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APPENDIX A 

A GENERAL REGULARITY THEOREM 

We here prove a useful general regularity theorem, which is essentially 

an abstraction of ·the "dimension reducing" argument of Federer [FH2] 0 'l'here 

are a munber of important applications of this general theorem in the text. 

Let P ~ n > 2 and let F be a collection of functions 

" = ,;.1 ,,Q 
'f' ('!' '0 .. t'f' ) JRP->- JRQ (Q= l is an importan·t case) such ·that each c'pj 

is locally Hn-integrable on JJ:l . For ¢ E F, y E J£l and A > 0 we let 

" be defined by 
'~'y,A 

¢v A (x) 
~ ' 

¢ (y+Ax) , x E 1l 

Also, for ¢ E F and a given sequence {¢k} c F we write ¢k ¢ if 

(in lRQ) for each given 

We subsequently make the following 3 special assumptions concerning F 

A.l (Closure under appropriate scaling and translation): If jyj ::: 1- A , 

0 < A < l I and if ¢ E F , then ¢ , E F . 
Ytl\ 

A.2 (Existence of homogeneous degree zero "tangent functions"): If IYI < l , 

if {Ak} i- 0 and if ¢ E F, then there is a subsequence {Ak,} and 1J! E F 

such that ¢ ~ 1J! and 1J! = 1J! for each A > 0 o 

y,Ak' 0,:\ 

A.3 ("Singular set" hypotheses): We assume there is a map 

sing F -+ C ( set of closed subsets of JRP) 

such that 

(1) sing ¢ = 1/J ·if ¢ E F is a constant multiple of the characteristic 

function of an n-dimensionaZ subspace of 
p 

JR. , 



256 

(2) if then sing "' '+'y,A 
-1 

A (sing¢.-y), 

(3) if ¢,¢kEF with ¢k ~ ¢, then for each s > o there is a 

k(s) such that 

B1 (0) n sing ¢k c {xE JRP: dist(singtjl,x) <s} l;f k ": k(€) • 

We can nmv state the main result of this section: 

A.4 THEOREM SUbject to the notation and assumptions A.l, A.2, A.3 above~ 

we have 

(*) di:m B1 (0) n sing tjl S n- 1 'rf tjl E F . 

(Here "dim" is Hausdorff dimension, so that (*) means Hn-l+a(sing tjl) 0 

\1 a > o. l 

In fact either sing tjl n B1 (0) 

an ·integer d E [O,n-1] such that 

0 for every tjl E F or else there is 

dim sing tjl n Bl (0) S d 'rf ¢ E F 

and such that there is some \jJ E F and a d-dimensional subspace L c JRP with 

(**) 'rf y E L , A > 0 

and 

sing \jJ L . 

d 0 then sing ¢ n BP (0) is finite for each ¢ E F and each p < 1 . 

A.5 REMARK One readily checks that if L is an n-dimensional subspace of 

JRP and \jJ E F satisfies (**),then \jJ is exactly a constant multiple of the 

characteristic function of L (hence sing \jJ = 0 by A. 3 (1)) ; otherwise we 

would have P > n and \jJ =canst. of 0 on some (n+l) -dimensional half-space, 
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thus contradicting the fact that ~ is locally Hn-integrable on RP . 

Proof of A.4 Assume sing¢ n B1 (0) ~ 0 for some ¢ E F and let 

d = sup{dim L : L is a d-dimensional subspace of RP and there is ¢ E F 

with sing ¢ ~ ¢ and Vy E L , A. > o} . Then by Remark 

A.5 we have d ~ n-1 . 

For a given ¢ E F and y E B1 (0) we let T(cjl,y) be the set of ~ E F 

with ~O, 1 = ~ VA. > 0 and with lim ¢ 
1\ y ,A.k 

~ for some sequence A.k + 0 . 

(T(cjl,y) ~ ¢ by assumption A.2). 

Let i ~ 0 and let 

(1) {¢ E F 

Our first task is to prove the implication 

(2) 

for Hi- a.e. X E sing¢ n Bl (0) 

To see this, let be the "size approximation" of as 

described in §2 and recall that H2 (A) > 0 ~ H2 (A) > 0 , so that 
00 

Fi = {¢ E F : H!;(singcpn B1 (0)) > 0} 

bounded subset A of 1l , 
Also note that (by 3.6(2)), for any 

Thus we see that if ¢ E F2 then for Hi- a.e. X E sing¢ n B1 (0) we have 

For such x we thus have a sequence A.k + 0 such that 



(4) 

258 

H!(sing¢ n B;., (x)) 

li.\11 -----::--"k-'---
k-KO A. t 

k 

> 0 ' 

and by assumption A.2 there is a subsequence {A.k,} such that 

¢ , ~ ~ E T(¢,x) • If now H!(singW) = 0 , then for any E > 0 we 
X;l\.k' 

could find open balls ) } such that 

(5) 

and 

(6) 

(by definition of Now (5) in particular implies that 

K = B1 (0) ~ U B (x.) is a compact set with positive distance from sing~. 
j pj J 

Hence by assumption A.3(3) we have 

(7) sing 

for all sufficiently large k , and hence by (6) 

Thus since 
-1 

A.k (sing ¢-x) (by A.3 (2)) we have 

< E 

for all sufficiently large k , thus a contradiction for 

(Such E can be chosen by (4) .) 
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We have therefore established the general implication (2) . From now on 

take FQ 
5Z, > d-1 so tha·t # ¢ (which is automatic for Q, :S d by definition of d ) . 

By (2) there is ¢ E FQ, with ¢0 ,:\ = ¢ 'r/ ), > 0 • Suppose also that there 

is a k-dimensional subspace (k ':': 0) S of JRP such that ¢y, A = ¢ 

V y E s , A > o . (Notice of course this is no additional restriction for 

¢ in case k = 0 • Now if k ::: d+l ·then, by definition of d , we can 

assert sing ¢ = 0 , thus contradicting the fact tha·t ¢ E FQ, • Therefore 

0 :::= k::: d , and if k ::: d-1 ( < Q,) , then H!i, (S) = 0 and in particular 

(8) 3 X E Bl(O) n sing¢~ s . 

But by A.2 we can choose ~ E T(¢,x). Since 

sequence 

:\ > o) 

(9) 

and 

(10) 

A. + o , 
J 

we evidently have (since 

lim¢ y+x,A. 
J 

~Sx,l 

lim <jl 
X,A. 

J 

~ = lim ¢ A 
x, j 

¢y+x,A <Px,A 

IJ y E S 

\:j i3 E JR . 

for some 

'r/ y E S , 

(All limits in the weak sense described at the beginning of the section.) 

Thus ~z,A = ~ for each A > 0 and each z in the (k+l)-dimensional 

subspace T of JRP spanned by S and x Sing~'f0 (by A.3(3)), 

hence by induction on k we can take k d-1 ; i.e. dim T d ' 

and hence sing~~ T by A.3(2). On the other hand if 3 x E sing~~ T 

then we can repeat the above argument (beginning at (8)) with T in place 

of S and ~; in place of ¢ . This would then give a (d+l) -dimensional 

subspace T and a ~ E F with sing ~ ~ T , thus contradicting the 

definition of d . Therefore sing ¢ T Furthermore if 5Z, > d then the 

above induction works up to k=d and again therefore we would have a 

contradiction. Thus dim(B1 (0) n sing<jl) ::: d \1 ¢ E F • 
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Finally to prove the last claim of the theorem, we suppose that d= 0. 

Then we have already established that 

(11) 0 lfa>o,cpEF. 

If sing cj> n Bp (0) is not finite, then we select 

x = lim xk for some sequence xk E sing cp n B1 (0) 

x E Bp(O) such that 

{x} • Then letting 

Ak= 2Jxk-xJ we see from A.3(2) that there is a subsequence {A.k,} with 

cp ~ljJET(cj>,x) and (x.,-xl/Jxk,-xJ->-~ E aB1 (0) 
x,Ak' K 

Now by A.3 (2), (3) 

we know that {s/2}11 {~} c sing ljJ and, since ljJO,A = ljJ this (together with 

A.3(2)) gives L~ c sing ljJ where L~ is the ray determined by 0 

Then H1 (sing 1l/J n B1 (0)) > 0 , thus contracting (11), because ljJ E F • 

and ~ . 
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APPENDIX 8 

NON-EXISTENCE OF STABLE MINIMAL CONES, 2 :s n :s 6. 

Here we describe J" Simons [SJ] result on non-existence of n-dimensional 

stable minimal cones {previously es·tablished in case n = 2, 3 by Fleming [F] 

and Almgren [JIA] respectively) . ·rhe proof here follows essentially Schoen-

Simon-Yau [SSY] , and is slightly cleaner ·than. the original proof in [SJ"] . 

Suppose to begin that 

integer multiplicity wi-th ac = o . If 

minimizing in. Rn+l then, writing M 

is a. cone <n 0 , A#c = C) 

sing C c {o} and if C 

a.nd 

is 

spt C {o} and taking Mt 

c is 

d d 2 n 1 
as in § 9, we have dt Hn (Mt) I 0 and --2 H (Mt) I ::: 0 (This is 

t=O dt t=O 

clear because in fact Hn(Mt) takes its minimum value at t= 0 , by virtue 

of our assumption that C is minimizing.) Notice that M is orientable, 

with orientation induced from C , and hence in particular we can deduce 

from 9.8 that 

B.l 

for any (notice 0 t M , so such ~ vanish in a neighbourhood 

of 0) • Her.e A is the second fundamental form of M and IAI is its 

length, as described in §7 and in 9.8. 

The main result we need is given in the following theorem. 

8.2 THEOREM Suppose 2 :s n :s 6 and 1'1 is an n-dimensional cone embedded in 

Rn+l with zero mean CUY'Vature (see § 7) and with M ~ M = {o} , and suppose 

that ~ is stable in the sense that B.l holds. Then M is a hyperplane. 

(As explained above, the hypotheses are in particular satisfied if 

M = spt c~ {0}, with CE Vn(JRn+l) a minimizing cone with ClC= 0 and singe c{o}.) 
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B.3 REMARK Theorem B. 2 is false for n = 7 ; J. Simons [SJ] was the first 
4 

(xi) 2 = 
8 

(xi) 2} I I to point out that· the cone M= { (x1 , •• .,x8 ) E :R8 : 
i=l i=S 

a stable minimal cone. (Notice that M is the cone over the compact 

manifold (~ s 3) x (~ s3 ) c s 7 c :R8 .) The fact that the mean curvature 

of M is zero is checked by direct computation. The fact that M is 

actually stable is checked as follows. First, by direct computation one 

is 

checks that the second fundamen·tal form A of M satisfies jAI 2 = 6/lx! 2 

On t.he other hand for a stationary hypersurface M c :Rn+l the first 

variation formula 9.3 says f divMxdH11 = 0 if sptlxl is a compact subset 

of M . Taking X (c; 2;r2 )x , c;E C00 (M) , r= lxl , and computing as in 
X C 

§17, we get 

J 2 2 n 
(n-2) M (i:; /r )dH = -2 J i:;r- 2x·~i:;dHn . 

M 

Using the Schwartz inequality on the right we get 

Thus we have stability for M (in the sense of B.l) whenever A satisfies 

. '21 12 2 lxl A s (n-2) /4 . 

I X ·l2 I 12 . For the example above we have n = 7 and 1 A = 6, so that this 

inequality is satisfied, and the cone over s3 x s 3 is stable as claimed. 

(Similarly the cone over Sq x Sq is stable for q ": 3 ; i.e. when the 

dimension of the cone is ": 7 .) 

Before giving the proof of B.2 we need to derive the identity of J. Simons 

for the Laplacian of the length of the second fundamental form of a hypersurface 

(Lemma B.8 below). 
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The simple derivation here assumes the reader's familiarity with basic 

Riemannian geometry. (A completely elementary derivation, assuming no 

such background, is described in [G] .) 

For the moment let M be an arbitrary hypersurface in :Rn+l ( M not 

necessarily a cone, and not necessarily having zero mean curvature) . 

Let T1 , ••• ,Tn be a locally defined family of smooth vector fields 

which, together with the unit normal v of M , define an orthonormal 

basis for n+l 11 . . . f :R at a po~nts ~n some reg~on o M. 

The second fundamental form of M relative to the unit normal v is 

the tensor A 

that we have 

B.4 

h .. T. ® T. 
~J ~ J 

where 

h .. 
~J 

h .. =<D V,T,) 
~J Tj ~ 

(Cf. §7.) Recall 

h .. 
J~ 

and, since the Riemann tensor of ~n+l is zero, we have the Codazzi 

equations 

B.5 h .. k 
~)I 

h.k . , i,j,k E {l, ••• ,n} • 
~ I) 

Here h .. k denotes the covariant derivative of A with respect to Tk 
~)I 

that is, h. . k are such that If A 
~), Tk 

h .. kT. ® T). 
~)I ~ 

We also have the Gauss aurvature equations 

B.6 

where R = Rijk~ Ti ® Tj ® Tk ® T~ is the Riemann curvature tensor of M , 

and where we use the sign convention such that Rijji (i~j) 

curvatures of M ( = +1 if M= Sn) • 

are sectional 
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From the properties of R (in fact essentially by definition of R ) 

we also have, for·any 2-tensor aij Ti ~ Tj , 

(where aij,kl means a - i.e. the covariant derivative with respect 
ij,k,l 

to of the tensor ,k Ti ·~ Tj ~ Tk) . In particular 

B.? 0• + h. R . OJ + 
, x..K. l.Ti.'! lYl] x., C 

by B.6. 

B.8 LEMMA In the notation above 

I h 2 . k - IAI 4 + h .. H .. + Hh .h .h .. 
i,j,k 1J, 1J ,1J m1 mJ 1J 

where H ~ = trace A • 

Proof We first compute h .. kk 1], 

h." kk 1j, h.k 'k l ,J 

~i,jk 

(by B .• .S) 

(by B.4) 

- hmi [~jhmk -hkkhmj] (by B. 7) 

( .., 1 
hki,kj l Ik h~Jhij + ~khmi11mj 

m, 

~k,ij - [m~k h~Jhij + hkkhmihmj (by B.5) 

Now multiplying by h .. 
1] 

we then get (since hijhij,kk 

\ 2 
1.. h .. k 

i,j,k 1 ]' 



1 \ 2 r ] ? 1.. h.. = Ji, j ~J ,kk 

which is ·the required identity. 

Vve now >~ant to examine carefully 
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the term 

h .. H .. 
lJ 'l] 

I 
Lj,k 

+ Hh . h .h .. 
ffil ffiJ lJ ( 

2 
hij ,k appearing in 

the identity of B.8 in case M is a cone 

if),_ > 0) In particular we want 'co compare 

v1ith vertex at 

l: h2 
.. J ""ij ,k 

0 (i.e. nO,.A.M=M 

with jV'MjAjj 2 J..n 
~1 J I C,: 

this case. Since 
n · -2 2 I lA\ (h .. h .. k) , we look at 'che 

k=l lJ lJ, 

difference 

(*) D - I 
i, j ,k 

n 2 2 I \AI- (h .. h .. k) . 
k=1 lJ l.J, 

B. 9 LEMMA If M is a cone (not necessarily mim:mal) the quan-tity D defined 

in (*) satisfies 

Proof Let x EM and select the frame T1 , ... ,Tn so that T 
n 

is radial 

(x/jxj) along the ray £x through x , and so that (as vectors in Rn+l) 

T1 , ... ,Tn are constant along Then 

(1) 

and (since 

(2) 

h . 
nJ 

h .. (Ax) 
lJ 

h. 
Jn 

0 along £x , j = l, ... ,n , 

-1 
A h .. (x) 

lJ 
A > o l 

h .. 
lJ ,n 

-1 
-r h .. 

l.J 
along 

Rearranging the expression for D , we have 

D 
1 n 
- z: 
2 k=1 

n 

I 
i,j,r,s=l 

I 1-2 2 
A (h h .. k- h .. h k) , rs l.J, lJ rs, 

as one easily checks by expanding the square on the right. Now since 



266 

n 
) 2 

n-1 

2 ::: 4 I ) 2 
' i,j,r,s=l i,j,r=1 

s=n 

we thus have 

n n-1 
D ::: 1: 

k=1 
1: 

i,j,r=1 

2 
(h .. h k) lJ rn, 

By the Codazzi equations B.S and (2) this gives 

n -21 ,-2 \ D "': 2r A L 
k=l 

n-1 2 2 
l: h .. h k 

i,j,r=l lJ r 

(by (1)) 

-?I , 2 2r - AI , 

as required. 

Proof of B.2 Notice that so far we have not used the minimality of M 

(i.e. we have not used H ( = hkk) = 0 ) . We now do set H = 0 in the above 

computations, thus giving (by B.8, B.9) 

(1) 

for the minimal cone M . (Notice that IAI is Lipschitz, and hence !VIAll 

makes sense Hn - a .e. in M.) 

Our aim now is to use (1) in combination with the stability inequality 

B. 1 to get a contradiction in case 2 ::; n ::; 6 

(2) 

Specifically, replace s by siAl in B.1. This gives 

t s2 IAI 4 s t \17<r,IAil 1
2 

f ( I Vr, 12 1 A 12 + r, 2 1 111 A 11 2 ) 
M 
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Jr (\71';2) • V<~\A\2) 
M 

t z;2t,M <1\A\2l 

::: t (jA[4z;2- 2r-2z;2jAj2 + z;2jVjAjj2) by (1) , 

and hence (2) gives 

(3) 

Now we claim that (3) is valid even if z; does not have compact support 

on M , provided that l; is locally Lipschitz and 

(This is proved by applying (3) with z;y€ in place of z; ' where YE: is 

for \xi E 
-1 

JVyE: (x) \ S 3/\x\ for all such that YE: (x) - 1 (E:,E: ) , X , 

y E: (x) 0 for \x\ < E:/2 \xJ > 2E: 
-1 and o:::yssl everywhere, then = or , 

letting E: + 0 and using (4) .) 

Since M is a cone we can write 

(5) I ¢(x)dHn(x) 
M 

n-1 
r f n-1 z ¢(rw}dH (W)dr 

for any non-negative continuous ¢ on M , where Z = M n Sn is a compact 

(n-1)-dimensional submanifold. Since \A(x} j 2 we can now 

use (5) to check that 
l+E: 1-n/2-2€ 

z; = r r 1 , max{l,r} is a valid choice 

to ensure (4), hence we may use this choice in (3). This is easily seen to 

give 
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(6) 

2 I I 12 2E: + (l+E:) . A r 
Mn{r<l} 

< co • 

For 2 :S n :S 6 we can choose E such that ( (n/2) -2+E) 2 < 2 and (l+E:) 2 < 2 , 

hence (6) gives jAj 2 = 0 on M as required. 


