CHAPTER 8
THEORY OF GENERAL VARIFOLDS

Here we describe the theory of general varifolds, essentially following

W.K. Allard [awl].

. . . + .

General varifolds in U (U open in Rp k) are simply Radon measures
. . . n+k

on Gn(U) = {(x,8) : x€U and S is an n-dimensional subspace of R }.

One basic motivating point for our interest in such objects is described as

follows:

Suppose {Tj} is a sequence of integer multiplicity currents (see §27)
such that the corresponding integer multiplicity varifolds (as in Chapter 4)
are stationary in U (U open in :Rn+k), and suppose BTj= 0 and there is a
mass bound Supjzlgw(Tj) <o YW ccu . By the compactness theorem 27.3 we
can assert that Tj' ~ T for some integer multiplicity T . However it is
not <clear that T is stationary; the chief difficulty is that it is not
genefally true that the corresponding sequence of measures | converge

Tj,

to uT . Indeed if uT" converges to UT (as they would by 34.5 in case
the Tj are minimizingjin U) then it is not hard to prove that T is
stationary in U . This leads one to consider measure theoretic convergence
rather than weak convergence of the currents. However if we take a limit
(in the sense of Radon measures) of some sub-sequence {“T-.} of the {UT.}
then we get merely an abstract Radon measure on U , and %irst variation gf

this does not make sense.

To resolve these difficulties, we associate with each Tj a Radon
measure Vj on the Grassmaniann Gn(U) (Gn(U) is naturally equipped with a

suitable metric - see below); Vj is in fact defined by
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Vj(A) = uTj (1rj @a)) .

where nj(A) denotes {x€U: (x,<%j(x)>)€ A} for any subset A of Gn(U).
(<%j(x)> denotes the n-dimensional subspace determined by Ej(x). ) One
then uses the compactness theorem 4.4 to give Vjl + V for some subsequence
{3'} and some Radon measure V on G () . It turns out to be possible
to define a notion of stationarity for such Radon measures (i.e. varifolds)
V on Gn(U) and, for example, in the circumstances above V turns out to
correspond to a stationary rectifiable varifold (in the sense of Chapter 4).
The reader will see that these claims follow easily from the rectifiability

and compactness theorems of §42.

§38. BASICS, FIRST RECTIFIABILITY THEOREM

We let G(n+k,n) denote the collection of all n-dimensional subspaces

ik n+k 15 i4 2 ¥
of R , equipped with the metric p(S,T) = lps-pTl = [ z (psj—p;J) } ’
i,3i=1
where ps ’ PT denote the orthogonal projections of .Rn+k onto S, T

, ij o_ o, ij _ .. i
respectively, and pS e, ps(ej) ’ pT ei pT(ej) are the corresponding

matrices with reéespect to the standard orthonormal basis for

eprerere
+
Rn k

°

+
For a subset A C‘Rn k we define

Gn(A) = AX G(n+k,n) ,

equipped with the product metric. Of course then Gn(K) is compact for

+k

+ ' . .
each compact K C R Gn(]Rn k) is locally homeomorphic to a Euclidean

space of dimension n+k + nk .
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., , +
By an n-varifold we mean simply any Radon measure V on Gn(IRn k).

+
By an n=varifold on U (U open in ZRn k) we mean any Radon measure V
on Gp(U) . Given such an n-varifold V on U , there corresponds a Radon
measure [ =1}, on U (called the weight of V ) defined by
-1
w(@a)y =v(mr "(&)) , ACU,
where, here and subsequently, 7 is the projection (x%,S) » x of Gn(U)

onto U . The mass M(V) oi V is defined by
MV) = 1 (U) (=v(e () .

For any Borel subset A C U we use the usual terminology V L Gp(a)

to denote the restriction of V to Gp(A) ; thus
(L G, () (B) = V(BNG (a)) , BCG (U) .

Given an n-rectifiable varifold X(M,G) on U (in the sense of Chapter
4) there is a coresponding n-varifold V (also denoted by g(M,G), or simply

v(M) in case 6 =1 on M), defined by
V(A) = u(m(IMNA)) , A C Gn(U) ’

where W =H'L® and ™ = {(x,T M) :x€M,} , with M, the set of x€M
such that M has an approximate tangent space TxM with respect to 0 at

x in the sense of 11.4. Evidently V , so defined, has weight measure

The question of when a general n-varifold actually corresponds to an
n-rectifiable varifold in this way is satisfactorily answered in the next

theorem. Before stating this we need a definition:



230

38.1 DEFINITION Given T € G(n+k,n) , x€U , and 6€ (0,9 , we say
that an n-varifold V on U has tangent space T with multiplicity ©
at x if

(*) lim V
AY0

%, A = eg(T) v

e s . n+k
where the limit is in the usual sense of Radon measures on Gn(ZR ). In

(*) we use the notation that Vx 2 is the n-varifold defined by

Vi y @) = A o ({ (\y+x,8) : (y,S) €A} N G, ()

for AcC G & .

38.2 REMARK  Note that 38.1(*) implies that the weight measure J; has
approximate tangent space T with multiplicity 6 at x in the sense of

11.8.

38.3 THEOREM (First Rectifiability Theorem)

Suppose V is an n-varifold on U which has a tangent space T, with
multiplicity 6(x) € (0,)  for U, - a.e. x€U .‘ Then V <is n-rectifiable:
in fact M = {x€U: TX,G(x) exist} is H"-measurable, countably n-rectifiable,

6 is locally H'-integrable on M , and V = v (M, 0)

In the proof of 38.3 (and also subsequently) we shall need the following

technical lemma:

38.4 LEMMA  Let V be any n-varifold on U . Then for W, -a.e. x€U

(x)

there 18 a Radon measure Ny

on G(n+k,n) such that, for any continuous

B on G(n+k,n) ,

J B(S)av (v,S)
G (B (x))
B(S)dn‘ﬁx) (S) = lim —2 2P

JG (n+k,n) [e2 28] uv (Bp (x))
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Furthermore for any Borel set A C U,

B(S)aV (x,5) = JJ Bs ant™ (syan (0
A/G(n+k,n)

G, a)

provided B = 0 .

Proof The proof is a simple consequence of the differentiation theory for
Radon measures and the separability of K(X,R) (notation as in §4) for
compact separable metric spaces X . Specifically, write K = K(G(n+k,n) ,R),
K+ _ 1 + . +

= {BeK:B=0} , and let 81,82,... € K be dense in K . By the

differentiation theorem 4.7 we know that (since there is a Radon measure

Yj on Rn+k characterized by Yj (B) =J Bj (8Yav(y,s) for Borel sets

n+k Gn(B)
BCR )

J B.(s)av(y,s)
) G (B (x))
@ e(x,3) = lim —2F
pYo UV(Bp (x))
. n+k . .

exists for each X € IR ~ Zj ;, Where Zj is a Borel set with uv(Zj) =0,

and e(x,3j) is a uv-measurable function of x , with

(2) j e(x,3)dy, (x) =J B.(s)av(y,s)
A v G () -
n
for any Borel set A C Rn+k .
Now let € >0, B € K+ , X € Rn+k~ [U Z.] , and choose Bj such
j=1 '

that sup|{3—8j[ < g . Then for any p > 0

J B(s)av(y,s) J' B.(s)av(y.,s)

G (B _(x)) G (B_(x))
(3) n_p _ n' p

UV(Bp(X)) UV(Bp(X))

V(G (B (x}))
< e ——F -

Uy (Bp (x))

’
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and hence by (1) we conclude that

J B(S)av (y,S)
G (B (%))
At @ = 1im 2P
p¥o UV(Bp(X))
exists for all R € k¥ and all =x € Rn+k'~ [ U Z.] . Of course, since

j=1
Iﬁéx)(ﬁ)l < sup|B]| v gekt , by the Riesz representation theorem 4.1 we

have ﬁéx)(B) = J B(s)dnéx)(s) , where néx) is the total variation
G(n+k,n)
(x)

measure associated with ﬁV

Finally the last part of the lemma follows directly from (2), (3) if

~ (x)

we keep in mind that e(%,3j) in (1) is exactly nv (X)

(B.) = Bj(S)dﬂv (s) -

J JG(n+k,n)

We are now able to give the proof of Theorem 38.3.

Proof of Theorem 38.3 As mentioned in Remark 38.2, has approximate

Hy
tangent space Tx with multiplicity 6(x) in the sense of 11.8 for
Uy-a.e. x € U . Hence by Theorem 11.8 we have that M is Hn—measurable

countably n-rectifiable, 0 is locally an-integrable on M and in fact

Uy = H'L 6 in U (if we set 6=Z0 in U~M) .

Now if x € M 1is one of the uv—almost all points such that néx)

exists, and if B 1is a non-negative continuous function on ‘- G(n+k,n) , then
we evidently have néx)(B) = 6(x)B(Ty) and hence by the second part of 38.4

we have

B(syav(z,s) = B(Tx)duv(x)

JG () JMﬂA
n

for any Borel set A C U . From the arbitrariness of A and B it then

easily follows that



233

J f(x,8)dv (x,8) = J f(x,Tx)duv(x)
G_(U) M
n
for any non-negative f € CC(Gn(U)) ;, and hence we have shown V = g(M,e)

as required (because uv = HnL 0 as mentioned above) .

§39. FIRST VARIATION

We can make sense of first variation for a general varifold V on U .
We first need to discuss mapping of such a general n-varifold. Suppose

k

U, U open c B and £:u-+0U is ¢ with f[sptuvr]U proper. Then we

define the image varifold f#V on U by

39.1 £v@) = J JgE(x)av (x,8) , A Borel, A C G (@ .
-1 .

(a)
where F: GZ(U) > Gn(ﬁ) is defined by F(x,S) = (f(x),dfx(s)) and where

3
I E(x) = (det((df_|s)* o (af [s)))

. (x,8) € Gn(U)
+
G, (V) = {(x,8) ¢ G (W) = I E(x) # o} .

(Notice that this agrees with our previous definition given in §15 in case

Vo= v, .)

Now given any n-varifold V on U we define the first variation &V,

' +
which is a linear functional on K(U,]Rn k) (notation as in §4) by

SV (X) =%x§ VLG (K) .

(¢
t# £=0

where is any l-parameter family as in 9.1 (and KX is as in

{¢t}—l<t<l

9.1(3)). Of course we can compute OV (X) explicitly by differentiation

under the integral in 39.1. This gives (by exactly the computations of §9)
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39.2 SV(X) = div_X(x)av(x,S) .,

I, o @
Gn(U)

where, for any S € G(n+k,n) ,

n+k .
) Vi’ x"
i=1

div_X

n

Y <t..D_X>,

. i T,

i=1 i

where Tl,...,Tn is an orthonormal basis for S and V? = ei°VS , with

is the orthogonal projection

S _ 1
VE(x) = Pg (graan+kf(x)) o EECTU . (pg

of Rn+k onto S.)

By analogy with 16.3 we then say that V is stationary in U if

SV(X) = 0 vV x € K, B

More generally V is said to have locally bounded first variation in
U if for each W cc U there is a constant c¢ < o such that
[svixy| = ¢ supulxi Y X¢ K(UﬁRn+k) with spt|k[czw . Evidently, by the
general Riesz representation theorem 4.1, this is equivalent to the
requirement that there is a Radon measure ”GV” (the £otal variation measure

of &8V) on U characterized by

39.3 I8v|| (W) = sup [svix)| (<o)
xeK (u, B")
|x|s1,spt]x|cw
for any open W cc U . Notice that then by Theorem 4.1 we can write
§v(x) = J div X (x) AV (x,8) = - J vexd||sv| .
G, (U) U
where v is ||6V|-measurable with |[v| =1 |éVl|-a.e. in U . By the

differentiation theory of 4.7 we know furthermore that
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[18vl (B_(x))
SV z lim —B
Py N8V ro My B, 6)

exists Hy - a.e. and that (writing H(x) = DU 18V (x)Vv (%))

\
J vexd||sv] = J HeXdu, + J vexdo ,
U U U
with
o= |6vl|Lz , 2 = {x€u: DLl 18V]| (x) = +} . (W, (2)=0.)
\

Thus we can write

39.4 SV (X)

J diVSX(x)dV(x,S)
Gn(U)

= = J g-xduv - J Vexdo
u Z

for x € KU, B .

By analogy with the classical identity 7.6 we call H the generalized
mean curvature of V , 2 the generaliszed boundary of V , O the
generalized boundary measure of V , and v|z the generalized unit

co-normal of V .

§40. MONOTONICITY AND CONSEQUENCES

In this section we assume that V is an n-varifold in U with locally

bounded first variation in U (as in 39.3).

We first consider a point x € U such that there is 0 < po < dist(x,9U)

and A=0 with



40.1 l6vii (B, ) < M (B () 4 O<p<py

Subject to 40.1 we can choose (in 39.2) Xy = y(x) (y-x) , r= ]y—xl , Y€ U

as in §17 and note that (by essentially the same computation as in §17)

255 ST SO S I
div_X = ny(xr) + xry'(x) z ej——z— e
S i,3=1 S r r

7

.- . ' ¥
where (egj) is the matrix of the orthogonal projection ps of Rn k onto

the n-dimensional subspace S . We can then take Y (r) = ¢(r/p) (again as
n+k ;s xi_yi Xj_ 3

in §17) and, noting that Z 32 XYV g L lp (Y N
i,3=1 S r r J.
.=

conclude (Cf. 17.6(1) with o=1) that eAp p‘nuv(Bp(x)) is increasing

in p , O<p<p0, and, for 0<05p<p0,

n < Ao -1 -n
40.2 0% (uy,x) se w "o uv(B (x)) = e w p u (B (%))

-1
- W

—n-21
n P

r

J L =0 | %av (y,8)
Gn (Bp (x) NBG (x)) s

In fact if A = 0 (so that V is stationary in Bp (x)) we get the precise
0
identity

£ I | (y-x) | 2av (v,8) ,

n -1 ~-n 1
40.3 0 (W %) =w P uV(Bp (x)) ~w_ J
Gn(Bp(x)) s

for 0<p< po .

Using Xy = h(y)y(r) (y-x) (r= |y-x]) in 39.2 we also deduce the

following analogue of 18.1:

-

d -nx _ 4a _ 2 N
40.4 7y (p I(P)) =p i J lpsi(y x) /x| “d(x/p)h(y) AV (y,S)

+ p_n'l[év(x)a-J (y-X)-Vsh(y)¢(r/0)dV(Y'S)} ‘

where f(p) = J ¢(r/p)hduv .
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40.5 LEMMA  Suppose V has locally bounded first vartation in U . Then,
for By - a.e. x cu, on (pv,x) exists and is real-valued; in fact

o (uv,x) exists whenever there i1s a constant MA(x) <o  such that
*) lovil (2 () = AGaug B ), 0 < p < 2 aist (x,00)

(Such a constant A(x) exists for uv-a.e. x € U by virtue of the

differentiation theorem 4.7.)
Furthermore Qn(uv,x) 18 a uv~7neasurable function of x .

Proof The first part of the lemma follows directly from the monotonicity

formula 40.2. The -measurability of @n(uv,°) follows from the fact

Yy
- L - . n
that uv(Bp(x)) > ll$+;up uV(Bp(y)) , which guarantees that uv(Bp(x))/(wnp}
is Borel measurable and hence uv-measurable for each fixed o . Since
@n(u ,X) = lim (W pn)_lu (B (x)) for Y,-a.e. x € U, we then have
v 040 n VTP v
uv—measurability of On(uv,') as claimed.
40.6 THEOREM (Semi-continuity of 0" under varifold convergence. )
Suppose V, >V (as Radon measures in G (U)) and en(vi,y) > 1
except on a set B, €U with UV-(BiQW) + 0 for each W cc U, and suppose
1
that each v has locally bounded first variation in U with

lim inf ]jévin (W) < ® for each W cC U . Then |[SV[(W) < lim ian(‘SViH (W)

YVWccu and On(uv,y) zZ1 W, -ae. in U .

40.7 REMARKS
(1) The fact that [|§V|[(W) < lim inf”BViH(W) is a trivial consequence
of the definitions of ||&V|| , ”5Vi“ and the fact that V, ~V , so we have

only to prove the last conclusion that @n(uv,y) > 1 uv-a.e.

(2) The proof that On(uv,y) > 1 uv-a.e. to be given below is

slightly complicated; the reader should note that if |[|§V] < Ay, in U
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(i.e. if V has generalized boundary measure 0= 0 and bounded H- see 39.4),

then the result is a very easy consequence of the monotonicity formula 40.2.

Proof of Theorem 40.6 set M; =My, s M =Wy, and take any Wcc U and
1
poe (0,dist(W,9U)) . For 1i,j = 1 , consider the set Ai 5 consisting of
’

all points y¢ W«-Bi such that

(1) HSViH(Bp(Y)) = Jui(Bp(Y)) r 0<p<py v
and let B, ., = W~A, . . Then if x € B, . we have either x € B, N W or
i,] 1,] 1,] i
- -1 -
(2) ui(BO(x)) <3 ”évin(Bo(x)) for some o € (0,py) -

Let B be the collection of balls §O(x) with x€B, 5 g€ (0,pg)
’

and with (2) holding. By the Besicovitch covering lemma 4.6 there are families

N
Bl""'B cB with N=N(n+k) , with B. .~B. ¢ U ( U B] and with each
N 1,3 1
2=1 BGBZ
B2 a pairwise disjoint family. Hence if we sum in (2) over balls
N
B¢ U BR , we get
2=1

-1 ~

W= {x€ U: dist (x,W) < po}) , so

=1
(3) “i(Bi,j) scj T Hu AW,
with ¢ independent of 1i,j . In particular for each i,j =1
o oo
4) "u[interior {n B, ]] < lim inf u [interior [ n s, ]] <7t
g=i 3 g ! 9=i =7

since B NW) - 0 as - o
Uq( q ) q
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Now let j € {1,2,...} and consider the possibility that there is a

[oe]
point x € W such that x € W~ interior n B } for each i=1,2,... .
g=i ¥ -
Then we could select, for each i=1,2,... , v, € W~ 1 B . with
0 7
g=1

]yi-xl < 1/i . Thus there are sequences y; ~ x and q; > such that

. 7

yi$ qu,j for each i=1,2,... . Then v, € Aqu and hence (by (1))

eV _ || B (v.)) < du_ (B (¥))) » 0<p<p_,
qipl q p i 0

for all i=1,2,... . Then by the monotonicity formula 40.2 (with A=)

together with the fact that o" (uq (/¥;) 2 1 we have
i
= =3P n .
qu(Bp(yi)) > e J wnp ’ 0<p<po , 1=1,2,... ,

and hence

M B ) = e Pup™, o<p<p

0 I3

so that On(u,x) > 1 for such an x . Thus we have proved @n(u,x) > 1

e} 0
for each x with % € W ~ [ U interior [ n Bl .}} for some j€ {1,2,...} .
i=1 L=i 3
That is
o0 [oe} 0
(5) 0% qu,x) = 1 Vx€wW~ [ N U interior [ n s, _]] .
j=1 i=1 =i 7rd
However
[e+] [oe] (o) [ee) fee]
uin U interior[ n BQ ” < ].1{ U interior{ n BJL ” Vij=1
j=1 i=1 g=i '3 i=1 g=i ~73
o«
= lim u[interior[ n BSZ, ”
i g=i 3
<ot by @,
<o oo 0
so U N U interior[ n BQ ]” = 0 and the theorem is established (by (5)).
j=1 i=1 =i
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§41. THE CONSTANCY THEOREM

41.1 THEOREM (Constancy Theorem)
Suppose V 1s an n-varifold in U, V 1is stationary in U , and
U N spt M M, where M is a conmected n-dimensional C° submantfold
k

of R Then v = eQX(M) for some constant eo

41.2 REMARKS
(1) Notice in particular this implies M~M)NU =0 (if V # 0) ;

this is not a-priori obvious from the assumptions of the theorem.

(2) J. Duggan in his PhD thesis [DJ] has recently extended 41.1 to

the case when M is merely Lipschitz.

(3) The reader will see that, with only minor modifications to the
proof to be given below, the theorem continues to hold if N is an embedded

+
(n+kl)—dimensional C2 submanifold of ‘Rn Kk and if V is stationary in

+
U NN in the sense that &V(X) = O v x € KR with X, € TN
V x € N, provided we are given spt V ¢ {(x,S) : x€ N and s<:TXN} . (This
last is equivalent to spt Uy C N and p#V =V , where p:U~> UNN

coincides with the nearest point projection onto UNN in some neighbourhood

of UNN.)

Proof of 41.1 We first want to argue that V = v(M,8) for some positive

locally Hn—integrable function 6 on M .

To do this first take any £ € Ci(U) with M ¢ {x€U: f(x)=0} and

note that by 39.2

(1) 8V (f grad £) = J( g (grad )| av(x,s) ,

because (using notation as in 39.2)
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divs(f grad f) = st-grad £+ £ divs grad £

!ps(grad f)]2 on M,
where we used f Z 0 on M . Since &V =0, we conclude from (1) that
(2) pS(grad f(x)) =0 for all (%x,8) € spt V .

Now let & € M be arbitrary. We can find an open W C U with & € W and

k
such that there are C§<U) functions fl""'fk with Mc N {x:f.(x)=0}
j=1 ’
and with (TXM)L being exactly the space spanned by grad fl(x),...,grad fk(x)
for each x € MOW . (One easily checks that such W and fl,...,fk exist.)
Then (2) implies that
L
(3) ps((TxM) y =0 for all (x,S) € Gn(W) N spt VvV .

But (3) says exactly that S = TxM for all (x,8) € Gn(W) l spt V , so that

(since & was an arbitrary point of M) , we have
(4) J f(x,8)av(x,8) = J f(x,TXM)de(x) , £¢ Cc(Gn(U)) .
MNU
On the other hand we know from monotonicity 40.2 that 0(x) = Gn(uv,x) exists

for all x € MNU, and hence (since On(HnL M,x) = 1 for each x € M , by
smoothness of M) , we can use the differentiation theorem 4.7 to conclude
from (4) that in fact

(

(5) J f(x,8)dv(x,8) = J
MNU

f(x,TxM)G(x)dHn(x) » E€C_(G (U)

(so that V = X(M,G) as required).

It thus remains only to prove that 6 = const. on MM U . Since M is
2 . n+k
C” we can take X€ K(U,R ) such that X erTM ¥V x¢ MN U . Then by

(5) and 39.2 O&V(X) = 0 is just the statement that f aivxeai™ = o , where
MNU
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div X is the classicalrdivergence of XlM in the usual sense of differential
geometry. Using local coordinates (in some neighbourhood Uc Rn) this tells

us that

where 6 is 8 expressed in terms of the local coordinates. In particular

J 3§ a=o Yzec(u , i=1,...,n
6 Bxi c

and it is then standard that O = constant in U . Hence (since M is

connected) 6 is constant in M .

§42. VARIFOLD TANGENTS AND RECTIFIABILITY THEOREM

Let V be an n-varifold in U and let x be any point of U such

that

42.1 On(uv,x) =06, € (0,®) and lim pl_nHGVH (B (x)) =0 .
p¥0 e

By definition of ¢V (in §39) and the compactness theorem 4.4 for Radon

measures, we can select a sequence Aj v 0 such that n converges

ALY
J

(in the sense of Radon measures) to a varifold C such that

C is stationary in Rn+k
and
W, (B_(x))
*) L2 =q Voo>o.
wnp

Since 6C = 0 we can use (*) together with the monotonicity formula 40.3

to conclude
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2
lp | 0]
J s — s =0 Vo>o,
Gn(Bp(O)) Ix|
n+k
so that p J_(x) =0 for C-a.e. (x,8) € Gn(I{ } , and hence p l(x) =0
S S
for all (x,S8) € spt C Dby continuity of p l(x) in (x,8) . Then by the
S

same argument as in the proof of 19.3, except that we use 40.4 in place of

18.1, we deduce that uc satisfies

~n n+k
42.2 A uc(nO,A(A)) =U.(@d , ACR s A >0
We would Ilike to prove the stronger result Ny A#C = C (which of course
14
implies 42.2), but we are only able to do this in case @n(uc,x) > 0 for
H,-a.e. % (see 42.6 below). Whether or not ”o >\#C = C without the
1

C

additional hypothesis on Gn(uc,') seems to be an open question.

42.3 DEFINITION Given V and x as in 42.1 we let Var Tan(V,x) ("the
varifold tangent of V at x") Dbe the collection of all C = lim nx A #V
v .
J

obtained as described above.

Notice that by the above discussion any C € Var Tan(V,x) is stationary

in Rp+k and satisfies 42.2.

The following rectifiability theorem is a central part of the theory

of n-varifolds with locally bounded first variation.

42.4 THEOREM  Suppose VvV has locally bounded first variation in U and
On(uv,x) > 0 for B, -a-e. x € U. Then V 1is an n-rectifiable varifold.
(Thus V = g(M,B) , with M an Hn-measurable countably n-rectifiable subset

of U and 6 a non-negative locally Hn—integrable function on U.)

42.5 REMARK We are going to use Theorem 38.3. In fact we show that V has

a tangent plane (in the sense of 38.1) at any point x where
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(i) Gn(uv,x) >0, (ii) néx) (as in Lemma 38.4) exists, (iii) en(uv,-)

is g-approximately continuous at x , and (iv) HSVH(Bp(x)) < A(x)uV(Bp(x))

for 0<p<p, = min{l,dist(x,9U)} . Since conditions (i)-(iv) all hold
uv-a.e. in U (notice that (iii) holds uv-a.e. by virtue of the
uv—measurability of Gn(uv,') proved in 40.5), the required rectifiability
of V will then follow from 38.3.

Before beginning the proof of 42.2 we give the following important

corollary.

42.6 COROLLARY  Suppose x € U, 42.1 holds, and

0 . If C € Var Tan(V,x) , then C

lim o u, ({y € B_(x) = 0% (g, y) < 1})
pYo v e v
18 rectifiable and

(*) no’x#c =C YA>0.

Proof . From the hypothesis p_nuv({y€ Bp(x): On(pv,y)< 1}) > 0 and the

R L n n+k
semi-continuity theorem 40.6, we have 0 (uc,y) > 1 for Ho-a.e. y € R .
Hence by Theorem 42.4 we have that C is n-rectifiable. On the other hand,
since On(uc,y) = On(uc,ky) ¥ A >0 (by 42.2), we can write
C =v(M,0) with Mo A(M) =M YA >0 and 6(Ay) = 6(y) Y>>0,

- v

kK | (Viz. simply set 60(y) = 0" (uery) and M = {ye R 6(y) > 0} L)

n+
y € R
It then trivially follows that vy € TyM whenever the approximate tangent

space TyM exists, and hence no A#C = C as required.
’

Proof of Theorem 42.2 Let x be as in 42.5(i)-(iv) and take

C € Var Tan(V,x) . (We know Var Tan(V,x) # § because 42.5(i), (iv) imply

42.1.) Then C 1is stationary in :Rn+k and
u. (B _(0))
_C__p—'_.__ = v =on
(1) R pn = 60 p >0 (90 S (lex)) .

n
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+
Also for any y € Rn k (using (1) and the monotonicity formula 40.2)

He (Bp (y)) Mo (BR(y))

A

. n n
() w R
n n

U (B (03)
__c__._R_*”Zln_ (1+|y]/R)n
wn(R+[y|)

I

60(l+ly|/R)n - 60 ~as R+ oo .

That is (again using the monotonicity formula 40.2),

u. (B (¥))
C +
2) Py s —2— < 8, Vye®E™,p>0.
w_ P
n
Now let vj = “x,x‘#v , where Aj ¥ 0 is such that 1lim nx,kj#v = C

J

and where we are still assuming X 1is as in 42.5(i)-(iv).
From 42.5(iii) we have (with €(p)+ 0 as p+ 0)

(3) 6"y, v) = 8, - €(p) . ¥ €GN B ()

where G € U is such that

(4) by (B )~ G) = e(@)p” , o sufficiently small.

Taking p = Aj we see that (3), (4) imply

(3)" en(uvj,y) < 8y-€5 + Y€ G NB(0)

with Gj such that

(4)° Uv_(Bl(O)Nij) = EL oo

i J

where Ej -0 as j *> %~ . Thus, using (3)', (4)' and the semicontinuity

result of 40.6, we obtain



246

+k
(5) On(uc,y)z 6, for my-a.e. y¢€ r"

(and hence for every vy € spt He by 40.3) . Then by combining (2) and (5)

we have
B (B (V)
(6) 0" (ug ) = 0y = —L— Vyesptu,, p>0.
w P
n

Then by the monotonicity formula 40.3 (with V=C), we have

P (x-y) =0 for C-a.e. (x,5) € Gn(]Rn+k) .

S

Thus (using the continuity of p l(x—y) in (x,8)) we have
S

7 x-y € 8§ Y y € spt e and V(x,8) € spt C .
In particular, choosing T such that (0,T) € spt C (such T exists because

0 € spt Mo = mT(spt C)) , (7) implies y€ T VY v€ spt Mo - Thus spt e cT ,

and hence C = eoX(T) by the constancy theorem 41.1.

Thus we have shown that, for x € U such that 42.5(i), (iii), (iv) hold,

each element of Var Tan(V,x) has the form eoX(T) ;, where T is an

n-dimensional subspace of Rn+k. On the other hand, since we are assuming
(42.5(i1)) that n(s) exists, it follows that for continuous R on G(n+k,n)
J' R(s)Yav(y,s)
G (B _(x))
(8) lim —2—F = J B(S)dnéx) (s) .
p¥0 uV(Bp(x)) G(ntk,n)

Now let eog(T) be any such element of Var Tan(V,x) and select

Xj ¥ 0 so that 1lim nx,kj#v = 6oX(T) . Then in particular
f B(S)av, (v,8)
G, (B, (0))
lim = B(T) ?
jooo HV'(Bl(O))

J
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and hence (8) gives

B(T) = pEan™ ) ,

JG(n+k,n)

thus showing that Gog(T) is the wunique element of Var Tan(V,x) . Thus
lim n V =0 v(T) , so that T is the tangent space for V at x in
Mo KoM o= :
the sense of 38.1. This completes the proof.

The following compactness theorem for rectifiable varifolds is now a
direct consequence of the rectifiability theorem 42.4, the semi-continuity

theorem 40.6, and the compactness theorem 4.4 for Radon measures, and its

proof is left to the reader.

42.7 THEOREM  Suppose {Vj} 18 a sequence of rectifiable n-varifolds in

U which are locally of bounded first variation in U ,

sup (M, (W) + H5lel W)) < YwWccu,

=1 v,

J

and On(uv /%) 21 on U~Ry, where W, (ANW) >0 as o> VWwececu.
] j

Then there is a subsequence {Vj,} and a rectifiable varifold VvV of
locally bounded first variation in U , such that Vj' +~V (in the sense

of Radon measures on G (M) , @n(uv,x) = 1 for W, -a.e. x €U, and

ISV|| (W) = lim inf ||6V.||(W) for each W cc U .
joeo ]

42.8 REMARK  An important additional result (also due to Allard [AW1l]) is
the <integral compactness theorem, which asserts that if all the Vj in
the above theorem are integer multiplicity, then V is also integer
multiplicity. (Notice that in this case the hypothesis On(uv ,X) =21 on
U~ Aj is automatically satisfied with an Aj such that uvj%Aj)= 0.)
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Proof that V 1is integer multiplicity if the V1- are:

Let W cc U. We first assert that for uv— a.e. xX € W there exists c

(depending on x) such that
(1) lim infnavin (}Sp(x)) < cuv(ﬁp(x)) , p<min{1,dist(x,3U)} .

Indeed otherwise 31 a set A CW with uV(A) > 0 such that for each j=1

and each x€A there are p >0, i =1 such that Ep (x) ¢ W and
X

= -1 = C e
uV(Bpx(xn =3 eyl <Bpx(x)) pizd .

By the Besicovitch covering lemma 4.6 we then have

=1 A
b (a,) =c3 v llwy , & =1,

N

where Ai = {x€Aa: ix < i} . Thus

Hy (a;) SCj_1 lim sup ||V, || W) ,

N

o0
and hence since Ai + A as 1 4 o we have
Hy () = it
for some ¢ (<®) independent of 3j . That is, uV(A) = 0, a contradiction,

and hence (1) holds. Since On(uv,x) exists uv—a.e. X € U, we in fact

have from (1) that for pv- a.2. X € U there is a ¢ = c(x) such that

A

(2) lim inf [|6V | (B, () = cp® , 0<p<min{1,dist(x,3U)} .

Now since V = v(M,8) , it is also true that for U, - a-e. £ € spt uv

we have v > 66\;(?) as A ¥ 0, where P =TM and 60 = 0(£) . Then

g, 24 £
(because Vi - V , and hence ”g,x#vi - ”g,x#v for each fixed A > 0) ,

it follows that for Wy~ a.e. " £ € U we can select a sequence )\i ¥ 0 such

that, with W, = \
’ i ng,ki# i’
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(3) W, > B,u(@)
and (by (2)) for each R > 0
(4) lidw, |l (B (0)) ~ 0

We claim that 60 must be an integer for any such § ; in fact for

. e s . . +
an arbitrary sequence {Wi} of integer multiplicity varifolds in r" k

satisfying (3), (4), we claim that 60 always has to be an ineger.

To see this, take (without loss of generality) P = Iglx {0} , 1let ¢

1 . . .
be orthogonal projection onto (IJXX {oh , and note first that (3) implies

(5) b wle {xe & [qeo | <eh » oy @®"
R

for each fixed € > 0 . However by the mapping formula for varifolds (§15),

we know that (5) says
(5) VR, > 0w (R

where

1

(6) v, (%) (¥)

9,
vep d eon{zeR ™ q (@) [<e} *
R

( Gi = multiplicity function of Wi , so that wi has values in Z{x}) .

Notice that (5)' implies in particular that

n

(7 J £y, aL” - 0 J £4l VEe co®Y .
n

n
R
(i.e. measure-theoretic convergence of wi to 6..)

0

Now we claim that there are sets Ai C Bl(O) such that

n
(8) wi(x) < 60+-€i ¥ xe€ Bl(O)wAi . L (Ai) -0, €i+ 0 ;
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this will of course (when used in combination with (7)) imply that for any

integer N > 80, max{wi,N} converges in Ll(Bl(O)) to B and, since

0 '
max{wi,N} is integer-valued, it then follows that 60 is an integer.

On the other hand (8) evidently follows by setting W = Wi in the

following lemma, so the proof is complete.

. . +
In this lemma, p, g denote orthogonal projection of IRn k onto

; n+k
B x {0} ¢ R"* ana {0} x Rc ® respectively.

42.9 LEMMA  For each & € (0,1) , A= 1, there is € = €(8,A,n) € (0,62)

such that if W is an integer multiplicity varifold in B, (0) with

(*) uW<B3(0)):sA ' HSWH(B3(O))< e? J “ps—pHdW(y,S) <e?,
B4 (0)
then there is a set A C 52(0) such that L"@)<8 and , VYx ¢ Bl(O) ~ A,
e (B, (x))

¥ 0% (o) S (148) ———— + 3 .

-t w_2"
yep ~ (x) Nspty N{z: |q(2) [<el N

42.10 REMARK 1t suffices to prove that for each fixed N there is
8, = 8,M) € (0,1) such that if § € (0,8, then 3 € = e(n,A,N,8) € (0,6%
such that (¥) implies the existence of A C B?(O) with L™(a) < 8 and, for

X € B?(O) ~ A and distinct Yyrewer¥y € p_l(x)rlspt uwf]{zzlq(z)]< e} ,
¥ o

(*%) I 0Ty s (148) ——— + & .
j=1 ’

Because this firstly implies an q-priori bound, depending only on n, k, A ,
on the number N of possible points Yj , and hence the lemma, as originally
stated, then follows. (Notice that of course the validity of the lemma for

small § implies its validity for any larger &.)
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Proof of 42.9 By virtue of the above Remark, we need only prove (**). Let

W= Uy and consider the possibility that y € B1(0) satisfies

(1) | sw| (Bp(y)) < €u(Bp(Y)) ,0<p<1,

(2) Ipg - pllaw(z,8) =ep” , 0<p<1.

Bp (v)

Let

w
1]

{ye B, (0) N spt W: (1) fails for some p€ (0,1)}

=
I

= {y¢€ B,(0) Nspt W: (2) fails for some p€ (0,1)}.

Evidently if vy € spt 4N B (0) ~ A then by the monotonicity formula 40.2
W 2

1

we have

u(Bp ) c u(Bl(y))

(3) -—_n_SeTSC’O<D<I’
w P n

(c=c(A,n)) , while if y € A, ~ A, we have (using (3))

2 1
(4) f lpg-pllaw (z,s) = ep; z cen(s, (v))
B (y) 4
for some py € (0,1) . If vy € Al then
(5) LE () = e Howl B (v)
oy , o,

for some py € (0,1) .

Since then {B_ (9)}
py yEA1UA2

and the Besicovitch covering lemma 4.6 that

covers AlUA2 we deduce from (4), (5)
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(6) u (Al U A2)

A

- f
ce 1[ J Hpsrpﬂdw(a,s) + HGWM(B3(0))]
By (0)

A

ce
by the hypotheses on W .

Our aim now is to show (¥*) holds whenever x € B?(O) ~ p(AlLJAz) . In
view of (6) this will establish the reguired result (with A = p(AlU A2)).
So let x € B?(O) ~ p(AlLJAz) . In view of the monotonicity formula 40.2 it
evidently suffices (by translating and changing scale by a factor of 3/2 )
to assume that x = 0 € B?(O) ~ p(AlLJAz)) . We shall subsequently assume

this.

We first want to establish the two formulae, for vy € Bl(O) ~ (AltlAz)

and T > 0 :

27
a eg H U5 (1))
(7) O (u,y) s e — ceg/T , 0<o0<1,
wno

and

T 2T
MO w0 @)

w 0'n
n (an

(8} +cep/t, 0<ao<p<s1l,

where

U;(y) =B (y) N {z¢ rOE, la(z-y) | <1} .

Indeed these ‘two inequalities follow directly from 40.2 and 40.4. For

example to establish (7) we note first that 4012 gives (7) directly if 120 ,

er HB_(¥)

n
w_T
n

and then use 40.4 with h of the form h(z) = £(|q(z-y)|) ., £(t) =1 for

while if T < 0 then we first use 40.2 to give Gn(u,y) <e

£t < 1T and f£(t) =0 for t > 27T .
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Since [st(]q(z—y) [)I = £° (lq(z—y) !) lpS—pI (Cf. the computation

in 19.5) we then deduce (by integrating in 40.4 from T to ¢ and using (3))

2T
uwTWH umg(w>

< + ced/T .

n n
w_ T w o
n n

(8) is proved by simply integrating in 40.4 from 0 to p (and using (3)).

OQur aim now is to use (7) and (8) to establish

T
N u(u_(y.)) H(B,(0))
(9) ) —2 I < ares?) —E— & c6?
. n n
=1 w o w2
n n
. . 2 1 .
with ¢ = c¢(n,k,N,\) , provided 28%0 = T = 7 min IY-‘YQ[ ;

i#e
yj € spt 'uﬂp—l(()) n{z: lq(z)!<€} , 0 ¢ p(A1UA2) . (In view of (7) this

will prove the required result (**) for suitable 6O(N) 2)

We proceed by induction on N . N=1 trivially follows from (8) by
. 2T s 2T .
noting that Up (yl) C Bp (yl) (by definition of Up (yl)) and then using the
monotonicity 40.2 together with the fact that Iy1! < € . Thus assume

N =2 2 and that (9) has been established with any M < N in place of N

Let Yyree-o¥y be as in (9), and choose p € [0,1) such that

min [q(y.) - q(yl)l = min y.—yli] = 462p , and set T = 252p (= 2T) . Then
#e #e I
LU (y2) wwty.))
g J 9] J
o - o

U(U%(Y'))
s L v e @y @),

P
¢ =c(n,k,8) . Now since T = L nin laly.) -aly,)| we can select
2 540 J 2

{zl,...,zQ} c {yl""’yN} (0<N-1) and T < cf such that 7T > 362p and
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Nz e 7
u Up(yj) c U u 5 (zg) .
=1 =1 p(1+c8?)
~ 1 .
where ¢ = c(N) , and such that ‘tfzmmlzfz..
I

Since c52 < 1/2 for 6 < GO(N) (if 60(N) is chosen suitably) we then

have T = 2625 and

~

T T
N u(u_(y.)) Q  u(ux(z,))
z b3 < (1+c62) z R R ,
. n . n
j=1 p j=1 5

where 5 = (l+c§2)p and ¢ = c(N) . Since Q =< N-1 , the required result

then follows by induction (choosing € appropriately).



