APPENDIX A

A general regularity theorem

We here prove a useful general regularity theorem, which is essentially an abstraction of the "dimension reducing" argument of Federer [FH2]. There are a number of important applications of this general theorem in the text.

Let $p \geq n \geq 2$ and let F be a collection of functions $\phi=\left(\phi^{1} \ldots, \phi^{2}\right): \mathbb{R}^{P} \rightarrow \mathbb{R}^{2}\left(Q=1\right.$ is an important case) such that each ϕ^{j} is locally H^{n}-integrable on \mathbb{R}^{P}. For $\phi \in F, y \in \mathbb{R}^{P}$ and $\lambda>0$ we let $\phi_{y, \lambda}$ be defined by

$$
\phi_{y, \lambda}(x)=\phi(y+\lambda x), x \in \mathbb{R}^{P}
$$

Also, for $\phi \in F$ and a given sequence $\left\{\phi_{k}\right\} \subset F$ we write $\phi_{k}-\phi$ if $\int \phi_{\mathrm{k}} \mathrm{f} d H^{\mathrm{n}} \rightarrow \int \phi f d H^{\mathrm{n}} \quad\left(\right.$ in $\left.\mathbb{R}^{2}\right)$ for each given $f \in C_{C}^{0}\left(\mathbb{R}^{P}\right)$.

We subsequently make the following 3 special assumptions concerning F :
A. 1 (Closure under appropriate scaling and translation): If $|y| \leq 1-\lambda$. $0<\lambda<1$, and if $\phi \in F$, then $\phi_{y, \lambda} \in F$.
A. 2 (Existence of homogeneous degree zero "tangent functions"): If $|y|<1$, if $\left\{\lambda_{k}\right\} \not \downarrow 0$ and if $\phi \in F$, then there is a subsequence $\left\{\lambda_{k},\right\}$ and $\psi \in F$ such that $\phi_{\mathrm{y}, \lambda_{\mathrm{k}^{\prime}}} \rightarrow \psi$ and $\psi_{0, \lambda}=\psi$ for each $\lambda>0$.
A. 3 ("Singular set" hypotheses): We asswe there is a map

$$
\text { sing : } F \rightarrow C\left(=\text { set of closed subsets of } \mathbb{R}^{P}\right)
$$

such that
(1) sing $\phi=\emptyset$ if $\phi \in F$ is a constant multiple of the characteristic function of an n-dimensional subspace of \mathbb{R}^{P}.
(2) if $|y| \leq 1-\lambda, \quad 0<\lambda<1$, then $\operatorname{sing} \phi_{y, \lambda}=\lambda^{-1}(\operatorname{sing} \phi-y)$.
(3) if $\phi, \phi_{k} \in F$ with $\phi_{k} \rightarrow \phi$, then for each $\varepsilon>0$ there is a $\mathrm{k}(\varepsilon)$ such that

$$
\mathrm{B}_{1}(0) \cap \operatorname{sing} \phi_{\mathrm{k}} \subset\left\{\mathrm{x} \in \mathbb{R}^{P}: \operatorname{dist}(\operatorname{sing} \phi, \mathrm{x})<\varepsilon\right\} \quad \forall \mathrm{k} \geq \mathrm{k}(\varepsilon)
$$

We can now state the main result of this section:
A. 4 THEOREM Subject to the notation and assumptions A.1, A.2, A. 3 above, we have

$$
\begin{equation*}
\operatorname{dim} \mathrm{B}_{1}(0) \cap \text { sing } \phi \leq \mathrm{n}-1 \quad \forall \phi \in F . \tag{*}
\end{equation*}
$$

(Here "dim" is Hausdorff dimension, so that (*) means $H^{n-1+\alpha}(\operatorname{sing} \phi)=0$ $\forall \alpha>0$.

In fact either sing $\phi \cap \mathrm{B}_{1}(0)=\emptyset$ for every $\phi \in F$ or else there is an integer $d \in[0, n-1]$ such that

$$
\operatorname{dim} \text { sing } \phi \cap \mathrm{B}_{1}(0) \leq \mathrm{d} \quad \forall \phi \in F
$$

and such that there is some $\psi \in F$ and a d-dimensional subspace $L \subset \mathbb{R}^{P}$ with (**)

$$
\psi_{\mathrm{y}, \lambda}=\psi \quad \forall \mathrm{y} \in \mathrm{~L}, \quad \lambda>0
$$

and

$$
\operatorname{sing} \psi=L
$$

If $\mathrm{d}=0$ then sing $\phi \cap \mathrm{B}_{\mathrm{p}}(0)$ is finite for each $\phi \in F$ and each $\rho<1$.
A. 5 REMARK One readily checks that if L is an n-dimensional subspace of \mathbb{R}^{P} and $\psi \in F$ satisfies (**), then ψ is exactly a constant multiple of the characteristic function of L (hence sing $\psi=\varnothing$ by A.3(1)); otherwise we would have $p>n$ and $\psi \equiv$ const. $\neq 0$ on some $(n+1)$-dimensional half-space,
thus contradicting the fact that ψ is locally H^{n}-integrable on \mathbb{R}^{P}.

Proof of A. 4 Assume sing $\phi \cap B_{1}(0) \neq \emptyset$ for some $\phi \in F$, and let $d=\sup \left\{d i m L: L\right.$ is a d-dimensional subspace of \mathbb{R}^{P} and there is $\phi \in F$ with sing $\phi \neq \emptyset$ and $\left.\phi_{y, \lambda}=\phi \quad \forall y \in L, \lambda>0\right\}$. Then by Remark A. 5 we have $d \leq n-1$.

For a given $\phi \in F$ and $y \in B_{1}(0)$ we let $T(\phi, y)$ be the set of $\psi \in F$ with $\psi_{0, \lambda}=\psi \forall \lambda>0$ and with $\lim \phi_{Y, \lambda_{k}}=\psi$ for some sequence $\lambda_{k} \psi 0$. $(T(\phi, y) \neq \emptyset$ by assumption A.2).

Let $\quad d \geq 0$ and let

$$
\begin{equation*}
F^{\ell}=\left\{\phi \in F: H^{\ell}\left(\operatorname{sing} \phi \cap B_{1}(0)\right)>0\right\} \tag{1}
\end{equation*}
$$

Our first task is to prove the implication

$$
\begin{equation*}
\phi \in F^{\ell} \Rightarrow \exists \psi \in T(\phi, x) \cap F^{\ell} \tag{2}
\end{equation*}
$$

for H^{l}-a.e. $x \in \operatorname{sing} \phi \cap B_{1}(0)$.

To see this, let H_{δ}^{l} be the "size δ approximation" of H^{l} as described in $\S 2$ and recall that $H^{\ell}(A)>0 \Leftrightarrow H_{\infty}^{\ell}(A)>0$, so that $F^{\ell}=\left\{\phi \in F: H_{\infty}^{\ell}\left(\operatorname{sing} \phi \cap B_{1}(0)\right)>0\right\}$. Also note that (by $\left.3.6(2)\right)$, for any bounded subset A of \mathbb{R}^{P},

$$
\begin{equation*}
H_{\infty}^{\ell}(A)>0 \Rightarrow \Theta^{* n}\left(H_{\infty}^{\ell} L A, x\right)>0 \text { for } H^{\ell} \text {-a.e. } x \in A . \tag{3}
\end{equation*}
$$

Thus we see that if $\phi \in F^{l}$ then for $H^{l}-$ a.e. $x \in \operatorname{sing} \phi \cap B_{1}(0)$ we have $\theta^{* \ell}\left(H_{\infty}^{\ell} L \operatorname{sing} \phi, x\right)>0$. For such x we thus have a sequence $\lambda_{k} \downarrow 0$ such that
(4)

and by assumption $A_{0} 2$ there is a subsequence $\left\{\lambda_{k},\right\}$ such that $\phi_{x, \lambda_{k^{\prime}}}-\psi \in \mathbb{T}(\phi, x)$. If now $H_{\infty}^{\ell}($ sing $\psi)=0$, then for any $\varepsilon>0$ we could find open balls $\left\{\mathrm{B}_{\rho_{j}}\left(\mathrm{x}_{\mathrm{j}}\right)\right\}$ such that

$$
\begin{equation*}
\operatorname{sing} \psi \subset \bigcup_{j}{ }^{B} \rho_{j}\left(x_{j}\right) \tag{5}
\end{equation*}
$$

and
(6)

$$
\sum_{j} \omega_{\ell} \rho_{j}^{\ell}<\varepsilon
$$

(by definition of H_{∞}^{ℓ}) . Now (5) in particular implies that $K \equiv \overline{B_{1}}(0) \sim \underset{j}{U} B_{P_{j}}\left(x_{j}\right) \quad$ is a compact set with positive distance from sing ψ. Hence by assumption $A .3(3)$ we have

$$
\begin{equation*}
\operatorname{sing} \phi_{x_{0}, \lambda_{k}} \cap B_{1}(0) \subset \bigcup_{j} B_{\rho_{j}}\left(x_{j}\right) \tag{7}
\end{equation*}
$$

for all sufficiently large k, and hence by (6)

$$
H_{\infty}^{\ell}\left(\operatorname{sing} \phi_{X_{,}, \lambda_{k^{\prime}}} \cap \mathrm{B}_{1}(0)\right)<\varepsilon, k \geq \mathrm{k}(\varepsilon)
$$

Thus since $\lambda_{k}^{-1}($ sing $\phi-x)=\operatorname{sing} \phi_{x, \lambda_{k}} \quad$ (by $\left.A .3(2)\right)$ we have

$$
\lambda_{k^{\prime}}^{-\ell} H_{\infty}^{\ell}\left(\operatorname{sing} \phi \cap B_{\lambda_{k^{\prime}}}(x)\right)<\varepsilon
$$

for all sufficiently large k, thus a contradiction for
$\varepsilon<\lim _{k \rightarrow \infty} \lambda_{k}^{-\ell} H_{\infty}^{\ell}\left(\operatorname{sing} \phi \cap B_{\lambda_{k}}(x)\right)$. (Such ε can be chosen by (4).)

We have therefore established the general implication (2). From now on take $\ell>d-1$ so that $F^{\ell} \neq \varnothing$ (which is automatic for $\ell \leq d$ by definition of d). By (2) there is $\phi \in F^{\ell}$ with $\phi_{0, \lambda}=\phi \quad \forall \lambda>0$. Suppose also that there is a k-dimensional subspace $(k \geq 0) \quad S$ of \mathbb{R}^{P} such that $\phi_{Y, \lambda}=\phi$ $\forall y \in S, \lambda>0$. (Notice of course this is no additional restriction for ϕ in case $k=0$.) Now if $k \geq d+1$ then, by definition of d, we can assert $\operatorname{sing} \phi=\varnothing$, thus contradicting the fact that $\phi \in F^{\ell}$. Therefore $0 \leq k \leq d$, and if $k \leq d-1(<\ell)$, then $H^{\ell}(S)=0$ and in particular

$$
\begin{equation*}
\exists x \in B_{I}(0) \cap \operatorname{sing} \phi \sim s \tag{8}
\end{equation*}
$$

But by A. 2 we can choose $\psi \in T(\phi, x)$. Since $\psi=\lim \phi_{x, \lambda_{j}}$ for some sequence $\lambda_{j} \downarrow 0$, we evidently have (since $\phi_{y+x, \lambda}=\phi_{x, \lambda} \quad \forall y \in S$, $\lambda>0$)

$$
\begin{equation*}
\psi_{y, 1}=\lim \phi_{y^{+x}, \lambda_{j}}=\lim \phi_{x, \lambda_{j}}=\psi \quad \forall y \in S \tag{9}
\end{equation*}
$$

and
(10)

$$
\psi_{\beta x, 1}=\lim \phi_{x+\lambda_{j}} \beta x, \lambda_{j}=\psi \quad \forall \beta \in \mathbb{R}
$$

(All limits in the weak sense described at the beginning of the section.) Thus $\psi_{z, \lambda}=\psi$ for each $\lambda>0$ and each z in the $(k+1)$-dimensional subspace T of \mathbb{R}^{P} spanned by S and $x . \quad$ Sing $\psi \neq \emptyset$ (by A.3(3)), hence by induction on k we can take $k=d-1 ;$ i.e. $\operatorname{dim} T=d$, and hence sing $\psi \supset T$ by $A .3(2)$. On the other hand if $\exists \tilde{x} \in \operatorname{sing} \psi \sim T$ then we can repeat the above argument (beginning at (8)) with T in place of S and ψ in place of ϕ. This would then give a ($d+1$)-dimensional subspace \tilde{T} and a $\tilde{\psi} \in F$ with sing $\tilde{\psi} \supset \tilde{T}$, thus contradicting the definition of d. Therefore sing $\phi=T$. Furthermore if $l>d$ then the above induction works up to $k=d$ and again therefore we would have a contradiction. Thus $\operatorname{dim}\left(\mathrm{B}_{1}(0) \cap \operatorname{sing} \phi\right) \leq \mathrm{d} \quad \forall \phi \in F$.

Finally to prove the last claim of the theorem, we suppose that $d=0$. Then we have already established that

$$
\begin{equation*}
H^{\alpha}\left(\operatorname{sing} \phi \cap B_{1}(0)\right)=0 \quad \forall \alpha>0, \phi \in F . \tag{11}
\end{equation*}
$$

If sing $\phi \cap B_{\rho}(0)$ is not finite, then we select $x \in \bar{B}_{\rho}(0)$ such that $x=\lim x_{k}$ for some sequence $x_{k} \in \operatorname{sing} \phi \cap B_{1}(0) \sim\{x\}$. Then letting $\lambda_{k}=2\left|x_{k}-x\right|$ we see from A.3(2) that there is a subsequence $\left\{\lambda_{k}\right.$, $\}$ with $\phi_{x_{0}, \lambda_{k^{\prime}}} \rightarrow \psi \in T\left(\phi_{s} x\right)$ and $\left(x_{k^{\prime}}-x\right) /\left|x_{k^{\prime}}-x\right| \rightarrow \xi \in \partial B_{I}(0)$. Now by $A .3$ (2), (3) we know that $\{\xi / 2\} \cap\{0\} \subset$ sing ψ and, since $\psi_{0, \lambda}=\psi$, this (together with A.3(2)) gives $L_{\xi} \subset$ sing ψ where L_{ξ} is the ray determined by 0 and ξ. Then H^{1} (sing $\left.\psi \cap B_{1}(0)\right)>0$, thus contracting (11), because $\psi \in F$.

APPENDIX B

NON-EXISTENCE OF STABLE MINIMAL CONES, $2 \leq n \leq 6$.

Here we describe J. Simons [SJ] result on non-existence of n-dimensional stable minimal cones (previously established in case $n=2,3$ by Fleming [F] and Almgren [A4] respectively). The proof here follows essentially Schoen-Simon-Yau [SSY], and is slightly cleaner than the original proof in [SJ].

Suppose to begin that $c \in D_{n}\left(\mathbb{R}^{n+1}\right)$ is a cone $\left(\eta_{0, \lambda \#} C=C\right)$ and C is integer multiplicity with $\partial C=0$. If $\operatorname{sing} C \subset\{0\}$ and if C is minimizing in \mathbb{R}^{n+1} then, writing $M=\operatorname{spt} C \sim\{0\}$ and taking M_{t} as in 59 , we have $\left.\frac{d}{d t} H^{n}\left(M_{t}\right)\right|_{t=0}=0$ and $\left.\frac{d^{2}}{d t^{2}} H^{n}\left(M_{t}\right)\right|_{t=0} \geq 0$. (This is clear because in fact $H^{n}\left(M_{t}\right)$ takes its minimum value at $t=0$, by virtue of our assumption that C is minimizing.) Notice that M is orientable, with orientation induced from C, and hence in particular we can deduce from 9.8 that
B. $1 \quad \int_{M}\left(\left|\nabla^{M} \zeta\right|^{2}-\zeta^{2}|A|^{2}\right) d H^{n} \geq 0$ fox any $\zeta \in C_{C}^{1}(M)$ (notice $0 \notin M$, so such ζ vanish in a neighbourhood of 0). Here A is the second fundamental form of M and $|A|$ is its length, as described in $\S 7$ and in 9.8.

The main result we need is given in the following theorem.
B. 2 THEOREM Suppose $2 \leq n \leq 6$ and M is an n-dimensional cone embedded in $\mathbb{R}^{\mathrm{n}+1}$ with zero mean curvature (see §7) and with $\overline{\mathrm{M}} \sim \mathrm{M}=\{0\}$, and suppose that M is stable in the sense that B.1. holds. Then \bar{M} is a hyperplane. (As explained above, the hypotheses are in particular satisfied if $M=\operatorname{spt} C \sim\{0\}$, with $C \in D_{n}\left(\mathbb{R}^{n+1}\right)$ a minimizing cone with $\partial C=0$ and sing $\left.C \subset\{0\}.\right)$
B. 3 REMARK Theorem B. 2 is false for $n=7$; J. Simons [SJ] was the first to point out that the cone $M=\left\{\left(x^{1}, \ldots, x^{8}\right) \in \mathbb{R}^{8}: \sum_{i=1}^{4}\left(x^{i}\right)^{2}=\sum_{i=5}^{8}\left(x^{i}\right)^{2}\right\}$ is a stable minimal cone. (Notice that M is the cone over the compact manifold $\left(\frac{1}{\sqrt{2}} s^{3}\right) \times\left(\frac{1}{\sqrt{2}} s^{3}\right) \subset s^{7} \subset \mathbb{R}^{8}$ 。) The fact that the mean curvature of M is zero is checked by direct computation. The fact that M is actually stable is checked as follows. First, by direct computation one checks that the second fundamental form A of M satisfies $|A|^{2}=6 /|x|^{2}$.

On the other hand for a stationary hypersurface $M \subset \mathbb{R}^{n+1}$ the first variation formula 9.3 says $\int \operatorname{div}_{M} X d H^{n}=0$ if spt|X| is a compact subset of M. Taking $X_{x}=\left(\zeta^{2} / x^{2}\right) x, \zeta \in C_{C}^{\infty}(M), r=|x|$, and computing as in §17, we get

$$
(n-2) \int_{M}\left(\zeta^{2} / r^{2}\right) d H^{n}=-2 \int_{M} \zeta r^{-2} x \cdot \nabla^{M} \zeta d H^{n}
$$

Using the Schwartz inequality on the right we get

$$
\frac{(n-2)^{2}}{4} \int_{M}\left(\zeta^{2} / x^{2}\right) d H^{n} \leq \int_{M}\left|\nabla^{M} \zeta\right|^{2} d H^{n} .
$$

Thus we have stability for M (in the sense of $B .1$) whenever A satisfies $|x|^{2}|A|^{2} \leq(n-2)^{2} / 4$.

For the example above we have $n=7$ and $|x|^{2}|A|^{2}=6$, so that this inequality is satisfied, and the cone over $S^{3} \times S^{3}$ is stable as claimed. (Similarly the cone over $s^{q} \times s^{q}$ is stable for $q \geq 3$; i.e. when the dimension of the cone is ≥ 7.)

Before giving the proof of $B .2$ we need to derive the identity of J. Simons for the Laplacian of the length of the second fundamental form of a hypersurface (Lemma B. 8 below).

The simple derivation here assumes the reader's familiarity with basic Riemannian geometry. (A completely elementary derivation, assuming no such background, is described in [G].)

For the moment let M be an arbitrary hypersurface in \mathbb{R}^{n+1} (M not necessarily a cone, and not necessarily having zero mean curvature).

Let $\tau_{1} \ldots . \tau_{n}$ be a locally defined family of smooth vector fields which, together with the unit normal V of M, define an orthonormal basis for \mathbb{R}^{n+1} at all points in some region of M.

The second fundamental form of M relative to the unit normal V is the tensor $A=h_{i j} \tau_{i}{ }^{\otimes} \tau_{j}$, where $h_{i j}=\left\langle D_{\tau_{j}} \nu_{i} \tau_{i}\right\rangle$. (Cf. §7.) Recall that we have
B. 4
$h_{i j}=h_{j i}$,
and, since the Riemann tensor of \mathbb{R}^{n+1} is zero, we have the Codazzi equations
B. 5

$$
h_{i j, k}=h_{i k, j}, i, j, k \in\{1, \ldots, n\}
$$

Here $h_{i j, k}$ denotes the covariant derivative of A with respect to τ_{k}; that is, $h_{i j, k}$ are such that $\nabla_{\tau_{k}} A=h_{i j, k} \tau_{i} \otimes \tau_{j}$.

We also have the Gauss curvature equations
B. 6

$$
R_{i j k \ell}=h_{i \ell} h_{j k}-h_{i k} h_{j \ell}
$$

where $R=R_{i j k \ell} \tau_{i} \otimes \tau_{j} \otimes \tau_{k} \otimes \tau_{\ell}$ is the Riemann curvature tensor of M, and where we use the sign convention such that $R_{i j j i}(i \neq j)$ are sectional curvatures of $M\left(=+1\right.$ if $\left.M=s^{n}\right)$.

From the properties of R (in fact essentially by definition of R) we also have, for any 2-tensor $a_{i j} \tau_{i}$ * τ_{j} 。

$$
a_{i j, k \ell}=a_{i j, \ell k}+a_{i m} R_{m j \ell k}+a_{m j} R_{m i \ell k}
$$

(where $a_{i j, k l}$ means $a_{i j, k, l}-i . e$ the covariant derivative with respect to τ_{ℓ} of the tensor $a_{i j, k} \tau_{i} \otimes \tau_{j} \otimes \tau_{k}$). In particular
B. $7 \quad h_{i j, k l}=h_{i j, \ell k}+h_{i m} R_{m j l k}+h_{m j} R_{m i l k}$

$$
=h_{i j, \ell k}+h_{i m}\left[h_{m \ell} h_{j k}-h_{m k} h_{j \ell}\right]-h_{m j}\left[h_{i \ell} h_{m k}-h_{i k} h_{m \ell}\right]
$$

by B. 6 .
B. 8 LEMMA In the notation above

$$
\Delta_{M}\left(\frac{1}{2}|A|^{2}\right)=\sum_{i, j, k} h_{i j, k}^{2}-|A|^{4}+h_{i j}^{H}, i j+H h_{m i} h_{m j} h_{i j}
$$

where $H=h_{k k}=\operatorname{trace} A$.

Proof We first compute $h_{i j, k k}$:

$$
\begin{aligned}
h_{i j, k k}= & h_{i k, j k} \quad(\text { by B. 5) } \\
= & h_{k i, j k} \quad(\text { by } B .4) \\
= & h_{k i, k j}+h_{k m}\left[h_{m j} h_{i k}-h_{m k} h_{i j}\right] \\
& -h_{m i}\left[h_{k j} h_{m k}-h_{k k} h_{m j}\right] \quad(b y B .7) \\
= & h_{k i, k j}-\left(\sum_{m, k} h_{m k}^{2}\right)_{h_{i j}}+h_{k k} h_{m i} h_{m j} \\
= & h_{k k, i j}-\left(\sum_{m, k} h_{m k}^{2}\right) h_{i j}+h_{k k} h_{m i} h_{m j} \quad \text { (by B.5) }
\end{aligned}
$$

Now multiplying by $h_{i j}$ we then get (since $h_{i j} h_{i j, k k}=\frac{1}{2}\left(\sum_{i, j} h_{i j}^{2}\right)_{, k k}$ $\left.-\sum_{i, j, k} h_{i j, k}^{2}\right)$

$$
\frac{1}{2}\left(\sum_{i, j} h_{i j}^{2}\right)_{, k k}=\sum_{i, j, k} h_{i j, k}^{2}-\left(\sum_{i, j} h_{i j}^{2}\right)^{2}+h_{i j}^{H, i j}+H h_{m i} h_{m j} h_{i j}
$$

which is the required identity.

We now want to examine carefully the term $\sum_{i, j, k} h_{i j, k}^{2}$ appearing in the identity of $B .8$ in case M is a cone with vertex at 0 (i.e. $\eta_{0, ~} \lambda^{M=M}$ $\forall \lambda>0$). In particular we want to compare $\sum_{i, j, k} h_{i j, k}^{2}$ with $\left|\nabla^{M}\right| A\left|\left.\right|^{2}\right.$ in this case. Since $\left.\left|\nabla^{M}\right| A\left|\left.\right|^{2}=\sum_{k=1}^{n}\right| A\right|^{-2}\left(h_{i j} h_{i j, k}\right)^{2}$, we look at the difference

$$
\begin{equation*}
D \equiv \sum_{i, j, k} h_{i j, k}^{2}-\sum_{k=1}^{n}|A|^{-2}\left(h_{i j} h_{i j, k}\right)^{2} . \tag{*}
\end{equation*}
$$

B. 9 LEMMA If M is a cone (not necessarily minimal) the quantity D defined in (*) satisfies

$$
D(x) \geq 2|x|^{-2}|A(x)|^{2}, x \in M
$$

Proof Let $x \in M$ and select the frame $\tau_{1}, \ldots, \tau_{n}$ so that τ_{n} is radial $(x /|x|)$ along the ray ℓ_{x} through x, and so that (as vectors in \mathbb{R}^{n+1}) $\tau_{1}, \ldots, \tau_{n}$ are constant along ℓ_{x}. Then

$$
\begin{equation*}
h_{n j}=h_{j n}=0 \quad \text { along } \ell_{x}, j=1, \ldots, n \tag{1}
\end{equation*}
$$

and (since $\left.h_{i j}(\lambda x)=\lambda^{-1} h_{i j}(x), \lambda>0\right)$

$$
\begin{equation*}
h_{i j, n}=-r^{-1} h_{i j} \quad \text { along } \quad l_{x} . \tag{2}
\end{equation*}
$$

Rearranging the expression for D, we have

$$
D=\frac{1}{2} \sum_{k=1}^{n} \sum_{i, j, r, s=1}^{n}|A|^{-2}\left(h_{r s} h_{i j, k}-h_{i j} h_{r s, k}\right)^{2}
$$

as one easily checks by expanding the square on the right. Now since

$$
\sum_{i, j, r, s=1}^{n}()^{2} \geq 4 \sum_{i, j, r=1}^{n-1}()^{2}
$$

we thus have

$$
D \geq 2|A|^{-2} \sum_{k=1}^{n} \sum_{i, j, r=1}^{n-1}\left(h_{i j} h_{r n, k}\right)^{2} .
$$

By the Codazzi equations B. 5 and (2) this gives

$$
\begin{aligned}
D & \geq 2 r^{-2}|A|^{-2} \sum_{k=1}^{n} \sum_{i, j, r=1}^{n-1} h_{i j}^{2} h_{r k}^{2} \\
& =2 r^{-2}|A|^{-2}|A|^{4} \quad \text { (by (1)) } \\
& =2 r^{-2}|A|^{2}
\end{aligned}
$$

as required.

Proof of B. 2 Notice that so far we have not used the minimality of M (i.e. we have not used $\left.H\left(=h_{k k}\right)=0\right)$. We now do set $H=0$ in the above computations, thus giving (by B. $8, \mathrm{~B} .9$)

$$
\begin{equation*}
\Delta_{M}\left(\frac{1}{2}|A|^{2}\right)+|A|^{4} \geq 2 r^{-2}|A|^{2}+|\nabla| A| |^{2} \tag{1}
\end{equation*}
$$

for the minimal cone M. (Notice that $|A|$ is Lipschitz, and hence $|\nabla| A|\mid$ makes sense H^{n} - a.e. in M_{0})

Our aim now is to use (1) in combination with the stability inequality B. 1 to get a contradiction in case $2 \leq n \leq 6$.

Specifically, replace ζ by $\zeta|A|$ in B.1. This gives
(2)

$$
\begin{aligned}
\int_{m} \zeta^{2}|A|^{4} & \leq \int_{M}|\nabla(\zeta|A|)|^{2} \\
& =\int_{M}\left(|\nabla \zeta|^{2}|A|^{2}+\zeta^{2}|\nabla| A| |^{2}\right) \\
& +2 \int_{M} \zeta|A| \nabla \zeta \cdot \nabla|A|
\end{aligned}
$$

Now

$$
\begin{aligned}
2 \int_{M} \zeta|A| \nabla \zeta \cdot \nabla|A| & =2 \int_{M} \zeta \nabla \zeta \cdot \nabla\left(\frac{1}{2}|A|^{2}\right) \\
& =\int_{M}\left(\nabla \zeta^{2}\right) \cdot \nabla\left(\frac{1}{2}|A|^{2}\right) \\
& =-\int_{M} \zeta^{2} \Delta_{M}\left(\frac{1}{2}|A|^{2}\right) \\
& \leq \int_{\mathbb{M}}\left(|A|^{4} \zeta^{2}-2 r^{-2} \zeta^{2}|A|^{2}+\left.\zeta^{2}|\nabla| A\right|^{2}\right) \quad \text { by }
\end{aligned}
$$

and hence (2) gives

$$
\begin{equation*}
2 \int_{M} r^{-2} \zeta^{2}|A|^{2} \leq \int_{M}|A|^{2}|\nabla \zeta|^{2} \quad \forall \zeta \in C_{C}^{1}(M) \tag{3}
\end{equation*}
$$

Now we claim that (3) is valid even if ζ does not have compact support on M, provided that ζ is locally Lipschitz and

$$
\begin{equation*}
\int_{M} r^{-2} \zeta^{2}|A|^{2}<\infty \tag{4}
\end{equation*}
$$

(This is proved by applying (3) with $\zeta \gamma_{\varepsilon}$ in place of ζ, where γ_{ε} is such that $\gamma_{\varepsilon}(x) \equiv 1$ for $|x| \in\left(\varepsilon, \varepsilon^{-1}\right),\left|\nabla \gamma_{\varepsilon}(x)\right| \leq 3 /|x|$ for all x, $\gamma_{\varepsilon}(x)=0$ for $|x|<\varepsilon / 2$ or $|x|>2 \varepsilon^{-1}$, and $0 \leq \gamma_{\varepsilon} \leq 1$ everywhere, then letting $\varepsilon \nleftarrow 0$ and using (4).)

Since M is a cone we can write

$$
\begin{equation*}
\int_{M} \phi(x) d H^{n}(x)=\int_{0}^{\infty} r^{n-1} \int_{\Sigma} \phi(r w) d H^{n-1}(\omega) d r \tag{5}
\end{equation*}
$$

for any non-negative continuous ϕ on M, where $\Sigma=M \cap S^{n}$ is a compact $(n-1)$-dimensional submanifold. Since $|A(x)|^{2}=r^{-2}|A(x /|x|)|^{2}$, we can now use (5) to check that $\zeta=r^{1+\varepsilon_{r}} 1_{1}^{1-n / 2-2 \varepsilon}, r_{1}=\max \{1, r\}$, is a valid choice to ensure (4), hence we may use this choice in (3). This is easily seen to give
(6)

$$
\begin{aligned}
& 2 \int_{M} r^{2 \varepsilon} r_{1}^{2-n-4 \varepsilon}|A|^{2} \leq((n / 2)-2+\varepsilon)^{2} \int_{M \cap\{r>1\}}|A|^{2} r^{2-n-2 \varepsilon} \\
&+(1+\varepsilon)^{2} \int_{M \cap\{r<1\}}|A|_{r}^{2} 2 \varepsilon \\
&<\infty .
\end{aligned}
$$

For $2 \leq n \leq 6$ we can choose ε such that $((n / 2)-2+\varepsilon)^{2}<2$ and $(1+\varepsilon)^{2}<2$. hence (6) gives $|A|^{2} \equiv 0$ on M as required.

