
Part A

General Theory

Chapter 1

General Theory: Combinatorial Part

This chapter contains the basic definitions, examples, and constructions of the
general theory of computations—and two theorems: In Section 1.6 we prove the
simple representation theorem (1.6.3) which is used in Section 1.7 to prove a
general version of the first recursion theorem (1.7.8, 1.7.9).

LI Basic Definitions

In a typical computation situation there are three separate parts. There is a
computing device or machine M which acts upon an input σ from some fixed input
alphabet or domain Aλ. After "computing" for some time M may give an output
z belonging to some fixed output alphabet or domain A2

The input σ is usually a finite sequence σ = (xl9..., xn) of elements from Al9

the output a single element from A2. In many cases there may be practical advan-
tages in having distinct input and output alphabets. In a theoretical analysis this
is superfluous, hence we shall from now on assume that Ax = A2 is a fixed set of
objects, the computation domain.

The computing device M is usually one of a class of similar computing
"machines". It was a basic insight of the early theories of computation that the
machines could be coded by elements of the computation domain. This idea will
be our starting point: The basic axioms shall provide an analysis of the relation

{a}(σ) ~ z9

which is intended to assert that the computing device named or coded by a and
acting on the input sequence σ = (χl9..., xn) gives z as output.

1.1.1 Definition. A computation domain is a structure

where A is a non-empty set, Cis a subset of A9 and 0,1 are two designated elements
ofC.

20 1 General Theory: Combinatorial Part

C is called the set of codes. It may or may not be equal to A. In ordinary
Turing machine theory on ω the natural numbers, the set of codes C is equal to
ω, i.e. every element of the computation domain codes a Turing machine. In
higher types the set of codes may still be ω, which is now a proper subset of the
computation domain, which consists of numbers, functions, and functionals of
various types.

In the general case we have given the two sets A and C such that 0 Φ C c; A.
Usually C contains (an isomorphic copy of) ω. At the present level of generality
we shall not make this a part of the definition of computation domain. We also
remark that in many examples the output set is (a subset of) the code set.

To facilitate the presentation we introduce some notational conventions. We
use

x9y9z9... for elements in A.
a9b9c9... for elements in C.
σ, T, . . . for finite sequences from A.

In particular, we let σ, T or (σ, T) denote the concatenation of sequences. By
(a, σ, z), where ae C, z eA and σ = (χl9..., xn) is a finite sequence from A9 we
understand the sequence

(a9xl9...9xn9z).

As usual lh(σ) = the length of the sequence σ.

1.1.2 Definition. Θ is a computation set over 31 if Θ is a set of tuples (α, σ, z),
where aeC9σ = (χl9..., xn), each xieA9zeA9 and lh(α, σ, z) ^ 2.

Requiring lh(α, σ, z) ^ 2 means that we have a code a and an output z present,
but not necessarily an input sequence.

1.1.3 Remark. At this stage we need not make any requirement of single-valued-
ness, hence given a and σ there may be more than one z such that (a, σ, z) e Θ.
However, in most cases we will require that Θ is single-valued, e.g. in analyzing
the subcomputations of computations in functionals.

Let Θ be a computation set over the domain 21. To every ae C and every natural
number w ^ O w e can associate a partial multiple-valued function (pmv function)
{a}e as follows

{α}g(σ) ~ z iff lh(σ) = n and (a, σ9 z) e Θ.

A pmv function/is really a map from A, or a suitable cartesian product over
A, to subsets of A (including the empty subset). The functional notation then has
the following meaning

1.1 Basic Definitions 21

f(σ) ~ z means z ef{σ)
f(σ) = g(σ) means Vz[/(σ) ~ z iff g(σ) ~ z]
f(σ) = z means f(σ) = {z}

/ c g means VσVz[/(σ) ~ z => g(σ) ~ z].

By a mapping we understand a total, single-valued function.

1.1.4 Definition. Let Θ be a computation set over 91. A pmv function / is Θ-
computable if for some/e C we have

/(σ)~z iff (/,σ,z)eΘ.

We call / a Θ-code for / and write / = {/}g, where n = lh(σ) is the number of
arguments of/.

A partial multiple-valued (pmv) functional on A

φ(f, σ) = 9</i, ,fι, Xi,.. •> *m)>

maps pmv functions on A and elements of A to subsets of A. φ is called consistent
if

1.1.5 Definition. Let Θ be a computation set over 31. A pmv consistent functional
φ is called weakly ^-computable if there exists a code φeC such that for all
el9...9βιeC and all sequences σ = (χl9..., xn) from 4̂ we have

ψ({ei}&, , {*,}&, σ) - Z iff { φ } ^ ^ ! , . . ., *„ σ) - Z.

We see that ψ is weakly Θ-computable if we can calculate ψ on Θ-computable
functions by calculating on the codes of the functions.

The notion of weak Θ-computability presupposes a notion of strong Θ-com-
putability. Such a notion will be introduced in Section 1.7 below. The distinction
between weak and strong computability will also be of importance in analyzing
computations in higher types.

We will now consider some specific functions and functionals.

1.1.6 Definition by Cases (on the code set C).

{1, if not all a,b,ceC
a, ifx = c and all a,b9ceC
b9 if x Φ c and all a9b9ce C.

Outright definition by cases makes equality on A Θ-computable. This we may not
always want, e.g. in higher type theories. We note that DC is a mapping, i.e. total
and single-valued.

22 1 General Theory: Combinatorial Part

1.1.7 Composition.

Cn(f,g9σ)=f(g(σ)9σ)9

where n = lh(σ).

1.1.8 Permutation.

Here n, m > 0, lh(σ) = n, lh(τ) = m, 0 < j < n, and (xl9..., xn)' = (*y + 1, xl9

. . . , xy, J t y + 2 , . . .,xn) This functional performs many tasks, e.g. P°,o is the evalua-
tion functional P2,o(/> σ) ~ /(σ), as σ° = σ.

Next we consider a property which a computation set Θ on 21 may or may not
have.

1.1.9 Iteration Property. For each m, n ^ 0 there exists a mapping SJJ such that
for all ae C and sequences σ from C and all τ from ^4,

where n = lh(σ) and m = lh(r).

1.1.10 Definition. Let Θ be a computation set on the domain 21. Θ is called a
precomputation theory on 51 if

(i) for each n,j (0 < y < «) and m, DC, Cn, and P " y are Θ-computable with
Θ-codes rf, cn, and/7n>y,m, respectively;

(ii) Θ satisfies the iteration property, i.e. for each n, m there is a Θ-code sUtm

for a mapping ££ with property 1.1.9 above.

We make some remarks: (1) d, cn, pn,j,m

 a r e aU different members of C, hence
C is infinite. (2) The use of functional could be eliminated, we might directly
refer to the codes. (3) If (N,s} (i.e. the natural numbers (or a copy) with the
successor function is in the structure 31, N c C ^ A, we may require that the
codes cn9pnJtn9 and sntm are Θ-computable mappings of the parameters n,j9m.
This is a uniformity requirement which will be important in later sections. (4) Pj.o
is the evaluation functional. The Θ-computability of it gives us the following
enumeration property: There is for each natural number n a code pntOιO e C such
that for all a e C and all σ from A

1.2 Some Computable Functions

We shall give several examples of functions which are Θ-computable for any
precomputation theory Θ.

1.2 Some Computable Functions 23

1.2.1 The Characteristic Function of the Code Set C. This function is defined as
follows:

where n = lh(σ). A code kn for χg" is given by

*» = S2+i(Λ.o.«'SΪ(4 0,0,0)),

as the following calculation shows:

{kn}l+\y, σ) = {SUxiPuo.n, Sl(d, 0, 0,0))}5+1(* σ)
= {Pi,o,n}yi(Sl(d,0,0,0),y,σ)

= {Sl(d, 0,0, OMy)

Most such calculations will be omitted in the sequel.

1.2.2 Equality on C. For each c e C w e can define a function Ea such that

ΓO, if x = a

U, if xφ a.

We see that DC(x, 0,1, α) almost does what we want. It has to be "straightened
out" by using P™tj a number of times in conjunction with the iteration property.

1.2.3 Identity Function on C. For each n, let

, if j e C

where n = lh(σ). The following is code for /„

i» = ^ + 1 (^ + 3 , 2 , 0 , ^ + 3 (c n + 3 , </„, Λn + 2), 0,0),

as this calculation shows (note that dn is the code for DCn(x, a, b, c, σ), n = lh(σ),
which for « > 0 can be obtained from DC by a suitable application of P™̂)

0"n}S+1(j, σ) = {pn + 3,2,θ}§+4(^ + 3(Cn + 3, dn, kn + 2), 0, 0, y, a)

= {cn + 3}S
+S(<4,fcn + 2 ,J,0,0,σ)
4({fc»+2}S+3(}', 0,0, σ), y, 0,0, a)

y, if yeC

24 1 General Theory: Combinatorial Part

1.2.4 Constant Functions on C. The constant functions can be introduced in

different ways. For j e C w e see that

DC(x,y,y,0) = y9

for all x. We also see that for y e C

for all sequences σ.

1.2.5 Ordered Pair on C. The existence for arbitrary precomputation theories of
an ordered pair function on C with inverses, follows from the axioms. First choose
a code eeC such that

{e}(a9 b9 c9 x) = DC(x9 a9 b, c).

We omit the super- and subscript on {α}§ when the meaning is clear from the
context. Define for a, b e C:

(i) M(a, b) = S%e, a9 b).

Next we define for z e C the "inverses"

(ii) K(z) = {z}(e, e)

(iii) L(z) = {z}(e, e'\ where e' Φ e, e' e C.

More accurately we should define K and L by combining DC and composition,

e.g.

{z}(e,e) if zeC

1 if zφC,

where {z}(e, e) as a function of z can be obtained using Pj£y and S% in a suitable
way (the enumeration property of P).

M as a map from C x C to C is 1-1, since M(α, fc) = M{μ\ b') implies that

{Sϊ(e, a, b)}(x, y) = {S*2(e, a\ b')}(x, y\

for all x, y. Hence a = a' and b = 6'. Further we see that

K(M(a, b)) = {S2

2(e%a, b)}(e9 e) = {e}(a, b, e, e) = a,

L(M(a9 b)) = {S2

2(e, a, b)}(e9 e') = {e}(a9 b9 e9 e') = b.

Thus we have ordered pair and inverses, although they may not be the most
natural choices in a specifically given precomputation theory. In particular, if

1.3 Semicomputable Relations 25

A = C, the pairing function M will be defined for all a,beA with the correct
properties.

1.2.6 The Fixed-point Theorem. We conclude our list of elementary examples by
adapting the usual proof of the fixed-point theorem to arbitrary computation
theories.

Theorem. Let Θ be a precomputatίon theory on 91. For every n + l-ary ^-comput-
able pmv function f there exists an ae C such that for all σ from A

Proof. Define/x and S with Θ-codes/i, S, respectively such that

fi(x, y, σ) = f(x, σ)
S(y,σ) = Sl(y,y), yeC.

Let

a = SΪ(Sn2

 + i(cn + i,/i, £), S* + 1(cn+l9fl9 $)),

a simple calculation proves the theorem.

1.3 Semicomputable Relations

For the sake of completeness we include a short discussion of computable and
semicomputable relations within the context of a general precomputation theory.
This is a topic to which we will return at greater length in later parts of this work.

1.3.1 Definition. Let Θ be a precomputation theory over a domain 91 =

(i) A relation R(σ) is Θ-semicomputable if there is a Θ-computable function
/such that

R(σ) iff f(σ) ~ 0.

(ii) A relation R(σ) is Θ-computable if there is a Θ-computable mapping /
such that

R(σ) iff f(σ) = 0.

Not many results about Θ-semicomputable sets can be proved in this generality.

26 1 General Theory: Combinatorial Part

It is, however, possible to show that if A = C, then the relation (a, σ, z) e Θ is
Θ-semicomputable.

1.3.2 Example. Let Θ be a precomputation theory on a domain 91 where A = C.
We show that the relation

(a, σ, z) e Θ,

is Θ-semicomputable.
First define a function with code e such that

0 if u = v

if « * * .

Next, let a* be a Θ-code, computable from a, such that

{a*}(z, σ)~t iff {α}(σ) - ί.

We now observe that

C({e},{a*},z,σ)~0 iff {e}({a*}(z,σ),z,σ)~O

iff {tf}(σ) - z
iff (α, σ, z) e Θ.

One way of obtaining a well-behaved theory is to add selection operators.
Examples show that it is too restrictive to add a single-valued selection operator.
Hence, we have here a case where multiple-valuedness could serve a real purpose.
However, we shall in later parts of this study see greater advantages in retaining
single-valuedness of Θ and use other means to obtain a good theory for the
computable and semicomputable relations.

1.3.3 Definition. Let Θ be a precomputation theory over a domain 21 =
(A, C; 0, 1>. An n-ary selection operator for Θ is an n + 1-ary Θ-computable
pmv function q(a9 σ), with Θ-code q, such that:

If there is an x such that {a}l+1{x, σ) ^ 0, then q(a, σ) | , and for all x
such that q(a, σ) ^ x we have {a}g+ x(x, σ) ^ 0.

In general q(a, σ) may be a subset of the set of all x such that {a}%+ \x, σ) ~ 0.

1.3.4 Theorem. Let Θ be a precomputation theory over 91 having selection operators.

(i) IfR(x, σ) is Θ-semicomputable, then so is 3xR(x, σ).

(ii) If R(σ) and S(σ) are Θ-semicomputable, then so is R(σ) v S(σ).
(iii) R is Θ-computable iff R and-^R are Θ-semicomputable.

1.4 Computing Over the Integers 27

We indicate the proofs: (i) Let r be a code such that R(x, σ) iff {r}(x, σ) ~ 0.
Then 3xR(x, σ) iff {r}(q(r, σ), σ) ~ 0.

(ii) Let r and s be Θ-codes for R and S, respectively. Let f(r, s) be a code,
Θ-computable in r and s, for a Θ-computable mapping such that {/(r, ^)}(0) = r
and {/(r, s)}(x) = s, x Φ 0. Then tf(σ) v S(σ) iff lv[{{f(r, s)}(v)}(σ) ~ 0].

(iii) Let r and Λ- be codes for R and —iR, respectively. Let m(r, s) be a code
(Θ-computable in r,s) for the following Θ-semicomputable relation

({r}(σ) - 0 Λ / = 0) V ({s}(σ) - 0 Λ ί = 1).

Using the selection operator we get a Θ-computable mapping/(σ) = ^(m(r, 5), σ)
such that

R(σ) iff /(σ) = 0.

So much for the general theory. We turn our attention to an investigation of
the structure of an arbitrary precomputation theory. But first we look at theories
over ω.

1.4 Computing Over the Integers

In this section we shall briefly consider precomputation theories over the integers,
i.e. we assume that A = C = ω, and that the designated elements " 0 " and " 1 "
really are 0 and 1. We shall also restrict ourselves to precomputation theories in
which the successor function s(x) = x + 1 is computable. We will show that such
theories are closed under the μ-operator, the predecessor function, and primitive
recursion.

1.4.1 The ^-Operator. Let f(σ, y) be any Θ-computable function. Define via the
Fixed-point Theorem 1.2.6 a function h(σ, y) by the condition

if f(σ,y) = 0

h(σ,y + l)+l if f(?,y)Φ0.

We see that μy[f(σ, y) = 0] = h(σ, 0).

1.4.2 The Predecessor Function. We would like to define p(x) using the μ-operator
as follows

fO if x = 0

W + 1 = x] if x Φ 0.

But this does not exactly fit into the format of 1.4.1. We would have to replace

28 1 General Theory: Combinatorial Part

the condition y + 1 = x by e.g. x -^ (y + 1) = 0. The trouble is that a - b is
usually defined using the predecessor function. However, we get around this
difficulty using the idea of the construction in 1.4.1. Define (by substitution into
DC):

h(x v\ = ί° i f S(y) = X

nK >y) \h(x9s(y)) + l if s{y)Φx

then/?(x) = h(x, 0) = μy[y + 1 = x].

1.4.3 Primitive Recursion. With the predecessor function at hand, primitive recur-
sion follows by a simple application of the Fixed-point Theorem 1.2.6. Let g(σ)
and h(x9 y9 σ) be two given Θ-computable functions. We define

ϊ = / g (σ) if j> = 0
) \h(f(p(y)9σ),p(y)9σ) if y φ 0.

Remark. We seem to be using DC in all the examples 1.4.1 to 1.4.3. But the careful
reader will observe that DC is not quite enough. We have to use WDC, weak
definition by cases, which by 2.7.4 is available.

It is now possible to state the following minimality result.

1.4.4 Theorem. Let Θ be a precomputation theory over ω, and let f be a (Kleene)
partial recursive function. Then f is Θ-computable.

By the normal form theorem for partial recursive functions any such function
can be represented in the form

where g and U are primitive recursive functions. The proof now follows from the
closure properties in 1.4.1 and 1.4.3.

Note that the theorem states an extensional result. We have not yet introduced
a notion of "equivalence" or "extension" between theories. But granted a notion
of extension Θ ^ H and granted that the set PR of partial recursive functions
over ω is organized into a computation theory in some reasonable way, we would
expect (and it is, indeed, true) that PR ^ Θ, for all precomputation theories
over ω.

1.4.5 Remark. We have so far assumed that the domain has the form 21 =
{A, C; 0, 1>. If we want to include the integers and the successor function, it is
more natural to consider domains of the form 31 = {A, C, N; s}9 where N ^
C c A and <iV, s \N} is (an isomorphic copy of) the integers, and s is defined as

,Λ , . fx + 1 if x e N
(I) s(x) = 1

{0 if x φ N.

1.5 Inductively Defined Theories 29

Then the Θ-computability of s(x) implies that the characteristic function of N
is Θ-computable.

If Θ is a theory over the more general type of domain 51 = {A, C; 0, 1>, it
is possible to construct a successor set, but this set will in general only be Θ-
semicomputable and not Θ-computable.

We use the fact 1.2.5 that we have pairing on the code set C. First define a
successor function

x' = M(0, x).

This defines x' for x e C— extend to all of A by some suitable convention.
Next define

1 = 0' = M(0, M(1, 0))
2 = V = M(0,M(0,M(l,0)))

It is easy to verify that 0 Φ 1,1 Φ 2, etc. Externally we have constructed a succes-
sor set N = {0,1, 2,...}, and <N, '> is isomorphic to the integers and the successor
function. But we cannot, in general, restrict s(x) as in (i) above and still preserve
its Θ-computability, N need not be Θ-computable.

Expanding on this possibility we may make a contact with the theory of non-
standard models and non-transitive admissible sets and see how they, in fact,
fall under the scope of our axioms.

However, our main interest is towards the "hard core" of recursion theory,
and we shall freely assume enough coding apparatus to make life easy—even if
it is not always strictly necessary (see e.g. Definition 1.5.1 and the following
Remark 1.5.2). But if the reader should insist on the extreme generality of Section
1.2 we recommend that he looks at Moldestad [106] to appreciate what pathologies
then may obtain.

1.5 Inductively Defined Theories

We shall now retreat a bit from the, perhaps, too great generality of Sections 1.1
to 1.3. From now on we shall assume that our precomputation theories are
singlevalued, i.e.

if (a, σ, z) e Θ and (a, σ, w) e Θ, then z = w.

We shall further assume that a copy <N, s \N} of the integers is included in the
computation domain, and that the domain is provided with a coding scheme

30 1 General Theory: Combinatorial Part

<Af, K, L). Definition 1.1.1 will thus be revised as follows:

1.5.1 Definition. A computation domain is a structure

where N £ C c A and <JV, £ \N} is (an isomorphic copy of) the integers with
s as successor function (defined as in 1.4.5).

<M, K, L} is a pairing structure on 51, i.e.

(1) Λf is a pairing function on A, i.e. M is total and Λf (α, b) = M(au b±)
implies a = ax and b = b^

(2) # and L are inverses to M, i.e.
(α, *)) = a and L(M(α, b)) = b.

We extend the notational conventions following Definition 1.1.1 using m,n,k, /, /, 7,
. . . for elements in iV.

1.5.2 Remarks. We shall see that we need a pairing structure on all of A in order
to construct a universal function for a given precomputation theory (see Section
1.6.2). For many purposes we need only assume a C-restricted pairing structure,
i.e. M is an ordered pair on C with K and L as inverses on C. For the general
theory we could get away with a domain of the form 31 = <̂ 4, C, N; s}9 since a
pairing structure on C exists by 1.2.5. However, as we shall note below, we would
have to introduce some external pairing in constructing the theory PR[(], the
precomputation theory "generated" by the functions f. Hence, since we almost
always have some coding scheme in mind over a given domain, we might as well
include a pairing structure <M, K, L) as part of the data specifying the computation
domain 31.

The new definition of a computation domain necessitates certain changes in
the definition of a precomputation theory. We must insist that the successor
function s and the pairing structure <M, K, L} are Θ-computable. We shall also
assume that the codes cn,pntj>m, and sntTn (see Definition 1.1.10) are Θ-computable
mappings of the parameters. This allows for more uniformity in defining comput-
able functions and relations, and is quite essential in the subsequent theory.

The " n e w " Definition 1.1.10 is as follows:

1.5.3 Definition. Let Θ be a (single-valued) computation set on the domain 31 =
(A, C, N s, M, K,L). Θ is called a precomputation theory on 31 if there exist
Θ-computable mappings pl9 p2, and p3 such that

(i) for each n,j (0 < j < n) and m the functions and functionals s, M, K,L,

DC, Cn, and P™ y are Θ-computable with Θ-codes s, m, k, I, d, cn = pλ{n\ and

Pnj.m = P2U, n> m) respectively;

1.5 Inductively Defined Theories 31

(ii) Θ satisfies the iteration property (1.1.9), i.e. for each n,m^0 sUtm =
p3(n, m) is a Θ-code for a mapping S^ such that for all ae C, all sequences σ
from C, and all r from A9

{*}S+m(σ, r) = {S&a9 σ)}g(τ),

where n = lh(σ) and m = lh(τ).

The pairing structure <Λf, K9 L) will now be extended to a coding and decoding
of arbitrary w-tuples. There are many ways of doing this. We do it by means of
the following two auxiliary functions:

M * is defined by iteration of M:

M*() = 1,
M*(xl9..., xn+1) = M(xl9 M*(x29..., x n + 1)) .

By primitive recursion we define functions Li9 i e N:

Ux) = L(x)9

Ln+1(x) = L(Ln(x)).

1.5.4 Definition. Ordered w-tuples and inverses are defined as follows :

A (xl9 ...9xn> = M(n9 M*(xl9..., xn)\

B lh(x) = K(x).
C (x\ = K(Lίx))9 if /#lh(jc) or lh(x)φN.

(x)t = L{Lix))9 if i = \h(x)eN.

1.5.5 Remark. By adapting the arguments of 1.4.2 we see that any precomputation
theory Θ has a predecessor function on N. Hence, by 1.4.3, Θ will be closed under
primitive recursion on N. Therefore the auxiliary functions M* and Li9ie N9 and
the extended pairing structure of 1.5.4, are Θ-computable for every precomputation
theory Θ.

With these preliminaries out of the way we shall, given any sequence

of partial functions, construct a precomputation theory on % generated by the
given list f.

1.5.6 Construction of Γf(Θ). Let f = f l 9 . . .,/z be a list of functions on A. Γf shall
be a monotone operator acting on arbitrary sets of tuples (a, σ, z), where
lh(a9 σ, z) ^ 2. The definition is by the following set of clauses:

2 «290>9x9y9M(x9y))ert(Θ)

32 1 General Theory: Combinatorial Part

3 «3,0>,x,*(x))eΓf(Θ)
4 «4,0>,x,L(*))eΓf(Θ)
5 « 5 , 0>, x, a, b, c, DC(x, a, b, c)) e Γf(Θ)
6 If 3u[(g, σ,u)eθ and (/, w, σ, z) e Θ], then «6, 0>,/, g, σ, z) e Γf(Θ)

7 Let 0 < j < n and τ any ra-tuple from 4̂, if (/, xj+ί, xl9..., Xy,
x y + 2 , . . . , xn, z) G Θ, then «7,y>,/, x l f . . . , xn, T, Z) e Γf(Θ)

8 If a,xl9...,xneC and (a, xl9..., xn9 yl9..., yn9 z) e Θ, then

«8, α, Xi,..., xn}, yl9...9 ym9 z) e Γf(Θ)
9 Let f = / i , . . ,/z be the given list of functions. If Jl(tl9..., tn) a z,

1 < ί < /, then «9, ι>, ί l5..., /Bi, z) e Γf(Θ).

We note that clauses 1 to 5 introduces the basic functions the successor function
s, the pairing structure <M, K, L}9 and definition by cases DC. s and <Λf, Γ̂, L>
are part of the data provided by the structure 21. Clauses 6 and 7 introduces the
functional Cn and P £ ; , respectively. Clause 8 introduces the iteration property,
i.e. the functions S£. Finally, clause 9 introduces the list f.

The operator Γ f is monotone and has a least fixed-point Θf = IJ Θ|, where
Θ| = Γ 1 (| J J I < ί Θ?). In the simple setting of 1.5.6, Θf* = Θ?.

1.5.7 Definition. Let 21 be a computation domain and f = f l 9 . . .,/j a list of func-
tions of ^4. The computation set generated by f over 21, which will be called the
prime computation set in f, is defined as the least fixed-point of Γf and denoted by
PR[f], i.e.

PR[f] = Θf* = least fixed-point of Γ f,

Associated with the theory PR[f] are two notions which will play an important
role in our subsequent investigations, subcomputation and length of computation.

1.5.8 Definition. Let PR[f] be a computation set as in Definition 1.5.7. For each
(a9 σ, z) e PR[f] we set

|tf, σ> z|pR[f] = least ξ such that (α, σ, z) e Θ£.

\a, σ, z | P R [f] is called the length of the computation (a, σ, z). For a Γf as in 1.5.6
the length is a natural number.

1.5.9 Definition. For each (a, σ, z) £ PR[f] we define the set of immediate sub-
computations.

(i) If a = <1, 0>, <2, 0>, <3, 0>, <4, 0>, <5, 0>, or <9, 0>, then (a, σ, z) has no
immediate subcomputations.

(ii) «6, 0>,/, g, σ, z) has (g, σ, ύ) and (/, w, σ, z) as immediate subcomputa-
tions. (Note u is uniquely determined.)

(iii) «7,7>,/, * ! , . . . , xn9 r, z) has (/, xj+l9 χl9.. ,9χj9 xj+2,..., xn9 z) as im-
mediate subcomputation.

1.5 Inductively Defined Theories 33

(i v) « 8 , a , x l 9 . . . 9 x n y , y l 9 . . . 9 y m , z) h a s (a 9 x l 9 . . . 9 x n 9 y l 9 . . . 9 y m 9 z) a s i m -

mediate subcomputation.

The subcomputation relation is defined as the transitive closure of the immediate
subcomputation relation. If (a, σ, z) is a subcomputation of (b, r, w)9 we write
(a9 σ, z) < P R [f] (b, T, w). The subcomputation tree of a (a, σ, z) e PR[f] is the set
of subcomputations of (a, σ, z) with the relation < P R [f] .

We note that if (a, σ, z) < P R [£] (b9 T, H>), then |α, σ, z | P R [f] < |6, T, w|PR[f], but
the converse is not necessarily true.

1.5.10 Proposition. The prime computation set PR[f] is a precomputation theory
on 21 in which each function of the list f is computable.

Proofs of facts such as the above proposition tend to be long, tedious, and
entirely a matter of routine. They will therefore mostly be omitted. Since this is
the first case and since there are a few details to be observed, we shall, however,
this time indicate a few of the steps. To show that each/f in f is PR[f]-computable,
we must find a code/ and verify that

(i) fi(t1,...9tn)~z iff (/ , f i , . . . , / n f f z) e P R [f] .

The obvious choice for the code is f{ = <9, />. Since 21 has a pairing structure,
<9, /> = M(29 M(9, M(i, 1))) e C. The implication from left to right in (i) is an
immediate consequence of clause 9 in 1.5.6, the reverse implication must formally
be proved by induction on the length of the computation (/, tl9..., tnι, z) e PR[f].

In a similar way we verify that s, <M, K, L>, DC, Cn, and P £ y are PR[f]-
computable and that the codes cn = <6, 0> and pntjtm = <7,y*> are PR[f]-com-
putable mappings of the parameters, the latter is, of course (!), routine to do.
The reader is invited to verify that

A = <8, <7, 3>, <5, 0>, <6, 0>, <6,0>, 0>,

is an appropriate choice of code for the mapping pλ{ή) = <6, 0>.
This leaves the iteration property: We have to construct a code p3 for a mapping

p3(n9 m) which itself shall be a code in the theory PR[f] for the mapping

S£(a9 xl9..., xn) = <8, a, xl9..., xn>.

For this we need the extended coding structure 1.5.4. So our task will be to con-
struct codes for various functions there needed. We do this by first verifying that
the set PR[f] has the fixed-point property 1.2.6. Next we construct in PR[f] a
code for the predecessor function on N9 1.4.2. Finally we adapt the argument of
1.4.3 to show that the set PR[f] is closed under primitive recursion on N. With
this at hand we can, granted the necessary strength of will, construct codes in
PR[f] for the functions in 1.5.4, from which we easily obtain the code #3.

1.5.11 Remarks. (1) The reader should observe that we have repeatedly used the

34 1 General Theory: Combinatorial Part

S*-function (via clause 8 of 1.5.6) in order to prove that it has an index computable
in the theory. (2) We refer back to Remark 1.5.2: It would have been possible to
introduce the clauses 1-7 and 9 of 1.5.6 by choosing appropriate elements of the
code set C but, without having some sort of pairing mechanism at disposal, it is
difficult to see how to introduce the 5^-function such that: (i) the code for S*
is a computable function of n, m, and (ii) such that the iteration property

{S&a, xl9..., xn)}O>i, , ym) = {<*}(xi,..., Xn9yu -. , JO

will obtain. This is the reason for including the pairing structure <Λf, K, L) in
Definition 1.5.1.

1.6 A Simple Representation Theorem

We now turn to a converse proposition 1.5.8: Every precomputation theory on
51 is of the form PR[f] for a suitable list f. In order to state the result precisely
we need a notion of equivalence for precomputation theories.

1.6.1 Definition. Let Θ and //be two precomputation theories on the same domain
31. We say that H extends Θ,

Θ ^H,

if there is an //-computable mapping p(a, ri) such that

(α,σ,z)eΘ iff (p(a9 n), σ, z) e H,

where n = lh(σ).

If Θ < H and H ^ Θ, we say that Θ and H are equivalent, in symbols

Θ~i7.

Equivalent theories have the same computable functions. What 1.6.1 adds is that
we have a computable transformation on codes, i.e. if Θ ~ //and/is Θ-computable
with code/θ, we can inside H compute a code/H = /?(/θ, n) for/as an //-comput-
able function. It is usually this stronger property we establish when we prove the
"equivalence" between given "computation" theories, e.g. the equivalence
between Turing computability and /χ-recursion.

1.6.2 Universal Function. Implicit in the Θ-computability of the functional P£ y

lies the fact that each precomputation theory has an enumerating function, i.e.
for each n there is a Θ-computable function fn such that

(α, σ, z) e Θ iff /n(α, σ) - z.

1.6 A Simple Representation Theorem 35

A code for/n can be computed in Θ from n. It is therefore possible to code up the
functions /n, n e N, inside Θ to get a Θ-computable function / such that

(a, σ, z) e Θ iff fn(a, σ) ~ z
iff f(n, <α, σ» ~ z.

Construct the theory PR[/] it is not difficult inside this theory to define a function
p(a, ή) such that/(«, <α, σ» ~ z iff {p(a, n)}(σ) ~ z.

We conclude that every precomputation theory Θ is reducible to some theory
PR[/], where f is a Θ-computable partial function.

A converse seems at first obvious. I f / i s Θ-computable, surely PR[/] ^ Θ.
It is indeed true, but needs a careful proof. We have to analyze the computation
procedure given by PR[/] and see that it can be carried out inside Θ.

1.6.3 Theorem: Simple Representation. Let Θ be a precomputation theory on the
domain 91. There exists a Θ-computable function f such that Θ ~ PR[/].

"Simple" in Theorem 1.6.3 will stand in contrast to "faithful" in Theorem 2.7.3.
See 2.7.5 for further comments.

To prove 1.6.3 it is sufficient to show that if/ is ajny Θ-computable function,
then PR[/] < Θ. The proof will be divided into four steps.

A. Program for the Proof Recall from 1.5.6 and 1.5.7 that PR[/] = \Jn<ω Γn,
where Γo = 0 and Γn + 1 = Γ7(Γn). We will construct a Θ-computable (partial)
function r(n, (a, σ» such that if r(n, <α, σ» ~ 0, then (a, σ, z) e Γn, where z is
the unique value of the computation {tf}pR[/](σ). We shall further see to that if
r(n, <α, σ» j , then r(m, <α, σ » ψ for all m < n. Define

q«a, σ » ~ μn[r(n9 <α, σ» - 0].

Since the /χ-operator on N is Θ-computable, q is also Θ-computable. We note
that if (α, σ, z) G PR[/], then q((a9 σ » gives the "first" stage of the inductive
generation of PR[/] at which this can be decided.

Our next task will be to define a Θ-computable function p(n9 <α, σ» which,
whenever (a, σ, z) e Γn, calculates z from n and the pair <α, σ>.

Combining p and q shows that

(fl,σ,z)ePR[/] iff p(q(ζa, σ», <β, σ» - z
iff (t(a, ή), σ, z) e Θ,

where t(a, ή) is easily constructed from the line above. We see that t(a, ή) is
Θ-computable and PR[/] ^ Θ via this t.

B. How to Compute Inside PR[/]. To prepare for the construction of r, p and q
we illustrate how to decide in Γ6 if there is some z such that «6, 0>, σ, z) e Γ6.
First of all σ must be of the form σ =f,g, σl9 where/, geC (this can be decided

36 1 General Theory: Combinatorial Part

in Θ). What we so far have been given is an incomplete tuple «6, 0>,/, g9 σl9 Di),
where Πi is a "blank" to be filled in by some z, if there is indeed some com-
putation «6, 0>, σ, z) which has been put into PR[/] at stage 6, i.e. into Γ6. Our
search may look like the following diagram; i.e. we are trying to construct the
subcomputation tree of «6, 0>,/, g, σl9 Di) :

, D2)

Γ 3 : (hl9 D 3 , *β, Da)

Γ2 : (£3, σ4, D4)

4, σβ, D 4)

At stage Γ 6 we have the incomplete tuple «6, 0>,/, g, σ1? Πi) There must be
two immediate subcomputations (g, σu Π2X where the blank Di has disappeared,
but a new blank Q 2 is introduced, and the "doubly indeterminate" tuple
(/, U2» σu Di) We first try to decide (g, σl9 [J2). Suppose that it has one im-
mediate predecessor, i.e. g must be of the form <7, — > or <8, — >. Then we can
uniquely read off what we have to decide at stage Γ4, say (gl9 σ2, \Z\2)- Note that
the blank Π2 is simply carried on. The code gλ may again indicate a substitution,
which means that at stage Γ3 we must investigate tuples (kl9 Π3, σ̂ , D2) a n ^
(#2» σ3» D3). In the latter tuple Π2 has disappeared, but a new blank Π3 is in-
troduced. This may again be a substitution, which leads us to investigate tuples
(h29 Π 4)

 σ4, Da) a n d (^3, ^4, D4) at stage Γ2. Suppose that g3 is of the form
<7, — > or <8, — >. Then we must decide some (g4, σ5, Π 4) at stage I\. Note that
everything in the diagram except the blanks is uniquely determined by the given
data <6, 0>, σ.

Now we can start working backwards: g4 must be <l,0>, <2,0>, <3, 0>,
<4, 0>, <5, 0>, or <9, 0>. Otherwise we can give the answer false to the original
question. If g4 is either <1, 0>, <2, 0>, <3, 0>, <4, 0>, or <5, 0>, we can immediately
fill in the blank Π 4 , as being the value of either s, M9 K, L, or DC. If £ 4 = <9, 0>,
we must ask Θ to supply the value for Π 4 , if such exists, i.e. if σ5 has the appropriate
length and /(σ5) j .

1.6 A Simple Representation Theorem 37

Granted success at stage I\, we move back to Γ2 and fill in the blank Π*
Then we must try to decide (h2, D4, σ4, Π3). If we succeed in this, we move back
to Γ3 and fill in Π 3 Then we must attempt (hl9 Π3, σ3, \J2). Again the process
either succeeds, or we get an answer no, or the process is undefined by asking an
inappropriate question about /. But note that the possible undefinabilities turn
up in a way uniquely determined by the given data <6, 0>, σ. So if an undefinability
turns up in deciding «6, 0>, σ, Πi) at stage Γn, then it turns up in every later
attempt to decide «6, 0>, σ, Πi), i.e. at every stage Γm, m ^ n.

We now see how to work our way backwards filling in the blanks. And the
following conclusion emerges: Either we get an answer YES, i.e. we are able to
complete the computation {<6, 0>}(σ) at stage Γ6, or we get NO, in which case we
may be able to complete {<6, 0>}(σ) at some later stage, or we are blocked by
UNDEFINED, and then the process will not be defined at any later stage.

If we get the answer YES, the process will provide us with the unique z such
that «6, 0>, σ, z) G Γ6. And we will then have succeeded in constructing the full
subcomputation tree.

This completes our description of how to compute inside PR[/]. It remains
to give the formal definitions oίp, q, and r.

C. Definition of the Function p(n, <α, σ». The function will be defined by induction
on n. Since Γo = 0 , we start with n = 1.

n = 1. In this case we set

/>(0,«l,0>,x> =s(x)

p(09 « 3 , 0>, x» = K(x)
p(0, «4, 0>, x» = L(x)
/>(0, «5 , 0>, x, a, b, c» = DC(x, a, b, c)

In all other cases p is undefined.

n + 1, n ^ 1. In all cases other than the ones treated below p is undefined.

a = <1, 0>, <2, 0>, <3, 0>, <4, 0>, <5, 0>, or <9, 0>: D e f i n e ^ + 1, <fl, σ»
as in case n = 1.

a = <7,j> or <8, a', xl9..., xn}: Here we have one immediate sub-
computation and the value of p{n + 1, —) can be referred back to
the value ofp(n, —):
pin + 1, «7,7>,/, σ, τ » - p(n, </, σ^»
p(n + 1, « 8 , a\ xl9..., xn>, τ » ~ p(n, <a\ xl9 ...,xn, τ » .

a = <6, 0>: Let the given data be <6, 0>,/, g, σ. We set
p(n + 1, «6, 0>,/, g9 σ» - p(n9 </,/<Λ, <g, σ», σ».

We see that we have a well-defined computation procedure in Θ. And we prove,
by induction on n, that (a, σ, z) e Γn iff p(n, <β, σ» j and p(n, (a, σ» ^ z.

38 1 General Theory: Combinatorial Part

D. Definition ofr(n, <α, σ». The definition of r(n9 <Λ, σ» is almost identical to the
definition of p(n, <α, σ». There is, however, one crucial difference. In B we were
led to three possibilities: Given <α, σ> and a stage Γn we either got the answer
YES, the answer NO, or the answer UNDEFINED. In C we left p(n9 <α, σ»
undefined if the answer was NO. In the case of r(n9 <α, σ» we give the value 1 in
this case. And we set r(n, <a9 σ» = 0 if the answer is YES. In this way we not only
get that (α, σ, z) e Γn for some (and hence unique) z iff r(n9 <α, σ» ~ 0 but we also
ensure that if r(n9 <#, σ» ~ 0, then r(m9 <α, σ » j for all m < n.

This completes the proof of Theorem 1.6.3.

1.7 The First Recursion Theorem

The aim of this section is to prove a version of the first fixed-point theorem
for arbitrary precomputation theories. Our strategy will be to use the simple
representation Theorem 1.6.3, viz. that any theory Θ is equivalent to a theory
of the form PR[g], where g is some partial function on the domain.

First we have some invariance questions to settle:

1.7.1 Proposition, (i) If PR[g] < PR[Λ] and f is PR[λ]-computable, then
PR[g,/] < PR[Λ].

(iii) //PR[g] < PR[λ], then PR[g,/] ^ PR[A,/].

(i) and (ii) follows immediately from what we proved in 1.6.3, A-D, i.e. if a function
/i s Θ-computable, then PR[/] < Θ. (i) now follows since PR[g] < PR[A] implies
that g is PR[/z]-computable; (ii) is equally obvious, (iii) is a corollary of (i) and (ii):
g and/will both be PR[A,/]-comρutable, hence PR[g,/] ^ PR[λ,/]

1.7.2 Remark. In proving Theorems 1.7.8 and 1.7.9 we need more detailed in-
formation about "subcomputations", which easily follows from an analysis of the
arguments in 1.6.3, A-D. If/is PR[g]-computable with code/, 1.7.1 tells us that
PR[g,/] ^ PR[g] via some PR[g]-computable mapping/?(α, ή). From 1.6.3 A-D
it follows that we can safely assume that /?«g, 0>, ή) = / <g, 0> being the
PR[g>/]-code for/.

We further note that the reduction can be arranged so that subcomputations
are preserved. This needs some explanation: If (α, σ, z) e PR[h], for some functions
h, we construct the tree of subcomputations of (a9 σ, z), which is uniquely deter-
mined from the tuple (a9 σ, z). A tuple (b, τ, w) is a subcomputation of (a, σ, z)
if it occurs as a node in this tree (see Definitions 1.5.8 and 1.5.9).

That subcomputations are preserved now means that if (b9 T, W) is a subcom-
putation of (α, σ, z) in PR[g,/], then (p(b9 ri\ T, W) is a subcomputation of
(p(a9 n)9 σ, z) in PR[g]. In particular, \p(b9 ri)9 τ9 w|PR[fl] < \p(a9 ή)9 σ, z|PR[ί7].

1.7 The First Recursion Theorem 39

This is a common feature of reductions. One theory is reduced to or imbedded
into another theory by imitating step-by-step the computations of the first inside
the second. We shall in a more systematic way return to this in the next section on
computation theories.

1.7.3 Definition. Let Θ be a precomputation theory on % and assume by 1.6.3
that Θ ~ PR[g], for some suitable partial function g. Let/be any function, we set

By 1.7.1 &[f] is unique up to equivalence, i.e. if Θ ~ PR[g] and Θ ~ PR[A],
then PR[g,/] ~ PR[/*,/].

1.7.4 Definition. Let Θ be a precomputation theory on 91. A functional φ is called
strongly Θ-computable if there exists a code φ such that the function λxφ(f9 x) is
Θ[/]-computable with code φ for all/.

To remove any ambiguity let us agree on the following convention: Θ[/] is
some theory PR[g,/], where g is such that Θ ~ PR[g]. We assume that in the
construction of PR[g,/]/has code <9, 0> and g has code <9, 1>, see 1.5.6.

1.7.5 Remarks. We observe the following invariance properties:

(i) Let Θ ~ H:f is Θ-computable iff/is //-computable.
(ii) Let Θ ~ H: ψ is strongly Θ-computable iff ψ is strongly //-computable.

Here (i) is immediate from the definition, (ii) follows from the following fact:
Assume that Θ - PR[g] and H ~ PR[A] and that Θ ^ H, i.e. PR[g] ^ PR[A].
Hence PR[g,/] ^ PR[/z,/] by some mapping p which is independent of the
particular function/ since/has the same "label" in each theory PR[g,/]. But
then any strongly Θ-computable ψ is also strongly //-computable.

From 1.7.5 we can always assume that Θ has the form PR[g]. Before turning
to the fixed-point theorem we shall make a remark on strong versus weak
computability.

1.7.6 Proposition. If φ is strongly FR[g]'Computable9 then φ is weakly PR[g]-
computable.

Let φ be a code for φ as a strongly PR[g]-computable functional, and let/be
PR[g]-computable with code/. From 1.7.1 it follows that PR[g,/] < PR[g] via
a procedure which is a PR[g]-computable function of/. So from φ and/we can in
PR[g] compute a code p(φ,f) for the function λx-ψ(f9 x). By usual code manipula-
tions we can find a code φλ (as a function of φ) such that {<Pi}(/, x) — {p(Φ, /)}(*)•
9i will then serve as a PR[g]-code for φ as a weakly computable functional.

1.7.7 Example. Weak does not imply strong. This follows from simple cardinality

40 1 General Theory: Combinatorial Part

considerations. Let Θ be ORT (= ordinary recursion theory over ώ). There are
countably many strongly computable ORT-functionals, since the code set is
countable. But there are uncountably many weakly Θ-computable functionals:
Weak computability is a requirement concerning the computable functions, outside
this set the functional can behave exactly as it pleases.

We return to the main topic of this section.

1.7.8 Theorem. Every consistent strongly PR[g]-computable functional φ has a
least fixed-point, i.e. there exists af* such that

(i) ?>(/*,*)=/*(*),
(ii) φ(f, x) = f{x) implies that f* c /.

The proof is rather standard: Let/0 = 0,fn+i(x) = φ(/n, *), and set

/•(*) = lim/n(*).

Since φ is strongly PR[g]-computable, φ is consistent, i.e. if/^ h and <p(f jt)ψ ,
then φ(h, x) ψ and <p(f x) = φ(h, x). From this we see that fn ^fn + 1 for all n,
hence/* is well defined.

Proof of (ϊ). First suppose that/*(x) j ,then/*(x) =fn + 1(x) = Ψ(fnyx) = φ(/*,x),
by the consistency of φ. Conversely, suppose that φ(f*, x) j with value z. This
means that (φ, x, z) e PR[g,/*]. / * has by our convention code <9,0> in
PR[g,/*]. Let C/be the set of pairs <w, v) such that «9, 0>, u, v) is a subcomputa-
tion of (φ, x, z). U is a finite set and there exists some fn in the approximation
to / * such that U c /Λ. It follows that (φ, x9 z) e PR[g,/n], i.e. <p(fn, x) = z. We
get ?(/*, x) = ?(/;, x) = fn+1(x) = f*(x).

Proof of (ii). Let / be any fixed-point for ψ, we prove by induction that fn c f9

for all n. Hence/* = lim/n c / For the induction step we assume that/n+1(x) ψ .
Then/n+1(x) = φ(fn, x) = φ(f, x) = f(x), where the middle equality follows from
the induction hypothesis.

1.7.9 Theorem. Let φ be strongly PR[g]-computable. The least fixed-point f* for
φ is FR[g]-computable.

Proof. In the proof of Proposition 1.7.6 we noted that if/is any PR[g]-computable
function with code/, there is a reduction procedure PR[g,/] < PR[g] which is
a PR[g]-computable function of/. This means, in particular, that there is a
PR[g]-computable function p such that p(ψ9f) is a PR[g]-code for the function
λx φ(f x), where φ is a code for ψ as strongly PR[g]-computable.

We know that a least fixed-point/* exists. It remains to construct a code for
it as a PR[g]-comρutable function. The idea is simple, we want to construct a code

f* such that {/*}pRM = {p(φ,/*}pRto](x). T h e right-hand side is here a PR[g]-

1.7 The First Recursion Theorem 41

computable function t(f*9 x). We can therefore use the Fixed-point Theorem 1.2.6

to find a code/* satisfying the equation and with the further property

(ί) \p(Φ,f*\ *, *|pB[g] < \f*> *> z\j*R[gl>

The code f* defines a PR[g]-computable function {/*}pRto]. We will show that it

equals the least fixed-point/* by verifying: (a) {/*} is a fixed-point for φ; (b)

(a) A simple calculation shows that {/*} is a fixed-point

iff {<p}PRti7,{f-}](x) = z

iff / *

(b) Suppose that {/*}(*) = z, we must show that /*(*) = z. This we do by
induction assuming as induction hypothesis that this holds for all tuples (/*, u, v)
such that

|/*, u, v\PR[g} < |/*, x, z|PR[ί7].

Let h c {/*} be the subfunction needed in the given computation <p({/*}, x) = z

in PR[#, {/*}]. We note that φ(h, x) = z. Consider now the computation

(p(Φ,f*), x, z) in PR[g], we may conclude from Remark 1.7.2 that

(ii) |/*, w, v\FBt[g}

for all pairs (u9 v) e h.

This implies that h^f*: If h{ύ) = v, then {/*}(«) = t;, and since |/*, w, t?|

|/*>*>z|pR t o] (because of (i) and (ii)), the induction hypothesis tells us that

/•(«) = »•

From φ(A, x) = z and Λ £ / * , the consistency of φ entails that φ(/*, Λ:) = z,
i.e./*(jc) = z. We conclude that {/*} c / * .

1.7.10 Remark. The reader will note that Theorems 1.7.8 and 1.7.9 with their
proofs are in essence an adaptation of Kleene's presentation in Introduction to
Metamathematίcs [78], §66. Our notion of strong Θ-computability corresponds to
his notion of uniformity (see the discussion in §47 of IMM). In the next section
on computation theories we will discuss a version of the first recursion theorem
for weakly Θ-computable functionals.

1.7.11 Remark. Theorem 1.7.8 constructs the least fixed-point. The construction

42 1 General Theory: Combinatorial Part

of Theorem 1.2.6 does not always lead to a " least" or "unique" solution. Consider
the function

f(a9 σ) = a,

in ORT over ω. Let a0 be the fixed-point calculated following the proof of 1.2.6.
Let a± be the fixed-point of / '(α, σ) = l α. We note that a0 Φ al9 that {a0} and
{ax} are both total functions and fixed-points of/. But for no input σ is {ao}(σ) =

If, however, a occurs inf(a, σ) only through a part {a}, then the procedure of
1.2.6 is known to lead to the least fixed-point.

1.7.12 Remark. The material in this chapter is the basic core of any exposition
of general recursion theory. The sources for the various combinatorial tricks are
lost in the ancient history of recursion theory and the λ-calculus.

Our exposition is very much influenced by Kleene [83] and Moschovakis.
[112, 113]. We should also mention the work of Strong [166], Wagner [169], and
H. Friedman [33]. There is also an unpublished study by Aczel [2] on "enumera-
tion systems" which contains the representation theorem 1.6.3 in the special case
of domain ω. The thesis of L. Sasso [145] contains a great deal of material relevant
for this part of the theory. In particular, he has the normal form theorem for a
function recursive in a partial function.

