σ, 0) < θ (q, a, σ, ή).

2.4.4 Proposition. Let Θ be a computation theory on 91 admitting a selection
operator over N. A relation R is ^-computable iff R and —\R are ©-semi-
computable.

The proof is exactly as in 1.3.4. Let r9 s be codes for R9 —iR, respectively. Let
m(r9 s) be a code (Θ-computable in r9 s) for the Θ-semicomputable relation

({r}θ(σ) - 0 Λ / = 0)V ({S}θ(σ) ~ 0 Λ t = 1).

Using the selection operator we get a Θ-computable mapping f(σ) = q(m(r9 s)9 σ)
such that

R(σ) iff /(σ) = 0.

2.4.5 Remark. The hypothesis of Proposition 2.4.4 implies the hypothesis of
Proposition 2.4.2 (see 2.4.3 (ii)). In the next chapter we shall study an important
class of theories which admit selection operators over N.

52 2 General Theory: Subcomputations

2.5 Finiteness

The importance of the notion of finiteness in general recursion theory was strongly
emphasized by G. Kreisel (see e.g. [89, 91]), and many of our further developments
will testify to his insight. In this section we shall, following Moschovakis [113],
introduce a notion of finiteness for general computation theories and prove a few
basic properties.

In order that our notion of finiteness shall be well behaved we must restrict
the class of computation theories somewhat.

2.5.1 Definition. A computation theory <Θ, < > on 3Ϊ is called regular if

(a) C = A.
(b) Θ has selection operators over N.

2.5.2 Remarks. First observe that 2.5.1 (a), via definition by cases, implies that
the equality relation on A is Θ-computable. Finite theories on two types will not
satisfy this condition, but will still admit a reasonable theory of finiteness, see
Chapter 4. The infinite theories of Chapter 5 will be regular in the above sense,
as will be the finite theories of Chapter 3.

2.5.3 Definition. Let Θ be a computation theory on 51. Let B c A, by the B-
quantifier on 91 we understand the following consistent functional EB(/) defined as

l9 if Vxe £[/(*) ~ 1].

The set B c A is called Θ-finite with Θ-canonical code e, if the ^-quantifier EB is
weakly Θ-computable with Θ-code e.

Some of the basic properties of finiteness are given in the next theorem.

2.5.4 Theorem. Let Θ be a regular computation theory on 9ί:

l.IfB is a finite subset of A, then B is θ-finite.
2. If B is θ-finite, then B is θ-computable.
3.IfB is θ-finite, D c B and D is Θ-computable, then D is θ-finite.
A.IfB is θ-finite and f is a θ-computable mapping, thenf[B] is θ-finite.
5.IfB is θ-finite and f is a θ-computable mapping such that for all x e B,f(x)

is a θ-canonical code for a θ-finite set Bx, then {JxeB Bx and C\xeB Bx are θ-finite.

We shall briefly indicate the proofs.

1. For simplicity assume that B = {yl9 y2} £ A. First find a Θ-code a* (as a
Θ-computable mapping of yl9 y2) of the Θ-semicomputable relation

2.5 Finiteness 53

{a*(yl9 y2)Uf, z)~0 iff ({f}(yi) ~ 0 v {/}(y2) ~ 0) Λ Z = 0 v

(ί/KΛ) - 1 Λ {/}(K> ^ 1) Λ z = 1.

(We here use the results of Section 2.4.) Let q be the selection operator on N.
We set {e}θ(f) = q(a*(yl9y2)9f) e will be a Θ-canonical code for B = {JΊ, j>2}
as a Θ-finite set. We first see that

Eβ({/})~0 iff 3yeB[{f}(y)~0].
iff <7(0*(^,j;2),/)-O
iff {e}θ(/)-0

Similarly we see that Eβ({/}) - 1 iff {e}θ. (/) cz 1.
It remains to verify the subcomputation condition on EB: Suppose Eβ({/}) ^ z,

where z = 0 or z = 1. Let g be the subfunction of {/} which gives the values of
{/} at the arguments yl9 y2. By construction (#*,/, z, 0) < θ (q, a*,f, z) and
(q,a*,f,z) <e(e,f,z)- By construction of a* we also see that (f,yi9v) < θ

(a*,f, z, 0), whenever g(^) ~ v. Combining the inequalities, the result follows.

2. Construct a ©-computable function g(x) such that

(0, ifu = x

Then/(x) = EB({g(x)}) is a ©-computable mapping such that xeB iff/(x) = 0.

3. Let/D be defined as follows

(f(x\ if x e D
JDW ^ | ^ i f χ£D

We then observe that ED(f) ^ EB(fD).

4. In this case let

where (g °/)(x) ~ z iff 3>;[/(Λί) ~ y A g(y) ~ z].

5. We consider the case Bo = {JxeB Bx. We have the following equivalences:

E B o (g)~0 iff 3yeB0[g(y)~0]
iff 3xeB[ly€Bx[g(y)~0]]
iff 3xeB[EBχ(g)~0]
iff EB(λx EBjeU)) ~ 0.

E B o (g) ~ l iff
iff

54 2 General Theory: Subcomputations

iff VxeB\EBχ(g)~ 1]
iff ΈB(λχ.EBχ(g)) ~ 1.

The assumption that we have a Θ-computable mapping / such that f{x) is a
Θ-canonical code for BX9 for all xeB, shows that EB o is Θ-computable.

2.6 Extension of Theories

In Definition 2.2.7 we introduced a notion of Extension, Θ ^ H9 for computation
theories. We remarked in Proposition 2.2.8 that if f and φ are Θ-computable,
then Θ[f, φ], as constructed in 2.2.6, is an extension of Θ. We left open the problem
whether Θ[f, φ] is the least extension of Θ in which f and φ are computable, i.e.
if whenever f and φ are incomputable, and H extends Θ, then Θ[f, φ] < H.

This question has no simple answer for arbitrary consistent partial functionals
due to the fact that there is no canonical choice of subcomputations for partial
objects of higher types. The situation is not problematic if we compute relative
to functionals acting only on total objects.

2.6.1 Proposition. Let <Θ, < θ> be a computation theory on a domain % and let
f and φ be given lists of functions and total functionals on %. Let <//, < H> be any
extension ofθ in which f and φ are computable. Let H further satisfy the following
condition
(*) If ψι is in the list φ and if ψi({g}) ^ z is an H-computation, then {g} is

total and (g, u, v) is an H-subcomputation of(φi9 g9 z)for all u,ve A.
Then there exists an imbedding of&[f9 φ] into H.

We shall give the proof in some detail. It is a typical and reasonably complex
example of an index transfer theorem based on the second recursion theorem.
We have given:

1. Θ ^ H via an //-computable mapping q(a9 ή).
2. f = /(for simplicity) is //-computable with code/.
3. φ = ψ is Θ-computable with code φ9 and assume for simplicity that

Ψ is unary, i.e. of the form <p(g).

By 2.2.6 Θ[/, ψ] is inductively constructed using an operator Γ/tΦ. We construct
the reduction map p(a9 ή) of Θ[/, ψ] to H by cases according to the form of the
index a:

(i) If a = <1, 0>, <2,0>, <3, 0>, <4,0>, or <5, 0>, then we set p(a9 ή) = a\
where a! is the corresponding code in H.

(ii) Let a = <6, 0>. This is the case of substitution ψ(g, h, σ) = g(h(σ)9 σ). We
want to have

(p(a9n + 2)9g9h9σ9z)eH iff (α, g9 Λ, σ, z) e Θ[/, ψ\.

2.6 Extension of Theories 55

In order to do this we must go through an intermediate stage (a',p(g, n + 1),
p(h9 ή)9 σ, z) E H, where a' is the fixed //-code for the substitution functional in H.

We first construct in H a mapping t(a') such that

{t(a')}H(p, g9 fι9σ)~z iff {a'}H({β}(g9 n + 1), {p}(h9 n\ σ) ~ z

where p is a //-code for the map p(a9 n). We can then take

p(a,n + 2) = Si+Jt(a*)9p).

The construction of ί(β') must be such that whenever u is an element such that
{{p)(h n)}H{σ) ~ u and {{/}(£, n + 1) } ^ , σ) - z, then

«), *, u) and ({/>}(£, « + 1), u, σ, z) < H (t(a'\ p, g, h, σ, z).

(iii) If a = <7, 0>, we proceed as in case (ii).
(iv) The case a = <8, 0> is similar to case (i).
(v) If a = <9, 0>, we set p(a, ή) = /, the given //-code for/.
(vi) Let α = <10,0>, here we are in the case of introducing the functional

φ. If we have a tuple «10, 0>, g, z) e θ[f, φ], this means that for some total
function {g}, φ({g}) ^ z. This is a statement in the theory Θ[/5 φ], where the
function {g} occurs "extensionally".

Considered as a statement inside H, we must have φ({p(g, 1)}) ^ z, since
extensionally {g}θ = {p(g, 1)}H> This means that (φ,p(g, 1), z)e H where φ is the
given //-code for φ. We must define /?«10,0>, 1) such that

(p«l0,0}9l)9g,z)eH iff (φ9p(g9l)9z)GH
iff

It is indeed possible to construct /?«10,0>, 1) in such a fashion, and moreover,
such that

(φ9p(g9l)9z)<H(p«1090)9\)9g9z).

(This is completely analogous to the construction in case (ii).)
(vii) If a — <11, axy, we simply set p(a9 ή) = q(al9 ή)9 q being the mapping

which imbeds Θ into H.

If a is not of one of the forms considered in (i)-(vii), we set p(a, ή) = 0. An
application of the second recursion theorem gives us p(a9 ή) as an //-computable
mapping. It remains to verify that Θ[/, <p] < H viap(a, ή).

We have to prove:

(1) If (a, σ, z) G Θ[/, ψ}9 then (p(a9 ή), σ, z) e H.
(2) If (aθ9 σ,z)εH and a0 = p(a, ή), then (a, σ, z) e Θ[/, φ].
(3) The subcomputation condition of Definition 2.2.7.

56 2 General Theory: Subcomputations

We take case (ii) in the construction of p(a, ή) as representative for (1) and (2).
(1) Let a = <6,0>: If some «6, 0>,£, K °, z) e Θ[/, φ], then there exists a

unique u such that (h, σ, u), (g, w, σ, z) e Θ[/, φ]. By the induction hypothesis
(p(h, ή), σ, u\ (p(g, n + \)u, σ, z) G H. Hence (af, p(g, n 4- 1), p(fr, n), σ, z) e H,
which by construction ofp gives that (p(a, n + 2), g, λ, σ, z) e H.

(2) Conversely, we proceed by induction on the subcomputation relation < H :
Assume that we have the premiss of (2) above with a = <6, 0>. From the con-
struction of / and the transitivity of < H we conclude that

(p(k, ή), σ, ύ) and (p(g, n + 1), w, σ, z) <H (a0, σ, z\

for a suitable u. The induction hypothesis yields that (g, u, σ, z), (h, σ, u) e Θ[/, φ],
hence (α, g, ^, σ, z) e Θ[/, 9].

In order to verify (3) we have to show that if (b, τ5 w) and (a, σ, z) are Θ[/, 9?]-
computations and (b, r, w) <θ[/,«p] (#> σ, z), then

(^(6, m), τ,w) < H (ĵ (β, «), σ5 z).

This is proved by induction on the subcomputation relation <θ[/,«>] We treat
case (vi) in the construction of p(a, ή) as an example.

Thus let «10, 0>, g, z) e Θ[f, <p]. {g} is then total and has //-code p(g, 1). In
this case it suffices to verify that

(+) (Aέ> *)> U9Ό)<H (φ, p(g, 1), z),

for all u, v. The conclusion then follows from the way in which X<10, 0), 1) was
constructed.

Since «10,0>, g, z) e Θ[/, φ], the induction hypothesis tells us that
(Φ,p(g, Y),z)eH. We now invoke condition (*) to conclude that (p(g, l)u,v),
for all ueA, is an //-subcomputation of (φ,p(g, 1), z), which is the desired
conclusion (+) .

Remark. There is a stronger notion of imbedding which requires in Definition
2.2.7 that (b, τ,w) < θ (a, σ, z) iff (p(b, m\ r, w) <H(p{a, n), σ, z). If H were a
well-behaved theory, e.g. of the type PR[f, φ], we could prove Proposition 2.6.1
using this strengthened notion of imbedding. In a general H we lack enough
information about <H to do so.

An immediate corollary is that PR[f, φ] ^ H if every item in the lists f and φ
are //-computable in the appropriate sense, in particular, every φt in φ is total.
We further note the following:

2.6.2 Proposition. Let <Θ, <θ> and (H, <H} be computation theories on the same
domain 31. Let f and φ be given lists, where every φt in φ is total. Ifθ^H, then

Θ[f, φ] ^ H[f, φ].

2.7 Faithful Representation 57

Finally we state the following transitivity (or cut-elimination) lemma.

2.6.3 Proposition. Let G9 H be either partial functions or total functionals on the
domain % and φ a list of total functionals on the same domain. IfG is prime com-
putable in H, f, φ (i.e. G is PR[#, f, ^-computable in the appropriate sense) and
H is prime computable in f, φ, then G is prime computable in f, φ .

The reader is invited to construct a proof for him or herself proceeding along
the lines of the proof of 2.6.1. Let us also repeat in order to avoid a possible
ambiguity that by " t o t a l " we mean the same as in the introduction to this section,
i.e. we compute relative to functionals acting only on total objects.

2.7 Faithful Representation

We have so far restricted ourselves to functionals acting only on total functions
over the domain. The definitions in Section 2.1 do, however, make sense in the
more general situation of consistent partial functionals. And the construction in
Definition 2.2.1 with clause 10' replacing 10, as well as Definition 2.2.3 work
equally well in the partial case.

It is with the notion of subcomputations that difficulties arise. And this is a
problem we cannot gloss over by suppressing subcomputations in favor of length
of computations. In computing in partial objects of higher types there is in general
no canonical choice of subcomputations—incompatible subcomputations may
serve the same purpose.

The difference between total and partial functionals is brought out clearly by
contrasting clauses 10 and 10' in Definition 2.2.1. At the same time we note that
in clauses 6 and 7 there are canonical choices.

One situation where a partial φ leads to problems is when we want to compare
its "computability" in different theories. Proposition 2.6.1 is a case in point.
Let Θ and H be two theories on a common domain and assume that Θ < H.
From this we would like to conclude that if φ is //-computable, then Θ[φ] ^ H.
But there are difficulties, the subfunction gH "picked" by the relation <# to
witness a computation φ(g) ~ z in H need not be an extension of the subfunction
gβiφ] used to secure the computation <p(g) ~ z inside Θ[φ]. (Referring to the proof
of 2.6.1, it is not necessary that (g, u, v) <ΘU,ΦI «10,0>, g, z) implies that

Computing in total objects is in an obvious sense deterministic, computing in
partial objects need not be. In the latter case there is no unique subcomputation
tree to verify a computation {α}θ(σ) ~ z. There is in general a family of subcom-
putation trees which act as possible derivations in Θ of the "theorem" {a}θ(σ) ~ z.

As this section and other parts of this work will show (see e.g. (4) of Example
3.1.3), there are many cases where we can handle the more general situation, but
we have no abstract axiomatic analysis to offer.

58 2 General Theory: Subcomputations

2.7.1 Remark. It should be clear that we do not expect a general version of
Proposition 2.6.1 for partial functional. However, a suitable version of the
cut-elimination Lemma 2.6.3 is valid for partial functional and their " derivations ".

We now turn to the main topic of this section, a representation theorem for
computation theories which is faithful to the notion of subcomputation, i.e. which
preserves the complexity of subcomputations.

As always let 91 be a computation domain and <Θ, <> a computation theory
on 91. Let xeθ. In connection with Definition 2.1.1 we introduced the set of
subcomputations

Sx = {(a, σ, z) : (α, σ, z) < x}.

We impose the following regularity condition on Θ.

2.7.2 Definition. The theory Θ is called s-normal (subcomputation normal) if the
sets Sx are uniformly Θ-finite for x e Θ.

We spell this out in a bit more detail. Let <x> denote the usual code of the
finite sequence c. The sets S* are uniformly Θ-finite if there exists a Θ-computable
mapping p such that whenever x e θ , then p((x}) is a ©-canonical code for Sx

as a Θ-finite set.
We can now state the main result of this section.

2.7.3 Theorem. Faithful Representation. Let <Θ, <> be an s-normal theory on the
domain 51. There exists a partial weakly ©-computable functional φ such that Θ is
equivalent to PR[φ].

The idea of the proof is rather straightforward. We want to construct φ such
that

a ψ(f> <0> σ » — z iff (β, σ, z) e Θ and

This φ is seen to be consistent, and if it is weakly Θ-computable, it has, by Theorem
2.3.1 a least fixed-point/0. We would like to show that/ 0 reduces Θ to PR[φ].
If we construct PR[<p] in the correct way, i.e. are careful in introducing the notion
of subcomputation for φ, the converse reduction will also follow.

Before going into the details of the proof, we indicate the following part of
the reduction Θ < PR[φ] by/0.

1. (β,σ,z)eθ iff (/0,(fl,σ),z)ePRH.

First, assume that (a, σ,z)eθ and that 1 is true for all (b, r, w) < (a, σ, z). From
a it then follows that φ(fθ9 <α, σ» ~ z, which by the fixed-point property of/0,
gives (/o, <α, σ>, z) G PR[φ]. Conversely, if (/0, <a, σ>, z) e PR[φ], then
ψ(fo, <a, σ» ~ z, hence (a9 σ, z) e Θ.

2.7 Faithful Representation 59

For the proof we need the following auxiliary construction.

2.7.4 WDC (Weak Definition by Cases). Let / and g be functions of the same
number of arguments.

This is to be understood in the following sense: If x = y9 then WDC(/, g9 x9 y9 σ) j
and equal to/(σ) iff/(σ) j the question whether g(σ)\ is irrelevant. Similarly
if x Φ y9 then WDC(/, g9 x, y9 σ) j iff g(σ) j .

We construct an index for WDC uniformly in indices for/and g. First let

if z = 0

if iφO.

Next, let eq(x9 y) test equality on the code set C, i.e.

(0 if x = y
e q (*) > 0 = l l if

We now see that

WDC({/}, {g}9 x, y9 σ) ~ {π(/, g9 eq(x, y))}(σ)9

and hence we have an index w for WDC as a weakly Θ-computable functional.
We now proceed to the proof of Theorem 2.7.3. First let g0 be an index for

the totally undefined function, i.e. {£0}(
σ) t f°Γ a ^ σ Next, introduce the following

functional

This definition requires a comment. We compute *({/}, <0, σ» by starting to
compute {a}(σ). If {β}(σ)| and ~z, we then decide, using s-normality, for each
(b9 r, w) < (a9 σ, z) whether {/}«6, τ» ^ w.

We construct a code in the following way. First recall that if (a, σ, z) e Θ,
then /?«β, σ, z» is a Θ-canonical code for the set S(α>σ,2). Next let /x be a code
computable in / such that {/i}«6, τ>, w) ^ 1 iff {/}«6, τ» ^ w. Then we see
that

« ^ » ^ 0 iff

from which an appropriate code £ for K is easily extracted. But k constructed
above may also make K defined in cases other than those indicated in (*). This
we get rid of by using the totally undefined {g0} in WDC as follows,

60 2 General Theory: Subcomputations

(**) φ(/, {a, σ » ~ WDC ({a}, {g0}, *(/, <a, <χ», 0, σ).

Using the codes w and k it is not difficult to construct a code φx such that if/
is Θ-computable with code/, then

(***) φ(t/}, <<*,*» - WiX/ <«, »»•

from which we can conclude that ψ is a weakly Θ-computable functional. We
may also now prove a above. Then apply the first recursion theorem to get a least
Θ-computable fixed-point f0 for φ.

It remains to construct the "correct" version of PR[<p] for proving that Θ ~
PR[φ], i.e. to define for the set PR[<p] a "correct" notion of immediate sub-
computation. Let us use φ as PR[φ]-code for ψ and / 0 as the PR-code for the
least fixed-point for φ.

The notion of subcomputation for ψ in PR[φ] can then be determined from
condition a above. We want an interaction of/0 and φ such that if (/0, <α, σ>, z) e
PR[<p], then (φ,f0, <α, σ>, z) < P R [Φ] (/O, <#, σ>, z). Further, the subfunction h used
in the calculation ψ(h, <α, σ» ~ z shall consist of all tuples (/0, <6, τ>, w) such
that (b, τ,w) < θ (α , σ, z).

Remark. The precise clause corresponding to clause 10 of Definition 2.2.1 is

If (/, <6, τ>, w) G Θ for all (6, T, W) < θ (α, σ, z) and (α, σ, z) e Θ,
then (9,/,<α,σ>,z)eΓ(Θ*).

From this we determine the "correct" notion of immediate subcomputation
replacing clause (v) of Definition 2.2.4.

With this version of PR[φ] we can prove the reduction Θ < PR[φ] by / 0 .

2. (b, r, w) < θ (a, σ, z) iff (/0, <ό, τ>, w) <P R [< p] (/0, <α, σ>, z).

Assume that (b, r, w) < θ (α , σ, z). Using the subfunction A above we see that
h(ζb, τ » ~ w, hence

(/o, <*, τ>> w) <P R [< P] (φ,/ 0, <α, σ>, z) <P R [(P] (/0, <Λ, σ>, z).

Conversely, we note that if (/0, <fc, τ>, w) < P R [φ] (/0, <α, σ>, z), then also
(/o, <*, τ>, >v) < P R [φ] (φ,/ 0, <Λ, σ>, w) by the way things are constructed. Again,
by property a of ψ and the minimality of the fixed-point / 0, this means that
{a, σ,z)eθ and (b, r, w) < θ (α, σ, z).

2.7.5 Remark. A weak version of Theorem 2.7.3 was proved by J. Moldestad
(unpublished), viz. he obtained a reduction

V (α,σ,z)eΘ iff (/0, <α, σ, z>, 0) e PR[φ].

2.7 Faithful Representation 61

The difference between this result and Theorem 2.7.3 is a bit subtle and merits a
comment, it is the difference between a function and its graph. Going from the
graph to the function we need some sort of selection operator, and, indeed, in
the presence of a selection operator we immediately get 1 from Γ. We were able
in 2.7.3 to prove the strong version without assuming a selection operator in the
theory.

2.7.6 Remark. A computation theory <Θ, <> on a domain 31 is also a precom-
putation theory on 31. If we are only interested in the Θ-semicomputable relations
on 31, this is adequately represented by the semicomputable relations in some
theory PR[f], where f is a list of partial functions on SI, see Theorem 1.6.3. But
this reduction trivializes the computation structure, everything is coded into the
functions f. What is added in the representation theorem of this section is that by
moving up one type, i.e. by considering suitable theories of the type PR[<p], where
φ is a consistent partial functional on 31, then we can preserve the structure of
subcomputations, in particular, the length function associated with sub-
computations.

