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APPENDIX A
A GENERAL REGULARITY THEOREM

We here prove a useful general regularity theorem, which is essentially
an abstraction of the "dimension reducing” argument of Federer [FH2]. There

are a number of important applications of this general theorem in the text.

Let P Zn =2 and let F be a collection of functions
- 1 Q, . P Q ne . : 3
¢ (07,ee.,0*) : R » R*(Q=1 is an important case) such that each ¢
is locally Hn-integrable on ]RP . For ¢ € F,yc¢ ]RP and A > 0 we let

¢ be defined by

viA

B P
¢y,A(x) = p(y+Ax) , x € R .

Also, for € F and a given sequence {¢.} ¢ F we write -~ if
k k

J ¢, £ at+ [ of aH™ (in ®?) for each given f € cg ®) .
We subsequently make the following 3 special assumptions concerning F :

A.1 (Closure under appropriate scaling and translation): If |y| =1-x,

0<A<1, and if ¢ € F, then ¢y>\€F.

A.2 (Existence of homogeneous degree zero "tangent functions"): If |y| <1,
if {Ak} Y 0 and if ¢ € F, then there is a subsequence {Ak,} and Y € F

such that ¢Yr>\k. -~y and wo,k =y for each X > 0,
A.3 ("Singular set" hypotheses): We asswme there is a map
sing : F > C ( = set of closed subsets of RP)

such that

(1) sing ¢ =g <f o0€F <is a constant multiple of the characteristic

, , , P
function of an n-dimensional subspace of R ,
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(2) if |yl =1-x, 0<A<1, then sing ¢y y = A_l(sing¢ey),

3y 2f ¢, ¢k € F with ¢k -~ ¢ , then for each € > 0 there is a

k(e) such that
Bl(O) N sing ¢k c {xe¢ Eg): dist(sing ¢,x) <€} Yk =k(e) .
We can now state the main result of this section:

A.4 THEOREM  Subject to the notation and assumptions BA.l, A.2, A.3 above,
we have
(*) dim B, (0) N sing ¢ < n-1 Yo eF.

. : . . -1+ )
(Here "dim" is Hausdorff dimension, so that (*) means Hn 1 OL(s;mg ¢) =0

Vo>0.)

In fact either sing ¢ N B (0) = @ for every ¢ € F or else there is

an integer 4 € [0,n-11 such that
dim sing ¢ N1 B, (0) =d VoeF
and such that there is some ¢ € F and a d-dimensional subspace L c R with

(**) v =y YVyeL, A>0

YrA

and
sing Y = L .
If d=0 then sing ¢ B, (0) is finite for each ¢ € F and each p<1.

A.5 REMARK one readily checks that if IL is an n-dimensional subspace of
RP and P € F satisfies (**), then Y is exactly a constant multiple of the
characteristic function of L (hence sing Y=0 by A.3(1)); otherwise we

would have P>n and U = const. # 0 on some (n+l)-dimensional half-space,
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thus contradicting the fact that ¥ is locally Hn—integrable on RP .

Proof of A.4 Assume sing ¢ N B, (0) # @ for some ¢ € F , and let
d = sup{dim L : I. is a d-dimensional subspace of R and there is ¢ € F
with sing ¢ # § and ¢y N o Yyé€ 1w, A>o0} . Then by Remark

7

A.5 we have d = n-1 .

For a given ¢ € F and vy € B,(0) we let T(¢,y) be the set of Y € F
i ! = > i i =
with VO,% Y YA >0 and with lim ¢Y/Ak Y for some sequence Xk v o.

(T(d,y) # @ by assumption 2A.2).

Let £ =2 0 and let

2 2, .

(1) F" = {oeF : H (51ng¢ﬂBl(0)-)>o} .
Our first task is to prove the implication
(2) ¢€FR'==31,D€T(¢,X)OFQ'
£ 2 .
or H"-a.e. x ¢ singpN B;(0) .

To see this, let H§ be the "size § approximation™ of HZ as
described in §2 and recall that HQ(A) >0 = Hi(A) > 0 , so that
FSL = {¢€F : Hi(singdpﬂ Bl(O)) >0} . Also note that (by 3.6(2)), for any

bounded subset A of RP ’
(3) Hi(A) > 0= O*n(HiL A,x) >0 for H'-a.e. xea .

Thus we see that if ¢ € Fl then for HQ— a.e. X¢€ sing¢(}Bl(0) we have

G*Q(HiL singd,x) >0 . For such x we thus have a sequence Ak + 0 such that
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Hi(sing¢f]Bx (%))
k

(4) ~ lim 7 >0,

ko0 )‘k

and by assumption A.2 there is a subsequence {Xk,} such that

%

could find open balls {Bp (xj)} such that

~ Y € T(p,x) . If now Hi(singW) =0 , then for any € > 0 we

]
(5) sing Y c q Bp.(xj)
3 J
and
N
(6) % mﬂgpj < €

(by definition of Hi) . Now (5) in particular implies that

K = 51(0) ~U B_ (x.) 1is a compact set with positive distance from sing { .

iP5

Hence by assumption A.3(3) we have

(7 sing ¢ n Bl(O) cUB_ (x.)
ey 5 Py 3

for all sufficiently laxrge k , and hence by (6)

L, .
Hm(51ng ¢x'kk' n Bl(O)) <g, k=k() .
Thus since X-l(sing ¢=-x%x) = sing ¢ (by A.3(2)) we have
k x,kk

-2 R, .
)\k, H. (sing qu)‘k'(X)) < e

for all sufficiently large k , thus a contradiction for

€ < lim K;l Hi(sing ¢r]BA (x)) . (Such & «can be chosen by (4).)
koo k



259

We have therefore established the general implication (2). From now on
take £>d-1 so that Fz# @ (which is automatic for £=d by definition of 4).

By (2) there is ¢ € F2 with ¢ Y X >0 . Suppose also that there

0, =9
P
is a k-~dimensional subspace (k>=0) S of R such that ¢y y " ¢
14
Vyé€s, A>0. (Notice of course this is no additional restriction for
¢ in case k=0.) Now if k = d+1 ‘then, by definition of d , we can

assert sing ¢ = @ , thus contradicting the fact that ¢ € FR . Therefore

0<k<d, and if k =d-1 (<4%) , then Hl(s) = 0 and in particular
(8) i x¢ B, (0) N sing o ~8 .

But by A.2 we can choose Y € T($,x). Since P = lim ¢x A for some
PAL
J

sequence Aj ¥ 0 , we evidently have (since ¢y+x,k = ¢x,K Vyes,
A > 0)
(9) wy,l = lim ¢y+x,k. = lim ¢x,A. =y Yyes
. J J
and
(10) wa,l = lim ¢X+Xj8X,Xj =y VBER.

(All limits in the weak sense described at the beginning of the section.)
Thus wz,A =1y for each A > 0 and each =z in the (k+1)-dimensional
subspace T of B spanned by S and x . Sing Y#9 (by A.3(3)),

hence by induction on k we can take k =d-1 ; i.e. dim T =4 ,

and hence sing Yy > T by A.3(2). On the other hand if 3 % € sing y ~ T
then we can repeat the above argument (beginning at (8)) with T in place
of S and Y in place of ¢ . This would then give a (d+1)-dimensional
subspace T and a @ € F with sing & ST ;, thus contradicting the
definition of d . Therefore sing ¢ = T . Furthermore if ¢ > d then the
above induction works up to k=d and again therefore we would have a

contradiction. Thus dim(Bl(O)r]sing¢)§(i Yo €F .
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Finally to prove the last claim of the theorem, we suppose that d=0.

Then we have alreddy established that
(11) H(sing $NBL(0)) =0 Y a >0, ¢ € F .

If sing ¢(]Bp(0) is not finite, then we select x € ﬁ;(O) such that

x = lim X for some sequence x,_ € sing ¢ By (0) ~ {x} . Then letting

k

Ak= 2]xk-x| we see from A.3(2) that there is a subsequence {Ak,} with

~YET(h,x) and (x,-x) / |xk,-x| > £ € 3B, (0) . Now by A.3(2), (3)

¢X’Ak'

we know that {¢/2} 1 {0} ¢ sing Y and, since wo y = Y , this (together with
1
A.3(2)) gives Li C sing Y where Lg is the ray determined by 0 and §& .

Then Hl(sing wriBl(O)) > 0 , thus contracting (11), because VY € F .
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APPENDIX B
NON-EXISTENCE OF STABLE MINIMAL CONES, 2=<n<6.

Here we describe J. Simons [SJ] result on non-existence of n-dimensional
stable minimal cones (previously established in case n= 2,3 by Fleming [F]
and Almgren [24] respectively). The proof here follows essentially Schoen-

Simon-Yau [SSY], and is slightly cleaner than the original proof in [SJ].

+
Suppose to begin that C € Dn(mp l) is a cone (no A#C=:C) and C is
I

integer multiplicity with 3C = 0 . If sing C ¢ {0} and if C is
n+l

minimizing in R then, writing M = spt C ~ {0} and taking M

2
as in §9, we have é% Hn(Mt) =0 and ng Hn(Mt) > 0 . (This is
t=0 dt =0

clear because in fact Hn(Mt) takes its minimum value at t=0 , by virtue
of our assumption that C is minimizing.) Notice that M is orientable,
with orientation induced from C , and hence in paxticular we can deduce

from 9.8 that

B.1 J (7z)? - 22]al%aH = o

M
for any T € ci(M) (notice O ¢ M , so such ¢ wvanish in a neighbourhood
of 0) . Here A is the second fundamental form of M and |A| is its

length, as described in §7 and in 9.8.
The main result we need is given in the following theorem.

B.2 THEOREM Suppose 2=n<=6 and M <s an n-dimensional cone embedded in
B with zero mean cwrvature (see §7) and with H~u = {0} , and suppose

that M <is stable in the sense that B.1. holds. Then M is a hyperplane.

(As explained above, the hypotheses are in particular satisfied if

. -+ e a s .
M = spt C~ {0}, with Cc€D, (®R" l) a minimizing cone with 3C=0 and singC c{0}.)
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B.3 REMARK rTheorem B.2 is false for n=7 ; J. Simons [SJ] was the first

1 8.8, ¢ i2_ 9 i
to point out that-the cone M={(x,...,x)€E€R : )} (xH° = ] xH°} is

i=1 i=5
a stable minimal cone. (Notice that M 1is the cone over the compact
manifold f;% 53) X (5% 83) C 57 C Re .) The fact that the mean curvature

of M is zero is checked by direct computation. The fact that M is
actually stable is checked as follows. First, by direct computation one

checks that the second fundamental form A of M satisfies ]Alz = 6/‘x|2 .

On the other hand for a stationary hypersurface M C Rn+1 the first

variation formula 9.3 says ! divMXdHn =0 if spt|X| is a compact subset
) 2,2 o . .
of M . Taking XX = (C/rT)yx , CE CC(M) , = |x| , and computing as in

§17, we get
(n-2) J /ety et = -2 J cr 2x e Pleat® .
M M

Using the Schwartz inequality on the right we get

A

2
(n:f) j 2/ e < J |VMC!2dHn )
M M

Thus we have stability for M (in the sense of B.l) whenever A satisfies

[x[?]a]? = m-2%4

For the example above we have n=7 and [x[2 iA[2= 6, so that this
inequality is satisfied, and the cone over S3X S3 is stable as claimed.
(Similarly the cone over qu Sq is stable for g = 3 ; i.e. when the

dimension of the cone is = 7.)

Before giving the proof of B.2 we need to derive the identity of J. Simons
for the Laplacian of the length of the second fundamental form of a hypersurface

(Lemma B.8 below) .
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The simple derivation here assumes the reader's familiarity with basic
Riemannian geometry. (A completely elementary derivation, assuming no

such background, is described in [G].)

. . +
For the moment let M be an arbitrary hypersurface in IRn 1 (M not

necessarily a cone, and not necessarily having zero mean curvature).

Let Tl,...,T be a locally defined family of smooth vector fields
n
which, together with the unit normal VvV of M , define an orthonormal

. -+ . . .
basis for R 1 at all points in some region of M .

The second fundamental form of M relative to the unit normal VvV is

the tensor A =h,.71.9T. , where h,. =<D_ Vv,7.> . (cf. §7.) Recall
ij 1 ] i T. i

J J
that we have
B.4 h,.=h.. ,
ij ji

+ .
and, since the Riemann tensor of ZRn 1 is zero, we have the Codazzti
equations
B.5 h =h ., i,3,k € {1,...,n} .

ij,k ik, 3

denotes the covariant derivative of A with respect to T, ;

Here hi. k

ik

that is, hij,k are such that VTkA = hij,kTi ® Tj .

We also have the Gauss curvature equations

B.6 Rijk% = hizhjk - hikhjm ,

where R = Rijk£ T ® Tj ® Ty ® T

and where we use the sign convention such that Rijji

is the Riemann curvature tensor of M ,
(i#j) are sectional

curvatures of M (=41 if M= Sn) .



From the properties of R (in fact essentially by definition of R )

we also have, for ‘any 2-tensor

= . + a, . . .
aij,kl aij,lk almRmJZk * aijmllk
(where aij,k£ means aij,k,l - i.e. the covariant derivative with respect
to "C’Q of the tensor aij,k Ti ¥ Tj ] Tk) . In particular
B-7 Byt T Pig,ek * Pinfugtk * PmgRmitk
= hij,SLk * hlm[ mQ jk hmkhjll - hmj[hilhmk ik m2]
by B.6.
B.8 LEMMA  In the notation above
2 2 4
A G[A[D) . Z his k- [a]® + hygH o HR R R
i, Jrk
where H = hkk = trace A .
f £ :
Proo We first compute hl],kk
Bijoac T Pak, g (B B3
Mg Gy
= Mkt P PP P 5!
- hmi[hkjhmk—hkkhmj] (by B.7)
2
= - h
Pki k3 {mik hmk}hlj * Py P
14

Now multiplying by h,.

o
P

L, "

we

Mk, i3 T

1]

- hijx )

i, 3,k

a,
1

.+ h_h .h
1]
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P .
J 1

J

kk mi mj (by B.5)

then get (since h,.h

1[2 2}
= = hi.
ij ij,.kk 2 I ij Kk



265

2
%[ ) h.Z,J = 3 hi. .- [z hi] +h B .+ Hh b b
RS I SRS iby 8 3743 343,

which is the required identity.

We now want to examine carefully the term X hij k appearing in
i3k !
the identity of B.8 in case M 1is a cone with vertex at 0 (i.e. no >\M==M
?
. 2 . vM 2 .
YA > 0) . 1In particular we want to compare ) hij x with |7 |al| in
n i J.k !
2 -
this case. since |V'|a||® = ) |al th..h,. )2, we loock at the
k=1 ij ij.k
difference
n
_ 2 -2 2
(*) p= Y ni. - 7 |a]"m..h, )¢ .
.~ k 23
i3, i o1 i37i3

B.9 LEMMA If M Zs a cone (not necessarily minimal) the quantity D defined

in  (*) satisfies
px) = 2|x| a0 |? ., x€m .

Proof Let x € M and select the frame T ""Tn so that Tn is radial

ll

. +
(x/lxl) along the ray Rx through x , and so that (as vectors in Rn 1)

TyreearT are constant along £ . Then
1 n X

(1) hnj = hjn =0 along ZX , j=1,...,n ,

) -1
and (since hij(Ax) = A hij(x) , A>0)

. = -r h,, 1 .
(2) hij,n r hl] along Qx

Rearranging the expression for D , we have

n n

-2 5
kZl iljl§]s=l lAl (hrshij’k—hijhrsrk) !

w]
]
N

as one easily checks by expanding the square on the right. Now since
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n n-1
2 2
1 ( ) =z4a Y e,
i,j,r,s=1 i,j,r=
s=n
we thus have
n n-1
-2
D = 2|a] ) (h,.h_ )2
. ij rn,k
k=1 i,j,r=1
By the Codazzi equations B.5 and (2) this gives
n n-1
- -2
D = 2r %|a ) hzi. ik
k=1 i,j,r=1 *J
-2 -2 4
= 2r “|a|"%|a| (by (1))
= 2:7%|a) %,

as required.

Proof of B.2
(i.e. we have not used H(

computations, thus giving

(1) AM(HA]

for the minimal cone M .

n )
makes sense H in

a.e.

Our aim now is to use

B.1l to get a contradiction
Specifically, replace

jm C21A|4

(2)

IA

+

=0) .

= by

(by B.8, B.9)
2)+1A|4 >

(Notice that

M.)

Notice that so far we have not used the minimality of

We now do set H=0

2c72[al 2+ |72 |?

IAI is Lipschitz, and hence

M

in the above

1v]all

(1) in combination with the stability inequality

in case 2=n=<6
z by C]A] in B.1l. This gives
j (9] [a| 2+ [ 7]a]

2 J z|a|vg-v|a]
M
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Now

It

2 J z|alvgev|a| = 2 J vz (3 |al?)
M M

]

r
| Wz - vi|al?
M

- J 2, 3]al?

A

J: (al®c? - 207222 al? « 2viallD ey )
M

and hence (2) gives

- [
(3) 2 J £%2%|al? < J |a]?|vz|? Ve C(l:(M) .
M M

Now we claim that (3) is wvalid even if (¢ does not have compact support

on M , provided that ¢ is locally Lipschitz and
(4) J £ 22a)? < .
M .

(This is proved by applying (3) with CYE in place of ¢ , where YE is
such that Ye(x) =1 for [x| € (E,e_l) R iVYa(x)| < 3/[xl for all x ,
YE(X) = 0 for [xl < g/2 or ]x] >28-1 , and OE'YES 1 everywhere, then

letting € ¥+ 0 and using (4).)

Since M is a cone we can write

{ee]

(5) J ¢ (x) GH™ (x) = J Mt J ¢ (xw) aH™ T () ar
M 0 5

for any non-negative continuous ¢ on M , where I = Mﬂsn is a compact

r—2|A(x/|x])|2 , Wwe can now

(n-1) -dimensional submanifold. Since |A(x)|?

]

1+ 1-n/2-2¢
r

1 P max{1l,r} , is a valid choice

use (5) to check that ¢ =r
to ensure (4), hence we may use this choice in (3). This is easily seen to

give
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) 5 J rZeri—n—z}elAlz < ((n/2)-2+€) 2 J |A|2r2-n—2€
M MN{r>1}

b o(1te) 2 J ]A]zrz8

MN{xr<1}

For 2=n<6 we can choose € such that ((n/2)—2+€)2 < 2 and (1+€)2 < 2,

hence (6) gives IAlZ =0 on M as required.



