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In this and the next section we describe some concrete practical 

ways of constructing sequences of operators which approximate a compact 

operator T in the norm, or in the collectively compact manner. As 

such, they give resolvent operator approximations of T . The spectral 

considerations of the previous section are then applicable. 

In the present section we consider a group of methods which arise 

from a sequence of : X ~ X . For T E 

and n = 1 ,2, ... , we say that the operators 

(15.1) 1fT 
n 

T7r 
n 

for approximating T , respectively. 

and 1r Tv n n 

If each 1r (X) is finite 
n 

dimensional, then the above operators are of finite rank. We now 

consid€n· the convergence of these approximation methods. 

Tml>REM 15.1 Let ~I the identity operator on X Then 

(Ts,, 
nJ and 

If T is compact, 

If, in addition, 

are pointwise approximations 

then Tp ~T 
n 

'IT*~ I , 
n 

"While Ts 
n 

of T 

T and 

T 

particular, this is the case when X is a Hilbert space and each 

is an orthogonal projection. 

It is easy to see that Also, for 

X EX 

1r 
n 

In 
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Since ~ ~ I , we see by the uniform boundedness principle that 
n 

{ll1r II) 
n 

is a bounded sequence. 

Let, now, T be compact. 

Hence TG ~T. 
n 

Then the pointwise convergence of ~ 
n 

to I is uniform on the totally bounded set {Tx : x € X , llxll ~ 1} 

([L], 9.3{b)). Thus, 

IITP - Til 
n 

Next, by letting An = ~n , A = I 

that 

II~ T -Til -+ 0 . 
n 

and B =B=T 
n 

~ = T1r = B A ~ BA = T . 
n n n n 

in (13.4), we see 

Again, letting A = 1T n n A = I B = T~ and B = T n n in (13.4), we 

have 

TG = ~ T1r = A B ~ AB = T . 
n n n n n 

Finally, let ~*~I , in addition. Then 
n 

as before. Hence by Theorem 13.5(b), 

~ ~T and 
n 

We remark that the condition 1T ~I is not n 

concluding Tp ~T or Tp ~T it is enough n n 

// 

really needed for 

to have 1TX-+X n 

for every X in the range of T. In fact, we shall later give 

examples to show that the projecions 1T need not even be defined on n 

the whole of X . We shall also give an example to show that ~ ~ T n 

is possible without having 1T L I . 
n 
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We consider some necessary and sufficient conditions for v I . 
n 

PROPOSITION 15.2 Let (v ) be a sequence of (bounded) projections 
n 

defined on X , and let Y be a dense subspace of X . Then the 

following conditions are equivalent: 

(i) 

(iii) (il1r II) is a bounded sequence and for every x E Y , we have 
n 

Proof We have for every x € X 

(15.2) 

and on the other hand, for all y E 1r (X} , 
n 

so tr.at 

(15.3) 

llx-lf xi! 
n 

II( (x-y)ll ~ III-v II llx-yl! , 
n 

llx-'l'f xli < III-lf II dist(x,v (X}) 5, (l+ll1r ll)dist(x,lf (X)) , n - n n n n 

taking infimum over all y E 1r (X) . 
n 

Let 1r 
n 
LI Then ( ll1r II) 

n 

dist(x,1rn(X)) ~ 0 for every x € X 

(iii) follow. 

is bounded, and by (15.2) , 

Hence the conditions (ii) and 

Let, now, ( li1r II) 
n 

be bounded. Then (15.2) and (15.3) show that for 

every x € Y , 

and in that case, the denseness of y 

dist(x,v (X)) ~ 0 , 
n 

in X implies that 

every x € X, i.e., the condition (i) holds. // 

lfX~X 
n 

for 
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We now give several constructions of bounded projections on X and 

examine their pointwise convergence to the identity operator. 

Let X be a (separable) Banach space 'Ill th a Scl"Ja.uder basis 

{xk : k = 1,2, ... }. i.e., xk € X , iixkil = 1 , and fol.' every x EX 

for some unique 

(15.4) 

~(x) E It . 

rr x 
11. 

Define 

Since each linear functional x ~"'> l)-;:(x) is bounded ([L], 11. we 

see that eaeh is a bounded projection. Also, by the very 

definition of a Schaude:r basis, we have '"J2_,. I . Note that each 71· 
n 

is of finite rank. 

As a special case, let X be a {separable) Hilbert space and let 

k 1,2, ... } be an orthonormal basis for X . Then 

~(x) so that 

1f X -n 

Then each 1f is an orthogonal projection and 111r II 1 
n n 

We consider some concrete examples. 

(i) Let X = p_P 1 ~ p < ro , and for k 1,2, ... 

~ [0, ... ,0,1,0,0, ... ]t ' 

where 1 occurs only in the k-th place. 
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(ii) Let X = C([O,l]) For t E m • let x0 (t) t 

xl ( 1 ~ t 

r 2t :if 0 ::;; t ~ 1/2 

r~:t if 1/2 5; t ~ 1 

if t < 0 or t > 1 . 

Then i[O,l] : k = 1,2, ... } is a Schauder basis of X consisting of 

saw-tooth functions ([L], p.69). 

(iii} Let X= ,1]) For t € '1] let xo. 1 

{ _: 
if 0 ~ t < 1/2 

,O(t) if 1/2 < t 5; 1 ... 

' 0 if t == 1/2 

and for n = 1,2, ... , j ~ 1, ... ,2n, let 

r if (j-1)/2n ~ t ~ (2j-l)/2n+l 

X .(t} 
n, J 1-J,n 

t 0 otherwise. 

Then the Haar system {x .} 
n,J 

is an orthonormal basis of X consisting 

of piecewise constant functions ([L], p.198). 

(iv) Let X= L2([-v,v]) . The functions ~(t) = eikt/5, 

k = O.±L±2,... form an orthonormal basis of X , consisting of 

trigonometric functions ([L], p.l94). 2 If X = L ([O,v]) , then 

xk(t) =sin kt , k = 1,2, ... or xk(t) =cos kt , k = 0,1,2, ... also 

form orthonormal bases of X 
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(v) Let X= L2 ([-l, ) . If we orthonormalize the set 

2 {l,t,t , ... } by the Gram-Schmidt process ([L], p.l87) , then we obtain 

the orthonormal basis of X consisting of Legendre polynomials "1c of 

degree k = 0, 1,2,... . Note that 

C] 

(3/4)JIO (t~-13) , etc. 

Again, if we orthonormalize the same set with respect to the weight 

function t) = 1/J1-t2 (resp, ) , t E ,1), then we obtain the 

Tchebychev polynomials of the first kind (:resp., second kind) (cf.[L], 

p.189). 

Let 2 X= L ([a~b])~ Fo:r n = 2,3~~0" consider a partition 

a= 

of [a,b] . Let i 1, ... ,n} be the mesh of this 

partition. For a fixed integer k l 0 let !Pk denote the set of all 

polynomials of degree less than or equal to k , and let 

!Pk = {x : [a,b] _, «:: ; x 11 (n) (n)) € lf'k for i = 1, .... n} 
,n \ti-l'ti 

If we identify functions on [a, b] which equal almost everywhere, 

2 (n) 
!Pk becomes a closed subspace of L {[a,b]) . Let 1r. denote the 

'l..,n 1 

orthogonal projection from L2([t~nl), t~n)]) onto the space of all 
1- 1 

polynomials of degree~ k on [t~n1),t~n)] . Define 1r : L2 ([a,b]) 0 
1- 1 n 

L 2 ([a, b]) by 

(15.5) 
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It is clear that v 
n 

is a projection onto the set W of piecewise k,n 

polynomials. Further, is orthogonal. To see this, let 

z € Z(r. ) . Then 
n 

s:i..nce y~n) E 
1 

lhr !I = 1 
n 

n 
,z) = l 

i=l 

) and 

) ' 

Let h -? 0 . We show that 'If ~ I 

III-v I! 
n 

n n 

1 . Hence (15.2) nad (15.3), 

and consider y € R(r. ) , 
n 

0 ' 

where the projection r.~n) 
l 

Since r.n is orthogonal, 

lly-xll2 y € 

~ min{ lly-xll2 y € IP 0 • n} 

since C IPk . This shows that it is enough to consider the case 
~n 9n 

k"' 0 :! •• e., when is the orthogonal projection onto piecewise 

constant functions. By Proposition 15.2(ii), we need only prove that 

orx..;,x for every X € [a,b]) ' since [a,b]) 
n 
2 

L ([a,b]) Let x € C([a,b]) and 6 ) 0 Find 

It-s I < {j implies !x(s)-x(t} i < 6 and choose 

n 2: implies h ( {j . 
n 

Now, 

But since k = 0 , we see that 

where (n) 
C, 

1 
is the constant function defined by 

is dense in 

0 ) 0 such that 

no so large that 
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Hence 

[ 

since 

[ 

This completes the 

) 

of 

]
l/2 

j 

[x( 

] 

I 

Let X= [a,b]) ¥lith the supremum norm. For r1 

consider the n _(n) 
, .. -, t in 

n 

a 

Let satisfy 

For x E [a,b]) , let 

7r x( t) n 

'j 
1, _ .. ,n . 

t)]ds . 

Since 
fn) In) 

Tf x(t: ) - x{t'• ' i.e., n 1 ~"" i J~ 
interpoLates x at 

say that 'lT 
n 

is an interpolatory projection. Note that 

we 
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w (X) 
n 

(n) (n) span{u1 , ... ,u } , and hence w is of rank n. We show 
n n 

(15. 
n 

sup L 
t.E[a,b] i=l 

I . 

It is clear that lhrnli does not exceed the right hand side. Now, since 

[a,b] is compact, let t 0 € [a,b] be such that the right hand side 

equals [a,b]) such that 

= 0 

otherwise 

!"t(n} t(n}] · 0 L'i • i+l 'll= , ... ,n Then 

n 
sup 2 lu1 

t€[a,b] i=l 
( t) I . 

This completes the proof of (15.6). 

Methods related to interpolatory pro.]ect:i.ons are knovm as 

collocation methods. Now vl'e consider several specific choices of the 

f · (n) · 1 unctions ui , 1 = , ... ,n. 

(i) Lagrange interpolation. I ~ ~ f . u(_n) n tuis case tue _unction 
1 

is 

chosen to be the polynomial of degree (n-1). In fact, we have 

(15.7) 
n 

:::: 1I 
j=l 
j# 

n 
/fl 

j:=l 
j# 

It is clear that ~~n) vanishes precisely at t~n) , j = 1, ... ,n, 

j ;1; i Hence the support of E~n) is the whole interval [a,b] 
1 

This usually creates problems in convergence and numerical stability of 

the computations. 
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Let L denote the interpolatory projection corresponding to 
n 

i~nJ .... ,2~n) ; it is known as the Lagrange interpolation. A result of 

Kharshiladze and Lozinski says that if rr is a (bounded) projection of 
n 

C([a,b]) onto IP 
n 

n = 1,2, ... , then there is x € C([a,b]) 

that the sequence (llx- rrnxll00 ) is unbounded ([CN], p.214). In 

particular, we do not have L ~I 
n 

such 

A variation of the Lagrange interpolation is the Fejer-Hermite 

interpolation. Here the function u~n) 
1 

is chosen to be the polynomial 

f~n) of degree (2n-1) whose derivative is zero at all t~nJ, ... ,t~n) . 

In fact, 

: Let F denote the interpolatory projection corresponding to n 
(n) (n) f 1 , ... ,fn . If the nodes are the n roots of the Tchebychev 

polynomial p of the first kind, then we have n-1 

F (x)(t) n 

for x € C([-1,1]). (See [CNJ, p.70.) It follows by Korovkin's theorem 

([L], 3.18) that Fn ~I 

Although L ~I does not hold, we show that the projection and 
n 

the Sloan methods defined with the.help of the L 's can converge. 
n 

Let w be a continuous positive function on (a,b) . If we 

orthonormalize the set {1,t,t2 , ... } with respect to the weight 

function w, then we obtain polynomials p0 ,p1 , ... , which satisfy 

rh p.(t)p.(t)w(t)dt = o .. , i,j = 0,1, .... Ja 1 J 1,J 
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Note that the degree of p. is i 
1 

These polynomials are known as the 

orthogonal polynomials with respect to the weight function w . Let 

2 L ([a,b]) denote the set of all Lebesgue measurable functions x on w 

[a,b] satisfying 

rrh 2 ]u2 nxn2 .w = U_ .lx(t) I w(t}dt < co • 
a 

where we identify functions which are equal almost everywhere. Then 

2 L ([a,b]} is a Hilbert space with the inner product w 

<x,y>w = S: x(t)y(t)w(t)dt , x,y E L!([a,b]} . 
a 

We now state an interesting result. 

~ 15.3 (Erdos-Turan) Let p0 ,p1 •... be the orthogonal 

polynomials on [a,b] with respect to the weight function w . Let the 

nodes t~n> •... ,t~n) be the roots of the polynomial pn. 

denotes the Lagrange projection, then 

IlL x - xll2 -') 0 • 
n ,w 

for every x € C{[a,b]) . 

If L 
n 

We refer the reader to [CN], p.137 for a proof. For n = 1,2, ... , 

let 

Then by the uniform boundedness principle, we see that IILnll' ~a for 

some constant a and n = 1,2, .... It can then be seen that 

{15.8) 
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since for every y E Wn_1 . we have 

IILnx- xn2 .w ~ IILn(x-y) - (x-y)112 .w 

~ IlL (x-y)112 + llx-y112 n ,w .w 

~ allx-yll00 + U: w(t)dt ]t/2 nx-yll00 

a 

TDEOREK 15.4 For n = 1,2, .... let L be as in Theorem 15.3. 
n 

(a) (Vainikko) Let T : L2([a,b]) ~ L2([a,b]) be a linear w w 

operator with R(T) C C([a,b]) Then 

If, in addition, 

rP = L T ~T 
n n 

T is compact, then Tp ~ T 
n 

(b) (Sloan-Burn) Let the weight function w satisfy 

rh [1/w(t)]dt < 00 • Ja 

Let T C([a,b]} ~ C([a,b]) be defined by 

Tx(s) = t k(s,t)x(t)dt , x E C([a,b]) , s E [a,b] , 
a 

where k(s,t) is a continuous complex-valued function for 

s,t E [a,b] . Then, with respect to the sup norm, 

Proof (a) 
p 

By Theorem 15.3, we have T x = L Tx ~ Tx for every n n 

x E L2([a,b]) , since Tx E C([a,b]) . If, in addition, T is compact, w 

then the pointwise convergence of L to I is uniform on the totally 
n 

bounded set . {Tx : x E L!([a,b]) , llxn2 ,w ~ 1} . Hence T~ ~ T 
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(b) Let x € C([a,b]) . For s E [a,b] , 

2 ITL x(s)- Tx(s)! = n IJ: k(s,t)[Lnx(t) - x( ]dtl2 
a 

~ u: ~~(~Jll2w( 
a 

X 

ll ILnx( - x(t}l2w(t)dt) , 
a 

2 by the Holder inequality for the space L ([a,b]) . Hence w 

w 

Again, by Theorem 15.3 we see that TL x(s) converges to Tx(s) 
n 

uniformly for s E [a,b] . H~ce TL ~ T in C([a,b]) To 
n 

conclude TL ~. T , it is enough to show that the set 
n 

00 

E = u {TL X 
n 

x € C([a,b]) , lixl!00 ~ 1} 

is totally bounded, since T itself is a compact operator. For this 

purpose, we show that the set E is uniformly bounded and 

eguicontinuous. Let x E C([a,b]) and llxl!, ~ 1 . Then for all 

x-E [a,b] , 

the uniform boundedness principle. Also, for all s 1 , s2 in [a,b] , 

we have. 

[k(s1,t)- k(s2 ,t)]Lnx(t)dtl 2 

lk{sl' t) - k(s2' t) 12 wt~)] x 
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as before. Let 6) 0 , and find o > 0 such that ls1-s2 J < o 

implies , t) I for all t E [a,b] Then 

<. ""u·rb u.it. "'J·1/21!L II, !TL x( } - TL,.,x(s2)! .:. ~ 1 n ~- a wtt 1 n 

by {15.8). Thus, Ascoli's theorem ([L],3.17) shows that the set E is 

totally bounded in b]) , and the proof is // 

We renark that the projections tn part (a) of the above 

theorem are not even defined on the entire space X [a,b]) ; yet we 

have the norm convergence of the projeetion method. Simi 

(b), viTe }-.ave TL cc < T 
n 

wi thcn.1 t havtng L I . 
n 

in part 

(H) Piecewise linear iBterpr~Jlation. In this case the functions 

are chosen to be the functions Jn) c. 
r 

whtch are linear on each of 

the subintervals [t~n), 
l 

O, ... ,n aJnd satisfy 

{· ) 
1 = e,n, (b) 

n 

(a) = 0 for i = 2, ... ,n , 
(n.) 

e~ for 1, ... ,n-1 . 
). 

Thus, . (n) (n) 
e 1 , ... ,en are the hat 'hmctions introduced in Example (iii) 

of Section 3. We shall ;w-lke use of the properties of these functions 

discussed ·there. Let, as usual, 

Since 

easy to 

.for i 

(n}rt) e 1 1. 

·tr x(t) 
n 

l 0 &J.d 

see from {15.6) 

l'l 
~ 1 fnl) (~lJ ([ -· L x,tf ' e1 · , x € C a,bJJ . 

i=l 

n 
e~n)(t) '<;:' 1 for all t € [a,b] L 

i=l 1 

that ihr II 1 Also, {n)) = t. n r 

= l~~·~~n :and v x(a) = x(t~n)} vnx{b) t~n)) 
n l l 

. it is 

Hence 
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1T x( t) 
n 

We show graphically some 

partition, and assume that 
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1 t-t(n)) if t(n) ( t < t~n) , 
\ i-1 ' . i-1 - - 1 

x E C([a,b]) and w (x} 
n 

Figure 15.1 

i = 2, ... ,n-1 

1, ... ,n+l} be the mesh of the 

h _, 0 . We show 'If ~ I . 
n n 

Let 

x E C([a,b]) and e. ) 0 . Find o ) 0 such that ls-tl ( {j implies 

lx(s)-x(t)l < t. and choose no 

Then 

such that n ~ n0 

r tin))-x(t) I < c for 

= { 
lv x(t)-x(t)l 

n 

lx(t(n))-x(t) I < c for n 

and for t(n) 
i-1 ~ t < t(n) 

- i ~ 
we have 

implies h < 0 . 
n 

t < t(n) 
1 

t ) t(n} 
n 

l[x(t~~~)-x(t)](t~n)_t~~~) + [x(t~n))-x(t~~~)](t-t~~~) I 
lwnx( t )-x( t) I S ---------t;;:~n:;;)-_-t'(=-n') ---------

1 i-1 
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l [x(t~n))-x(t)](t~n)_t) + [x(t~n))-x(t)](t-t~n))l 
1-1 1 . 1 1-1 

= 

= c . 

Thus, 111Tnx - xll00 ~ c , and we see that 1Tn ~ I 1 If x € C ([a,b]) , 

i.e., x is continuously differentiable on [a,b] , then the above 

argument shows that II'ITnX- xll00 ~ llx'll00hn , by the mean value theorem. 

We consider some special choices of the nodes 

t~n) i t. 1 =n.i 

0 

Similarly, t~n) = 1 

0 

1 
n 

i-1 
n 

1 
n 

1, ... ,n . 

2 
n 

Figure 

i 1, ... ,n 

i 
n 

15.2 

. 

i 
n 

Figure 15.3 

n-1 
n 

n-2 n-1 
n n 

in [0,1] . 

1 

1 



2. 

3. 

t~n) 2i-1 
1 = "2il 

0 

t~n) 
1 

0 

1 
2n 

= i-1 
n-1 

1 
n-1 

3 
2n 

. i 
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i = 1, ... ,n . 

= 

2i-1 
2n 

Figure 15.4 

1, ... ,n . n = 2,3 ... 

i 
n-1 

Figure 15.5 

2n-3 2n-1 
2il2il 

n-2 
n-1 

1 

1 

4. Compound two point rules. Let n be even, n =2m . Let 

and r 2 be such that 

2j-1+r1 2j-1+r2 
and 

n n 

-1 < r 1 < r 2 < 1 , and consider the nodes 

in the interval [2j~2 , ~] , 1 ~ j ~ m . 

= { (1+r1)tn , if i = 1,3, ... ,n-1 
t~n) 

1 {i-1+r2)/n if i = 2,4, ... ,n. . 

0 
2 
n 

4 
n 

Figure 15.6 

n-2 
n 

1 

Thus 
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Some specific cases are worth mentioning. We have the compound Gauss 

two point rule when r 1 and r 2 are the roots of the Legendre 

"' ~ 1 
polynomial ~ >llO(t;,::-3) of degree 2, i.e., r 1 == -1/~3 and r 2 

Next, if and are the roots of the Tchebychev polynomial of the 

first kind 
2 ? - (2t~-l) 

--l2Tf ' 
of degree 2, then 

and we have the compound Tchebychev two point rulEL 

Similar examples can be given for 3 point and 4 point rules. These 

repeated quadrature rules give, in general, better approximations than 

ordinary quadrature rules. 

(iii) Cubic spline interpolation. Consider the partition 

of 

c 
n 

0 

{x € ~([0, 1]) (n) is a polJmomial of 
,ti+l] 

degree .~ 3 1. - 1 n-1l , - '"."' J 

Cn is called the set of cub:ic s-pline functions on the given partition. 

The dimensi-on of the subspace c 
n 

of C([O, 1]) is n+2,ascan.be 

verified by noting tl::at a cubic pol:~momial on each of the (n-1) 

intervals has 4 degrees of freedom, which are constrained by 3 

continuity conditions at the (n-2) points In fact, it 

can be shovm that for i = 1, ... , n , there is un:lque cubic spline 

functl"~n x(.n) E C h that fn)(~(n)) " d ,_. h 1 • ~ 1 n sue xi "j = ui,j an Wulc nas zero 

derivatives at 0 and 1 

If (n) 

have, in fact 

i 

r.x 
n 

For x € C([O, 1]) , let, as usual, 

1, ... ,n • 
r1-1 i -, 

then for t € 1-1- , .-:-1 , we 
ln-· n • 
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(15.10) 1r x(t) 1 [ ai+l [t 
i~l 3 

n = 6(n-1) ~ n-1] 

1 [x(n~l)[t i-1 
+ (ri=iT - ~1 

n-1-

-~ [ i~l 

6 ai+l [t - n-1] 

w-here al, ... ,an satisfy 

c r 
2 1 

I 
a1 

1 4 1 0 

(n-1 

j 
0 1 4 1 

1 2 a 
n 

~ 15.5 Let 

min{t~n)_t~~~ : i = 2, ... ,n} , and 

+ x(i-1)[~ - t]] 
n-1 n-1 

+ 

1 x(-} n-1 

[ i ]l a. -- t J 
1 n-1 

i i-1 i-2 
x(n-·1) - 2x(~) + x(n-1) n-] 

-[x(l) 
n-2 

- x(-)] n-1 

Then 

and if x is continuously differentiable on ,1], then 

In particular, if h ~ 0 and 
n 

(r ) 
n 

is bounded, then 7r ~I. 
n 

j 

For a proof, we refer the reader to p.l44 and Problem 5.26 of [CR]. 

Other end conditions such as x"(O) "' 0 = x"(l) for x E C can 
n 

also be used to define pointwise convergent interpolatory projections 

using the cubic spline functions. (See [LS], p.l69}. 
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15.1 Let T E BL(X) 

Let T = 1r Tv n n n Then in BL(X) such that 71' LI and 
11 

T LT If T is compact, then T T , and if, in addition, n 

* ~I 1f as well as 
n 

15.2 Let tl' ... , 

, ... ,xn € C([a,b]) 

}fl 

•"'-'* LI 71' 
' then 

n 
T ~T 

n 

be distinct points in 

be such that det{x. {t .)) ¢ 0 . 
]. J 

and let 

Then there exist 

unique u 1 , ... € span {x,, ... ,x } such that uo (t .) = 5 . . , 
~ n 1 J l,J 

i,j "'l, .. o,n. 

15.3 Let a = t~n) < tl(n) < ... < t(n) 
n 

:::b, and h denote the mesh 
n 

00 
of this partition. If X = L ([a,b]) , the averaging projection 

1fn : X ...;. X is defined by 

t(n.) t' t :S; {n) 
i-1 ' i = 1, ... ,n . 

If X denotes the set of all bounded complex-valued functions on [a,b] 

with the sup norm, and for i = 1, ... ,n , s~n) € !t~nl) , t~n)J , then 
1 \ ].- 1 

the piecewise constant interpolatory projection wn : X~ X with nodes 

at a and (n) 
s. 

l 

Then fo:r every 1 x E C ([a,b]) , 

then for every x E C{[a,b]) , 

X EX? 

is defined by 

t {n) (n) 
i-1 < t ~ ti . i 1, ... ,n o 

If h -;.Q, 
n 

llv. x - xll00 _., 0 . Is this true for every 
n 

Let T € BL(X} be such that R(T) C C{[a,b]) o Then 

Tp = 1r T ...E... T a..""ld if T is compact, then Tp ~ T , provided 
n n n 

h ...;. 0 
n 
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15.4 Let X= C([a,b]) . For 

(n) (n) 

(n) (n) (n) i = 1, ... ,n, lets. E (t. 1 . t. ) . 1 1- . 1 

where a= t 0 < t 1 < ... < t(n) = b . Consider the piecewise 
n 

quadratic interpolatory projection vn: X ~x, where vnxl[t~n)1 ,t~n)] 
1:- 1 

is the unique quadratic polynomial which agrees with x at t~n1) s~n) 
1- 1 

and t(n) 
i 

1 ~ i ~ n . Then v ~ I need not hold even if 
n 

where h = max{t~n)- t(n) : i 1, ... ,n} . However, if 
n 1 i-1 

there exist constants a and f3 such that 

0 < a ~ (t~n) - s~n)) / (s~n) - t 1~~)1 ) ~ 1/{3 
1 1 1 

for all n = 1,2,... and i = 1, ... ,n , 

v ~I. 
n 

andif h ~o. 
n 

then 

15.5 Let 0 = t~n) < ... < t(n) = 1 For i = 1, ... ,n, there is a 
n 

unique cubic spline ~(n) € C such that i~n)(t~n)) = o . . , 
xi n 1 J 1,J 

j = 1, ... ,n, and which has zero second derivatives at 0 and 1 

~ 
n (n) ~(n) t~n) i-1 For x € C([a,b]) . let VX= I x(t. )x. If = n-1 i n 

i=1 
1 1 1 

1, ... ,n , then vx has the same expression as v (x) ·of {15.10), n n 

except that a 1 = 0 = an , while a 2 , ... ,an_1 are determined by 

i i-1 i-2 2 
a1.-1 + 4a. + a.+1 = [x(-1) - 2x(-1) + x(-1)]/(n-1) 1 1 n- n- n-

as before. 


