CHAPTER 8

THEORY OF GENERAL VARIFOLDS

Here we describe the theory of general varifolds, essentially following W.K. Allard [AW1].

General varifolds in U (U open in \mathbb{R}^{n+k}) are simply Radon measures on $G_n(U)=\{(x,S):x\in U \text{ and } S \text{ is an } n\text{-dimensional subspace of } \mathbb{R}^{n+k}\}$. One basic motivating point for our interest in such objects is described as follows:

Suppose $\{T_j\}$ is a sequence of integer multiplicity currents (see §27) such that the corresponding integer multiplicity varifolds (as in Chapter 4) are stationary in U (U open in \mathbb{R}^{n+k}), and suppose $\partial T_j = 0$ and there is a mass bound $\sup_{j\geq 1} \underline{\mathbb{M}}_{W}(T_j) < \infty \quad \forall \, \mathbb{W} \subset \mathbb{U}$. By the compactness theorem 27.3 we can assert that $T_j \to T$ for some integer multiplicity T. However it is not clear that T is stationary; the chief difficulty is that it is not generally true that the corresponding sequence of measures μ_T converge to μ_T . Indeed if μ_T converges to μ_T (as they would by 34.5 in case the T_j are minimizing in U) then it is not hard to prove that T is stationary in U. This leads one to consider measure theoretic convergence rather than weak convergence of the currents. However if we take a limit (in the sense of Radon measures) of some sub-sequence $\{\mu_T\}$ of the $\{\mu_T\}$ then we get merely an abstract Radon measure on U , and first variation of this does not make sense.

To resolve these difficulties, we associate with each T_j a Radon measure V_j on the Grassmaniann $G_n(U)$ $(G_n(U)$ is naturally equipped with a suitable metric - see below); V_j is in fact defined by

$$V_{j}(A) = \mu_{T_{j}}(\pi_{j}(A))$$
,

where $\pi_j(A)$ denotes $\{x \in U : (x, \langle \overrightarrow{T}_j(x) \rangle) \in A\}$ for any subset A of $G_n(U)$. $(\langle \overrightarrow{T}_j(x) \rangle)$ denotes the n-dimensional subspace determined by $\overrightarrow{T}_j(x)$.) One then uses the compactness theorem 4.4 to give V_j , $\rightarrow V$ for some subsequence $\{j'\}$ and some Radon measure V on $G_n(U)$. It turns out to be possible to define a notion of stationarity for such Radon measures (i.e. varifolds) V on $G_n(U)$ and, for example, in the circumstances above V turns out to correspond to a stationary rectifiable varifold (in the sense of Chapter 4). The reader will see that these claims follow easily from the rectifiability and compactness theorems of $\S42$.

§38. BASICS, FIRST RECTIFIABILITY THEOREM

We let G(n+k,n) denote the collection of all n-dimensional subspaces of \mathbb{R}^{n+k} , equipped with the metric $\rho(S,T) = \left| p_S - p_T \right| = \begin{pmatrix} n+k \\ \sum \\ i,j=1 \end{pmatrix} (p_S^{ij} - p_T^{ij})^2 \end{pmatrix}^{\frac{1}{2}}$, where p_S , p_T denote the orthogonal projections of \mathbb{R}^{n+k} onto S, T respectively, and $p_S^{ij} = e_i \cdot p_S(e_j)$, $p_T^{ij} = e_i \cdot p_T(e_j)$ are the corresponding matrices with respect to the standard orthonormal basis e_1, \dots, e_{n+k} for \mathbb{R}^{n+k} .

For a subset $A \subset {\rm I\!R}^{n+k}$ we define

$$G_{n}(A) = A \times G(n+k,n)$$
,

equipped with the product metric. Of course then $G_n(K)$ is compact for each compact $K\subset \mathbb{R}^{n+k}$. $G_n(\mathbb{R}^{n+k})$ is locally homeomorphic to a Euclidean space of dimension n+k+nk.

By an n-varifold we mean simply any Radon measure V on $G_n(\mathbb{R}^{n+k})$. By an n-varifold on U (U open in \mathbb{R}^{n+k}) we mean any Radon measure V on $G_n(U)$. Given such an n-varifold V on U, there corresponds a Radon measure $\mu = \mu_V$ on U (called the weight of V) defined by

$$\mu(A) = V(\pi^{-1}(A)) , A \subset U ,$$

where, here and subsequently, π is the projection $(x,S) \mapsto x$ of $G_n(U)$ onto U. The mass $\underline{M}(V)$ of V is defined by

$$\underline{\underline{M}}(V) = \mu_{V}(U) \qquad (= V(G_{n}(U))) .$$

For any Borel subset $A\subseteq U$ we use the usual terminology $V \mathrel{L} G_n\left(A\right)$ to denote the restriction of V to $G_n\left(A\right)$; thus

$$(V \mathrel{L} \mathsf{G}_n(\mathtt{A}))(\mathtt{B}) = V(\mathtt{B} \cap \mathsf{G}_n(\mathtt{A})), \; \mathtt{B} \subset \mathsf{G}_n(\mathtt{U}).$$

Given an n-rectifiable varifold $\underline{\underline{v}}(M,\theta)$ on U (in the sense of Chapter 4) there is a coresponding n-varifold V (also denoted by $\underline{\underline{v}}(M,\theta)$, or simply $\underline{\underline{v}}(M)$ in case $\theta \equiv 1$ on M), defined by

$$V(A) = \mu(\pi(TM \cap A))$$
, $A \in G_n(U)$,

where $\mu=\mathcal{H}^n L \; \theta$ and $TM=\{(x,T_xM): x\in M_\star\}$, with M_\star the set of $x\in M$ such that M has an approximate tangent space T_xM with respect to θ at x in the sense of 11.4. Evidently V, so defined, has weight measure $\mu_V=\mathcal{H}^n L \; \theta=\mu$.

The question of when a general n-varifold actually corresponds to an n-rectifiable varifold in this way is satisfactorily answered in the next theorem. Before stating this we need a definition:

38.1 DEFINITION Given $T\in G(n+k,n)$, $x\in U$, and $\theta\in (0,\infty)$, we say that an n-varifold V on U has tangent space T with multiplicity θ at x if

(*)
$$\lim_{\lambda \downarrow 0} V_{x,\lambda} = \theta \underline{v}(T) ,$$

where the limit is in the usual sense of Radon measures on $G_n(\mathbb{R}^{n+k})$. In (*) we use the notation that $V_{\mathbf{x},\lambda}$ is the n-varifold defined by

$$V_{x,\lambda}(A) = \lambda^{-n}V(\{(\lambda y+x,S) : (y,S) \in A\} \cap G_n(U))$$

for $A \subseteq G_n({\rm I\!R}^{n+k})$.

38.2 REMARK Note that 38.1(*) implies that the weight measure μ_V has approximate tangent space T with multiplicity θ at x in the sense of 11.8.

38.3 THEOREM (First Rectifiability Theorem)

Suppose V is an n-varifold on U which has a tangent space $T_{\mathbf{x}}$ with multiplicity $\theta\left(\mathbf{x}\right)\in\left(0,\infty\right)$ for μ_{V} -a.e. $\mathbf{x}\in U$. Then V is n-rectifiable: in fact M $\equiv\left\{\mathbf{x}\in U:T_{\mathbf{x}},\theta\left(\mathbf{x}\right)\text{ exist}\right\}$ is H^{n} -measurable, countably n-rectifiable, θ is locally H^{n} -integrable on M , and $V=\underline{\mathbf{y}}\left(M,\theta\right)$.

In the proof of 38.3 (and also subsequently) we shall need the following technical lemma:

38.4 LEMMA Let V be any n-varifold on U . Then for μ_V -a.e. x \in U there is a Radon measure $\eta_V^{(\mathbf{x})}$ on G(n+k,n) such that, for any continuous β on G(n+k,n) ,

$$\int_{G(n+k,n)} \beta(s) d\eta_{V}^{(x)}(s) = \lim_{\rho \downarrow 0} \frac{\int_{G_{n}(B_{\rho}(x))} \beta(s) dV(y,s)}{\mu_{V}(B_{\rho}(x))}$$

Furthermore for any Borel set A C U ,

$$\int_{G_{\mathbf{n}}(\mathbb{A})} \beta(\mathbf{s}) \, d\mathbf{v}(\mathbf{x}, \mathbf{s}) = \int_{\mathbb{A}} \int_{G(\mathbf{n} + \mathbf{k}, \mathbf{n})} \beta(\mathbf{s}) \, d\mathbf{n}_{\mathbf{V}}^{(\mathbf{x})}(\mathbf{s}) \, d\mathbf{\mu}_{\mathbf{V}}(\mathbf{x})$$

provided $\beta \geq 0$.

Proof The proof is a simple consequence of the differentiation theory for Radon measures and the separability of $K(X,\mathbb{R})$ (notation as in §4) for compact separable metric spaces X. Specifically, write $K = K(G(n+k,n),\mathbb{R})$, $K^+ = \{\beta \in K \colon \beta \geq 0\}$, and let $\beta_1,\beta_2,\ldots \in K^+$ be dense in K^+ . By the differentiation theorem 4.7 we know that (since there is a Radon measure γ_j on \mathbb{R}^{n+k} characterized by $\gamma_j(B) = \int_{G_n(B)} \beta_j(S) \, dV(y,S)$ for Borel sets $B \subset \mathbb{R}^{n+k}$)

(1)
$$e(x,j) = \lim_{\rho \downarrow 0} \frac{\int_{G_{n}(B_{\rho}(x))} \beta_{j}(s) dV(y,s)}{\mu_{V}(B_{\rho}(x))}$$

exists for each $x \in \mathbb{R}^{n+k} \sim z_j$, where z_j is a Borel set with $\mu_V(z_j) = 0$, and e(x,j) is a μ_V -measurable function of x, with

(2)
$$\int_{\mathbf{A}} e(\mathbf{x}, \mathbf{j}) d\mu_{\mathbf{V}}(\mathbf{x}) = \int_{G_{n}(\mathbf{A})} \beta_{\mathbf{j}}(\mathbf{S}) d\mathbf{V}(\mathbf{y}, \mathbf{S})$$

for any Borel set $A \subseteq \mathbb{R}^{n+k}$.

(3)
$$\left| \frac{\int_{G_{n}(B_{\rho}(x))} \beta(s) dV(y,s)}{\mu_{V}(B_{\rho}(x))} - \frac{\int_{G_{n}(B_{\rho}(x))} \beta_{j}(s) dV(y,s)}{\mu_{V}(B_{\rho}(x))} \right| \leq \varepsilon \frac{V(G_{n}(B_{\rho}(x)))}{\mu_{V}(B_{\rho}(x))} = \varepsilon ,$$

and hence by (1) we conclude that

$$\widetilde{\eta}_{V}^{(x)}(\beta) \equiv \lim_{\rho \downarrow 0} \frac{\int_{G_{n}(B_{\rho}(x))}^{\beta(s)} \beta(s) dV(y,s)}{\mu_{V}(B_{\rho}(x))}$$

Finally the last part of the lemma follows directly from (2), (3) if we keep in mind that e(x,j) in (1) is exactly. $\tilde{\eta}_V^{(x)}(\beta_j) = \int_{G(n+k,n)} \beta_j(s) \, d\eta_V^{(x)}(s)$.

We are now able to give the proof of Theorem 38.3.

Proof of Theorem 38.3 As mentioned in Remark 38.2, μ_V has approximate tangent space \mathtt{T}_x with multiplicity $\theta\left(x\right)$ in the sense of 11.8 for $\mu_V\text{-a.e.}\quad x\in \mathtt{U}\text{.} \text{ Hence by Theorem 11.8 we have that } \mathtt{M} \text{ is } \mathtt{H}^n\text{-measurable countably } n\text{-rectifiable, } \theta \text{ is locally } \mathtt{H}^n\text{-integrable on } \mathtt{M} \text{ and in fact } \mu_V = \mathtt{H}^n\mathsf{L}\;\theta \text{ in } \mathtt{U} \text{ (if we set } \theta\equiv 0 \text{ in } \mathtt{U}\sim \mathtt{M}) \text{.}$

Now if $x \in M$ is one of the μ_V -almost all points such that $\eta_V^{(x)}$ exists, and if β is a non-negative continuous function on G(n+k,n), then we evidently have $\eta_V^{(x)}(\beta) = \theta(x)\beta(T_X)$ and hence by the second part of 38.4 we have

$$\int_{G_{n}(A)} \beta(s) dV(x,s) = \int_{M \cap A} \beta(T_{x}) d\mu_{V}(x)$$

for any Borel set $\,A\,\subset\,U$. From the arbitrariness of $\,A\,$ and $\,\beta\,$ it then easily follows that

$$\int_{G_{n}(U)} f(x,s) dV(x,s) = \int_{M} f(x,T_{x}) d\mu_{V}(x)$$

for any non-negative $f \in C_C(G_n(U))$, and hence we have shown $V = \underline{\underline{v}}(M,\theta)$ as required (because $\mu_V = \mathcal{H}^n L \theta$ as mentioned above).

§39. FIRST VARIATION

We can make sense of first variation for a general varifold V on U. We first need to discuss mapping of such a general n-varifold. Suppose U, \widetilde{U} open $\in \mathbb{R}^{n+k}$ and $f:U \to \widetilde{U}$ is C^1 with $f \mid \operatorname{spth}_V \cap U$ proper. Then we define the image varifold $f_{\#}V$ on \widetilde{U} by

39.1
$$f_{\#}V(A) = \int_{F^{-1}(A)} J_{S}f(x) dV(x,S) , A Borel, A \subset G_{n}(\widetilde{U}) ,$$

where $F: G_n^+(U) \rightarrow G_n^-(\widetilde{U})$ is defined by $F(x,S) = (f(x), df_x^-(S))$ and where

$$J_{S}f(x) = (\det((df_{x}|S) * \circ (df_{x}|S)))^{\frac{1}{2}}, (x,S) \in G_{n}(U) .$$

$$G_{n}^{+}(U) = \{(x,S) \in G_{n}(U) : J_{S}f(x) \neq 0\}.$$

(Notice that this agrees with our previous definition given in §15 in case $V \,=\, \underline{v}\,(M,\theta)$.)

Now given any n-varifold V on U we define the first variation δV , which is a linear functional on $K(U,\mathbb{R}^{n+k})$ (notation as in §4) by

$$\delta V\left(X\right) \; = \; \frac{\mathrm{d}}{\mathrm{d}t} \; \underline{\underline{M}} \left(\varphi_{t} \# V \mathrel{\mbox{L }} \mathsf{G}_{n} \left(K\right) \right) \; \bigg|_{t=0} \; \; , \label{eq:deltaV}$$

where $\{\phi_t\}_{-1 < t < 1}$ is any 1-parameter family as in 9.1 (and K is as in 9.1(3)). Of course we can compute $\delta V(X)$ explicitly by differentiation under the integral in 39.1. This gives (by exactly the computations of §9)

39.2
$$\delta V(X) = \int_{G_n(U)} \operatorname{div}_S X(x) \, dV(x,S) ,$$

where, for any $S \in G(n+k,n)$,

$$\operatorname{div}_{S} x = \sum_{i=1}^{n+k} \nabla_{i}^{S} x^{i}$$
$$= \sum_{i=1}^{n} \langle \tau_{i}, D_{\tau_{i}} x \rangle,$$

where τ_1,\ldots,τ_n is an orthonormal basis for S and $\nabla_i^S=e_i\cdot\nabla^S$, with $\nabla^Sf(x)=p_S(\operatorname{grad}_{\mathbb{R}^{n+k}}f(x))$, $f\in C^1(U)$. (p_S) is the orthogonal projection of \mathbb{R}^{n+k} onto S.)

By analogy with 16.3 we then say that V is stationary in U if $\delta V\left(X\right) \; = \; 0 \qquad \forall \; \; X \; \in \; K\left(U, \mathbb{R}^{n+k}\right) \; .$

More generally V is said to have locally bounded first variation in U if for each W CC U there is a constant $c < \infty$ such that $|\delta V(X)| \le c \sup_{U} |X| \quad \forall \ X \in K(U, \mathbb{R}^{n+k})$ with $\operatorname{spt} |X| \in W$. Evidently, by the general Riesz representation theorem 4.1, this is equivalent to the requirement that there is a Radon measure $\|\delta V\|$ (the total variation measure of δV) on U characterized by

39.3
$$\|\delta V\|(W) = \sup_{\substack{X \in K(U, \mathbb{R}^{n+k}) \\ |X| \leq 1, \text{spt}|X| \subseteq W}} |\delta V(X)| \quad (< \infty)$$

for any open $\, \, \mathbf{W} \, \subset \mathbf{U} \,$. Notice that then by Theorem 4.1 we can write

$$\delta V(X) = \int_{G_{n}(U)} \operatorname{div}_{S} X(X) \, dV(X,S) \equiv - \int_{U} v \cdot X d \| \delta V \| ,$$

where ν is $\|\delta V\|$ -measurable with $\|\nu\|=1$ $\|\delta V\|$ -a.e. in U . By the differentiation theory of 4.7 we know furthermore that

$$D_{\mu_{\mathbf{V}}} \|\delta \mathbf{V}\| (\mathbf{x}) = \lim_{\rho \downarrow 0} \frac{\|\delta \mathbf{V}\| (B_{\rho}(\mathbf{x}))}{\mu_{\mathbf{V}} (B_{\rho}(\mathbf{x}))}$$

exists μ_{V} - a.e. and that (writing $\underline{\underline{H}}(x) = D_{\mu_{V}} \|\delta V\|(x) \vee (x)$)

$$\int_{U} \nu \cdot x \text{d} \|\delta v\| \, = \, \int_{U} \, \underline{\underline{\text{H}}} \cdot x \text{d} \mu_{V} \, + \, \int_{U} \, \nu \cdot x \text{d} \sigma \ ,$$

with

$$\sigma = \|\delta v\| \perp z$$
 , $z = \{x \in u : p_{\mu_V} \|\delta v\| (x) = +\infty\}$.
 $(\mu_V(z) = 0$.)

Thus we can write

39.4
$$\delta V(X) = \int_{G_{\Omega}(U)} \operatorname{div}_{S} X(x) \, dV(x, s)$$
$$= - \int_{U} \underline{\underline{H}} \cdot X d\mu_{V} - \int_{Z} v \cdot X d\sigma$$

for $X \in K(U, \mathbb{R}^{n+k})$.

By analogy with the classical identity 7.6 we call $\underline{\underline{H}}$ the generalized mean curvature of V, Z the generalized boundary of V, σ the generalized boundary measure of V, and v|Z the generalized unit co-normal of V.

§40. MONOTONICITY AND CONSEQUENCES

In this section we assume that V is an n-varifold in U with locally bounded first variation in U (as in 39.3).

We first consider a point $~x\in U~$ such that there is $~0<\rho_0<$ dist(x, $\partial U)$ and $~\Lambda \geq 0~$ with

40.1
$$\|\delta v\| (B_{\rho}(x)) \le \Lambda \mu_{V}(B_{\rho}(x))$$
, $0 < \rho < \rho_{0}$.

Subject to 40.1 we can choose (in 39.2) $X_{y} = \gamma(r)(y-x)$, r = |y-x|, $y \in U$ as in §17 and note that (by essentially the same computation as in §17)

$$div_S X = n\gamma(r) + r\gamma'(r) \sum_{i,j=1}^{n+k} e_S^{ij} \frac{x^i - y^i}{r} \frac{x^j - y^j}{r}$$
,

where (e_S^{ij}) is the matrix of the orthogonal projection p_S of \mathbb{R}^{n+k} onto the n-dimensional subspace S. We can then take $\gamma(r)=\phi(r/\rho)$ (again as in §17) and, noting that $\sum_{i,j=1}^{n+k} e_S^{ij} \frac{x^i-y^i}{r} \frac{x^j-y^j}{r} = 1-|p_S| \frac{(y-x)}{r}|^2 ,$ conclude (Cf. 17.6(1) with $\alpha=1$) that $e^{\Lambda\rho} \rho^{-n} \mu_V(B_\rho(x))$ is increasing in ρ , $0<\rho<\rho_0$, and, for $0<\sigma\leq\rho<\rho_0$,

$$40.2 \qquad \Theta^{n}(\mu_{V}, x) \leq e^{\Lambda \sigma} \omega_{n}^{-1} \sigma^{-n} \mu_{V}(B_{\sigma}(x)) \leq e^{\Lambda \rho} \omega_{n}^{-1} \rho^{-n} \mu_{V}(B_{\rho}(x))$$

$$- \omega_{n}^{-1} \int_{G_{n}(B_{\rho}(x) \sim B_{\sigma}(x))} r^{-n-2} |p_{S^{\perp}}(y-x)|^{2} dV(y, S) .$$

In fact if Λ = 0 (so that V is stationary in B ρ_0 (x)) we get the precise identity

$$40.3 \qquad \Theta^{n}(\mu_{V}, x) = \omega_{n}^{-1} \rho^{-n} \mu_{V}(B_{\rho}(x)) - \omega_{n}^{-1} \int_{G_{n}(B_{\rho}(x))} r^{-n-2} |p_{S^{\perp}}(y-x)|^{2} dV(y,s) ,$$
 for $0 < \rho < \rho_{0}$.

Using $X_y = h(y)\gamma(r)(y-x)$ (r = |y-x|) in 39.2 we also deduce the following analogue of 18.1:

$$\begin{array}{ll} 40.4 & \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho^{-n}\widetilde{\mathbf{I}}\left(\rho\right)\right) = \rho^{-n} \, \frac{\mathrm{d}}{\mathrm{d}\rho} \, \int \, \left|\mathbf{p}_{\mathbf{S}^{\perp}}(\mathbf{y}-\mathbf{x})/\mathbf{r}\right|^2 \! \varphi\left(\mathbf{r}/\rho\right) h\left(\mathbf{y}\right) \mathrm{d}\mathbf{V}\left(\mathbf{y},\mathbf{S}\right) \\ & + \, \rho^{-n-1} \! \left[\delta \mathbf{V}\left(\mathbf{x}\right) + \int \, \left(\mathbf{y}-\mathbf{x}\right) \cdot \nabla^{\mathbf{S}} h\left(\mathbf{y}\right) \varphi\left(\mathbf{r}/\rho\right) \mathrm{d}\mathbf{V}\left(\mathbf{y},\mathbf{S}\right) \right] \,, \\ \\ \text{where} \quad \widetilde{\mathbf{I}}\left(\rho\right) = \int \, \varphi\left(\mathbf{r}/\rho\right) h \mathrm{d}\mu_{\mathbf{V}} \,. \end{array}$$

40.5 LEMMA Suppose V has locally bounded first variation in U . Then, for $\mu_V^- = a.e. \ x \in U$, $\theta^n(\mu_V^-,x)$ exists and is real-valued; in fact $\theta^n(\mu_V^-,x) = a.e. \ x \in U$ whenever there is a constant $\Lambda(x) < \infty$ such that

$$\|\delta V\| (B_{\rho}(x)) \le \Lambda(x) \mu_{V}(B_{\rho}(x)) , 0 < \rho < \frac{1}{2} \operatorname{dist}(x, \partial U) .$$

(Such a constant $\Lambda(x)$ exists for μ_V - a.e. $x \in U$ by virtue of the differentiation theorem 4.7.)

Furthermore $\theta^n(\mu_V,x)$ is a μ_V -measurable function of x .

Proof The first part of the lemma follows directly from the monotonicity formula 40.2. The μ_V -measurability of $\Theta^n(\mu_V, ^\circ)$ follows from the fact that $\mu_V(\bar{\mathbb{B}}_\rho(x)) \geq \lim_{\substack{Y \to x \\ Y \to x}} \sup \mu_V(\bar{\mathbb{B}}_\rho(y))$, which guarantees that $\mu_V(\mathbb{B}_\rho(x))/(\omega_n \rho^n)$ is Borel measurable and hence μ_V -measurable for each fixed ρ . Since $\Theta^n(\mu_V, x) = \lim_{\substack{\rho \downarrow 0 \\ \rho \downarrow 0}} (\omega_n \rho^n)^{-1} \mu_V(\mathbb{B}_\rho(x)) \text{ for } \mu_V - \text{a.e. } x \in U \text{ , we then have } \mu_V - \text{measurability of } \Theta^n(\mu_V, ^\circ) \text{ as claimed.}$

40.6 THEOREM (Semi-continuity of $\,\,_{\odot}^{n}\,\,$ under varifold convergence.)

Suppose $V_i \rightarrow V$ (as Radon measures in $G_n(U)$) and $\Theta^n(V_i,y) \geq 1$ except on a set $B_i \subseteq U$ with $\mu_{V_i}(B_i \cap W) \rightarrow 0$ for each $W \subseteq U$, and suppose that each V_i has locally bounded first variation in U with $\lim\inf \|\delta V_i\|(W) < \infty \text{ for each } W \subseteq U \text{ . Then } \|\delta V\|(W) \leq \liminf\|\delta V_i\|(W)$

40.7 REMARKS

- (1) The fact that $\|\delta V\|$ (W) $\leq \lim \inf \|\delta V_{\underline{i}}\|$ (W) is a trivial consequence of the definitions of $\|\delta V\|$, $\|\delta V_{\underline{i}}\|$ and the fact that $V_{\underline{i}} \to V$, so we have only to prove the last conclusion that $\theta^n(\mu_V,y) \geq 1$ μ_V -a.e.
- (2) The proof that $\Theta^n(\mu_V,y)\geq 1-\mu_V$ a.e. to be given below is slightly complicated; the reader should note that if $\|\delta v\|\leq \Lambda\mu_V$ in U

(i.e. if V has generalized boundary measure $\sigma=0$ and bounded $\underline{\underline{H}}$ - see 39.4), then the result is a very easy consequence of the monotonicity formula 40.2.

Proof of Theorem 40.6 Set $\mu_i = \mu_{V_i}$, $\mu = \mu_{V}$, and take any W CC U and $\rho_0 \in (0, \text{dist}(W, \partial U))$. For i,j ≥ 1 , consider the set $A_{i,j}$ consisting of all points $y \in W \sim B_i$ such that

(1)
$$\|\delta V_{\underline{i}}\| (\bar{B}_{0}(y)) \leq j\mu_{\underline{i}} (\bar{B}_{0}(y)) , \ 0 < \rho < \rho_{0} ,$$

and let $B_{i,j} = W \sim A_{i,j}$. Then if $x \in B_{i,j}$ we have either $x \in B_i \cap W$ or

(2)
$$\mu_{\dot{\mathbf{1}}}(\bar{\mathbf{B}}_{\sigma}(\mathbf{x})) \leq \dot{\mathbf{j}}^{-1} \|\delta \mathbf{V}_{\dot{\mathbf{1}}}\| (\bar{\mathbf{B}}_{\sigma}(\mathbf{x})) \quad \text{for some } \sigma \in (0, \rho_0) \ .$$

Let \mathcal{B} be the collection of balls $\bar{\mathbb{B}}_{\sigma}(x)$ with $x \in \mathbb{B}_{i,j}$, $\sigma \in (0,\rho_0)$, and with (2) holding. By the Besicovitch covering lemma 4.6 there are families $\mathcal{B}_1, \dots, \mathcal{B}_N \subset \mathcal{B}$ with N = N(n+k), with $B_{i,j} \sim B_i \subset \bigcup_{k=1}^N \bigcup_{B \in \mathcal{B}_k} \mathbb{B}_k$ and with each \mathcal{B}_k a pairwise disjoint family. Hence if we sum in (2) over balls $B \in \bigcup_{k=1}^N \mathcal{B}_k$, we get

$$\mu_{\mathbf{i}}(\mathbf{B}_{\mathbf{i},\mathbf{j}}) \leq \mathbf{N}\mathbf{j}^{-1} \|\delta \mathbf{V}_{\mathbf{i}}\| (\widetilde{\mathbf{W}}) + \mu_{\mathbf{i}}(\mathbf{B}_{\mathbf{i}} \cap \mathbf{W})$$

 $(\widetilde{\mathtt{W}} = \{\mathtt{x} \in \mathtt{U} : \, \mathtt{dist}(\mathtt{x}, \mathtt{W}) < \rho_0\}) \ , \quad \mathtt{so}$

(3)
$$\mu_{i}(B_{i,j}) \leq cj^{-1} + \mu_{i}(B_{i} \cap W)$$
,

with c independent of i,j . In particular for each i,j \geq 1

$$(4) \qquad \mu \bigg[\text{interior} \left(\bigcap_{\ell=i}^{\infty} B_{\ell,\,j} \right) \bigg] \leq \lim_{q \to \infty} \inf \mu_{q} \bigg[\text{interior} \left(\bigcap_{\ell=i}^{\infty} B_{\ell,\,j} \right) \bigg] \leq cj^{-1} \text{ ,}$$
 since $\mu_{q}(B_{q} \cap W) \to 0$ as $q \to \infty$.

Now let $j \in \{1,2,\ldots\}$ and consider the possibility that there is a point $x \in W$ such that $x \in W \sim \operatorname{interior} \begin{pmatrix} \infty \\ \bigcap \\ q=i \end{pmatrix} = q,j$ for $each \quad i=1,2,\ldots$. Then we could select, for each $i=1,2,\ldots$, $y_i \in W \sim \bigcap B_{q,j}$ with $|y_i-x| < 1/i$. Thus there are sequences $y_i \to x$ and $q_i \to \infty$ such that $y_i \notin B_{q_i,j}$ for each $i=1,2,\ldots$. Then $y_i \in A_{q_i,j}$ and hence (by (1))

$$\|\delta \mathbb{V}_{\mathbf{q}_{\underline{\mathbf{i}}}}\|(\overline{\mathbb{B}}_{\rho}\left(\mathbf{y}_{\underline{\mathbf{i}}}\right)) \ \leq \ j\mu_{\mathbf{q}_{\underline{\mathbf{i}}}}(\overline{\mathbb{B}}_{\rho}\left(\mathbf{y}_{\underline{\mathbf{i}}}\right)) \ , \quad 0 < \rho < \rho_{0} \ ,$$

for all $i=1,2,\ldots$. Then by the monotonicity formula 40.2 (with $\Lambda=j$) together with the fact that $\theta^n(\mu_{q_i},\gamma_i)\geq 1$ we have

and hence

$$\mu(\bar{B}_{O}(\mathbf{x})) \ge e^{-j\rho}\omega_{n}\rho^{n}$$
 , $0 < \rho < \rho_{O}$,

so that $\Theta^n(\mu,x) \geq 1$ for such an x. Thus we have proved $\Theta^n(\mu,x) \geq 1$ for each x with $x \in \mathbb{W} \sim \left(egin{array}{c} \infty \\ 0 \\ i=1 \end{array} \right)$ for some $j \in \{1,2,\ldots\}$. That is

$$(5) \qquad \Theta^{n}(\mu,x) \geq 1 \qquad \forall \ x \in W \sim \begin{pmatrix} \infty & \infty \\ \bigcap & \bigcup \\ j=1 \ i=1 \end{pmatrix} \text{ interior } \begin{pmatrix} \infty \\ \bigcap \\ \ell=i \end{pmatrix} B_{\ell},j \end{pmatrix} .$$

However

$$\begin{split} \mu \begin{pmatrix} \infty & \infty \\ \bigcap & \cup & \mathrm{interior} \begin{pmatrix} \bigcap \\ \bigcap \\ \ell = i \end{pmatrix} B_{\ell, \, j} \end{pmatrix} \end{pmatrix} &\leq \mu \begin{pmatrix} \infty \\ \bigcup \\ i = 1 \end{pmatrix} & \mathrm{interior} \begin{pmatrix} \bigcap \\ \bigcap \\ \ell = i \end{pmatrix} B_{\ell, \, j} \end{pmatrix} \end{split} \qquad \forall \ j \geq 1 \\ &= \lim_{i \to \infty} \mu \Big[\mathrm{interior} \begin{pmatrix} \bigcap \\ \bigcap \\ \ell = i \end{pmatrix} B_{\ell, \, j} \Big] \Big) \end{split}$$

$$\leq$$
 cj⁻¹ by (4),

so $\mu \left(egin{array}{ccc} \bigcap & \infty & \infty & \\ \bigcap & U & \text{interior} \left(\bigcap & B_{\ell,\,j} \right) \end{array} \right) = 0$ and the theorem is established (by (5)).

§41. THE CONSTANCY THEOREM

41.1 THEOREM (Constancy Theorem)

Suppose V is an n-varifold in U , V is stationary in U , and $U \cap \text{spt } \mu_V \subset M \text{ , where } M \text{ is a connected } \text{n-dimensional } C^2 \text{ submanifold } of \ \mathbb{R}^{n+k} \text{ . Then } V = \theta_0 \, \underline{\underline{v}} \, (M) \text{ for some constant } \theta_0 \text{ .}$

41.2 REMARKS

- (1) Notice in particular this implies $(\bar{M} \sim M) \cap U = \emptyset$ (if $V \neq 0$); this is not a-priori obvious from the assumptions of the theorem.
- (2) J. Duggan in his PhD thesis [DJ] has recently extended 41.1 to the case when $\,\mathrm{M}\,$ is merely Lipschitz.
- (3) The reader will see that, with only minor modifications to the proof to be given below, the theorem continues to hold if N is an embedded $(n+k_1)$ -dimensional C^2 submanifold of \mathbb{R}^{n+k} and if V is stationary in U \cap N in the sense that $\delta V(X)=0$ \forall X \in K(U; $\mathbb{R}^{n+k})$ with $X_X\in T_XN$ \forall X \in N , provided we are given spt V \subset {(x,S):x \in N and S \subset T_XN} . (This last is equivalent to spt μ_V \subset N and $p_\#V=V$, where $p:U\to U\cap N$ coincides with the nearest point projection onto U \cap N in some neighbourhood of U \cap N \cdot)

Proof of 41.1 We first want to argue that $V=\underline{\underline{v}}(M,\theta)$ for some positive locally H^n -integrable function θ on M.

To do this first take any $f \in C_C^2(U)$ with $M \subset \{x \in U : f(x) = 0\}$ and note that by 39.2

(1)
$$\delta V (f \text{ grad } f) = \int |p_S(\text{grad } f)|^2 dV(x,S) ,$$

because (using notation as in 39.2)

$$\begin{aligned} \operatorname{div}_{S}(f \ \operatorname{grad} \ f) &= \nabla^{S} f \cdot \operatorname{grad} \ f + f \ \operatorname{div}_{S} \ \operatorname{grad} \ f \\ \\ &= \left| p_{S}(\operatorname{grad} \ f) \right|^{2} \quad \operatorname{on} \quad \mathtt{M} \ , \end{aligned}$$

where we used f \equiv 0 on M . Since δV = 0 , we conclude from (1) that

(2)
$$p_{S}(\operatorname{grad} f(x)) = 0 \quad \text{for all} \quad (x,S) \in \operatorname{spt} V.$$

Now let $\xi \in M$ be arbitrary. We can find an open $W \subset U$ with $\xi \in W$ and such that there are $C_C^2(U)$ functions f_1, \ldots, f_k with $M \subset \bigcap_{j=1}^k \{x: f_j(x) = 0\}$ and with $(T_X^M)^{\perp}$ being exactly the space spanned by grad $f_1(x), \ldots, grad f_k(x)$ for each $x \in M \cap W$. (One easily checks that such W and f_1, \ldots, f_k exist.) Then (2) implies that

(3)
$$p_{S}((T_{X}M)^{\perp}) = 0 \quad \text{for all} \quad (x,S) \in G_{n}(W) \cap \text{spt } V .$$

But (3) says exactly that $S=T_X^M$ for all $(x,S)\in G_n(W)\cap spt\ V$, so that (since ξ was an arbitrary point of M), we have

(4)
$$\int f(x,S) dV(x,S) = \int_{M \cap U} f(x,T_{X}M) d\mu_{V}(x) , f \in C_{C}(G_{N}(U)) .$$

On the other hand we know from monotonicity 40.2 that $\theta(x) \equiv \theta^n(\mu_V, x)$ exists for all $x \in M \cap U$, and hence (since $\theta^n(\mathcal{H}^n \sqcup M, x) = 1$ for each $x \in M$, by smoothness of M), we can use the differentiation theorem 4.7 to conclude from (4) that in fact

(5)
$$\int f(x,S) dV(x,S) = \int_{M \cap \Pi} f(x,T_X^M) \theta(x) dH^n(x) , f \in C_C(G_n(U)) ,$$

(so that $V = \underline{v}(M, \theta)$ as required).

It thus remains only to prove that $\theta=\text{const.}$ on $M\cap U$. Since M is C^2 we can take $X\in K(U,\mathbb{R}^{n+k})$ such that $X_X\in T_XM$ \forall $x\in M\cap U$. Then by (5) and 39.2 $\delta V(X)=0$ is just the statement that $\int_{M\cap U} \text{div} X\theta dH^n=0$, where

div X is the classical divergence of X|M| in the usual sense of differential geometry. Using local coordinates (in some neighbourhood $\widetilde{U} \subseteq \mathbb{R}^n$) this tells us that

$$\int_{\widetilde{U}} \int_{i=1}^{n} \frac{\partial x_{i}}{\partial x_{i}} \widetilde{\theta} dL^{n} = 0 \quad \text{if} \quad x_{i} \in C_{C}^{1}(\widetilde{U}) , i = 1,...,n ,$$

where $\tilde{\theta}$ is θ expressed in terms of the local coordinates. In particular

$$\int_{\widetilde{U}} \frac{\partial \zeta}{\partial x_{i}} \widetilde{\theta} dL^{n} = 0 \qquad \forall \zeta \in C_{c}(U), i = 1, ..., n$$

and it is then standard that $\tilde{\theta}=constant$ in \tilde{U} . Hence (since M is connected) θ is constant in M .

§42. VARIFOLD TANGENTS AND RECTIFIABILITY THEOREM

Let V be an n-varifold in U and let x be any point of U such that

42.1
$$\Theta^n(\mu_V,x) = \theta_0 \in (0,\infty) \quad \text{and} \quad \lim_{\rho \downarrow 0} \rho^{1-n} \|\delta V\| (B_\rho(x)) = 0 .$$

By definition of δV (in §39) and the compactness theorem 4.4 for Radon measures, we can select a sequence $\lambda_j \neq 0$ such that $\eta_{x,\lambda_j^{\#}}V$ converges (in the sense of Radon measures) to a varifold C such that

C is stationary in \mathbb{R}^{n+k}

and

$$\frac{\mu_{C}(B_{\rho}(x))}{\omega_{n}\rho^{n}} \equiv \theta_{0} \qquad \forall \rho > 0.$$

Since $\delta C = 0$ we can use (*) together with the monotonicity formula 40.3 to conclude

$$\int_{G_{n}(B_{0}(0))} \frac{|p_{1}(x)|^{2}}{|x|^{n+2}} dC(x,s) = 0 \forall \rho > 0 ,$$

so that $p_{S^{\perp}}(x)=0$ for C-a.e. $(x,S)\in G_n(\mathbb{R}^{n+k})$, and hence $p_{S^{\perp}}(x)=0$ for $\mathit{all}\ (x,S)\in \operatorname{spt} C$ by continuity of $p_{S^{\perp}}(x)$ in (x,S). Then by the same argument as in the proof of 19.3, except that we use 40.4 in place of 18.1, we deduce that μ_C satisfies

42.2
$$\lambda^{-n}\mu_{C}(\eta_{0,\lambda}(\mathbb{A})) = \mu_{C}(\mathbb{A}) , \quad \mathbb{A} \subset \mathbb{R}^{n+k} , \quad \lambda > 0 .$$

We would *like* to prove the stronger result $\eta_{0,\lambda\#}C=C$ (which of course implies 42.2), but we are only able to do this in case $\theta^n(\mu_C,x)>0$ for μ_C -a.e. x (see 42.6 below). Whether or not $\eta_{0,\lambda\#}C=C$ without the additional hypothesis on $\theta^n(\mu_C,\cdot)$ seems to be an open question.

42.3 DEFINITION Given V and x as in 42.1 we let Var Tan(V,x) ("the varifold tangent of V at x") be the collection of all C = $\lim_{x,\lambda_j} \|v\|_{L^2(\mathbb{R}^n)}$ obtained as described above.

Notice that by the above discussion any C \in Var Tan(V,x) is stationary in \mathbb{R}^{n+k} and satisfies 42.2.

The following rectifiability theorem is a central part of the theory of n-varifolds with locally bounded first variation.

- 42.4 THEOREM Suppose V has locally bounded first variation in U and $\theta^n(\mu_V,x)>0 \ \ \text{for} \ \ \mu_V-\text{a.e.} \ \ x\in \text{U} \ . \ \ \textit{Then} \ \ \text{V} \ \ \textit{is an n-rectifiable varifold.}$ (Thus V = $\underline{\underline{v}}(M,\theta)$, with M an H^n -measurable countably n-rectifiable subset of U and θ a non-negative locally H^n -integrable function on U.)
- 42.5 REMARK We are going to use Theorem 38.3. In fact we show that V has a tangent plane (in the sense of 38.1) at any point x where

(i) $\theta^n(\mu_V,x) > 0$, (ii) $\eta_V^{(x)}$ (as in Lemma 38.4) exists, (iii) $\theta^n(\mu_V,\cdot)$ is μ_V -approximately continuous at x, and (iv) $\|\delta V\|(B_\rho(x)) \le \Lambda(x)\mu_V(B_\rho(x))$ for $0 < \rho < \rho_0 = \min\{1, \operatorname{dist}(x, \partial U)\}$. Since conditions (i)-(iv) all hold μ_V -a.e. in U (notice that (iii) holds μ_V -a.e. by virtue of the μ_V -measurability of $\theta^n(\mu_V,\cdot)$ proved in 40.5), the required rectifiability of V will then follow from 38.3.

Before beginning the proof of 42.2 we give the following important corollary.

42.6 COROLLARY Suppose $x \in U$, 42.1 holds, and $\lim_{\rho \to 0} \rho^{-n} \mu_V(\{y \in B_\rho(x) : \theta^n(\mu_V, y) < 1\}) = 0 . \text{ If } C \in \text{Var Tan}(V, x) \text{ , then } C \text{ is rectifiable and}$

$$\eta_{0,\lambda\#} C = C \qquad \forall \ \lambda > 0 \ .$$

Proof From the hypothesis $\rho^{-n}\mu_V(\{y\in B_\rho(x):\theta^n(\mu_V,y)<1\})\to 0$ and the semi-continuity theorem 40.6, we have $\theta^n(\mu_C,y)\geq 1$ for μ_C -a.e. $y\in \mathbb{R}^{n+k}$. Hence by Theorem 42.4 we have that C is n-rectifiable. On the other hand, since $\theta^n(\mu_C,y)=\theta^n(\mu_C,\lambda y)$ $\forall \ \lambda>0$ (by 42.2), we can write $C=\underline{y}(M,\theta)$ with $\eta_{0,\lambda}(M)=M$ $\forall \ \lambda>0$ and $\theta(\lambda y)=\theta(y)$ $\forall \ \lambda>0$, $y\in \mathbb{R}^{n+k}$. (Viz. simply set $\theta(y)=\theta^n(\mu_C,y)$ and $M=\{y\in \mathbb{R}^{n+k}:\theta(y)>0\}$.) It then trivially follows that, $y\in T_yM$ whenever the approximate tangent space T_yM exists, and hence $\eta_{0,\lambda}\#C=C$ as required.

Proof of Theorem 42.2 Let x be as in 42.5(i)-(iv) and take $C \in Var Tan(V,x)$. (We know $Var Tan(V,x) \neq \emptyset$ because 42.5(i),(iv) imply 42.1.) Then C is stationary in \mathbb{R}^{n+k} and

(1)
$$\frac{\mu_{C}(B_{\rho}(0))}{\omega_{n}\rho^{n}} \equiv \theta_{0} \qquad \forall \rho > 0 \qquad (\theta_{0} = \theta^{n}(\mu_{V}, \mathbf{x})) .$$

Also for any $y \in \mathbb{R}^{n+k}$ (using (1) and the monotonicity formula 40.2)

$$\frac{\mu_{\mathbf{C}}(\mathbf{B}_{\rho}(\mathbf{y}))}{\omega_{\mathbf{n}}\rho^{\mathbf{n}}} \leq \frac{\mu_{\mathbf{C}}(\mathbf{B}_{\mathbf{R}}(\mathbf{y}))}{\omega_{\mathbf{n}}\mathbf{R}^{\mathbf{n}}}$$

$$\leq \frac{\mu_{\mathbf{C}}(\mathbf{B}_{\mathbf{R}+\left|\mathbf{y}\right|}(\mathbf{0}))}{\omega_{\mathbf{n}}(\mathbf{R}+\left|\mathbf{y}\right|)^{\mathbf{n}}} \quad (1+\left|\mathbf{y}\right|/\mathbf{R})^{\mathbf{n}}$$

$$= \theta_{\mathbf{0}}(1+\left|\mathbf{y}\right|/\mathbf{R})^{\mathbf{n}} \rightarrow \theta_{\mathbf{0}} \quad \text{as} \quad \mathbf{R} \uparrow \infty .$$

That is (again using the monotonicity formula 40.2),

$$(2) \qquad \qquad \Theta^{n}\left(\mu_{C},y\right) \leq \frac{\mu_{C}\left(\mathbb{B}_{\rho}\left(y\right)\right)}{\omega_{n}\rho^{n}} \leq \theta_{0} \qquad \forall y \in \mathbb{R}^{n+k} \;,\; \rho > 0 \;.$$

Now let $V_j = \eta_{x,\lambda_j} ^{\dagger} V$, where $\lambda_j \downarrow 0$ is such that $\lim \eta_{x,\lambda_j} ^{\dagger} V = C$ and where we are still assuming x is as in 42.5(i)-(iv).

From 42.5(iii) we have (with $\varepsilon(\rho) \downarrow 0$ as $\rho \downarrow 0$)

(3)
$$\Theta^{n}(\mu_{V}, y) \geq \theta_{0} - \varepsilon(\rho) , y \in G \cap B_{\rho}(x) ,$$

where G C U is such that

$$\mu_V^{}(B_{\rho}^{}(x) \sim G) \ \leq \ \epsilon \, (\rho) \, \rho^n \ , \quad \rho \quad \text{sufficiently small.}$$

Taking $\rho = \lambda_1$ we see that (3), (4) imply

(3)'
$$\Theta^{n}(\mu_{V_{j}}, y) \leq \theta_{0} - \varepsilon_{j}, y \in G_{j} \cap B_{1}(0)$$

with G; such that

(4)'
$$\mu_{V_{\dot{j}}}\left(\mathtt{B_{1}}(\mathtt{0}) \sim \mathtt{G}_{\dot{j}}\right) \; \leq \; \epsilon_{\dot{j}} \; \; , \label{eq:power_p$$

where $\epsilon_j \to 0$ as $j \to \infty$. Thus, using (3)', (4)' and the semicontinuity result of 40.6, we obtain

(5)
$$\theta^{n}(\mu_{C}, y) \ge \theta_{0} \text{ for } \mu_{C} - \text{a.e. } y \in \mathbb{R}^{n+k}$$

(and hence for $\it every$ y ε spt μ_C by 40.3) . Then by combining (2) and (5) we have

(6)
$$\Theta^{n}(\mu_{C}, y) \equiv \theta_{0} \equiv \frac{\mu_{C}(B_{\rho}(y))}{\omega_{n}\rho^{n}} \qquad \forall y \in \text{spt } \mu_{C}, \rho > 0.$$

Then by the monotonicity formula 40.3 (with V = C), we have

$$\mathbf{p}_{\mathbf{c}^{\perp}}(\mathbf{x}\mathbf{-y}) \; = \; \mathbf{0} \quad \text{for} \quad \mathbf{C}\mathbf{-a.e.} \ \, (\mathbf{x}\mathbf{,S}) \; \in \; \mathbf{G}_{\mathbf{n}}(\mathbf{l}\mathbf{R}^{\mathbf{n}+\mathbf{k}}) \; .$$

Thus (using the continuity of $p_{S^{\perp}}(x-y)$ in (x,S)) we have

(7)
$$x-y \in S$$
 $\forall y \in \text{spt } \mu_C$ and $\forall (x,S) \in \text{spt } C$.

In particular, choosing T such that $(0,T) \in \operatorname{spt} C$ (such T exists because $0 \in \operatorname{spt} \mu_C = \pi(\operatorname{spt} C)$), (7) implies $y \in T$ $\forall y \in \operatorname{spt} \mu_C$. Thus $\operatorname{spt} \mu_C \subseteq T$, and hence $C = \theta_O \underline{\underline{v}}(T)$ by the constancy theorem 41.1.

Thus we have shown that, for $x \in U$ such that 42.5(i), (iii), (iv) hold, each element of Var Tan(V,x) has the form $\theta_{0}\underline{v}(T)$, where T is an n-dimensional subspace of \mathbb{R}^{n+k} . On the other hand, since we are assuming (42.5(ii)) that $\eta_{V}^{(x)}$ exists, it follows that for continuous β on G(n+k,n)

(8)
$$\lim_{\rho \downarrow 0} \frac{\int_{G_{n}(B_{\rho}(x))}^{\beta(s) dV(y,s)}}{\mu_{V}(B_{\rho}(x))} = \int_{G(n+k,n)}^{\beta(s) d\eta_{V}(x)} (s) .$$

Now let $\theta_0 \underline{v}(T)$ be any such element of Var Tan(V,x) and select $\lambda_j \downarrow 0$ so that $\lim_{x \to x_j} \eta_x = \theta_0 \underline{v}(T)$. Then in particular

$$\lim_{j\to\infty} \ \frac{\displaystyle\int_{G_n(B_1(0))}^{\beta(S)\,dV_j(y,S)}}{\displaystyle\mu_{V_j(B_1(0))}} \ = \ \beta(T) \ ,$$

and hence (8) gives

$$\beta(T) = \int_{G(n+k,n)} \beta(s) d\eta_{V}^{(x)}(s) ,$$

thus showing that $\theta_0 \underline{\underline{v}}(T)$ is the *unique* element of Var Tan(V,x). Thus $\lim_{\lambda \downarrow 0} \eta_{x,\lambda \sharp} V = \theta_0 \underline{\underline{v}}(T)$, so that T is the tangent space for V at x in the sense of 38.1. This completes the proof.

The following *compactness theorem* for rectifiable varifolds is now a direct consequence of the rectifiability theorem 42.4, the semi-continuity theorem 40.6, and the compactness theorem 4.4 for Radon measures, and its proof is left to the reader.

42.7 THEOREM Suppose $\{v_j^{}\}$ is a sequence of rectifiable n-varifolds in U which are locally of bounded first variation in U ,

$$\sup\nolimits_{j\geq 1} \left(\mu_{V_j}\left(w \right) \; + \; \left\| \delta v_j \right\| \left(w \right) \right) \; < \; \infty \qquad \quad \forall \; \; w \; \; \text{cc} \; \; \text{υ} \; \; ,$$

and $\theta^n(\mu_{V_j},x) \geq 1$ on $u \sim A_j$, where $\mu_{V_j}(A_j \cap w) \to 0$ as $j \to \infty$ $\forall w \in U$.

42.8 REMARK An important additional result (also due to Allard [AW1]) is the integral compactness theorem, which asserts that if all the V_j in the above theorem are integer multiplicity, then V is also integer multiplicity. (Notice that in this case the hypothesis $\Theta^n(\mu_{V_j},x)\geq 1$ on $U\sim A_j$ is automatically satisfied with an A_j such that $\mu_{V_j}(A_j)=0$.)

Proof that $\, {\rm V} \,$ is integer multiplicity if the $\, {\rm V}_{\rm i} \,$ are:

Let W CC U. We first assert that for $\mu_V^{}$ - a.e. x (W there exists c (depending on x) such that

$$(1) \hspace{1cm} \lim \hspace{0.1cm} \inf \hspace{0.1cm} \| \hspace{0.05cm} \delta V_{\hspace{0.1cm} \underline{i}} \| \hspace{0.1cm} (\overline{B}_{\hspace{0.1cm} 0} \hspace{0.1cm} (x) \hspace{0.1cm}) \hspace{0.1cm} \leq \hspace{0.1cm} c \mu_{\hspace{0.1cm} V} \hspace{0.1cm} (\overline{B}_{\hspace{0.1cm} 0} \hspace{0.1cm} (x) \hspace{0.1cm}) \hspace{0.1cm} , \hspace{0.1cm} \rho \hspace{0.1cm} < \hspace{0.1cm} \min \hspace{0.1cm} \{ \hspace{0.1cm} 1, \text{dist} \hspace{0.1cm} (x, \partial U) \hspace{0.1cm} \} \hspace{0.1cm} .$$

Indeed otherwise \exists a set $\mathtt{A} \subseteq \mathtt{W}$ with $\mu_V(\mathtt{A}) > 0$ such that for each $j \geq 1$ and each $\mathtt{x} \in \mathtt{A}$ there are $\rho_{\mathtt{x}} > 0$, $\mathtt{i}_{\mathtt{x}} \geq 1$ such that $\overline{\mathtt{B}}_{\rho_{\mathtt{x}}}(\mathtt{x}) \subseteq \mathtt{W}$ and

$$\mu_V(\bar{B}_{\rho_{_{\mathbf{X}}}}(\mathbf{x})) \leq j^{-1} \|\delta V_{_{\dot{\mathbf{I}}}}\|(\bar{B}_{\rho_{_{\mathbf{X}}}}(\mathbf{x})) \text{ , } i \geq i_{_{\mathbf{X}}} \text{ .}$$

By the Besicovitch covering lemma 4.6 we then have

$$\mu_{V}(\textbf{A}_{\texttt{i}}) \leq \texttt{cj}^{-1} \|\delta \textbf{V}_{\ell}\| \; (\texttt{W}) \;\; , \;\; \ell \, \geq \, \texttt{i} \;\; , \label{eq:power_power_power_power}$$

where $A_i = \{x \in A : i_x \le i\}$. Thus

$$\mu_{V}^{}\left(\mathbb{A}_{\text{i}}\right) \leq \text{cj}^{-1} \lim_{\ell \to \infty} \sup \; \left\|\delta V_{\ell}^{}\right\|\left(\mathbb{W}\right) \; \text{,}$$

and hence since $A_i \uparrow A$ as $i \uparrow \infty$ we have

$$\mu_{v_{i}}(A) \leq cj^{-1}$$

for some c (< ∞) independent of j . That is, $\mu_V(A) = 0$, a contradiction, and hence (1) holds. Since $\theta^n(\mu_V, x)$ exists μ_V -a.e. $x \in U$, we in fact have from (1) that for μ_V -a.e. $x \in U$ there is a c = c(x) such that

(2)
$$\lim \inf \|\delta V_{\underline{i}}\|(B_{\rho}(x)) \le c\rho^{n}, \ 0 < \rho < \min\{1, \operatorname{dist}(x, \partial U)\} .$$

Now since $V=\underline{\underline{v}}(M,\theta)$, it is also true that for μ_V -a.e. $\xi\in\operatorname{spt}\mu_V$ we have $\eta_{\xi,\lambda\#}V\to\theta_0\underline{\underline{v}}(P)$ as $\lambda\downarrow0$, where $P=\mathbf{T}_{\xi}M$ and $\theta_0=\theta(\xi)$. Then (because $V_i\to V$, and hence $\eta_{\xi,\lambda\#}V_i\to\eta_{\xi,\lambda\#}V$ for each fixed $\lambda>0$), it follows that for μ_V -a.e. $\xi\in U$ we can select a sequence $\lambda_i\downarrow0$ such that, with $W_i=\eta_{\xi,\lambda_i\#}V_i$,

(3)
$$\mathbf{W}_{i} \rightarrow \mathbf{\theta}_{0} \mathbf{\underline{\underline{v}}} (\mathbf{P})$$

and (by (2)) for each R > 0

(4)
$$\|\delta W_i\| (B_R(0)) \to 0$$
.

We claim that θ_0 must be an integer for any such ξ ; in fact for an arbitrary sequence $\{W_i\}$ of integer multiplicity varifolds in \mathbb{R}^{n+k} satisfying (3), (4), we claim that θ_0 always has to be an ineger.

To see this, take (without loss of generality) $P = \mathbb{R}^n \times \{0\}$, let q be orthogonal projection onto $(\mathbb{R}^n \times \{0\})^{\perp}$, and note first that (3) implies

$$(5) \qquad \qquad p_{\mathbb{R}^{n}_{\#}}(\mathbb{W}_{\underline{i}} L G_{n} \{ \mathbf{x} \in \mathbb{R}^{n+k} \colon \left| q(\mathbf{x}) \right| < \epsilon \}) \rightarrow \theta_{0} \underline{\mathbb{Y}}(\mathbb{R}^{n})$$

for each fixed $\ensuremath{\epsilon}$ > 0 . However by the mapping formula for varifolds (§15), we know that (5) says

$$\underline{\underline{\mathbf{v}}}(\mathbf{R}^{\mathbf{n}}, \psi_{\mathbf{i}}) \rightarrow \theta_{\mathbf{0}}\underline{\underline{\mathbf{v}}}(\mathbf{R}^{\mathbf{n}}) ,$$

where

(6)
$$\psi_{i}(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbf{p}_{mn}^{-1}(\mathbf{x}) \cap \{\mathbf{z} \in \mathbb{R}^{n+k} : |\mathbf{q}(\mathbf{z})| \le \varepsilon\}} \theta_{i}(\mathbf{y})$$

($\theta_{\tt i}$ = multiplicity function of W $_{\tt i}$, so that $\psi_{\tt i}$ has values in ${\tt Z\!\!\!\!Z\,}^{\bigcap\{\varnothing\}})$. Notice that (5)' implies in particular that

(i.e. measure-theoretic convergence of ψ_i to θ_0 .)

Now we claim that there are sets $A_i \in B_1(0)$ such that

(8)
$$\psi_{\mathbf{i}}(\mathbf{x}) \leq \theta_{0} + \varepsilon_{\mathbf{i}} \quad \forall \ \mathbf{x} \in \mathbf{B}_{1}(\mathbf{0}) \sim \mathbf{A}_{\mathbf{i}} \ , \ L^{n}(\mathbf{A}_{\mathbf{i}}) \rightarrow \mathbf{0} \ , \ \varepsilon_{\mathbf{i}} \downarrow \mathbf{0} \ ;$$

this will of course (when used in combination with (7)) imply that for any integer N > θ_0 , $\max\{\psi_i, N\}$ converges in $L^1(B_1(0))$ to θ_0 , and, since $\max\{\psi_i, N\}$ is integer-valued, it then follows that θ_0 is an integer.

On the other hand (8) evidently follows by setting $W=W_{\dot{1}}$ in the following lemma, so the proof is complete.

In this lemma, p,q denote orthogonal projection of \mathbb{R}^{n+k} onto $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+k}$ and $\{0\} \times \mathbb{R}^k \subset \mathbb{R}$ respectively.

42.9 LEMMA For each $\delta \in (0,1)$, $\Lambda \ge 1$, there is $\epsilon = \epsilon(\delta,\Lambda,n) \in (0,\delta^2)$ such that if W is an integer multiplicity varifold in $B_3(0)$ with

$$\mu_{W}(B_{3}(0)) \leq \Lambda , \|\delta W\|(B_{3}(0)) < \epsilon^{2} , \int_{B_{3}(0)} \|p_{S} - p\| dW(y, S) < \epsilon^{2} ,$$

$$+ hore + hore + is a set - P(S) = P(0) + cost + hore + I^{n}(S) < f + and - Hore + I^{n}(S) < f + a$$

then there is a set $A \subseteq B_1^n(0)$ such that $L^n(A) \le \delta$ and , $\forall \, x \in B_1(0) \sim A$,

$$\sum_{\mathbf{y} \in \mathbf{p}^{-1}(\mathbf{x}) \, \cap \operatorname{Spth}_{\mathbf{W}} \cap \{\mathbf{z} \colon \big| \, \mathbf{q}(\mathbf{z}) \, \big| \, \leq \epsilon \}} \, \Theta^{\mathbf{n}}(\mu_{\mathbf{W}}, \mathbf{y}) \, \leq \, (1 + \delta) \, \, \frac{\mu_{\mathbf{W}}(\mathbf{B}_{2}(\mathbf{x}))}{\omega_{\mathbf{n}} 2^{\mathbf{n}}} \, + \, \delta \, \, .$$

42.10 REMARK It suffices to prove that for each fixed N there is $\delta_0 = \delta_0(\mathbf{N}) \in (0,1) \quad \text{such that if} \quad \delta \in (0,\delta_0) \quad \text{then} \quad \exists \quad \epsilon = \epsilon(\mathbf{n},\Lambda,\mathbf{N},\delta) \in (0,\delta^2)$ such that (*) implies the existence of $\mathbf{A} \subset \mathbf{B}_1^n(\mathbf{0})$ with $\mathbf{L}^n(\mathbf{A}) < \delta$ and, for $\mathbf{x} \in \mathbf{B}_1^n(\mathbf{0}) \sim \mathbf{A}$ and distinct $\mathbf{y}_1,\ldots,\mathbf{y}_N \in \mathbf{p}^{-1}(\mathbf{x}) \cap \operatorname{spt} \mu_W \cap \{\mathbf{z}\colon \big|\mathbf{q}(\mathbf{z})\big| < \epsilon\}$,

$$\sum_{j=1}^{N} \Theta^{n}(\mu_{\widetilde{W}}, Y_{j}) \leq (1+\delta) \frac{\mu_{\widetilde{W}}(B_{2}(x))}{\omega_{n} 2^{n}} + \delta.$$

Because this firstly implies an $\alpha\text{-priori}$ bound, depending only on n,k, Λ , on the number N of possible points y_j , and hence the lemma, as originally stated, then follows. (Notice that of course the validity of the lemma for small δ implies its validity for any larger δ .)

Proof of 42.9 By virtue of the above Remark, we need only prove (**). Let $\mu = \mu_W$, and consider the possibility that $y \in B_1(0)$ satisfies

$$\|\delta W\| \, (B_{_{\mbox{0}}}(y) \,) \, \leq \, \epsilon \mu \, (B_{_{\mbox{0}}}(y) \,) \ , \, \, 0 \, < \, \rho \, < \, 1 \ , \label{eq:eq:constraint}$$

(2)
$$\int_{B_{\rho}(y)} \|p_{S} - p\| dW(z,S) \le \epsilon \rho^{n} , 0 < \rho < 1 .$$

Let

$$A_1 = \{ y \in B_2(0) \cap \text{spt } W : (1) \text{ fails for some } \rho \in (0,1) \}$$

$$A_2 = \{ y \in B_2(0) \cap \text{spt } W : (2) \text{ fails for some } \rho \in (0,1) \}.$$

Evidently if $y \in \operatorname{spt} \mu_W \cap B_2(0) \sim A_1$ then by the monotonicity formula 40.2 we have

(3)
$$\frac{\mu(B_{\rho}(y))}{\omega_{n}\rho^{n}} \leq e^{\varepsilon} \frac{\mu(B_{1}(y))}{\omega_{n}} \leq c, 0 < \rho < 1,$$

 $(c = c(\Lambda, n))$, while if $y \in A_2 \sim A_1$ we have (using (3))

$$\int_{B_{\rho}(y)} \|\mathbf{p}_{S} - \mathbf{p}\| d\mathbf{W}(\mathbf{z}, S) \geq \epsilon \rho_{y}^{n} \geq c\epsilon \mu (B_{\rho_{y}}(y))$$

for some $\; \rho_y \in \, (\text{0,1}) \; . \; \text{ If } \; y \in \text{A}_1 \; \text{ then} \;$

$$\mu\left(B_{\rho_{\mathbf{y}}}(\mathbf{y})\right) \leq \varepsilon^{-1} \|\delta \mathbf{w}\| \left(B_{\rho_{\mathbf{y}}}(\mathbf{y})\right)$$

for some $\, \rho_{_{\boldsymbol{V}}} \in \, (0,1)$.

Since then $\{B_{\rho_y}(y)\}_{y\in A_1\cup A_2}$ covers $A_1\cup A_2$ we deduce from (4), (5) and the Besicovitch covering lemma 4.6 that

(6)
$$\mu(A_1 \cup A_2) \le c\epsilon^{-1} \left(\int_{B_3(0)} \|p_s - p\| dW(a,s) + \|\delta W\| (B_3(0)) \right)$$

≤ ce

by the hypotheses on W .

Our aim now is to show (**) holds whenever $x \in B_1^n(0) \sim p(A_1 \cup A_2)$. In view of (6) this will establish the required result (with $A = p(A_1 \cup A_2)$). So let $x \in B_1^n(0) \sim p(A_1 \cup A_2)$. In view of the monotonicity formula 40.2 it evidently suffices (by translating and changing scale by a factor of 3/2) to assume that $x = 0 \in B_1^n(0) \sim p(A_1 \cup A_2)$). We shall subsequently assume this.

We first want to establish the two formulae, for $y \in B_1(0) \sim (A_1 \cup A_2)$ and $\tau > 0$:

(7)
$$\Theta^{n}(\mu, y) \leq e^{\varepsilon \sigma} \frac{\mu(U_{\sigma}^{2T}(y))}{\omega_{n} \sigma^{n}} + c\varepsilon \sigma/\tau , \quad 0 < \sigma < 1 ,$$

and

(8)
$$\frac{\mu\left(U_{\sigma}^{T}(y)\right)}{\omega_{n}\sigma^{n}} \leq e^{\varepsilon\rho} \frac{\mu\left(U_{\rho}^{2T}(y)\right)}{\omega_{n}\rho^{n}} + c\varepsilon\rho/\tau , \quad 0 < \sigma < \rho \leq 1 ,$$

where

$$\textbf{U}_{_{\mathcal{O}}}^{\intercal}(\textbf{y}) \ = \ \textbf{B}_{_{\mathcal{O}}}(\textbf{y}) \ \cap \ \{\textbf{z} \in \ \mathbb{I\!R}^{n+k} \colon \ \big| \, \textbf{q} \, (\textbf{z-y}) \, \big| < \tau \} \ .$$

Indeed these two inequalities follow directly from 40.2 and 40.4. For example to establish (7) we note first that 40.2 gives (7) directly if $\tau \ge \sigma$, while if $\tau < \sigma$ then we first use 40.2 to give $\Theta^n(\mu,y) \le e^{ET} \frac{\mu(B_{\tau}(y))}{\omega_n \tau^n}$ and then use 40.4 with h of the form h(z) = f(|q(z-y)|), $f(t) \equiv 1$ for $t < \tau$ and $f(t) \equiv 0$ for $t > 2\tau$.

Since $|\nabla^S f(|q(z-y)|)| \le f'(|q(z-y)|)|p_S-p|$ (Cf. the computation in 19.5) we then deduce (by integrating in 40.4 from τ to σ and using (3))

$$\frac{\mu\left(\mathbf{B}_{\tau}\left(\mathbf{y}\right)\right)}{\omega_{\mathbf{n}}\tau^{\mathbf{n}}} \ \leq \ \frac{\mu\left(\mathbf{U}_{\sigma}^{2\tau}\left(\mathbf{y}\right)\right)}{\omega_{\mathbf{n}}\sigma^{\mathbf{n}}} \ + \ \mathsf{ce}\sigma/\tau \ .$$

(8) is proved by simply integrating in 40.4 from σ to ρ (and using (3)).

Our aim now is to use (7) and (8) to establish

(9)
$$\sum_{j=1}^{N} \frac{\mu(U_{\sigma}^{T}(y_{j}))}{\omega_{n}\sigma^{n}} \leq (1+c\delta^{2}) \frac{\mu(B_{2}(0))}{\omega_{n}2^{n}} + c\delta^{2}$$

with $c=c(n,k,N,\Lambda)$, provided $2\delta^2\sigma \leq \tau \leq \frac{1}{4}\min_{j\neq \ell}|y_j-y_\ell|$, $y_j\in \operatorname{spt}\mu\cap p^{-1}(0)\cap\{z:|q(z)|<\epsilon\}$, $0\notin p(A_1\cup A_2)$. (In view of (7) this will prove the required result (**) for suitable $\delta_0(N)$.)

We proceed by induction on N . N=1 trivially follows from (8) by noting that $U_\rho^{2T}(y_1) \subseteq B_\rho(y_1)$ (by definition of $U_\rho^{2T}(y_1)$) and then using the monotonicity 40.2 together with the fact that $\left|y_1\right| < \epsilon$. Thus assume N \geq 2 and that (9) has been established with any M < N in place of N .

Let y_1,\ldots,y_N be as in (9), and choose $\rho\in[\sigma,1)$ such that $\min_{j\neq \ell} \ \left| q(y_j) - q(y_\ell) \, \right| \ \left[= \min_{j\neq \ell} \ y_j - y_\ell \, \right] \ = \ 4\delta^2 \rho \ , \quad \text{and set} \quad \tilde{\tau} = \ 2\delta^2 \rho \ (\geq 2\tau) \ . \quad \text{Then}$

$$\frac{\mu(\mathbf{U}_{\sigma}^{\mathsf{T}}(\mathbf{y}_{\mathbf{j}}))}{\sigma^{n}} \leq \frac{\mu(\mathbf{U}_{\sigma}^{\frac{1}{2}\widetilde{\mathsf{T}}}(\mathbf{y}_{\mathbf{j}}))}{\sigma^{n}}$$

$$\leq e^{\epsilon\rho} \frac{\mu(\mathbf{U}_{\rho}^{\widetilde{\mathsf{T}}}(\mathbf{y}_{\mathbf{j}}))}{\sigma^{n}} + c\epsilon \quad (by (8)),$$

 $\begin{array}{lll} \texttt{c} = \texttt{c}(\texttt{n},\texttt{k},\delta) \text{ . Now since } & \widetilde{\tau} = \frac{1}{2} \min_{\texttt{j} \neq \texttt{k}} \left| \texttt{q}(\texttt{y}_{\texttt{j}}) - \texttt{q}(\texttt{y}_{\texttt{k}}) \right| \text{ we can select } \\ \{\texttt{z}_{\texttt{1}},\ldots,\texttt{z}_{\texttt{O}}\} \in \{\texttt{y}_{\texttt{1}},\ldots,\texttt{y}_{\texttt{N}}\} & (\texttt{Q} \leq \texttt{N}-1) & \text{and } & \widehat{\tau} \leq \texttt{c}\widetilde{\tau} & \text{such that } & \widehat{\tau} \geq 3\delta^2 \rho & \text{and } & \widehat{\tau} \leq \mathsf{c}\widetilde{\tau} & \text{such that } & \widehat{\tau} \leq \mathsf{c}\widetilde{\tau} & \text{such that } & \widehat{\tau} \leq \mathsf{c}\widetilde{\tau} & \mathsf{$

where c = c(N) , and such that $\hat{\tau} \leq \frac{1}{4} \min_{i \neq j} \left| z_i - z_j \right| \; .$

Since $c\delta^2 < 1/2$ for $\delta < \delta_0(N)$ (if $\delta_0(N)$ is chosen suitably) we then have $\hat{\tau} \geq 2\delta^2 \tilde{\rho}$ and

$$\sum_{j=1}^{N} \frac{\mu(\overline{U_{\rho}^{\hat{\tau}}}(y_{j}))}{\rho^{n}} \leq (1+c\delta^{2}) \sum_{j=1}^{Q} \frac{\mu(\overline{U_{\rho}^{\hat{\tau}}}(z_{j}))}{\tilde{\rho}^{n}} ,$$

where $\tilde{\rho}=(1+c\delta^2)\,\rho$ and c=c(N). Since $Q\leq N-1$, the required result then follows by induction (choosing ϵ appropriately).