
CHAPTER 8 

THEORY OF GENERAL VARIFOLDS 

Here we describe the theory of general varifolds, essentially following 

W.K. Allard [AWl]. 

1 · f 1 ' · ( · n+k) · 1 d Genera~ var1 o as 1n U U open 1n JR are s1mp y Ra on measures 

{ ""'n+k}. on G (U) ~ (x,S) : x E U and S is an n-dimensional subspace of "" 
n 

One basic motivating point for our interest in such objects is described as 

follows: 

Suppose {Tj} is a sequence of integer multiplicity currents (see §27) 

such that the corresponding integer multiplicity varifolds (as in Chapter 4) 

are stationary in U (U open in 
n+k 

JR ) , and suppose 3T. ~ 0 
J 

and there is a 

mass bound sup j::O:l~ (T j) < 00 "i/ w cc u By the compactness theorem 27.3 we 

can assert that Tj' 
~ T for some integer multiplicity T However it is 

not clear that T is stationary; the chief difficulty is that it is not 

generally true that the corresponding sequence of measures converge 

to Indeed if \l 
Tj' 

converges to \lT (as they would by 34.5 in case 

the are minimizing in U) then it is not hard to prove that T is 

stationary in U This leads one to consider measure theoretic convergence 

rather than weak convergence of the currents. However if we take a limit 

(.in the sense of Radon measures) of some sub-sequence {\lT } of the 
j' 

then we get merely an abstract Radon measure on U , and first variation of 

this does not make sense. 

To resolve these difficulties, we associate with each T. 
J 

a Radon 

measure Vj on the Grassmaniann Gn(U) (Gn(U) is naturally equipped with a 

suitable metric- see below); Vj is in fact defined by 



V. (A) 
J 
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]..lT (Tf. (A)) 
j J 

where Tf j (A) denotes {x E U: (x ,di j (x) )) E A} for any subset A of Gn (U) 

denotes the n-dimensional subspace determined by 
+ 
T. (x) • ) 

J 
One 

then uses the compactness theorem 4.4 to give , + V for some subsequence 

{j'} and some Radon measure V on Gn(U) . It turns out to be possible 

to define a notion of stationarity for such Radon measures (i.e. varifolds) 

V on Gn(U) and, for example, in the circumstances above V turns out to 

correspond to a stationary rectifiable varifold (in the sense of Chapter 4) . 

The reader will see that these claims follow easily from the rectifiability 

and compactness theorems of §42. 

§38. BASICS, FIRST RECTIFIABILITY THEOREM 

We let G(n+k,n) denote the collection of all n-dimensional subspaces 

of equipped with the metric 

where Ps ' PT denote the orthogonal projections of Rn+k onto S , T 

respectively, and ij 
ei ·ps (ej) 

ij = ei•pT(ej) the corresponding Ps ' PT are 

matrices with respect to the standard orthonormal basis e 1 , ... ,en+k for 

Rn+k 

For a subset A c Rn+k we define 

AX G(n+k,n) , 

equipped with the product metric. Of course then Gn(K) is compact for 

each compact 
n+k 

K c R • is locally homeomorphic to a Euclidean 

space of dimension n+k + nk • 
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By an n-vaPifoLd we mean simply any Radon measure V on Gn(~n+k). 

By an n-varifold on u (U open in :Rn+k) we mean any Radon measure V 

on Gn(U) • Given such an n-varifold V on U , there corresponds a Radon 

measure J.1 = llv on u (called the weight of V ) defined by 

J.1 (A) v (1T-l (A)) I A c u I 

where, here and subsequently, 1T is the projection (x,S) ~ x of Gn(U) 

onto U . The mass i;l(.V) of V is defined by 

i;l(V) J.1v (U) 

For any Borel subset A c U we use the usual terminology V L Gn(A) 

to denote the restriction of V to Gn(A) ; thus 

Given ann-rectifiable varifold X(M,8) on U (in the sense of Chapter 

4) there is a coresponding n-varifold v (also denoted by x<M,8} I or simply 

x<M) in case e = 1 on M) I defined by 

V (A) J.1 (1T (TMf1A) ) , A c Gn (U) , 

where J.1 = Hn L e and TM = { (x,TxM) : x E M*} , with M* the set of x E M 

such that M has an approximate tangent space T M 
X 

with respect to e 

x in the sense of 11.4. Evidently V , so defined, has weight measure 

The question of when a general n-varifold actually corresponds to an 

n-rectifiable varifold in this way is satisfactorily answered in the next 

theorem. Before stating this we need a definition: 

at 
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38o 1 DEFINITION Given T E G(n+k,n) , xE U , and 8 E (0, 00) , we say 

that an n-varifold V on U has tangent space T with multiplicity 8 

at x if 

(*) lim V , = 8~(T) , 
t..+o x,/\ -

where the limit is in the usual sense of Radon measures on G (Rn+k) o In 
n 

(*) we use the notation that vx,/.. is the n-varifold defined by 

38.2 REMARK Note that 38.1(*) implies that the weight measure ~V has 

approximate tangent space T with multiplicity 8 at x in the sense of 

ll.S. 

38.3 THEOREM (First Rectifiability Theorem) 

Suppose V is an n-varifold on u which has a tangent space T with 
X 

multiplicity 8 (x) E (O,oo) for ~V- a.e. x E u . Then V is n-rectifiable: 

in fact M ::: {x E U : T , 8 (x) exist} 
X 

is Hn-measurable, countabZy n-rectifiable, 

8 is locally Hn -integrable on M , and v = :¥; (M, 8) 

In the proof of 38.3 (and also subsequently) we shall need the following 

technical lemma: 

38.4 LEMMA Let v be any n-varifold on u Then for ~v- a.e. x E u 

such that, for any continuous there is a Radon measure 

6 on G(n+k,n) , 

J 6 (S) d~x) (S) 
G (n+k,n) 

on G(n+k,n) 

lim 
p+O 

f 6(S)dV(y,S) 
G (B (x)) 

n p 

~v (BP (x)) 
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Furthermore for any Bm"e"l set A c u , 

f S(S)dV(x,S) =I I _.. S(S)d~~') (S)d]JV(x) 
G (A) A G(n.k,n) 

n 

provided S ~ o . 

Proof The proof is a simple consequence of the differentiation theory for 

Radon measures and the separability of K(X,~) (notation as in §4) for 

compact separable metric spaces X . Specifically, write K K(G(n+k,n) ,~), 

K+ = { S E K : S ": 0} , and let By the 

differentiation theorem 4.7 we know that (since there is a Radon measure 

on 

(1) 

~n+k 
JK characterized by 

e (x, j) lim 
p+O 

y.(B)=J S.(S)dV(y,S) 
J G (B) J 

n 

J( 13_. (S)dV(y,S) 
G (B (x)) J 

n p 

J.!v(BP(x)) 

exists for each x E IRn+k Z where Z . ~ j I J 

and e(x,j) is a )JV-measurable function of x , with 

(2) 
r 
J 13.(S)dV(y,S) 

G (A) J 
n 

for any Borel set A c Rn+k 

( 00 

for Borel sets 

Now let E: > 0 S E K+ X E n+k 
R lj~l zjJ I and choose 13j such 

that 

(3) 

sup I S-13 .j < E: Then for 
J 

, r B(S)dV(yiS) 

l • G (B (x)) 
n p 

I 1-lv (B (x) ) 
I P 

any p > 0 

I 13.(S)dV(y,S) 
G (B (x)) J 

n p 

= E: 



and hence by (1) we conclude that 

n (x) (6) 
v lim 

p+O 
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f 6(S)dV(y,S) 
G (B (x)) 

n p 

exists for all 6 E K+ and all x E JRn+k ~ f ~ Z .J Of course, since 
lj=l J 

ln~x) (6) J :S supl61 'ri 6E K+, by the Riesz representation theorem 4.1 we 

have n~x) ((:3) ~ f . i3 (S) c1.n~x) (S) ''!here ll~x) i~ the total variation 
G (n+k,n) 

measure associated with n~x) 

Finally the last part of the lemma follows directly from (2) , (3) if 

we keep in mind that e(x,j) in (1) is exactly f\~x) (6.) =f 6.(S)dll~)(S) 
J G(n+k,n) J 

We are now able to give the proof of Theorem 38.3. 

Proof of Theorem 38.3 As mentioned in Remark 38.2, ~V has approximate 

tangent space Tx with multiplicity 8(x) in the sense of 11.8 for 

~V- a. e. X E u Hence by Theorem 11.8 we have that M is Hn-rneasurable 

countably n-rectifiable, e is locally Hn-integrable on M and in fact 

~v = Hn L 8 in u (if we set 8 = 0 in u~Ml 

Now if X E M is one of the ~v-almost all points such that 

exists, and if 6 is a non-negative continuous function on G(n+k,n) , then 

we evidently have ~x) (6) = 8(x)6(Txl and hence by the second part of 38.4 

we have 

J 6(S)dV(x,S) 
G (A) 

n 

for any Borel set A c U . From the arbitrariness of A and B it then 

easily follows that 



f f(x,S)dV(x,S) 
'G (U) 

n 
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r 

J f (x,T:) d]JV (x) 
tJ! 

for any non-negative f E C0 (Gn(U)) , and hence we have shown V ~(M,8) 

as required (because ; Hn L e as mentioned above) . 

§39. FlRST VARIATION 

vle can make sense of firs·t variation for a general varifold V on U 

We first need to discuss mapp-ing of such a general n-varifold. Suppose 

u I u open c JRn+k and f : u + u is c1 with f I spt]Jv n u proper. Then vJe 

define the image varifold f#V on u by 

39.1 f ,J5 f(x)dV(x,S) , A Borel, A c Gn(U) 
-1 

F {A) 

where F: G~ (U) -+ G (l)) 
n 

is defined by F' (x,S) and where 

1 
(det((df js)*o (df is))) 2 , (x,S)EG (U) 

X X n 

G~(U) = {(x,S) E Gn(U) : J 5 f(x) # O} 

(Notice that this agrees with our previous definition given in §15 in case 

V ~(M,8) • ) 

Now given any n-varifold v on u we define the first variation oV I 

which is a linear functional on K(U,JRn+k) (notation as in §4) by 

where {~t}-l<t<l is any l-parameter family as in 9.1 (and K is as in 

9.1(3)). Of course we can compute oV(X) explicitly by differentiation 

under the integral in 39.1. This gives (by exactly the computations of §9} 
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39.2 oV(X) = I divsX(x)dV(x,S) ' 
Gn(U) 

where, for any S E G(n+k,n) , 

n+k 
L \l~ xi 

i=l ~ 

n 
L < 1. ,o x>, 

i=l ~ T i 

where is an orthonormal basis for s and with 

1!5 f (x) = p 5 (grad kf (x)) 
:IRn+ 

f E c1 (U) • (p5 is the orthogonal projection 

of n+k :IR onto S • ) 

By analogy with 16.3 we then say that V is stationary in U if 

oV(X) = 0 

More generally V is said to have locally bounded first variation in 

U if for each W cc U there is a constant c < oo such that 

I;J XE /((U,JRn+k) with sptjxj cW. Evidently, by the 

general Riesz representation theorem 4.1, this is equivalent to the 

requirement that there is a Radon measure 118VII (the total variation measure 

of oV) on U characterized by 

39.3 iioVII (W) sup Jov (X) I 
XE /( (U, :IRn+k) 

( < oo) 

lxl::::l,spt]xlcw 

for any open W cc U . Notice that then by Theorem 4.1 we can write 

OV(X) J div5x(x)dV(x,s) = - Ju v•xd!loVII , 
G (U) 

n 

where v is lloVII-measurable with Jvj = 1 lloV!I- a.e. in U . By the 

differentiation theory of 4.7 we know furthermore that 



n l!ovl!<x> =lim 
llv p-1-0 
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[[ov[[ <BP <x> > 

].lV(Bp (X)}. 

exists llv- a.e. and that (writing 

Ju v•xdl!ovl! J ~·Xdllv + J v•xda , 
u ' u 

with 

a = l!ovll L z , z {xEU:D l!oVI!(x)=+oo}. (].lV(Z)=O.) 
llv 

Thus we can write 

39.4 oV(X) 

for X E K (U,:Rn+k) • 

By analogy with the classical identity 7.6 we call ~ the generalized 

mean curvature of V , z the generalized boundary of v , a the 

generalized boundary measure of v , and viz the generalized unit 

co-normal of v . 

§40. MONOTONICITY AND CONSEQUENCES 

In this section we assume that V is an n-varifold in U with locally 

bounded first variation in U (as in 39.3). 

We first consider a point x E u_ such that there is 0 < p0 <.dist(x,au) 

and A~ 0 with 
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40.1 

Subject to 40.1 \ve can choose (in 39.2) X "'Y(r)(y-x), r=jy-xJ ,yEU 
y 

as in § 17 and note that (by essentially the same co111pu·tation as in § 1 7) 

n+k i i 
1 ij !:....:::L ny (r) + ry • (r) 1• e 8 r 

i, j=l 
r 

vlhere is ·the :mat.rix of the or·thogonal projection of onto 

the n-dimensional subspace S . We can ·then take y (r) ¢ (r/p) (again as 

n~k i-; xi -y~ xj -yj 
L es" r r 

i/7 j=l 
in §17) and, noting that 

conclude (Cf. 17.6(1) with a= 1) that is increasing 

in p , 0 < p < p 0 , and, for 0 < 0 S p < p 0 , 

40.2 n ~0 -1 -n ~p -1 -n 
8 (llv•x) < e· W a llv (B (x)) < e- W p llv (B (x)) - n a - n p 

-1 - w -
:n f -n-?1 12 r - 1p 1 (y-x) dV(y,S) 

G (B (x)~B (x)) S 
n p 0 · 

In fact if 1\ 0 (so that V is stationary in B (x)) 
Po 

we get the precise 

identity 

40.3 n -1 -n -1 r -n-21 ·2 e <llv,x) =w p flv(B (x)) -w J r ,P 1 (y-x) I dV(y,S) ' 
n p n G (B (x)) S 

n p 

for o < p < p0 

Using Xy = h(y)y(r) (y-x) (r= Jy-xi) in 39.2 we also deduce the 

following analogue of 18.1: 

40.4 

where I(p) 

p-n ddp J jp51 (y-x)/rJ 2¢(r/p)h(y)dV(y,S) 

+ p -n-1 [ 6v (X) + J (y-x) •IJ8 h (y) cp (r/p) dV (y ,S)) , 

J ¢(r/p)hdl.ly 
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40.5 LEMMA Suppose v has locally bounded first variation in u . Then, 

exists and is real-valued; in fact 

,x) exists whenever there is a constant [\ (x) < oo such that 

(*) 

(Such a constant A(x) exists for - a .. s. x E U by virtue of the 

differentiation theorem 4.7.) 

Fu:rthel"'7!ore is a llv- measurable function of x . 

Proof ·rhe firs·t part of the lemma follows di:t:ectly from the monotonicity 

en. 
formula 40. 2. •rhe llv-measurability of - (].lv' •) follows from ·the fact 

that llv(B (x)) ~lim sup llv(B (y)) , 
p y+x p 

which guarantees that 
n 

J.!v (B (x) ) I (w p ) 
p n 

is Borel measurable and hence llv-measurable for each fixed p • Since 

n n -1 
8 (lJV,x) =lim (wp) llv(B (x)) for llv-a.e. xE U, we·thenhave 

ptO n n p 
].lv-measurability of 8 (\lv,•l as claimed. 

40.6 THEOREM (Semi-continuity of t=t under varifold convergence.) 

Suppose V. + V 
l 

(as Radon measures in and 

except on a set B. c u with Jlv. (B;nw> ->- o for each 
l l -

w cc u , 

that each V. 
l 

has locally bounded first variation in u with 

and suppose 

lim inf !lev ill (W) < oo for each w cc u Then llovll (Wl ::: lim infllov .11 (W) 
l 

'r/ w cc u and Pv-a.e. in u . 

40. 7 REMARKS 

(1) The fact that 118VIi (W) ::: lim inflloV ill (W) is a trivial consequence 

of the definitions of Jlov II , llov J and the fact that V. + V , 
l 

only to prove the last conclusion that Gn(J.lv,y) ~ l 

so we have 

llv- a.e. to be given below is 

slightly complicated; the reader should note that if lloVII ::: 1\J.lv in u 
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(i.e. if v has generalized b01.mdary measure a = 0 and bounded ~ - see 3 9. 4) , 

then the result is a very easy consequence of the monotonicity formula 40.2. 

Proof of Theorem 40.6 Set and take any w cc u and 

p0 E (O,dist(W,()U)) . For i,j:: 1, consider the set A. . consisting of 
1u] 

all points y E W ~ Bi such that 

(1) 11 ov ·II o3 <Yl l < jJ.l. <a <Yl > , o < P < Po , 
1 p 1 p 

and let B .. 
.1., J 

w~A .. 
1,J 

Then if x E B . . we have either x E B . n W or 
1,) 1 

(2) 
-1 -

J..li <iia (x)) ::: j lloV ill (Ba (x)) for some a E (O,p0 ) • 

Let B be the collection of balls B (x) 
a 

with xE B .. , aE (O,p 0 J , 
1,] 

and with (2) holding. By the Besicovitch covering lemma 4.6 there are families 

B1 , .. .,BNcB with N=N(n+k) , with B ~B. c ~ ( U BJ and with each 
i,j 1 £=1 BEB£ 

B£ a pairwise disjoint family. Hence if we sum in (2) over balls 

N 
B E U B2 , we get 

£=1 

jl. (B. . ) 
1 1, J 

(W= {xE u: dist(x,W) < p0}) , so 

(3) ].J. (B .. ) 
1 1, J 

with c independent of i,j 

(4) 

.-1 
::;: c J + J..l i (B i n W) , 

In particular for each i,j :: 1 

::: lim inf J..lq[interior [ ~ B )) s 
q+oo £=i £,j 

since J..l (B n W) -+ 0 as q -+ 00 • 
q q 

.-1 
CJ 
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Now let j E {1,2, ... } and consider the possibility that there is a 

point x E t'l such that x E W ~ interior for each 

Then we 

jyi-x1 < 

for all 

·together 

could select, for each i=l,2, ... 
' 

1/i Thus there are sequences yi 

'j 
for each i = 1, 2,... . 'Then 

11c;v 11 (8 <Y. J J 
' qi p l 

:s: j]J (:B (v.) ) , 
qi p -1. 

yi E w ~ n B 
q, j 

\<lith 
q=i 

+ X and qi + co such ·that 

E A . and hence (by (1)) 
q. 'J 

l 

o< P < p0 , 

i= l, 2, ... Then by the monotonicity formula 40.2 (•..rith A= j) 

\'\lith the fact that 8n(]J ,y.) 
qi l 

> l we have 

lJ (B (y.)) 
qi p l 

o< p< p 0 , i= 1 .. 2, •.. , 

and hence 

o< P < p 0 , 

so that for such an x • Thus we have proved 8n (]J ,x) ::: 1 

for each X x E W ~ [ ~ interior l( ~ BQ, .JIJ for some j E {1,2, .. .} 
i=l 9-=i . 'J 

That is 

(5) 1;f x E W ~ ( -~ U interior [ 0 ~1. B.Q,,jJJ · 
j=l i=l x.,= 

However 

]J[j~l 
00 

interior(~ B.Q, .1] ]Jc~l interior( ~ Bi,j)) u < I;! j > 1 
i=l i=i , ]) 9-=i 

lim ]J[interior(i~i Bi,j)) 
i-+<x> 

:s: .-1 
by (4) CJ ' 

( 00 
r ""' 

Bi, j]) so ]J n u interiorl n 0 and the theorem is established (by (5)) • 
j=l i=l i=i 
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§41. THE CONSTANCY THEOREM 

41.1 THEOREM (Constancy Theorem) 

Suppose v is an n-varifold in u , v is stationary in u , and 

u n spt llv c M , 1.Jhere M is a oonneoted n-dimensional c2 submanifold 

of n+k 
:R • Then for some oonstant 

41.2 REMARKS 

(1) Notice in particular this implies (M ~ M) n u = ~ (if v t- 0) 

this is not a-priori obvious from the assumptions of the theorem. 

(2) J. Duggan in his PhD thesis [DJ] has recently extended 41.1 to 

the case when M is merely Lipschitz. 

(3) The reader will see that, with only minor modifications to the 

proof to be given below, the theorem continues to hold if N is an embedded 

(n+k1 )-dimensional submanifold of :Rn+k and if v is stationary in 

u n N in the sense that oV(X) = 0 '<J X E K (U;:Rn+k) with X E T N 
X X 

'r/ x E N , provided U.'e are given spt V c { (x,S) : x E N and S c TxN} • (This 

last is equivalent to spt llv c N and where p:u+unN 

coincides with the nearest point projection onto unN in some neighbourhood 

of U n N. ) 

Proof of 41.1 We first want to argue that V ~(M,8) for some positive 

locally Hn-integrable function 8 on M . 

To do this first take any with M c {x E U: f (x) = O} and 

note that by 39.2 

(1) ov (f grad f) = J IPs (grad f) 1 2dv (x,s) , 

b~cause (using notation as in 39.2) 



241 

div5 (f grad f) 

lp5 (gradfll 2 on M, 

where we used f - 0 on M . Since oV 0 , ~;e conclude from (1) that 

(2) ps (grad f (x)) 0 for all (x,S) E spt V • 

Now let E, E M be arbitrary. We can find an open 'il c u with E, E w and 

c 2 (U) 
k 

such that there are functions fl' ... ,fk with !Jl c n {x' f" (X) = o} 
c 

j=l J 

and with (TxM) 1 being exactly ·the space spanned by grad f 1 (x), •.. ,grad fk (x) 

for each x E Mn W • (One easily checks tha-t such W and f 1 , ••• ,fk exist.) 

Then (2) implies "chat 

(3) 0 

But (3) says exactly that 

for all 

S = T M 
X 

(x,S) E Gn (W) n spt V • 

for all (x,S) E Gn (W) n spt V , 

(since E, was an arbitrary point of H), we have 

(4) I" f(x,S)dV(x,S) = J f(x,TxM)d]JV(x) , fE Cc(Gn(U)) . 
, Mnu 

so that 

On the other hand we know from monotonicity 40.2 tha'c 8 (x) ::: 811 (]JV,x) exists 

for all x E Mn u, and hence (since 8 11 (Hnl M,x) = 1 for each x E M , by 

smoothness of M) , we can use the differentiation theorem 4.7 to conclude 

from (4) that in fact 

(5) J f (x,S) dV (x,S) 
r n 
J f (x,TXM) e (x) dH (x) ' f E c (G (U)) I 

Mnu c n 

(so that V ~(M,8) as required). 

It thus remains only to prove that 8 = const. on Mn u . Since M is 

c2 we can take XE K(U,F.n+k) such that X E TM \j XE Mn U Then by 
X X 

( 5) and 39.2 oV (X) = 0 is just the statement that f divX8dHn = 0 ' where 
Mnu 
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div X is the classical divergence of xiM in the usual sense of differential 

geometry. using local coordinates (in some neighbourhood u c ~n) this tells 

us tha·t 

0 if 

v1here 8 is 8 expressed in terms of the local coordinates. In particular 

0 

and it is then standard that e = constant in u Hence (since M is 

connected) 8 is constant in M . 

§42. VARIFOLD TANGENTS AND RECTIFIABILITV THEOREM 

Let V be an n-varifold in U and let x be any point of U such 

that 

42.1 and 
1-n 

lim p lioVII (B (x) l = o . 
ptO p 

By definition of oV (in §39) and the compactness theorem 4.4 for Radon 

measures, we can select a sequence "A. + 0 
J 

such that 

(in the sense of Radon measures) to a varifold C such that 

C is stationary in ~n+k 

and 

(*) 'tj p > 0 . 

converges 

Since oc = 0 we can use (*) together with the monotonicity formula 40.3 

to conclude 



t (B (0)) 
n p 
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dC(x,S) 0 

so that p 1 (x) 
s-

0 for C- a.e. (x,S) E Gn (JRn+k) 

'r/ p > 0 ' 

and hence p 1 (x) 
s 

0 

for aU (x,S) E spt C by continuity of p , (x) 
s-'-

in (x,S) • Then by the 

same argument as in the proof of 19.3, except ·that we use 40.4 in place of 

18.1, we deduce that fie satisfies 

42.2 llc (A) , A c :Rn+k , ,\ > o . 

V-Ie 'VIOuld lUw to prove the stronger result nO,,\#C = c (which of course 

irnplies 42. 2) , but we are only able to do this in case 8n (!JC,x) > 0 for 

X (see 42.6 below). Whether or not 'JJithout the 

ctdditional hypothesis on seems to be an open question. 

L'f2.3 DEFINITION Given V and x as in 42 .l we le·t Var Tan (V, x) ("the 

varifold tangent of V at x") be the collec·tion of all C = lim nx,,\ .#v 
J 

ob·tained as described above. 

in 

Notice that by the above discussion any C E Var Tan (V, x) is s·tationary 

n+k 
:R and satisfies 42.2. 

The following rectifiability theorem is a central part of the theory 

of n-varifolds 1>/ith locally bounded first variation. 

42. 4 THE ORE~! Suppose V has locally bounded ;Yrst variation in u and 

x E u . Then V is an n-rectifiable vmoifoZd. 

(Thus V :g: (M, 8) with M an Hn-measurable countably n-rectifiable subset 

of U and 8 a non-negative locally Hn-integrable function on u.) 

42. 5 RE~1ARK We are going to use Theorem 38.3. In fact we show that V has 

a tangent plane (in the sense of 38.1) at any point x where 
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(i) (ii) n~x) (as in Lemma 38.4) exists, (iii) 
n 

8 <1-lv'. l 

is 1-lv-approximately continuous at X ; and (iv) II oVII (Bp (x)) :S A (x) 1lv (Bp (x)) 

for o< p< p0 min{l,dist(x,3U)} . Since conditions (i)-(iv) all hold 

1lv- a.e. in U (notice that (iii) holds )JV- a.e. by virtue of the 

]JV-rneasurability of 8n()Jv,'l proved in 40.5), the required rectifiability 

of V will then follow from 38.3. 

Before beginning the proof of 42.2 we give the follov1ing important 

corollary. 

42.6 COROLLARY Suppose x E u, 42.1 holds, and 

lim P-nJ.lv({yE B (x): 8n(jlv,y) < 1}) = 0 . If C E Var Tan(V,x) , then C 
p+O p 
is rectifiable and 

(*) c 'rJ A > o . 

Proof · From the hypothesis 

semi-continuity theorem 40.6, we have for ].Jc- a.e. 
n+k 

y E JR 

Hence by Theorem 42.4 we have that C is n-rectifiable. On the other hand, 

n n 
'rJ A > since 8 <llc•Yl = 8 <llc•,\y) 0 (by 42.2)' we can write 

c ~(M,8) with n0 ,,\ (Ml = M 'rj A > 0 and 8 (,\y) = 8(y) 'rj ,\ > 0 ' 

y E JRn+k (Viz. simply set 8 (y) n 
8 <llc'Yl and M = {yEJRn+k, e (yl > o} . l 

It then trivially follows that. y E TYM whenever the approximate tangent 

space TYM exists, and hence flo,.A.#C C as required. 

Proof of Theorem 42.2 Let x be as in 42.5(i)-(iv) and take 

C E Var Tan(V,x) (We know Var Tan(V,x) ~ ~ because 42.5(i), (iv) imply 

42.1.) Then c is stationary in n+k 
:R and 

(1) \j p > 0 
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n+k 

y E R 
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(using (l) and the monotonicity formula 40.2) 

n 
W R 

n 

That is (again using the monotonicity formula 40.2), 

(2) 

Now let V. 
J 

llc (B (y) l 

where 

'II y E Rn+k , p > 0 . 

is such that lim llx,:\.#V 
J 

and where we are still assuming x is as in 42.5(i)-(iv). 

From 42.5 (iii) we have (with E (p) + 0 as p + 0) 

(3) 

where G c u is such that 

(4) 

Taking p Aj we see that (3), (4) imply 

(3) • 

with such that 

( 4) I 

Y E Gn B (x) , 
p 

c 

where E.+ 0 as j + oo 
J 

Thus, using (3) ', (4)' and the semicontinuity 

result of 40.6, we obtain 
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(5) y E :Rn+k 

(and hence for every y E spt llc by 40.3) . Then by combining (2) and (5) 

we have 

(6) V y E spt llc , p > o • 

Then by the monotonicity formula 40.3 (with V= C), we have 

p (x-y) = 0 for C- a.e. (x,S) E Gn (:Rn+k) 
sl 

Thus (using the continuity of p 1 (x-y) in (x,S)) we have 
s 

(7) x-y E S V y E spt llc and V(x,S) E spt c . 

In particular, choosing T such that (O,T) E spt C (such T exists because 

o E spt llc 'TT(spt C)) (7) implies y E T V y E spt llc Thus spt llc c T 

and hence C = e 0~(T) by the constancy theorem 41.1. 

Thus we have shown that, for x E U such that 42.5(i), (iii), (iv) hold, 

each element of Var Tan(V,x) has the form 8 0~(T) where T is an 

n-dimensional subspace of :Rn+k On the other hand, since we are assuming 

(42.5(ii)) 

(8) lim 
p-l-0 

that 
(X) 

n v exists, it follows that for continuous 

J S(S)dV(y,S) 
G (B (x)) 

J S (S) dn~x) (S) • 
n 

G(n+k,n) 

on G(n+k,n) 

Now let e0~(T) be any such element of Var Tan(V,x) and select 

A. + o 
J 

so that lim 

lim 

nx,A..#v 
J 

Then in particular 

J S(S)dV.(y,S) 
Gn(Bl (0)) J 

S(T) I 
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and hence (8) gives 

i3(T) = f i3(S)dn~x) (S) , 
G(n+k,n) 

thus showing that e 0~ (T) is the unique element of Var Tan(V,x) Thus 

lim nx,Jt#v = e 0~ (Tl so that T is the tangent space for v at X in 
i\+0 
the sense of 38.1. This completes the proof. 

The following compactness theorem for rectifiable varifolds is now a 

direct consequence of the rectifiability theorem 42.4, the semi-continuity 

theorem 40.6, and the compactness theorem 4.4 for Radon measures, and its 

proof is left to the reader. 

42.7 THEOREM Suppose {vj} is a sequence of rectifiable n-varifolds in 

u which are locally of bounded first variation in u , 

supj:::1 <1lv.<w> + llovjll<wl) 
J 

< 00 'rj W CC U 1 

and on where llv (A.n Wl + o as 
j J 

j + 00 'rj w cc u. 

Then there is a subsequence {vj,} and a rectifiable varifold v of 

locally bounded first variation in u > such that V +V j. (in the sense 

of Radon measures on Gn(U)} , 8n(Jlv,x) > l for 11v- a.e. x E u , and 

for each w cc u JJovJJ (Wl ::: lim inf llov .11 (Wl 
J j+oo 

42.8 REMARK An important additional result (also due to Allard [AWl]) is 

the integral compactness theorem, which asserts that if all the V. in 
J 

the above theorem are integer multiplicity, then V is also integer 

multiplicity. (Notice that in this case the hypothesis 

U ~A. 
J 

is automatically satisfied with an A. 
J 

such that 

n 
8 (Jlv., x) ::: 1 

J 
llv (A . ) = o . ) 

j J 

on 
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Proof that V is integer multiplicity if the Vi are: 

Let W cc U. We first assert that for llv-a.e. X E w there exists 

(depending on x) such that 

Indeed otherwise 3 a set A c W wiL~ ~(A) > 0 such that for each j~ 1 

and each j' E .A. the:>::e a.re > 0 ' i ::: 1 
X 

such that B (x) c !rl and 
px 

By the Besicovitch covering lemma 4.6 we then have 

where A. 
1. 

{x E A: i < i} . Thus 
X 

.-1 
l1v (Ail ::: CJ lim sup II6V Q,ll (W) , 

Q.->«> 

and hence since A. t A as i t oo we have 
1. 

l1v (A) 
.-1 

:": CJ 

c 

for some c ( < oo) independent of That is, ~(A) 0 a contradiction, 

and hence (1) holds. Since exists l1v- a.e. X E u ' we in fact 

have from (1) that for l1v- a.e. x E U there is a c = c (x) such that 

(2) lim inf ll6v.IICB (x))::: cpn, o<p<min{l,dist(x,Clu)}. 
J._ p 

Now since V = ~(M,8) , 

we have as 

(because vi+ v , and hence 

it follows that for l1v- a.e. 

that, with wi = nf,,A.#vi, 
J._ 

it is also true that for )Jv- a.e. 

A + 0 , where and 

for each fixed 

f, E u we can select a sequence 

f, E spt l1v 

Then 

A > o ) , 

A. + o 
J._ 

such 
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and (by (2)) for each R > 0 

We claim that e0 must be an integer for any such ~ ; in fact for 

an arbitrary sequence {wi} of integer multiplicity varifolds in Rn+k 

satisfying (3), (4), we claim that eo always has to be an ineger. 

To see this, take (without loss of generality) P = Rn x {o} , let q 

be orthogonal projection onto (RnX {0}) 1 , and note first that (3) implies 

(5) p (W.L G {xE Rn+k, lq(x) I< dl + 
Rn# ~ n 

for each fixed E > 0 However by the mapping formula for varifolds (§15), 

we know that (5) says 

(5) I 

where 

lf.ii <x> = I -1 n+k 8 i <Y> 
YEP n (xJn{zEJR :I q (z) I <d 

(6) 

lR 

( ei =multiplicity function of wi ' so that 1/Ji has values in ~n{oo}) . 

Notice that (5) 1 implies in particular that 

(7) 

(i.e. measure-theoretic convergence of 1/Ji to e0 • ) 

Now we claim that there are sets Ai c B1 (0) such that 

(8) 
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this will of course (when used in combination with (7)) imply that for any 

integer N > e0 , Iilax{1jJi,N} converges in L 1 (B1 (0)) ·to e0 , and, since 

max{1jJi,N} is integer-valued, it ·then follows that e0 is an integer. 

On the other hand (8) eviden·tly follows by setting W 

following lemma, so the proof is complete. 

In this lemma, p,q deno·te orthogonal project:ion of 

x {o} c JRn+k and {o} x 
n+k 

c JR respectively. 

W. in the 
~ 

onto 

42.9 LEMMA For each o E (0,1) , A::: 1, there is s = s(6,A,n) E (O,o 2 ) 

such that if w is an integer multiplicity varifoZd in B3 (0) with 

then there is a set such that 

L 8n(~w,y) 

yEp - 1 (x)rlspt)lwn{z: I q (z) I <d 

and , 

n 
[!) 2 

n 

\J x E Bl (0) ~A, 

+ 6 . 

42.10 REMARK It suffices to prove that for each fixed N there is 

60 = 6 0 (N) E (0,1) such that if 6 E (0,6 0 ) then 3 E = t::(n,A,N,6) E (0,6 2) 

such that (*) implies the existence of A c B~(O) with Ln(A) < 6 and, for 

X E B~(O) ~A and distinct yl, ... ,yN E p-1 (x) n spt llwn {z: Jq(z) I< E} , 

(**) 
Jlw (B2 (x)) 

::: (l+ol + 0 . 

Because this firstly implies an a-priori bound, depending only on n, k, A , 

on the munber N of possible points yj , and hence the lemma, as originally 

stated, then follows. (Notice that of course the validity of the lemma for 

small 6 implies its validity for any larger 6 . ) 
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Proof of 42.9 By virtue of the above Remark, we need only prove (**). Let 

~ = ~ , and consider the possibility that y E B1 (0) satisfies 

(1) 

(2) 

Let 

J [[p5 -p[[dW(z,s):;:spn,O<p<l. 
B (y) 

p 

A 1 {y E B 2 (0) n spt W : (1) fails for some p E (0, 1)} 

A 2 {yE B 2 (0) n spt W: (2) fails for some pE (0,1)}. 

Evidently if y E spt llw n B2 (0) ~· A1 then by the monotonicity formula 40.2 

we have 

(3) 
]l (Bp (y)) 

E 
~ (Bl (y)) 

:': e 
n W. 

wnp n 

(c = c (1\,n)) ' while if y E A2 ~ Al we have 

(4) 

for some p E (0,1) 
y 

If y E A1 then 

(5) 

for some p E (0,1) • 
y 

]l (Bp (y)) 
y 

:': c ' 0 < p < 1 

(using (3)) 

Ct:jl (B (y)) 
Py 

' 

Since then covers A1 U A2 we deduce from (4), (5) 

and the Besicovitch covering lemma 4.6 that 
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(6) 

::: cs 

by the hypotheses on VI • 

Our aim nmv is to show (**) holds whenever 

view of (6) this will establish the required result (with A= p(A1U A2)). 

So let In view of the monotonicity formula 40.2 it 

evidently suffices (by translating and changing scale by a factor of 3/2 ) 

to assume that x = 0 E B~ (0) ·~ p (A1 U A 2 )) • We shall subsequently assume 

We fiJ:st want to est:ablish the two formulae, for y E B1 (0) ~ (A1 U A 2) 

and T > 0 : 

(7) 

and 

(8) 

where 

n w 0 
n 

2T 
sa ll (uu (yl l 

S e ~----n-- + CSO/T , 
w 0 

n 

---&---n-- + csp/T , 

wnp 

O<a<l, 

o < a < p ::: 1 , 

n+k I I B (y) n {zE JR : q(z-y) < T} . 
0 

Indeed these two inequalities follow directly from 40.2 and 40.4. For 

example to establish (7) we note first that 40.2 gives (7) directly if T:::: a , 

while if T < a then we first ~se 40.2 to give 

and then use 40.4 with h of the form h(z) 

t < T and f(t) ::= 0 for t > 2T 

ST )l(BT(y)) 
::: e 

f(lq(z-y) ll , f(t) ::= 1 for 
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in 19. 5) we then deduce (by integrating in 40.4 from T to (J and using (3) ) 

\l (BT (y)) 
2T 

\l (UCJ (y)) 
CEG/T s + 

n n 
W T (J) (J 

n n 

(8) is proved by simply integra-ting in 40.4 from a to p (and using (3)). 

Our aim now is to use (7) and (8) to establish 

T l-l (B 2 (0)) N l-l (UCJ (y j) ) 
(l+co 2 J co 2 z: < + n 2n j=l tu a w 

n n 

(9) 

with c = c (n,k,N ,A) , provided 

-1 I I yj E spt pn p (0) 1-1 {z: q(z) 1 < E} (In view of (7) this 

will pro,re the required result (**) for suitable o 0 (N).) 

We proceed by induction on N • N = l trivially follows from (8) by 

noting that U~T (y 1)) and then using the 

monotonicity 40.2 together with the fact that [y1 1 < E Thus assume 

N ~ 2 and that (9) has been established with any M < N in place of N . 

Let 

min I q <Y j l 
jytQ, 

yl, ... ,yN 

- q(yQ,) I 

be as 

[= ;~~ 

n 
(J 

in (9) ' and choose p E 

' 
y j-y 9, I j = 46 2p ' and 

ll cuH (y. l l 
(J J 

n a 

1' 
Ep )l(Up(y.)) 

e _]___ + CE 
n 

p 

[CJ 1 1) such that 

set 1' = 26 2 p ( ~ 2T) 

(by (B)) , 

c = c (n,k,ol . Now since 1' %min lq(y .) - q(y 0 ) I 
jytQ, J !C 

we can select 

(Q S N-1) and T < CT such that 
A 2 
T ~ 30 p 

Then 

and 



N T 
u up (Yjl 

j=l 
c 

c = c(N) , and such that 

Since c6 2 < 1/2 for 6 < o0 (N) 

have T ~ 2o 2p and 

N 

I 
j=l 

Q 
u 

9v=l 

254 

A 1 • 
1: s4 m.J.n 

ih 
1 z.- z .\ . 

.J_ J 

(if o0 (N) is chosen suitably) we then 

Q 

I 
j=l 

A 

).l (U~ (z .) ) 
p J 

where p (l+co 2)p and c = c(N) . Since Q s N-1 , the required result 

then follows by induction (choosing E appropriately) . 


