APPENDIX A

A GENERAL REGULARITY THEOREM

We here prove a useful general regularity theorem, which is essentially an abstraction of the "dimension reducing" argument of Federer [FH2]. There are a number of important applications of this general theorem in the text.

Let $P \ge n \ge 2$ and let F be a collection of functions $\phi = (\phi^1, \dots, \phi^Q) : \mathbb{R}^P \to \mathbb{R}^Q (Q=1 \text{ is an important case})$ such that each ϕ^j is locally \mathcal{H}^n -integrable on \mathbb{R}^P . For $\phi \in F, y \in \mathbb{R}^P$ and $\lambda > 0$ we let $\phi_{y,\lambda}$ be defined by

$$\phi_{\mathbf{y},\lambda}(\mathbf{x}) = \phi(\mathbf{y}+\lambda\mathbf{x}), \mathbf{x} \in \mathbb{R}^{P}$$
.

Also, for $\phi \in F$ and a given sequence $\{\phi_k\} \subset F$ we write $\phi_k \rightharpoonup \phi$ if $\int \phi_k f \ d\mathcal{H}^n \rightarrow \int \phi f \ d\mathcal{H}^n$ (in \mathbb{R}^Q) for each given $f \in C^0_c(\mathbb{R}^P)$.

We subsequently make the following 3 special assumptions concerning F: A.1 (Closure under appropriate scaling and translation): If $|y| \leq 1-\lambda$, $0 < \lambda < 1$, and if $\phi \in F$, then $\phi_{\mathbf{v},\lambda} \in F$.

A.2 (Existence of homogeneous degree zero "tangent functions"): If |y| < 1, if $\{\lambda_k\} \neq 0$ and if $\phi \in F$, then there is a subsequence $\{\lambda_k,\}$ and $\psi \in F$ such that $\phi_{y,\lambda_1} \rightarrow \psi$ and $\psi_{0,\lambda} = \psi$ for each $\lambda > 0$.

A.3 ("Singular set" hypotheses): We assume there is a map

sing :
$$F \rightarrow C$$
 (= set of closed subsets of \mathbb{R}^{F})

such that

(1) sing $\phi = \emptyset$ if $\phi \in F$ is a constant multiple of the characteristic function of an n-dimensional subspace of \mathbb{R}^{P} ,

(2) if $|y| \leq 1-\lambda$, $0 < \lambda < 1$, then $\operatorname{sing} \phi_{y,\lambda} = \lambda^{-1}(\operatorname{sing} \phi_{-y})$, (3) if $\phi, \phi_k \in F$ with $\phi_k \neq \phi$, then for each $\varepsilon > 0$ there is a $k(\varepsilon)$ such that

 $B_1(0) \ \cap \ \text{sing} \ \varphi_k \ \subset \ \left\{ x \in \mathbb{R}^P \ : \ \text{dist}(\text{sing} \ \varphi, x) < \epsilon \right\} \qquad \forall \ k \ge k \left(\epsilon \right) \ .$

We can now state the main result of this section:

A.4 THEOREM Subject to the notation and assumptions A.1, A.2, A.3 above, we have

(*)
$$\dim B_1(0) \cap \operatorname{sing} \phi \leq n-1 \quad \forall \phi \in F$$
.

(Here "dim" is Hausdorff dimension, so that (*) means $H^{n-1+\alpha}(\text{sing }\phi) = 0$ $\forall \alpha > 0.$)

In fact either sing $\varphi \cap B_1(0) = \emptyset$ for every $\varphi \in F$ or else there is an integer $d \in [0,n-1]$ such that

dim sing $\phi \cap B_1(0) \leq d \quad \forall \phi \in F$

and such that there is some $\psi \in F$ and a d-dimensional subspace $\ L \subset I\!\!R^P$ with

(**) $\psi_{y_{\lambda}\lambda} = \psi \quad \forall y \in L , \lambda > 0$

and

sing
$$\psi$$
 = L .

If d = 0 then sing $\phi \cap B_{\rho}(0)$ is finite for each $\phi \in F$ and each $\rho < 1$.

A.5 REMARK One readily checks that if L is an n-dimensional subspace of \mathbb{R}^{P} and $\psi \in F$ satisfies (**), then ψ is exactly a constant multiple of the characteristic function of L (hence sing $\psi = \emptyset$ by A.3(1)); otherwise we would have P>n and $\psi \equiv \text{const.} \neq 0$ on some (n+1)-dimensional half-space,

thus contradicting the fact that ψ is locally $\#^n$ -integrable on \mathbb{R}^p .

Proof of A.4 Assume sing $\phi \cap B_1(0) \neq \emptyset$ for some $\phi \in F$, and let $d = \sup\{\dim L : L \text{ is a d-dimensional subspace of } \mathbb{R}^P$ and there is $\phi \in F$ with sing $\phi \neq \emptyset$ and $\phi_{y,\lambda} = \phi \quad \forall y \in L$, $\lambda > 0\}$. Then by Rémark A.5 we have $d \leq n-1$.

For a given $\phi \in F$ and $y \in B_1(0)$ we let $T(\phi, y)$ be the set of $\psi \in F$ with $\psi_{0,\lambda} = \psi \ \forall \lambda > 0$ and with $\lim \phi_{y,\lambda_k} = \psi$ for some sequence $\lambda_k \neq 0$. $(T(\phi, y) \neq \emptyset$ by assumption A.2).

Let $\ell \ge 0$ and let

(1)
$$F^{\mathcal{L}} = \{ \phi \in F : H^{\mathcal{L}}(\operatorname{sing} \phi \cap B_{1}(0)) > 0 \} .$$

Our first task is to prove the implication

(2)
$$\phi \in F^{\mathcal{L}} \Rightarrow \exists \psi \in \mathfrak{T}(\phi, \mathbf{x}) \cap F^{\mathcal{L}}$$

for $H^{\hat{k}}$ -a.e. $x \in sing\phi \cap B_1(0)$.

To see this, let $H_{\delta}^{\hat{L}}$ be the "size δ approximation" of $H^{\hat{L}}$ as described in §2 and recall that $H_{\sigma}^{\hat{L}}(A) > 0 \Leftrightarrow H_{\infty}^{\hat{L}}(A) > 0$, so that $F^{\hat{L}} = \{ \phi \in F : H_{\infty}^{\hat{L}}(\operatorname{sing} \phi \cap B_{1}(0)) > 0 \}$. Also note that (by 3.6(2)), for any bounded subset A of \mathbb{R}^{P} ,

(3)
$$H^{\ell}_{\infty}(A) > 0 \Rightarrow \Theta^{*n}(H^{\ell}_{\infty}LA, x) > 0 \text{ for } H^{\ell}-a.e. x \in A$$
.

Thus we see that if $\phi \in F^{\&}$ then for $H^{\&}$ - a.e. $x \in \operatorname{sing} \phi \cap B_{1}(0)$ we have $\Theta^{*\&}(H_{\infty}^{\&}L \operatorname{sing} \phi, x) > 0$. For such x we thus have a sequence $\lambda_{k} \neq 0$ such that

(4)
$$\begin{array}{c} H_{\infty}^{\lambda}(\operatorname{sing}\phi \cap B_{\lambda_{k}}(x)) \\ \lim_{k \to \infty} \frac{\lambda_{k}^{\lambda}}{\lambda_{k}^{\lambda}} > 0 \end{array},$$

and by assumption A.2 there is a subsequence $\{\lambda_k, \}$ such that $\phi_{x,\lambda_k} \rightarrow \psi \in T(\phi,x)$. If now $\mathcal{H}^{\lambda}_{\infty}(\operatorname{sing}\psi) = 0$, then for any $\varepsilon > 0$ we could find open balls $\{B_{\rho_i}(x_j)\}$ such that

(5)
$$\operatorname{sing} \psi \subset \bigcup \operatorname{B}_{\rho_j}(\mathbf{x}_j)$$

and

(6)
$$\sum_{j} \omega_{g} \rho_{j}^{g} < \varepsilon$$

(by definition of $\mathcal{H}_{\infty}^{\hat{k}}$). Now (5) in particular implies that $K \equiv \overline{B_1}(0) \sim \bigcup_{j} B_{\rho_j}(x_j)$ is a compact set with positive distance from sing ψ . Hence by assumption A.3(3) we have

(7)
$$\operatorname{sing} \phi_{\mathbf{x},\lambda_{k}} \cap B_{1}(0) \subset \bigcup B_{\rho_{j}}(\mathbf{x}_{j})$$

for all sufficiently large k , and hence by (6)

$$H^{\lambda}_{\infty}(\text{sing } \phi_{\mathbf{x},\lambda_{\mathbf{k}'}} \cap B_{1}(0)) < \varepsilon , \mathbf{k} \ge \mathbf{k}(\varepsilon)$$
.

Thus since $\lambda_k^{-1}(\text{sing } \phi - x) = \text{sing } \phi_{x,\lambda_k}$ (by A.3(2)) we have

$$\lambda_{k'}^{-\ell} H_{\infty}^{\ell}(\text{sing } \phi \cap B_{\lambda_{k'}}(\mathbf{x})) < \epsilon$$

for all sufficiently large k, thus a contradiction for $\varepsilon < \lim_{k \to \infty} \lambda_k^{-\ell} \ H_{\infty}^{\ell}(\text{sing } \phi \cap \mathsf{B}_{\lambda_k}(\mathbf{x})) \ . \quad (\text{Such } \varepsilon \text{ can be chosen by (4).})$ We have therefore established the general implication (2). From now on take l > d-1 so that $F^l \neq \emptyset$ (which is automatic for $l \le d$ by definition of d). By (2) there is $\phi \in F^l$ with $\phi_{0,\lambda} = \phi$ $\forall \lambda > 0$. Suppose also that there is a k-dimensional subspace $(k \ge 0)$ S of \mathbb{R}^P such that $\phi_{y,\lambda} = \phi$ $\forall y \in S, \lambda > 0$. (Notice of course this is no additional restriction for ϕ in case k = 0.) Now if $k \ge d+1$ then, by definition of d, we can assert sing $\phi = \emptyset$, thus contradicting the fact that $\phi \in F^l$. Therefore $0 \le k \le d$, and if $k \le d-1$ (<l), then $H^l(S) = 0$ and in particular

(8)
$$\exists x \in B_1(0) \cap \operatorname{sing} \phi \sim S$$
.

But by A.2 we can choose $\psi \in T(\phi, x)$. Since $\psi = \lim \phi_{x,\lambda_j}$ for some sequence $\lambda_j \neq 0$, we evidently have (since $\phi_{y+x,\lambda} = \phi_{x,\lambda}$ $\forall y \in S$, $\lambda > 0$)

(9)
$$\psi_{y,1} = \lim \phi_{y+x,\lambda_j} = \lim \phi_{x,\lambda_j} = \psi \quad \forall y \in S$$

and

(10)
$$\psi_{\beta \mathbf{x},1} = \lim \phi_{\mathbf{x}+\lambda_j\beta \mathbf{x},\lambda_j} = \psi \quad \forall \beta \in \mathbb{R}.$$

(All limits in the weak sense described at the beginning of the section.) Thus $\psi_{z,\lambda} = \psi$ for each $\lambda > 0$ and each z in the (k+1)-dimensional subspace T of $\mathbb{R}^{\mathbb{P}}$ spanned by S and x. Sing $\psi \neq \emptyset$ (by A.3(3)), hence by induction on k we can take k = d-1; i.e. dim T = d, and hence sing $\psi \supset T$ by A.3(2). On the other hand if $\exists \tilde{x} \in \text{sing } \psi \sim T$ then we can repeat the above argument (beginning at (8)) with T in place of S and ψ in place of ϕ . This would then give a (d+1)-dimensional subspace \tilde{T} and a $\tilde{\psi} \in F$ with sing $\tilde{\psi} \supset \tilde{T}$, thus contradicting the definition of d. Therefore sing $\phi = T$. Furthermore if $\ell > d$ then the above induction works up to k=d and again therefore we would have a contradiction. Thus dim(B₁(0) \cap sing $\phi > d \forall \phi \in F$. Finally to prove the last claim of the theorem, we suppose that d=0. Then we have already established that

(11)
$$H^{\alpha}(\operatorname{sing} \phi \cap B_{1}(0)) = 0 \quad \forall \alpha > 0, \phi \in F.$$

If sing $\phi \cap B_{\rho}(0)$ is not finite, then we select $x \in \overline{B_{\rho}}(0)$ such that $x = \lim x_{k}$ for some sequence $x_{k} \in \operatorname{sing} \phi \cap B_{1}(0) \sim \{x\}$. Then letting $\lambda_{k} = 2|x_{k}-x|$ we see from A.3(2) that there is a subsequence $\{\lambda_{k},\}$ with $\phi_{x,\lambda_{k}} \stackrel{\sim}{\to} \psi \in T(\phi,x)$ and $(x_{k},-x) / |x_{k},-x| \rightarrow \xi \in \partial B_{1}(0)$. Now by A.3(2), (3) we know that $\{\xi/2\} \cap \{0\} \subset \operatorname{sing} \psi$ and, since $\psi_{0,\lambda} = \psi$, this (together with A.3(2)) gives $L_{\xi} \subset \operatorname{sing} \psi$ where L_{ξ} is the ray determined by 0 and ξ . Then $\#^{1}(\operatorname{sing} \psi \cap B_{1}(0)) > 0$, thus contracting (11), because $\psi \in F$.

APPENDIX B

NON-EXISTENCE OF STABLE MINIMAL CONES, $2 \le n \le 6$.

Here we describe J. Simons [SJ] result on non-existence of n-dimensional stable minimal cones (previously established in case n = 2,3 by Fleming [F] and Almgren [A4] respectively). The proof here follows essentially Schoen-Simon-Yau [SSY], and is slightly cleaner than the original proof in [SJ].

Suppose to begin that $C \in \mathcal{D}_n(\mathbb{R}^{n+1})$ is a cone $(\eta_{0,\lambda\#}C=C)$ and C is integer multiplicity with $\partial C = 0$. If sing $C \subset \{0\}$ and if C is minimizing in \mathbb{R}^{n+1} then, writing $M = \operatorname{spt} C \sim \{0\}$ and taking M_t as in §9, we have $\frac{d}{dt} H^n(M_t)\Big|_{t=0} = 0$ and $\frac{d^2}{dt^2} H^n(M_t)\Big|_{t=0} \ge 0$. (This is clear because in fact $H^n(M_t)$ takes its minimum value at t=0, by virtue of our assumption that C is minimizing.) Notice that M is orientable, with orientation induced from C, and hence in particular we can deduce from 9.8 that

B.1
$$\int_{\mathbf{M}} \left(\left| \nabla^{\mathbf{M}} \zeta \right|^2 - \zeta^2 \left| \mathbf{A} \right|^2 \right) d\mathbf{H}^n \ge 0$$

for any $\zeta \in C_{c}^{1}(M)$ (notice $0 \notin M$, so such ζ vanish in a neighbourhood of 0). Here A is the second fundamental form of M and |A| is its length, as described in §7 and in 9.8.

The main result we need is given in the following theorem.

B.2 THEOREM Suppose $2 \le n \le 6$ and M is an n-dimensional cone embedded in \mathbb{R}^{n+1} with zero mean curvature (see §7) and with $\overline{M} \sim M = \{0\}$, and suppose that M is stable in the sense that B.1 holds. Then \overline{M} is a hyperplane. (As explained above, the hypotheses are in particular satisfied if $M = \text{spt } C \sim \{0\}$, with $C \in \mathcal{D}_n(\mathbb{R}^{n+1})$ a minimizing cone with $\partial C = 0$ and $\operatorname{sing} C \subset \{0\}$.)

261

B.3 REMARK Theorem B.2 is false for n = 7; J. Simons [SJ] was the first to point out that the cone $M = \{ (x^1, \ldots, x^8) \in \mathbb{R}^8 : \sum_{i=1}^4 (x^i)^2 = \sum_{i=5}^8 (x^i)^2 \}$ is a stable minimal cone. (Notice that M is the cone over the compact manifold $(\frac{1}{\sqrt{2}} s^3) \times (\frac{1}{\sqrt{2}} s^3) \subset s^7 \subset \mathbb{R}^8$.) The fact that the mean curvature of M is zero is checked by direct computation. The fact that M is actually *stable* is checked as follows. First, by direct computation one checks that the second fundamental form A of M satisfies $|A|^2 = 6/|x|^2$.

On the other hand for a stationary hypersurface $M \subset \mathbb{R}^{n+1}$ the first variation formula 9.3 says $\int div_M X d\mathcal{H}^n = 0$ if spt|X| is a compact subset of M. Taking $X_x = (\zeta^2/r^2)x$, $\zeta \in C_c^{\infty}(M)$, r = |x|, and computing as in §17, we get

$$(n-2) \int_{M} (\zeta^{2}/r^{2}) d\mathcal{H}^{n} = -2 \int_{M} \zeta r^{-2} x \cdot \nabla^{M} \zeta d\mathcal{H}^{n} .$$

Using the Schwartz inequality on the right we get

$$\frac{(n-2)^2}{4} \int_{M} (\zeta^2/r^2) dH^n \leq \int_{M} |\nabla^M \zeta|^2 dH^n .$$

Thus we have stability for M (in the sense of B.1) whenever A satisfies $|x|^2 |A|^2 \le (n-2)^2/4$.

For the example above we have n = 7 and $|\mathbf{x}|^2 |\mathbf{A}|^2 = 6$, so that this inequality is satisfied, and the cone over $S^3 \times S^3$ is stable as claimed. (Similarly the cone over $S^q \times S^q$ is stable for $q \ge 3$; i.e. when the dimension of the cone is ≥ 7 .)

Before giving the proof of B.2 we need to derive the identity of J. Simons for the Laplacian of the length of the second fundamental form of a hypersurface (Lemma B.8 below). The simple derivation here assumes the reader's familiarity with basic Riemannian geometry. (A completely elementary derivation, assuming no such background, is described in [G].)

For the moment let M be an arbitrary hypersurface in \mathbb{R}^{n+1} (M not necessarily a cone, and not necessarily having zero mean curvature).

Let τ_1, \ldots, τ_n be a locally defined family of smooth vector fields which, together with the unit normal ν of M , define an orthonormal basis for \mathbb{R}^{n+1} at all points in some region of M .

The second fundamental form of M relative to the unit normal ν is the tensor A = $h_{ij}\tau_i \otimes \tau_j$, where $h_{ij} = \langle D_{\tau} \nu, \tau_i \rangle$. (Cf. §7.) Recall that we have

B.4
$$h_{ij} = h_{ji}$$
,

and, since the Riemann tensor of \mathbb{R}^{n+1} is zero, we have the *Codazzi* equations

B.5
$$h_{ij,k} = h_{ik,j}$$
, $i,j,k \in \{1,...,n\}$.

Here $h_{ij,k}$ denotes the covariant derivative of A with respect to τ_k ; that is, $h_{ij,k}$ are such that $\nabla_{\tau_k} A = h_{ij,k} \tau_i \otimes \tau_j$.

We also have the Gauss curvature equations

B.6
$$R_{ijkl} = h_{il}h_{jk} - h_{ik}h_{jl},$$

where $R = R_{ijk\ell} \tau_i \otimes \tau_j \otimes \tau_k \otimes \tau_\ell$ is the Riemann curvature tensor of M , and where we use the sign convention such that R_{ijji} ($i \neq j$) are sectional curvatures of M (=+1 if M=Sⁿ). From the properties of R (in fact essentially by definition of R) we also have, for any 2-tensor a $\tau_i \otimes \tau_j$,

(where $a_{ij,kl}$ means $a_{ij,k,l} - i.e.$ the covariant derivative with respect to τ_{l} of the tensor $a_{ij,k} \tau_{i} \otimes \tau_{j} \otimes \tau_{k}$). In particular

B.7
$$h_{ij,kl} = h_{ij,lk} + h_{im}R_{mjlk} + h_{mj}R_{milk}$$

$$= h_{ij,lk} + h_{im}[h_{ml}h_{jk}-h_{mk}h_{jl}] - h_{mj}[h_{il}h_{mk}-h_{ik}h_{ml}]$$

by B.6.

B.8 LEMMA In the notation above

$$\Delta_{M}(\frac{1}{2}|A|^{2}) = \sum_{i,j,k} h_{ij,k}^{2} - |A|^{4} + h_{ij}H_{,ij} + Hh_{mi}h_{mj}h_{ij}$$

where $H = h_{kk} = trace A$.

Proof We first compute h ij,kk :

$$h_{ij,kk} = h_{ik,jk} \quad (by B.5)$$

$$= h_{ki,jk} \quad (by B.4)$$

$$= h_{ki,kj} + h_{km} [h_{mj}h_{ik} - h_{mk}h_{ij}]$$

$$- h_{mi} [h_{kj}h_{mk} - h_{kk}h_{mj}] \quad (by B.7)$$

$$= h_{ki,kj} - \left(\sum_{m,k} h_{mk}^{2}\right)h_{ij} + h_{kk}h_{mi}h_{mj}$$

$$= h_{kk,ij} - \left(\sum_{m,k} h_{mk}^{2}\right)h_{ij} + h_{kk}h_{mi}h_{mj} \quad (by B.5)$$

Now multiplying by h_{ij} we then get (since $h_{ij}h_{ij,kk} = \frac{1}{2} \left(\sum_{i,j} h_{ij}^2 \right)_{,kk}$ - $\sum_{i,j,k} h_{ij,k}^2$)

$$\frac{1}{2} \left(\sum_{i,j} h_{ij}^2 \right)_{,kk} = \sum_{i,j,k} h_{ij,k}^2 - \left(\sum_{i,j} h_{ij}^2 \right)^2 + h_{ij}H_{,ij} + Hh_{mi}h_{mj}h_{ij},$$

which is the required identity.

We now want to examine carefully the term $\sum_{i,j,k} h_{ij,k}^2$ appearing in the identity of B.8 in case M is a cone with vertex at 0 (i.e. $n_{0,\lambda}M=M$ $\forall \lambda > 0$). In particular we want to compare $\sum_{i,j,k} h_{ij,k}^2$ with $|\nabla^M|A||^2$ in this case. Since $|\nabla^M|A||^2 = \sum_{k=1}^n |A|^{-2} (h_{ij}h_{ij,k})^2$, we look at the difference

(*)
$$D \equiv \sum_{i,j,k} h_{ij,k}^2 - \sum_{k=1}^{n} |A|^{-2} (h_{ij}h_{ij,k})^2.$$

B.9 LEMMA If M is a cone (not necessarily minimal) the quantity D defined in (*) satisfies

$$D(x) \ge 2|x|^{-2}|A(x)|^2, x \in M$$
.

Proof Let $x \in M$ and select the frame τ_1, \ldots, τ_n so that τ_n is radial (x/|x|) along the ray ℓ_x through x, and so that (as vectors in \mathbb{R}^{n+1}) τ_1, \ldots, τ_n are constant along ℓ_x . Then

(1)
$$h_{nj} = h_{jn} = 0 \quad \text{along} \quad \ell_x, \quad j = 1, \dots, n,$$

and (since $h_{ij}(\lambda x) = \lambda^{-1}h_{ij}(x)$, $\lambda > 0$)

(2)
$$h_{ij,n} = -r^{-1}h_{ij} \text{ along } \ell_x.$$

Rearranging the expression for D , we have

$$D = \frac{1}{2} \sum_{k=1}^{n} \sum_{i,j,r,s=1}^{n} |A|^{-2} (h_{rs}h_{ij,k} - h_{ij}h_{rs,k})^{2},$$

as one easily checks by expanding the square on the right. Now since

$$\sum_{i,j,r,s=1}^{n} ()^{2} \ge 4 \sum_{i,j,r=1}^{n-1} ()^{2},$$

we thus have

$$D \geq 2|A|^{-2} \sum_{k=1}^{n} \sum_{i,j,r=1}^{n-1} (h_{ij}h_{rn,k})^{2}$$

By the Codazzi equations B.5 and (2) this gives

$$D \ge 2r^{-2} |A|^{-2} \sum_{k=1}^{n} \sum_{i,j,r=1}^{n-1} h_{ij}^{2} h_{rk}^{2}$$
$$= 2r^{-2} |A|^{-2} |A|^{4} \qquad (by (1))$$
$$= 2r^{-2} |A|^{2} ,$$

as required.

Proof of B.2 Notice that so far we have not used the minimality of M (i.e. we have not used $H(=h_{kk}) = 0$). We now do set H=0 in the above computations, thus giving (by B.8, B.9)

(1)
$$\Delta_{M}(\frac{1}{2}|A|^{2}) + |A|^{4} \ge 2r^{-2}|A|^{2} + |\nabla|A||^{2}$$

for the minimal cone M . (Notice that |A| is Lipschitz, and hence $|\nabla|A||$ makes sense H^n - a.e. in M.)

Our aim now is to use (1) in combination with the stability inequality . B.1 to get a contradiction in case $2 \le n \le 6$.

Specifically, replace ζ by $\zeta |A|$ in B.1. This gives

(2)
$$\int_{\mathbf{m}} \zeta^{2} |\mathbf{A}|^{4} \leq \int_{\mathbf{M}} |\nabla(\zeta |\mathbf{A}|)|^{2}$$
$$= \int_{\mathbf{M}} (|\nabla \zeta|^{2} |\mathbf{A}|^{2} + \zeta^{2} |\nabla |\mathbf{A}||^{2})$$
$$+ 2 \int_{\mathbf{M}} \zeta |\mathbf{A}| \nabla \zeta \cdot \nabla |\mathbf{A}| .$$

$$2 \int_{M} \zeta |\mathbf{A}| \nabla \zeta \cdot \nabla |\mathbf{A}| = 2 \int_{M} \zeta \nabla \zeta \cdot \nabla \left(\frac{1}{2} |\mathbf{A}|^{2}\right)$$
$$= \int_{M} (\nabla \zeta^{2}) \cdot \nabla \left(\frac{1}{2} |\mathbf{A}|^{2}\right)$$
$$= - \int_{M} \zeta^{2} \Delta_{M} \left(\frac{1}{2} |\mathbf{A}|^{2}\right)$$
$$\leq \int_{M} (|\mathbf{A}|^{4} \zeta^{2} - 2r^{-2} \zeta^{2} |\mathbf{A}|^{2} + \zeta^{2} |\nabla |\mathbf{A}||^{2}) \quad \text{by (1)} ,$$

and hence (2) gives

(3)
$$2 \int_{\mathbf{M}} \mathbf{r}^{-2} \zeta^{2} |\mathbf{A}|^{2} \leq \int_{\mathbf{M}} |\mathbf{A}|^{2} |\nabla \zeta|^{2} \quad \forall \zeta \in \mathbf{C}_{\mathbf{C}}^{1}(\mathbf{M})$$

Now we claim that (3) is valid even if ζ does not have compact support on M , provided that ζ is locally Lipschitz and

(4)
$$\int_{M} r^{-2} \zeta^{2} |\mathbf{A}|^{2} < \infty$$

(This is proved by applying (3) with $\zeta \gamma_{\varepsilon}$ in place of ζ , where γ_{ε} is such that $\gamma_{\varepsilon}(\mathbf{x}) \equiv 1$ for $|\mathbf{x}| \in (\varepsilon, \varepsilon^{-1})$, $|\nabla \gamma_{\varepsilon}(\mathbf{x})| \leq 3/|\mathbf{x}|$ for all \mathbf{x} , $\gamma_{\varepsilon}(\mathbf{x}) = 0$ for $|\mathbf{x}| < \varepsilon/2$ or $|\mathbf{x}| > 2\varepsilon^{-1}$, and $0 \leq \gamma_{\varepsilon} \leq 1$ everywhere, then letting $\varepsilon \neq 0$ and using (4).)

Since M is a cone we can write

(5)
$$\int_{M} \phi(\mathbf{x}) dH^{n}(\mathbf{x}) = \int_{0}^{\infty} r^{n-1} \int_{\Sigma} \phi(r\omega) dH^{n-1}(\omega) dr$$

for any non-negative continuous ϕ on M, where $\Sigma = M \cap S^n$ is a compact (n-1)-dimensional submanifold. Since $|A(x)|^2 = r^{-2}|A(x/|x|)|^2$, we can now use (5) to check that $\zeta = r^{1+\varepsilon}r_1^{1-n/2-2\varepsilon}$, $r_1 = \max\{1,r\}$, is a valid choice to ensure (4), hence we may use this choice in (3). This is easily seen to give

(6)
$$2 \int_{M} r^{2\varepsilon} r_{1}^{2-n-4\varepsilon} |A|^{2} \leq ((n/2)-2+\varepsilon)^{2} \int_{M \cap \{r > 1\}} |A|^{2} r^{2-n-2\varepsilon} + (1+\varepsilon)^{2} \int_{M \cap \{r < 1\}} |A|^{2} r^{2\varepsilon}$$

For $2 \le n \le 6$ we can choose ε such that $((n/2)-2+\varepsilon)^2 < 2$ and $(1+\varepsilon)^2 < 2$, hence (6) gives $|A|^2 \equiv 0$ on M as required.

< ∞ 。