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A MINUS SIGN THAT USED TO ANNOY ME BUT NOW I KNOW WHY IT IS THERE
(TWO CONSTRUCTIONS OF THE JONES POLYNOMIAL)

PETER TINGLEY

Abstract. We consider two well known constructions of link invariants. One uses skein theory: you

resolve each crossing of the link as a linear combination of things that don’t cross, until you eventually get a

linear combination of links with no crossings, which you turn into a polynomial. The other uses quantum

groups: you construct a functor from a topological category to some category of representations in such

a way that (directed framed) links get sent to endomorphisms of the trivial representation, which are just

rational functions. Certain instances of these two constructions give rise to essentially the same invariants,

but when one carefully matches them there is a minus sign that seems out of place. We discuss exactly how

the constructions match up in the case of the Jones polynomial, and where the minus sign comes from. On

the quantum group side, one is led to use a non-standard ribbon element, which then allows one to consider

a larger topological category.

Contents

Introduction 415

Acknowledgements 416

1. Knots, links, link diagrams, and some variants 416

2. The Kau�man bracket construction 417

3. The quantum group construction 419

3A. The quantum group Uq(sl2) and its representations 419

3B. Ribbon elements and quantum traces 421

3C. Two topological categories 422

3D. The functor 422

4. Matching the two constructions 423

4A. The standard relationship (with the minus sign) 424

4B. The functor fromRIBBON 424

4C. Appearance of skein relations in Uq(sl2)-rep 425

4D. Fixing the minus sign 425

5. Another advantage: the half twist 425

References 426

Introduction

This expository article begins by brie�y explaining two constructions of the Jones polynomial (neither

of which is Jones’ original construction [Jon]). The �rst is the skein-theoretic construction using the

Kau�man bracket [Kau]. The second is as a Uq(sl2) quantum group link invariant. We then discuss how

the two constructions are related.

The Kau�man bracket is an isotopy invariant of framed links, but the functor used in the quantum

group construction involves a category where morphisms are tangles of directed framed links. However,
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in the case we consider, the �nal quantum group invariant does not in fact depend on the directing, and,

up to an annoying sign, it agrees with the Kau�man bracket. In these notes we explain the annoying sign

and describe how the skein relations used in the Kau�man bracket arise naturally in the quantum group

construction. We also discuss how to modify the quantum group construction by using the non-standard

ribbon element from [ST]. In this way one obtains a functor from a category whose morphisms are tangles

of undirected framed links, and the annoying minus sign disappears!

After developing these ideas, we give one more justi�cation for using the non-standard ribbon element:

it allows one to give an algebraic operation corresponding to twisting a ribbon by 180 degrees. This is

discussed in more detail in [ST].

The sign issue discussed here has of course been noticed many times before, and much of the content

of these notes can be found in, for instance, [Oht, Appendix H]. One can describe the sign precisely, so in

a sense there is no problem, but one hopes for a cleaner solution, with fewer (or at least better explained)

signs. Using the non-standard ribbon element is just one way to achieve this. Another approach, which

comes up in [KR1, MPS, Saw], modi�es the braiding instead of the ribbon element; this works, but has

the disadvantage that, at q = 0, the braiding does not descend to the usual symmetric structure. Both

this and our approach essentially boil down to the following: One must choose a square root of q both

in de�ning the braiding and in de�ning the ribbon element, and things work a bit better if one makes

di�erent choices (i.e. ±q1/2) in the two places. Yet another approach, which is discussed in [CMW], is to

modify the topological category by using “disoriented tangles."

Acknowledgements. These notes are loosely based on a talk I �rst gave in 2008 at the University of

Queensland in Brisbane Australia, and I thank Murray Elder and Ole Warnaar for organizing that visit.

I also thank Noah Snyder for many interesting discussions, Stephen Sawin for comments on an early

draft, and Scott Morrison for encouraging me to clean up these notes for publication. This work was

partially supported by Australia Research Council grant DP0879951 and NSF grants DMS-0902649 and

DMS-1265555.

1. Knots, links, link diagrams, and some variants

A link (as one expects) is a collection of �nitely many circles smoothly embedded in R3
with no

intersections. These are considered up to isotopy, which means if you can move between two links

without ever having the strands cross then they are the same.

One can represent a link L with a link diagram. This is a �attening of the link into the plane, where at

each crossing one keeps track of which strand is on top. We will always assume that the curves which

appear in the diagram are all smooth, that the diagram only has simple crossings (i.e. only 2 strands can

cross at a single point), and that the curves are never tangent. Certainly any link can be represented

this way, although this representation is not unique. One important fact about knot theory is that, given

any two diagrams that represent the same link, one can be transformed to the other using only the local

Reidemeister moves:

=

,

=

,

=

,

=

.

However, actually doing so can be di�cult. Even more di�cult is showing that one cannot transform

one diagram to another. That is, showing that two links are in fact di�erent. To do that, one looks for an

invariant: A function on link diagrams which doesn’t change when you do a Reidemeister move. Then,
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if the invariant is di�erent for two diagrams, the corresponding links themselves are di�erent (i.e. not

related by isotopy).

In fact, we need a few variants of links/link diagrams. Sometimes we must work with directed links,

which means that each strand gets an arrow pointed along it in one of the two possible directions, and

sometimes we work with framed links, which means links tied out of �at ribbons (so, you can tell if the

ribbon gets twisted). If we draw a framed diagram without indicating the framing explicitly, we mean

that the ribbon is lying �at on the page; this is usually called the “blackboard framing." For framed link

diagrams, we will assume that all twists occur as full 360 degree twists (this in particular disallows links

tied out of möbius strips), although this restriction will be weakened slightly in §5.

It remains true that one can move between any link diagrams for isotopic framed and/or directed

links using Reidemeister moves, the only subtlety being that the one strand move becomes

=

where each side represents a single framed strand.

2. The Kauffman bracket construction

Up to a change in the variable q, the following is the well known construction of the Kau�man bracket

[Kau].

De�nition 2.1. Let L be a link diagram. Simplify L using the following relations until the result is a
polynomial in q1/2 and q−1/2. That polynomial, denoted by K(L), is the Kau�man bracket of the link
diagram.

(i)

@@

@@�
�
�

= q1/2 + q−1/2 � �� 


(ii) ��
��

= −q − q−1

(iii) If two diagrams are disjoint, their Kau�man brackets multiply.
Note that (i) depends on which strand is on top.

The Kau�man bracket is not a link invariant; a simple check will show that it fails to respect the one

strand Reidemeister move. But, as discussed in the previous section, the one strand Reidemeister move

does not hold exactly for framed link diagrams. In fact, the problem is �xed by working with framed links

and introducing the following extra relation (here both sides represent a single framed string):

(1) = −q3/2

.

Note that the direction of the twist (clockwise or counter clockwise) matters.

The following can be veri�ed fairly easily by checking how the Kau�man bracket changes under each

Reidemeister move.
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Theorem 2.2. (see e.g. [Oht, Theorem 1.10]) The Kau�man bracket from De�nition 2.1 is an isotopy
invariant of framed links. �

We actually want an invariant of unframed links, but it is useful to �rst complicate things by consid-

ering links which are both framed and directed.

De�nition 2.3. Consider a framed, directed link diagram.
(i) A positive crossing is a crossing of the form

That is, a crossing such that, if you approach the crossing along the upper ribbon in the chosen
direction and leave along the lower ribbon, you have made a left turn.

(ii) A negative crossing is a crossing of the form

That is, a crossing such that, if you approach the crossing along the upper ribbon in the chosen
direction, then leave along the lower ribbon, you have made a right turn.

(iii) A positive full twist is a twist of the form

(iv) A negative full twist is a twist in the opposite direction to a positive full twist.
(v) The writhe of a link diagram L, denoted by w(L), is the number of positive crossings minus the

number of negative crossings plus the number of positive full twists minus the number of negative
full twists.

The following are fundamental results in knot theory, but both can be checked directly.

Lemma 2.4. (see [Kau]) The writhe w(L) is an invariant of directed framed links. �

Theorem 2.5. (see [Oht, Theorem 1.5]) Let L be any link. Then the Jones polynomial,

(2) J(L) := (−q3/2)−w(L)K(L),

is independent of the framing. Hence J(L) is an isotopy invariant of directed (but not framed) links. �

Comment 2.6. It is straightforward to see that positive full twists are sent to positive full twists if the

direction of the ribbon is reversed, and positive crossings are sent to positive crossings if the directions of

both ribbons involved are reversed. It follows that the choice of directing only a�ects the Jones polynomial

for links with at least two components.
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3. The qantum group construction

Here we describe the Jones polynomial as a Uq(sl2) quantum group link invariant. This uses a circle

of ideas developed by a number of authors starting in the late 1980s (see [Tur] and references therein),

making use of the famous Drinfel
′
d-Jimbo quantum groups [Dri, Jim]. We try to give a feel for how

quantum group invariants work in general, but only fully develop the simplest case.

3A. The quantum group Uq(sl2) and its representations. Uq(sl2) is an in�nite dimensional algebra

related to the Lie-algebra sl2 of 2× 2 matrices with trace zero. It is the algebra over the �eld of rational

functions C(q) generated by E,F,K and K−1, subject to the relations

(3)

KK−1 = 1,

KEK−1 = q2E,

KFK−1 = q−2F,

EF − FE =
K −K−1

q − q−1
.

In some places below we must actually work over C[q1/2], which is to say we adjoin a chosen square root

of q to the �eld.

Uq(sl2) has a representation Vn of dimension n+ 1 for each integer n ≥ 0, which we now describe.

Introduce the “quantum integers"

(4) [n] :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+1.

The representation Vn has C(q)-basis {vn, vn−2, · · · , v−n+2, v−n}, and the actions of E,F and K are

given by

(5)

E(v−n+2j) =

{
[j + 1]v−n+2j+2 if 0 ≤ j < n

0 if j = n,

F (vn−2j) =

{
[j + 1]vn−2j−2 if 0 ≤ j < n

0 if j = n,

K(vk) = qkvk.

This can be expressed by the following diagram:

(6)

t t t t t t. . .- - - - - -
� � � � � �

1 [2] [3] [n− 2] [n− 1] [n]

[n] [n− 1] [n− 2] [3] [2] 1

qn qn−2 qn−4 q−n+4 q−n+2 q−n

F :

E :

K :

There is a tensor product on representations of Uq(sl2), where the action on a⊗ b ∈ A⊗B is given

by

(7)

E(a⊗ b) = Ea⊗Kb+ a⊗ Eb,
F (a⊗ b) = Fa⊗ b+K−1a⊗ Fb,
K(a⊗ b) = Ka⊗Kb.
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It turns out that A⊗B is always isomorphic to B ⊗ A, and furthermore there is a well known natural

system of isomorphisms

(8) σbr
A,B : A⊗B → B ⊗ A

for each pair A,B, called the braiding. A de�nition of the braiding can be found in, for example [CP]

(or Theorem 5.2 below can also be used as the de�nition). Here we only ever apply the braiding to the

standard 2-dimensional representations of Uq(sl2), so we can use the following:

De�nition 3.1. Let V be the 2 dimensional representation of Uq(sl2). Use the ordered basis {v1 ⊗ v1, v−1 ⊗
v1, v1 ⊗ v−1, v−1 ⊗ v−1} for V ⊗ V . Then σbr

V,V : V ⊗ V → V ⊗ V is given by the matrix

σbr = q−1/2


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 .

There is a standard action ofUq(sl2) on the dual vector space to Vn. This is de�ned using the “antipode"

S, which is the algebra anti-automorphism de�ned on generators by:

(9)

S(E) = −EK−1,
S(F ) = −KF,
S(K) = K−1.

For v̂ ∈ V ∗n and X ∈ Uq(sl2), let X · v̂ be the element of V ∗n de�ned by

(10) (X · v̂)(w) := v̂(S(X)w)

for all w ∈ Vn. It is straightforward to check that this is a left action of Uq(sl2) on V ∗n . It turns out that Vn
is always isomorphic to V ∗n , which will be important later on.

Example 3.2. Let v1, v−1 be the basis for V . For i = ±1, let v̂i be the element of V ∗ de�ned by

(11) v̂i(vj) = δi,j.

Calculating using the above de�nition, the action of Uq(sl2) on V ∗ is given by

(12) v̂−1 v̂1,
-

�

F : −q−1

E : −q
Consider the map of vector spaces f : V → V ∗ de�ned by

(13)

{
f(v1) = v̂−1

f(v−1) = −q−1v̂1
One can easily check that f is an isomorphism of Uq(sl2) representations.

Comment 3.3. If one sets q = 1, the representations Vn described above are exactly the irreducible �nite

dimensional representations of the usual Lie algebra sl2, where one identi�es

E ↔
(

0 1
0 0

)
, F ↔

(
0 0
1 0

)
,

K −K−1

q − q−1
↔
(

1 0
0 −1

)
.(14)

Of course, one needs to be a bit careful about interpreting the third identi�cation here, since it looks like

you divide by 0. This issue is addressed in [CP, Chapters 9 and 11]. For us, this is su�cient justi�cation

for thinking of Uq(sl2) as related to ordinary sl2.
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Comment 3.4. Notice thatK acts as the identity on all Vn at q = 1. Uq(sl2) actually has some other �nite

dimensional representations where K does not act as the identity at q = 1. So we have not described the

full category of �nite dimensional representation of Uq(sl2), but only the so called “type 1" representations.

The other representations rarely appear in the literature.

3B. Ribbon elements and quantum traces. Much of the following can be found in, for example, [CP,

Chapter 4] or [Oht]. The main di�erence here is that we work with two ribbon elements throughout.

Each satis�es the de�nition of a ribbon element as in [CP]. Consequently we also have two di�erent

quantum traces, and two di�erent co-quantum traces. The non-standard ribbon element Qt is discussed

extensively in [ST].

De�nition 3.5. The ribbon elements Qs and Qt are elements in some completion of Uq(sl2) de�ned by

• The standard ribbon element Qs acts on Vn as multiplication by the scalar q−
n2

2
−n.

• The “non-standard" or “half-twist" ribbon element Qt acts on Vn as multiplication by the scalar
(−1)nq−

n2

2
−n.

De�nition 3.6. The “grouplike elements" associated toQs andQt are elements in some completion of Uq(sl2)
de�ned by

• gs acts on vn−2j ∈ Vn as multiplication by qn−2j .
• gt acts on vn−2j ∈ Vn as multiplication by (−1)nqn−2j .

Comment 3.7. The grouplike elements in De�nition 3.6 are related to the ribbon elements in De�nition

3.5 as described in [CP, Chapter 4.2C].

De�nition 3.8. (see [Oht, Section 4.2]) De�ne the following maps:
(i) ev is the evaluation map V ∗ ⊗ V → C(q).

(ii) qtrQs
is the standard quantum trace map V ⊗ V ∗ → C(q) de�ned by, for φ ∈ End(V ) = V ⊗ V ∗,

qtrQs
(φ) = trace(φ ◦ gs).

(iii) qtrQt
is the “half-twist" quantum trace map V ⊗V ∗ → C(q) de�ned by, for φ ∈ End(V ) = V ⊗V ∗,

qtrQt
(φ) = trace(φ ◦ gt).

(iv) coev is the coevaluation map C(q) → V ⊗ V ∗ de�ned by coev(1) = Id, where Id is the identity
map in End(V ) = V ⊗ V ∗.

(v) coqtrQs
is the standard co-quantum trace map C(q) → V ∗ ⊗ V de�ned by coqtrQs

(1) = (1 ⊗
g−1s ) ◦ Flip ◦ coev(1), where Flip means interchange the two tensor factors.

(vi) coqtrQt
is the “half-twist" co-quantum trace map C(q) → V ∗ ⊗ V de�ned by coqtrQt

(1) =

(1⊗ g−1t ) ◦ Flip ◦ coev(1).

Comment 3.9. Although this may not be obvious, the maps in De�nition 3.8 are all morphisms of Uq(sl2)
representations. This can be checked directly.

Comment 3.10. It is often useful to express the maps from De�nition 3.8 explicitly. One �nds that, for

all f ∈ V ∗ and v ∈ V ,

(15)

ev(f ⊗ v) = f(v),

qtrQ(v ⊗ f) = f(gv),

coev(1) =
∑
i

ei ⊗ ei,

coqtrQ(1) =
∑
i

ei ⊗ g−1ei.
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Here {ei} and {ei} are any dual bases for V ∗ and V . One can choose Q to be either Qs or Qt, and then

one must use the grouplike element gs or gt accordingly.

3C. Two topological categories. Quantum group knot invariants work by constructing a functor from

a certain topological category to the category of representations of the quantum group. We now de�ne

the relevant topological category. In fact, we need two slightly di�erent topological categories.

De�nition 3.11. DRIBBON (directed orientable topological ribbons) is the category where:
• An object consists of a �nite number of disjoint closed intervals on the real line each directed either up

or down. These are considered up to isotopy of the real line. For example:
.

‘ • A morphism between two objects A and B consists of a “tangle of orientable, directed ribbons" in R2 × I ,
whose “loose ends" are exactly (A, 0, 0)∪ (B, 0, 1) ⊂ R×R× I , such that the direction (up or down) of each
interval in A ∪B agrees with the direction of the ribbon whose end lies at that interval. These are considered
up to isotopy. For technical details of the de�nition of “a ribbon", see [CP].
• Composition of two morphisms is given by stacking them on top of each other, and then shrinking the

vertical axis by a factor of two. For example,

◦ =
.

• This is a monoidal category, where the identity object is “zero intervals" and the tensor product just
places objects and morphisms next to each other.

De�nition 3.12. RIBBON (undirected orientable topological ribbons) is the category obtained from
DRIBBON by forgetting the directings. So an object consists of a �nite number of disjoint closed intervals
on the real line, a morphism consists of a tangle of undirected ribbons, and composition is still stacking of
tangles.

3D. The functor. The following holds in much greater generality than stated here.

Theorem 3.13. (see [CP, Theorem 5.3.2]) Let V be the standard 2 dimensional representation of Uq(sl2).
For each ribbon element Q (i.e. Qs or Qt), there is a unique monoidal functor FQ from DRIBBON to
Uq(sl2)-rep such that

(i) FQ( ) = V and FQ( ) = V ∗,

(ii)

FQ

( )
= ev, FQ

( )
= qtrQ,

FQ

( )
= coev, FQ

( )
= coqtrQ,

(iii) FQ


 = Q as an automorphism of either V or V ∗.
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(iv) FQ

  = σbr

as a morphism from the tensor product of the bottom two objects to the tensor product of the top two
objects, regardless of the directions of the ribbons.

The object consisting of no intervals is sent to the “trivial" 1-dimensional representation V0. �

Comment 3.14. Since we only explicitly de�ned σbr
acting on V ⊗V , one must be cautious in interpreting

(iv) when one or both of the ribbons is directed down: One must �rst choose an explicit isomorphism

from V ∗ to V , apply σbr
, then apply the inverse of that morphism. By naturality, the resulting morphism

σbr
will not depend on this choice. See Example 3.16.

Comment 3.15. Theorem 3.13 can in theory be proven by directly verifying invariance under various

local isotopies of the “tangle" diagram, but in fact the usual method is much cleverer, and uses the fact

that our morphisms (braiding, ribbon element, evaluation and so on) are de�ned on all representations,

not just V1. In particular, it is useful to consider σbr
V⊗V,V .

For any directed framed link L, one can draw L as a composition of the elementary features in

Theorem 3.13, and hence �nd the morphism associated to L. This is a morphism from the identity object

to itself in the category of Uq(sl2) representations, which is just multiplication by a rational function

in q1/2 (which turns out to be a Laurent polynomial in q1/2). By Theorem 3.13, FQ is well de�ned up to

isotopy, so FQ(L), is an isotopy invariant.

Example 3.16. Here is a way to verify the de�nition of quantum trace. Recall that FQ is supposed to be

de�ned on DRIBBON , and morphisms there are ribbon tangles up to isotopy. One can use an isotopy

to change a right going cap to the composition of a twist, a crossing, and a left going cap. But we have

only de�ned σbr
explicitly on V , not V ∗, so we insert copies of the isomorphisms f : V → V ∗ and

f−1 : V ∗ → V (see Example 3.2). By naturality of σbr
, this should not change anything. Diagrammatically,

,

f

f−1

where the boxes in the diagram mean “put in a copy of the isomorphism f . Such “tangles with coupons"

are de�ned precisely in e.g. [CP]. Algebraically, this says

(16) qtrQ = ev ◦σbr ◦ (Id⊗Q−1) = ev ◦(f ⊗ Id) ◦ σbr ◦ (Id⊗Q−1) ◦ (Id⊗f−1).

Since the action of each element on the right side has been explicitly de�ned, one can now check that the

two sides agree on all basis vectors, using either Qs or Qt.

4. Matching the two constructions

The ideas in this section can mostly be found in [Oht, Appendix H].
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4A. The standard relationship (with the minus sign).

Theorem 4.1. (see [Oht, Theorem 4.19]) Fix a framed link L. Then FQs(L) is independent of the choice of
directing of L. Furthermore, FQs(L) = (−1)w(L)+#LK(L), where w(L) is the writhe of L and #L is the
number of components of L. �

The (−1)w(L)+#L
in Theorem 4.1 is the sign referred to in the title of these notes. It is certainly

explicitly de�ned, so it is not really a problem; just an annoyance. We now show that, by using Qt in

place of Qs, we can get rid of this sign (although in some sense this just moves the annoyance into the

de�nition of the ribbon element).

There are two other good reasons to consider this modi�cation. First, it allows us to construct a

functor from a topological category related to framed but undirected links to Uq(sl2)-rep. Second, it

allows us to see how the skein relations used in de�ning the Kau�man bracket arise naturally in the

quantum group construction.

4B. The functor from RIBBON . There is only one “elementary" object in RIBBON (the single

interval), as opposed to two in DRIBBON (the single interval, but with two possible directions). Our

morphism will send this single interval to the two dimensional representation V . We must then send each

feature in the knot diagram to a morphism between the appropriate tensor powers of V . For instance,

should be sent to a morphism from V ⊗ V to the trivial object. This is as opposed to the directed case,

where such “caps" are sent to morphisms from V ∗ ⊗ V or V ⊗ V ∗ to the trivial object. To do this, we will

use the fact that, in this case, V is isomorphic to V ∗ (for instance, via the isomorphism from Example 3.2).

We obtain:

Theorem4.2. Choose an isomorphism f : V → V ∗. There is a uniquemonoidal functorFf : RIBBON →
Uq(sl2)-rep such that

(i) Ff takes the object consisting of a single interval to V ,

(ii) Ff

( )
= ev ◦(f ⊗ Id) = qtrQt

◦(Id⊗f) : V ⊗ V → C(q),

(iii) Ff

( )
= (Id⊗f−1) ◦ coev = (f−1 ⊗ Id) ◦ coqtrQt : C(q)→ V ⊗ V,

(iv) Ff

  = σbr,

(v) Ff


 = Qt (or, equivalently, multiplication by −q−3/2).

Furthermore, for any link L, any choice of directing of L, and any choice of f , Ff (L) = FQt(L).

Comment 4.3. If one tries to use Qs instead of Qt in Theorem 4.2, then the two expressions on the right

side of parts (ii) and (iii) are o� by a minus sign, and the construction does not work. That the two sides

of (ii) and (iii) agree follows from the fact that Uq(sl2)-rep, along with “pivotal structure" related to the

ribbon element Qt, is unimodal, as de�ned in [Tur]. For an explanation of this pivotal structure and a
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proof that it is unimodal see [ST, Section 5B]. It is also not hard to directly verify that the expressions

agree.

Comment 4.4. Theorem 4.2 implies that, for any linkL,Ff (L) is independent of the chosen isomorphism

f . However, the functor Ff does depend on this choice. For instance, Ff applied to a cap clearly depends

on f .

Sketch of proof of Theorem 4.2. First verify by a direct calculation that the two expressions on the right

for parts (ii) and (iii) agree, so Ff is well de�ned on framed link diagrams.

Fix a diagram L and choose a directing of L. Insert f ◦ f−1 into FQt(L) somewhere along every

segment of L that is directed down. This clearly doesn’t change the morphism. By the naturality of σbr
,

(17) (1⊗ f) ◦ σbr = σbr ◦ (f ⊗ 1).

Also, f ◦ Qt = Qt ◦ f . Use these relations to pull all the f and f−1 through crossings until they are

right next to cups and caps or ends. But now you are essentially calculating Ff (L). Precisely, Ff = FQt ,

composed with a copy of f or f−1 for every down-directed ending in the chosen directing. Since FQt is a

functor, it follows that Ff is as well. �

4C. Appearance of skein relations in Uq(sl2)-rep. A simple calculation shows that

(18) Ff

(
��
��)

= multiplication by − q − q−1.

Another direct calculation shows that

(19) σbr = q1/2 Id +q−1/2(Id⊗f−1) ◦ coev ◦ qtrQt
◦(Id⊗f) : V ⊗ V → V ⊗ V.

Equivalently,

(20) Ff

(
�
�
�@@

@@

)
= q1/2Ff

( )
+ q−1/2Ff

(� �� 
)
.

These are exactly the relations de�ning the Kau�man bracket (De�nition 2.1)!

4D. Fixing the minus sign. Equation (1) and Theorem 4.2(v) are identical. Along with the statements

in §4C , this implies that the map from framed link diagrams to polynomials de�ned by L → Ff (L)
satis�es all the skein relations used to calculate the Kau�man bracketK(L), and hence must agree exactly

with K(L). That is:

Corollary 4.5. Let L be a framed link. Then FQt(L) is independent of the chosen directing, and is equal to
the Kau�man bracket K(L). �

Comment 4.6. Non-standard ribbon elements exist in many cases beyond Uq(sl2), and can also be used

to simplify the correspondence between various constructions of link polynomials in those cases.

5. Another advantage: the half twist

Consider the following element X in a certain completion of Uq(sl2):

De�nition 5.1. X is de�ned to act on each Vn by

Xvn−2j = (−1)n−jq
n2

4
+n

2 v−n+2j.

One can easily check that X−2 = Qt. Furthermore, work of Kirillov-Reshetikhin [KR2, Theorem 3]

and Levendorskii-Soibelman [LS, Theorem 1] shows that X is related to be braiding σbr
as follows (see

[KT, Comment 7.3] for this exact statement):
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Figure 1. A morphism in the topological category of ribbons with half twists

Theorem 5.2. σbr = (X−1 ⊗X−1) ◦ Flip ◦∆(X). �

Here ∆(X) means “decompose V ⊗ V into irreducible components, and apply X to each," and Flip
means interchange tensor factors. This can be interpreted via the following isotopy:

(21)

'

.

Here Flip ◦∆(X) should be interpreted as a morphism corresponding to twisting both ribbons at once

by 180 degree, as on the bottom of the left side. Putting this together, one may hope that X could be

interpreted as an isomorphism, and that the functor FQt from Theorem 4.2 could be extended in such a

way that

(22) FQt

( )
= X−1.

In fact, such an extended functor has been de�ned precisely in [ST], resulting in a functor from a larger

category where ribbons are allowed to twist by 180 degrees, not just by 360 degrees (although Möbius

bands are still not allowed). Figure 1 shows an example of a morphism in the resulting category. Notice

that elementary objects come in both shaded and unshaded versions.

The construction in [ST] can only extend FQt , not FQs . One advantage of having such an extended

functor is that, since both σbr
and Qt are constructed in term of the “half-twist" X , there is in some sense

one less elementary feature.
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