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Abstract

In an attempt to find analogues, for higher relative commutants, of the Bose-Mesner algebra structure
on the second relative commutant of a spin-model subfactor, we find that there do indeed exist other
algebra structures on the higher relative commutants of any subfactor planar algebra which are induced
by the action of tangles; in fact, we show they can only arise in the obvious fashion.

1 Introduction
It is a pleasure and an honour to be permitted to contribute this small note in a volume being brought out in
honour of Vaughan Jones. We hope this note will provide one further iota of evidence of the power and
beauty of the planar algebra formalism ([J]) of Jones.

It is known - see [JMN] - that if N ⊂ M is the spin model subfactor associated to a complex Hadamard
matrix in Mm(C), then the second relative commutant N′ ∩ M1 is endowed with a natural structure of a
Bose-Mesner algebra. But nothing along those lines seems to be known for the higher relative commutants
N′ ∩ Mn, n > 1. On the other hand, it is a fact that if F : N′ ∩ M1 → M′ ∩ M2 is the subfactor analogue of
the Fourier transform, then N′ ∩ M1 ⊂ Mm(C) and a ◦ b = F −1(F (a)F (b)) ∀a, b ∈ N′ ∩ M1, where a ◦ b
denotes the Schur product of the matrices a and b. Equivalently, a ◦ b = ZC(a ⊗ b) where C denotes the
tangle that is sometimes referred to (albeit inappropriately) as the ‘comultiplication tangle’.

We shall adopt the convention of denoting a k-tangle T by T k
k1,··· ,kb

if it is important to show that it has
b internal discs respectively of colours k1, · · · , kb - so iff b = 0, T has no internal discs and in that case,
ZT : C → Pk; in particular, Z1k(1) is the multiplicative identity of Pk. We show, conversely, that if P is a
subfactor planar algebra, and if there exist k-tangles Uk and Pk

k,k, which define a ‘unit tangle’ and a ‘product
tangle’ on the space Pk such that ZP(ZU(1) ⊗ x) = ZP(x ⊗ ZU(1)) = x, and if R denotes the ‘1-click’ rotation
k-tangle (so that ZR : Pk+ → Pk−), then the tangles U and P are given, respectively, by U = R−i ◦ 1 and
P = R−i ◦ Mk ◦ (Ri,Ri). (A more precise version of the result described above may be found in Theorem 1.)
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2 All algebra structures coming from tangle actions
Definition 1. (Rotation tangles of colour (k, ε), k ≥ 1:) For k ≥ 1, ε ∈ {±}, define Ri

(k,ε), 1 ≤ i ≤ 2k, to be
the annular tangle (i.e., with one internal box) in which the internal box has color (k, ε), and the j-th marked
point of the external box is connected to the (i + j)-th marked point of the internal box for every 1 ≤ j ≤ 2k
(with addition modulo 2k). Our convention is that the points are numbered clockwise with the ∗-interval
being between 2k and 1. (It should be noted that the external box of, and hence the tangle, Ri

(k,ε) has colour
(k,±ε) according as i is even or odd.)

The tangles R1
(3,+) and R3

(2,−) are illustrated as in the figure below:1

R1
(3,+) = R3

(2,−) =

In this section we will prove following result.

Theorem 1. Suppose P is a non-trivial (i.e., the modulus δ > 1) subfactor planar algebra and T is a tangle
of color (k, ε) that contains two internal boxes, both also of color (k, ε), where k , 2. Suppose there exist a
Temperley-Lieb tangle U (k,ε) of the same color (k, ε) such that ZT (ZU(k,ε)(1)⊗ x) = ZT (x⊗ZU(k,ε)(1)) = x for all
x in P(k,ε). Then there exist 1 ≤ i ≤ 2k, such that T = R2k−i

c ◦ (Mc ◦ (Ri
(k,ε),R

i
(k,ε))) and U (k,ε) = R2k−i

c ◦1c, where
c is (k, ε) or (k,−ε) according as i is even or odd . Consequently ZT gives an automatically associative
product on P(k,ε).

2

Remark 1. Suppose P is a non-trivial subfactor planar algebra. Then any two Temperley Lieb elements
in P(k,ε), which have no loops in them, are linearly independent. This is an immediate consequence of the
Cauchy Schwarz inequality - as was kindly pointed out to us by Vaughan Jones.

For proving Theorem 1, we will first prove the following Lemma.

Lemma. If P is a subfactor planar algebra with modulus δ > 1, and T is an annular tangle of color (k, ε)
with internal box also of color (k, ε) such that ZT = idP(k,ε) , and if k , 2, then T is the identity tangle I(k,ε)

(k,ε) .

Proof. If T had a contractible loop, then Z1(k,ε)(1) = ZT (Z1(k,ε)(1)) = ZT◦1(k,ε)(1) = δ jZL(1), where j ≥ 1 and L
is the Temperley Lieb tangle without loops obtained by removing all loops from T ◦ 1(k,ε). By Remark 1
and δ > 1, this is not possible. Therefore T cannot have any contractible loops.

Suppose, if possible, that T has a cap on an internal box which joins marked point u to marked point
v. Let us fix any Temperley Lieb tangle L of color (k, ε) without loops such that the marked point u is
connected to the marked point v. Then ZL(1) = ZT (ZL(1)) = ZT◦L(1) = δ jZL1(1), where j ≥ 1 and L1 is the
Temperley Lieb tangle without loops obtained by removing all loops from T ◦ L; but by remark 1 this is not
possible. Therefore T cannot have any cap on the internal box.

1Here and elsewhere when figures are drawn, it is always understood that the ∗-interval of any box contains the left vertical
bounding edge.

2We use the notation of [KS] - Mc (resp., 1c) denotes the multiplication (resp., unit) tangle of colour c.
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Note that if internal and external boxes are of the same color and if the internal box does not have any
caps, then the external box can also not have any caps. So T does not have any cap on the external box either.

For the case of colors (0, ε), if T has j loops, we have Z1(0,ε)(1) = ZT (Z1(0,ε)(1)) = δ jZ1(0,`ε)(1), where j ≥ 1,
which is clearly impossible since δ > 1.

The case of (1, ε) is proved exactly as in the case of (0, ε), so assume k > 2. Since T has no caps on
external or internal box and has no contractible loops, it follows that there exist 1 ≤ l ≤ 2k such that the
j-th marked point on the external box is connected to the j + l − 1-th marked point on the internal box. If
we prove l = 1, this would complete the proof of the lemma.

Now, the internal and external box have the same color, and the point marked 1 on the external box
is connected to the point marked l on the internal box. Clearly, l must be odd. Suppose, if possible, that
l ≥ 3. Since k > 2, there exist at least 3 even numbers in {1, 2, · · · , 2k}. So we can choose an even number
i , l − 1 such that 1 ≤ i < 2k. Then fix one Temperley Lieb tangle L of color (k, ε), without loops subject
only to the condition that 1 is connected to i and l − 1 is connected to l. Then by hypothesis on T , we have
ZL(1) = ZT (ZL(1)) = ZT◦L(1). Here T ◦ L also a Temperley Lieb tangle without loops, so by Remark 1, we
have L = T ◦ L.

12k

2k − l + 2

2k − l + i + 1

ll − 1

1

i

T ◦ L =

∗

∗

Thus, the marked point 1 of the external box is connected to the marked point 2k (respectively i) of the
internal box in T ◦ L (respectively in L), and i , 2k. Therefore l ≥ 3 cannot be true. So l must be 1; and the
proof of the lemma is complete.

�

Proof. (of Theorem 1): The hypothesis ZT (ZU(k,ε)(1) ⊗ x) = ZT (x ⊗ ZU(k,ε)(1)) = x implies ZT◦Di U
(k,ε) = idp(k,ε) ,

for i = 1, 2. So our Lemma implies T ◦Di U (k,ε) = I(k,ε)
(k,ε) for i = 1, 2. For colors (0, ε), (1, ε) this theorem is

clear. So assume k > 2. Note that the above conclusion T ◦Di U (k,ε) = I(k,ε)
(k,ε) , i = 1, 2 implies that T cannot

have either loops or caps on internal or external boxes, and U (k,ε) can also not contain any loop. Also note
that T ◦Di U (k,ε) = I(k,ε)

(k,ε) for i = 1, 2 implies that every marked point of the external box must be connected to
a marked point with the same label of either D1 or D2.

Let l,m, n denote the number of strings which join the external box to the first box, the first box to the
second box, and the second box to the external box, respectively. Then, l + m = m + n = l + n = 2k and
hence l = n = m = k. Since there are no caps on any box, consecutively marked points (modulo 2k) of
external box must join consecutive marked points of the first (resp., second) internal box; and a similar
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remark applies for strings joining the two internal boxes.

Case 1: If marked point 1 of external box of T is connected to marked point 1 of D1, then there exists
1 ≤ j ≤ k such that T looks as in the following diagram:

1
jk + j + 1

1
k + j + 1

j

j + 1

2 jk + j

k + j + 1
1 j

k + j 2 j

j + 1

j + 1
2 j

k + j

D1

D2

∗

∗

∗

If k + j is even, then T = Rk− j
(k,ε) ◦ (M(k,ε) ◦ (Rk+ j

(k,ε),R
k+ j
(k,ε))), and if k + j is odd, then T = Rk− j

(k,−ε) ◦ (M(k,−ε) ◦

(Rk+ j
(k,ε),R

k+ j
(k,ε)). Note that T ◦D1 U (k,ε) = I(k,ε)

(k,ε) implies U (k,ε) must be as indicated below:

1

j
k + j + 1

j + 1k + j

2 j

U (k,ε) =

∗

So U (k,ε) = Rk− j
(k,ε) ◦ 1(k,ε) if k + j is even, otherwise U (k,ε) = Rk− j

(k,−ε) ◦ 1(k,−ε). So k + j is the i as in the theorem.

Case 2: If marked point 1 of the external box of T is connected to marked point 1 of D2, then there
exists 1 ≤ i ≤ k such that T looks as in the following diagram:

2i
k + ii + 1

2i
i + 1

k + i

k + i + 1
1i

i + 1
2i k + i

i 1

k + i + 1

k + i + 1
1

i

D1

D2

∗

∗

∗

If i is even, then T = R2k−i
(k,ε) ◦ (M(k,ε)◦ (Ri

(k,ε),R
i
(k,ε))), otherwise i is odd and T = R2k−i

(k,−ε)◦ (M(k,−ε)◦ (Ri
(k,ε),R

i
(k,ε))).

Note that in the same way as above, U (k,ε) = R2k−i
(k,ε) ◦ 1(k,ε) if i is even, otherwise U (k,ε) = R2k−i

(k,−ε) ◦ 1(k,−ε).
�



2014 Maui and 2015 Qinhuangdao conferences
in honour of Vaughan F. R. Jones’ 60th birthday

Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

Page 383

Acknowledgement

I wish to thank Vijay Kodiyalam and V S Sunder for useful discussions.

References:

[KS] Vijay Kodiyalam and V S Sunder, On Jones’ planar algebra, J. Knot Theory and its Ramifications
13(2) (2004) 219 − 247, MR2047470 (2005e:46119).

[JNM] F.Jaeger, M.Matsumoto, and K.Nomura, Association schemes related with type II matrices and spin
models, J. Alg. Combin. 8(1998), 39 − 72. MR1635553 (99f:05125)

[J] V.F.R. Jones, Planar Algebras I, arXiv:math.QA/9909027. 1999.


