METHODS RELATED TO PROJECTIONS 15.

In this and the next section we describe some concrete practical ways of constructing sequences of operators which approximate a compact operator T in the norm, or in the collectively compact manner. As such, they give resolvent operator approximations of T . The spectral considerations of the previous section are then applicable.

In the present section we consider a group of methods which arise from a sequence of (bounded) projections $\pi_n : X \to X$. For $T \in BL(X)$ and $n = 1, 2, \ldots$, we say that the operators

(15.1)
$$
T_n^p = \pi_n^T, \quad T_n^S = T\pi_n \quad \text{and} \quad T_n^G = \pi_n^T\pi_n
$$

give the projection method, the Sloan method and the Galerkin method for approximating T, respectively. If each $\pi_{n}(X)$ is finite dimensional, then the above operators are of finite rank. We now consider the convergence of these approximation methods.

THEOREM 15.1 Let $\pi_n \xrightarrow{p} I$, the identity operator on X. Then (T_n^S) and (T_n^G) are pointwise approximations of T

If T is compact, then $T_n^P \xrightarrow{\| \cdot \|_1} T$, while $T_n^S \xrightarrow{cc} T$ and $T_n^G \xrightarrow{cc} T$.

If, in addition, $\pi_{n}^{*} \xrightarrow{p} I$, then $T_{n}^{S} \xrightarrow{|| || ||} T$ and $T_{n}^{G} \xrightarrow{|| || ||} T$ particular, this is the case when X is a Hilbert space and each $\pi_{\overline{n}}$ is an orthogonal projection. In

Proof It is easy to see that $T_n^P \xrightarrow{p} T$ and $T_n^S \xrightarrow{p} T$. Also, for $x \in X$.

$$
\|T_{n}^{G}\!x - Tx\|\ \leq \|\pi_{n}^{\;}\!\| \|T_{n}^{S}\!x - Tx\|\ +\|T_{n}^{P}\!x - Tx\|\ .
$$

Since $\pi_{n} \xrightarrow{p} I$, we see by the uniform boundedness principle that ($\|\pi_{n}\|$) is a bounded sequence. Hence $T_{n}^{G} \xrightarrow{p} T$.

Let, now, T be compact. Then the pointwise convergence of π _n to I is uniform on the totally bounded set $\{Tx : x \in X, ||x|| \le 1\}$ $([L], 9.3(b))$. Thus,

$$
\|\mathbf{T}_n^{\mathrm{P}} - \mathbf{T}\| = \|\pi_n \mathbf{T} - \mathbf{T}\| \to 0.
$$

Next, by letting $A_n = \pi_n$, $A = I$ and $B_n = B = T$ in (13.4), we see that

$$
T_n^S = T\pi_n = B_n A_n \xrightarrow{cc} BA = T.
$$

Again, letting $A_n = \pi_n$, $A = I$, $B_n = T\pi_n$ and $B = T$ in (13.4), we have

$$
T_n^G = \pi_n T \pi_n = A_n B_n \xrightarrow{cc} AB = T.
$$

Finally, let $\pi_{n}^{*} \xrightarrow{p} I$, in addition. Then

$$
\left(T_n^S\right)^* = \pi_n^* T^* \xrightarrow{p} T^* \quad \text{and} \quad \left(T_n^G\right)^* = \pi_n^* T^* \pi_n \xrightarrow{p} T^*.
$$

as before. Hence by Theorem 13.5(b),

$$
T_n^S \xrightarrow{\parallel \quad \parallel} T \quad \text{and} \quad T_n^G \xrightarrow{\parallel \quad \parallel} T \quad . \tag{7}
$$

We remark that the condition $\pi_{n} \xrightarrow{p} I$ is not really needed for concluding $T_n^P \xrightarrow{p} T$ or $T_n^P \xrightarrow{\parallel \parallel \parallel} T$; it is enough to have $\pi_n x \to x$ for every x in the range of T. In fact, we shall later give examples to show that the projecions π need not even be defined on the whole of X. We shall also give an example to show that $T_n^S \xrightarrow{cc} T$ is possible without having $\pi_n \xrightarrow{p} I$.

We consider some necessary and sufficient conditions for $\pi_{n} \xrightarrow{p} I$.

PROPOSITION 15.2 Let (π_n) be a sequence of (bounded) projections defined on X , and let Y be a dense subspace of X . Then the following conditions are equivalent:

 $\pi_{n} \xrightarrow{\text{p}} I$ (i)

 $(\|\pi_n\|)$ is a bounded sequence and $\pi_n x \to x$ for every $x \in Y$ (ii) (iii) $(\|m_n\|)$ is a bounded sequence and for every $x \in Y$, we have $dist(x, \pi_{n}(X)) \rightarrow 0$.

Proof We have for every $x \in X$,

(15.2)
$$
\text{dist}(x, \pi_n(X)) \leq ||x - \pi_n x||,
$$

and on the other hand, for all $y \in \pi_n(X)$,

$$
\|x-\pi_n x\| \ = \ \| (1-\pi_n)(x-y) \| \ \leq \ \|1-\pi_n\| \ \|x-y\| \ ,
$$

so that

(15.3)
$$
\|x-\pi_n x\| \leq \|I-\pi_n\| \text{dist}(x,\pi_n(X)) \leq (1+\|\pi_n\|)\text{dist}(x,\pi_n(X))
$$

by taking infimum over all $y \in \pi_n(X)$.

Let $\pi_n \xrightarrow{p} I$. Then $(\|\pi_n\|)$ is bounded, and by (15.2), dist(x, $\pi_{n}(X)$) \rightarrow 0 for every $x \in X$. Hence the conditions (ii) and (iii) follow.

Let, now, $(\|\pi_n\|)$ be bounded. Then (15.2) and (15.3) show that for every $x \in Y$,

$$
\pi_{n} \times \to x \quad \text{if and only if} \quad dist(x, \pi_{n}(X)) \to 0 ,
$$

and in that case, the denseness of Y in X implies that π _n \times > x for every $x \in X$, i.e., the condition (i) holds. //

We now give several constructions of bounded projections on X and examine their pointwise convergence to the identity operator.

Truncations of a Schauder expansion

Let X be a (separable) Banach space with a Schauder basis ${x_k : k = 1,2,...}, i.e., x_k \in X , \|x_k\| = 1$, and for every $x \in X$ \sim

$$
x = \sum_{k=1}^{\infty} a_k(x)x_k
$$

for some unique $a_{\nu}(x) \in \mathbb{C}$. Define

(15.4)
$$
\pi_{n} x = \sum_{k=1}^{n} a_{k}(x) x_{k}.
$$

Since each linear functional $x \mapsto a_{\nu}(x)$ is bounded ([L], 11.6), we see that each π is a bounded projection. Also, by the very definition of a Schauder basis, we have $\pi_n \xrightarrow{p} I$. Note that each π_n is of finite rank.

As a special case, let X be a {separable) Hilbert space and let $\{x_k : k = 1,2,...\}$ be an orthonormal basis for X. Then $a_k(x) = \langle x, x_k \rangle$, so that

$$
\pi_{n} \mathbf{x} = \sum_{k=1}^{n} \langle \mathbf{x}, \mathbf{x}_{k} \rangle \mathbf{x}_{k} .
$$

Then each π_n is an orthogonal projection and $\|\pi_n\| = 1$.

We consider some concrete examples.

(i) Let
$$
X = e^{p}
$$
, $1 \le p \le \infty$, and for $k = 1, 2, ...$

$$
\mathbf{x}_{k} = \begin{bmatrix} 0, \ldots, 0, 1, 0, 0, \ldots \end{bmatrix}^{\mathsf{t}},
$$

where 1 occurs only in the k-th place.

(ii) Let $X = C([0,1])$. For $t \in \mathbb{R}$, let $x_0(t) = t$, $x_1(t) = 1 - t$,

$$
x_2(t) = \begin{cases} 2t, & \text{if } 0 \le t \le 1/2 \\ 2-2t, & \text{if } 1/2 \le t \le 1 \\ 0, & \text{if } t < 0 \text{ or } t > 1 \end{cases}
$$

and for $n = 1, 2, ...$, $j = 1, ..., 2ⁿ$, let

$$
x_2^n_{+j}(t) = x_2(2^n t - j + 1)
$$
.

Then $\{x_{k}\mid[0,1]: k = 1,2,...\}$ is a Schauder basis of X consisting of saw-tooth functions ([L], p.69).

(iii) Let
$$
X = L^2([0,1])
$$
. For $t \in [0,1]$, let $x_{0,0}(t) = 1$,

$$
x_{1,0}(t) = \begin{cases} 1, & \text{if } 0 \le t < 1/2 \\ -1, & \text{if } 1/2 < t \le 1 \\ 0, & \text{if } t = 1/2 \end{cases}
$$

and for $n = 1, 2, ...$, $j = 1, ..., 2^n$, let

$$
x_{n,j}(t) = \begin{cases} \sqrt{2^n}, & \text{if } (j-1)/2^n \le t \le (2j-1)/2^{n+1} \\ -\sqrt{2^n}, & \text{if } (2j-1)/2^{n+1} \le t \le j/2^n \\ 0, & \text{otherwise.} \end{cases}
$$

Then the Haar system $\{x_{n,j}\}$ is an orthonormal basis of X consisting of piecewise constant functions ([L], p.198).

(iv) Let $X = L^2([- \pi, \pi])$. The functions $x_k(t) = e^{i k t} / \sqrt{2\pi}$, $k = 0, \pm 1, \pm 2, \ldots$ form an orthonormal basis of X, consisting of trigonometric functions ([L], p.194). If $X = L^2([0, \pi])$, then $x_k(t) = \sin kt$, $k = 1,2,...$, or $x_k(t) = \cos kt$, $k = 0,1,2,...$ also form orthonormal bases of X

(v) Let $X = L^2([-1, 1])$. If we orthonormalize the set $\{1, t, t^2, \ldots\}$ by the Gram-Schmidt process ([L], p.187), then we obtain the orthonormal basis of X consisting of <u>Legendre</u> polynomials x_k of degree $k = 0, 1, 2, \ldots$. Note that

$$
x_0(t) = 1/\sqrt{2}
$$
, $x_1(t) = \sqrt{3/2} t$, $x_2(t) = (3/4)\sqrt{10} (t^2-13)$, etc.

Again, if we orthonormalize the same set with respect to the weight function $w(t) = 1/\sqrt{1-t^2}$ (resp, $\sqrt{1-t^2}$), $t \in (-1,1)$, then we obtain the Tchebychev polynomials of the first kind (resp., second kind) (cf. $[L]$, p.189).

Orthogonal projections onto piecewise polynomials

Let
$$
X = L^2([a, b])
$$
. For $n = 2, 3, ...$, consider a partition

$$
a = t_0^{(n)} \langle t_1^{(n)} \langle ... \langle t_{n-1}^{n} \langle t_n^{(n)} \rangle = b
$$

of [a,b]. Let $h_n = max\{t_1^{(n)} - t_{i-1}^{(n)} : i = 1, ..., n\}$ be the <u>mesh</u> of this partition. For a fixed integer $k \ge 0$, let P_k denote the set of all polynomials of degree less than or equal to k , and let

$$
\mathbb{P}_{k,n} = \left\{ x : [a,b] \to \mathbb{C} : x_{|(\mathbf{t}_{i-1}^{(n)}, \mathbf{t}_i^{(n)})} \in \mathbb{P}_k \text{ for } i = 1,...,n \right\}
$$

If we identify functions on [a, b] which equal almost everywhere, $P_{k,n}$ becomes a closed subspace of $L^2([a,b])$. Let $\pi_i^{(n)}$ denote the orthogonal projection from $L^2([t^{(n)}_{i-1}, t^{(n)}_i])$ onto the space of all polynomials of degree $\leq k$ on $[t^{(n)}_{i-1},t^{(n)}_i]$. Define $\pi_n : L^2([a,b]) \rightarrow$ $L^2([a,b])$ by

(15.5)
$$
\pi_n x(t) = \pi_i^{(n)} x(t)
$$
, $x \in L^2([a, b])$, $t_{i-1}^{(n)} \langle t \langle t_i^{(n)} \rangle$

It is clear that π_{n} is a projection onto the set $P_{k,n}$ of piecewise polynomials. Further, π_n is orthogonal. To see this, let $z \in Z(\pi_n)$. Then), and consider $y \in R(\pi_n)$,

$$
\langle y,z\rangle\;=\;\sum_{i=1}^n\;\; \langle y_i^{(n)},z_i^{(n)}\rangle\;=\;0\;\;,
$$

since $y_i^{(n)} \in R(\pi_i^{(n)})$ and $z_i^{(n)} \in Z(\pi_i^{(n)})$, where the projection $\pi_i^{(n)}$ is orthogonal. Thus, π_n is an orthogonal projection, and as such $\|\pi_{n}\| = 1$.

Let $h_n \to 0$. We show that $\pi_n \xrightarrow{p} I$. Since π_n is orthogonal, $||I - \pi_n|| = 1$. Hence by (15.2) nad (15.3),

$$
\begin{aligned} \|\pi_{n}x - x\|_{2} &= \min\{\|y - x\|_{2} : y \in \mathbb{P}_{k,n}\} \\ &\leq \min\{\|y - x\|_{2} : y \in \mathbb{P}_{0,n}\} \end{aligned}.
$$

since $\mathbb{P}_{0,n} \subset \mathbb{P}_{k,n}$. This shows that it is enough to consider the case $k = 0$, i.e., when π_n is the orthogonal projection onto piecewise constant functions. By Proposition 15.2(ii), we need only prove that $\pi_{n} x \to x$ for every $x \in C([a,b])$, since $C([a,b])$ is dense in $L^2([a,b])$. Let $x \in C([a,b])$ and $\epsilon > 0$. Find $\delta > 0$ such that $|t-s| < \delta$ implies $|x(s)-x(t)| < \epsilon$, and choose n_0 so large that $n \ge n_0$ implies $h_n < \delta$. Now,

$$
\|\pi_{n} x - x\|_{2}^{2} = \sum_{i=1}^{n} \|\pi_{i}^{(n)} x_{i}^{(n)} - x_{i}^{(n)}\|_{2}^{2}.
$$

But since $k = 0$, we see that

$$
\pi_{i}^{(n)}x_{i}^{(n)} = \langle x_{i}^{(n)}, c_{i}^{(n)} \rangle c_{i}^{(n)},
$$

where $c_i^{(n)}$ is the constant function defined by

$$
c_i^{(n)}(t) = 1 / (t_i^{(n)} - t_{i-1}^{(n)})^{1/2}, t_{i-1}^{(n)} < t < t_i^{(n)}.
$$

Hence

$$
\|\pi_{i}^{(n)}x_{i}^{(n)} - x_{i}^{(n)}\|_{2}^{2} = \int_{\left[t_{i-1}^{(n)}, t_{i}^{(n)}\right]} |\pi_{i}^{(n)}x_{i}^{(n)}(t) - x(t)|^{2} dt
$$

$$
\leq \epsilon^{2} \left(t_{i}^{(n)} - t_{i-1}^{(n)}\right),
$$

since

$$
\pi_1^{(n)} x_1^{(n)}(t) - x(t) = \frac{1}{t_1^{(n)} - t_{i-1}^{(n)}} \int_{[t_{i-1}^{(n)}, t_i^{(n)}]} [x(s) - x(t)] ds.
$$

Thus, we have

$$
\|\pi_{n^X} - x\|_2 \leq \left[\varepsilon^2 \sum_{i=1}^n \left(t_i^{(n)} - t_{i-1}^{(n)} \right) \right]^{1/2} = \varepsilon \sqrt{b-a} ,
$$

for $n \ge n_0$. This completes the proof of $\pi_n \xrightarrow{p} I$.

Interpolatory projections

Let $X = C([a, b])$ with the supremum norm. For $n = 1, 2, ...$ consider the n <u>nodes</u> $t_1^{(n)}, \ldots, t_n^{(n)}$ in [a,b] :

$$
a = t_0^{(n)} \leq t_1^{(n)} \leq \ldots \leq t_n^{(n)} \leq t_{n+1}^{(n)} = b.
$$

Let $u_i^{(n)} \in C([a,b])$ satisfy

$$
u_i^{(n)}(t_j^{(n)}) = \delta_{i,j}, i,j = 1,...,n
$$
.

For $x \in C([a,b])$, let

$$
\pi_{n} x(t) = \sum_{i=1}^{n} x(t_{i}^{(n)}) u_{i}^{(n)}(t) .
$$

Since $\pi_{n} x(t_1^{(n)}) = x(t_1^{(n)})$, i.e., $\pi_{n} x$ interpolates x at $t_1^{(n)}$, we say that π is an interpolatory projection. Note that

$$
\pi_{n}(X) = \text{span}\{u_{1}^{(n)}, \ldots, u_{n}^{(n)}\}, \text{ and hence } \pi_{n} \text{ is of } \text{rank } n. \text{ We show}
$$

(15.6)
$$
\|\pi_{n}\| = \sup_{t \in [a,b]} \sum_{i=1}^{n} |u_{i}^{(n)}(t)|.
$$

It is clear that $\|\pi_n\|$ does not exceed the right hand side. Now, since [a,b] is compact, let $t_0 \in [a,b]$ be such that the right hand side equals $\sum_{i=1}^n |u_i^{(n)}(t_0)|$. Choose $x_0 \in C([a,b])$ such that

$$
x_0(a) = x(t_1^{(n)}) , x_0(b) = x(t_n^{(n)}) ,
$$

$$
x_0(t_1^{(n)}) = \begin{cases} 0 , & \text{if } u_1^{(n)}(t_0) = 0 \\ |u_1^{(n)}(t_0)| / u_1^{(n)}(t_0) , & \text{otherwise} \end{cases}
$$

and x_0 is linear on $[t_i^{(n)}, t_{i+1}^{(n)}]$, $i = 0, ..., n$. Then

$$
\pi_{n}x_{0}(t_{0}) = \sum_{i=1}^{n} |u_{i}^{(n)}(t_{0})| = \sup_{t \in [a,b]} \sum_{i=1}^{n} |u_{i}^{(n)}(t)|.
$$

This completes the proof of (15.6).

Methods related to interpolatory projections are known as collocation methods. Now we consider several specific choices of the functions $u_i^{(n)}$, $i = 1, ..., n$.

(i) Lagrange interpolation. In this case the function $u_i^{(n)}$ is chosen to be the polynomial $\ell_i^{(n)}$ of degree $(n-1)$. In fact, we have

(15.7)
$$
\ell_{i}^{(n)}(\tau) = \prod_{\substack{j=1 \ j \neq i}}^{n} (t-t_{j}^{(n)}) / \prod_{\substack{j=1 \ j \neq i}}^{n} (t_{i}^{(n)} - t_{j}^{(n)}) .
$$

It is clear that $~\ell_i^{(n)}$ vanishes precisely at $~t_j^{(n)}$, $j = 1, ..., n$, $j \neq i$. Hence the support of $\ell_i^{(n)}$ is the whole interval [a,b]. This usually creates problems in convergence and numerical stability of the computations.

Let L_n denote the interpolatory projection corresponding to $\ell_1^{(n)},\ldots,\ell_n^{(n)}$; it is known as the <u>Lagrange interpolation</u>. A result of Kharshiladze and Lozinski says that if π_n is a (bounded) projection of $C([a, b])$ onto \mathbb{P}_n , $n = 1, 2, \ldots$, then there is $x \in C([a, b])$ such that the sequence $(\|x - \pi_n x\|_{\infty})$ is unbounded ([CN], p.214). In particular, we do *not* have $L_n \xrightarrow{p} I$.

A variation of the Lagrange interpolation is the Fejér-Hermite interpolation. Here the function $u_i^{(n)}$ is chosen to be the polynomial $f^{(n)}_i$ of degree (2n-1) whose derivative is zero at all $t^{(n)}_1, \ldots, t^{(n)}_n$. In fact,

$$
f_i^{(n)}(t) = \left[1 - 2(t - t_i^{(n)})(\ell_i^{(n)})'(t_i^{(n)})\right] \left[\ell_i^{(n)}(t)\right]^2
$$

: Let F_n denote the interpolatory projection corresponding to $f_1^{(n)}, \ldots, f_n^{(n)}$. If the nodes are the n roots of the Tchebychev polynomial p_{n-1} of the first kind, then we have

$$
F_n(x)(t) = \frac{1}{n^2} p_{n-1}^2(t) \sum_{i=1}^n x(t_i^{(n)}) (1-t_i^{(n)}t) / (t-t_i^{(n)})^2
$$

for $x \in C([-1,1])$. (See [CN], p.70.) It follows by Korovkin's theorem ([L], 3.18) that $F_n \xrightarrow{p} I$.

Although $L_n \xrightarrow{p} I$ does not hold, we show that the projection and the Sloan methods defined with the help of the L_n 's can converge.

Let w be a continuous positive function on (a,b) . If we orthonormalize the set $\{1, t, t^2, ...\}$ with respect to the weight function w, then we obtain polynomials p_0, p_1, \ldots , which satisfy

$$
\int_a^b p_i(t) \overline{p_j(t)} w(t) dt = \delta_{i,j} , i,j = 0,1,...
$$

Note that the degree of p_i is i. These polynomials are known as the orthogonal polynomials with respect to the weight function w . Let $L^2_w([a,b])$ denote the set of all Lebesgue measurable functions κ on [a,b] satisfying

$$
\|\mathbf{x}\|_{2,\,\mathbf{w}} = \left[\int_{a}^{b} |\mathbf{x}(\mathbf{t})|^2 \mathbf{w}(\mathbf{t}) \, \mathrm{d}\mathbf{t} \right]^{1/2} < \infty \, ,
$$

where we identify functions which are equal almost everywhere. Then $L_w^2([a,b])$ is a Hilbert space with the inner product

$$
\langle x,y\rangle_{\mathbf{w}} = \int_{a}^{b} x(t)\overline{y(t)}\mathbf{w}(t)dt
$$
, $x,y \in L_{\mathbf{w}}^{2}([a,b])$.

We now state an interesting result.

THEOREM 15.3 (Erdös-Turan) Let p_0, p_1, \ldots be the orthogonal polynomials on [a,b] with respect to the weight function w . Let the nodes $t_1^{(n)}, \ldots, t_n^{(n)}$ be the roots of the polynomial p_n . If L_n denotes the Lagrange projection, then

$$
\|\mathbf{L}_{\mathbf{n}}\mathbf{x} - \mathbf{x}\|_{2,\mathbf{w}} \to 0 \ ,
$$

for every $x \in C([a,b])$.

We refer the reader to [CN], p.137 for a proof. For $n = 1, 2, \ldots$, let

$$
\|L_n\|' = \sup\{\|L_n x\|_{2,w} : \|x\|_{\infty} \le 1\}.
$$

Then by the uniform boundedness principle, we see that $\|L_n\|' \leq \alpha$ for some constant α and $n = 1, 2, \ldots$. It can then be seen that

(15.8)
$$
\|L_n x - x\|_{2,w} \leq \left[\alpha + \left[\int_a^b w(t) dt\right]^2\right] dist(x, \mathbb{P}_{n-1}).
$$

since for every $y \in \mathbb{P}_{n-1}$, we have

$$
\begin{aligned} \n\|\mathbf{L}_{\mathbf{n}} \mathbf{x} - \mathbf{x}\|_{2, \mathbf{w}} &\leq \|\mathbf{L}_{\mathbf{n}} (\mathbf{x} - \mathbf{y}) - (\mathbf{x} - \mathbf{y})\|_{2, \mathbf{w}} \\ \n&\leq \|\mathbf{L}_{\mathbf{n}} (\mathbf{x} - \mathbf{y})\|_{2, \mathbf{w}} + \|\mathbf{x} - \mathbf{y}\|_{2, \mathbf{w}} \\ \n&\leq \alpha \|\mathbf{x} - \mathbf{y}\|_{\infty} + \left[\int_{a}^{b} \mathbf{w}(\mathbf{t}) d\mathbf{t} \right]^{1/2} \|\mathbf{x} - \mathbf{y}\|_{\infty} \n\end{aligned}
$$

THEOREM 15.4 For $n = 1, 2, \ldots$, let L_n be as in Theorem 15.3. (a) (Vainikko) Let $T : L^2_w([a,b]) \to L^2_w([a,b])$ be a linear operator with $R(T) \subset C([a,b])$. Then

$$
T^p_n = L_n T \xrightarrow{p} T \ .
$$

If, in addition, T is compact, then $T_{n}^{\text{P}} \xrightarrow{\parallel \text{II}} T$.

(b) (Sloan-Burn) Let the weight function w satisfy

$$
\int_a^b [1/w(t)]dt < \infty.
$$

Let $T : C([a,b]) \rightarrow C([a,b])$ be defined by

$$
Tx(s) = \int_a^b k(s,t)x(t)dt, x \in C([a,b]), s \in [a,b],
$$

where $k(s,t)$ is a continuous complex-valued function for $s, t \in [a, b]$. Then, with respect to the sup norm,

$$
T_n^S = T L_n \xrightarrow{cc} T.
$$

Proof (a) By Theorem 15.3, we have $T_{n}^{P}x = L_{n}Tx \rightarrow Tx$ for every $x \in L^2_{\mathbf{w}}([a,b])$, since $Tx \in C([a,b])$. If, in addition, T is compact, then the pointwise convergence of L_n to I is uniform on the totally bounded set $\{Tx : x \in L^2_w([a,b]) \text{ , } ||x||_{2,w} \leq 1\}$. Hence $T^P_n \xrightarrow{|| ||u||_{2}} T$.

(b) Let $x \in C([a,b])$. For $s \in [a,b]$,

$$
|\text{TL}_{n}x(s) - \text{Tx}(s)|^{2} = \Big|\int_{a}^{b} k(s, t)[L_{n}x(t) - x(t)]dt\Big|^{2}
$$

$$
\leq \int_{a}^{b} \frac{|k(s, t)|^{2}w(t)dt}{w(t)} dx \Big| \times
$$

$$
\int_{a}^{b} |L_{n}x(t) - x(t)|^{2}w(t)dt \Big|,
$$

by the Hölder inequality for the space $L^2_w([a,b])$. Hence

$$
|\text{TL}_{n}x(s) - \text{Tx}(s)| \leq ||k||_{\infty} \left(\int_{a}^{b} \frac{dt}{w(t)} \right)^{1/2} ||\text{L}_{n}x - x||_{2,w}.
$$

Again, by Theorem 15.3 we see that $TL_n x(s)$ converges to $Tx(s)$, uniformly for $s \in [a,b]$. Hence $TL_n \xrightarrow{p} T$ in $C([a,b])$. To conclude $TL_{n} \xrightarrow{cc} T$, it is enough to show that the set

$$
E = \bigcup_{n=1}^{\infty} \{ TL_{n}x : x \in C([a, b]) , ||x||_{\infty} \le 1 \}
$$

is totally bounded, since T itself is a compact operator. For this purpose, we show that the set E is uniformly bounded and equicontinuous. Let $x \in C([a,b])$ and $\|x\|_{\infty} \leq 1$. Then for all $x \in [a, b]$,

$$
|TL_n^x(s)| \leq ||TL_n^x||_\infty \leq ||TL_n|| \leq \beta ,
$$

by the uniform boundedness principle. Also, for all s_1 , s_2 in [a,b]. we have.

$$
|\text{TL}_{n}x(s_{1}) - \text{TL}_{n}x(s_{2})|^{2} = \left| \int_{a}^{b} [k(s_{1}, t) - k(s_{2}, t)]L_{n}x(t)dt \right|^{2}
$$

$$
\leq \left| \int_{a}^{b} |k(s_{1}, t) - k(s_{2}, t)|^{2} \frac{dt}{w(t)} \right| \times \left| \int_{a}^{b} |L_{n}x(t)|^{2}w(t)dt \right|,
$$

as before. Let $\epsilon > 0$, and find $\delta > 0$ such that $|s_1 - s_2| < \delta$ implies $|k(s_1, t) - k(s_2, t)| \leq \epsilon$ for all $t \in [a, b]$. Then

$$
|\text{TL}_{n} \mathbf{x}(s_1) - \text{TL}_{n} \mathbf{x}(s_2)| \le \epsilon \left[\int_a^b \frac{\mathrm{dt}}{\mathbf{w}(t)} \right]^{1/2} |\text{TL}_{n}|^{s}
$$

$$
\le \epsilon \alpha \left[\int_a^b \frac{\mathrm{dt}}{\mathbf{w}(t)} \right]^{1/2},
$$

by (15.8) . Thus, Ascoli's theorem $([L], 3.17)$ shows that the set E is totally bounded in $C([a,b])$, and the proof is complete. $\prime\prime$

We remark that the projections L_n in part (a) of the above theorem are not even defined on the entire space $X = L_w^2([a, b])$; yet we have the norm convergence of the projection method. Similarly, in part (b), we have $TL_n \xrightarrow{CC} T$ without having $L_n \xrightarrow{p} I$.

 (ii) Piecewise linear interpolation. In this case the functions $u_i^{(n)}$ are chosen to be the functions $e_i^{(n)}$ which are linear on each of the subintervals $[t_i^{(n)}, t_{i+1}^{(n)}]$, i = 0,..., n and satisfy

$$
e_1^{(n)}(a) = 1 = e_n^{(n)}(b) ,
$$

$$
e_1^{(n)}(a) = 0 \text{ for } i = 2,...,n , e_1^{(n)}(b) = 0 \text{ for } i = 1,...,n-1 .
$$

Thus, $e_1^{(n)}, \ldots, e_n^{(n)}$ are the hat functions introduced in Example (iii) of Section 3. We shall make use of the properties of these functions discussed there. Let, as usual,

$$
\pi_{n} x(t) = \sum_{i=1}^{n} x(t_{i}^{(n)}) e_{i}^{(n)}, \ x \in C([a, b])
$$

Since $e_i^{(n)}(t) \ge 0$ and $\sum_{i=1}^n e_i^{(n)}(t) = 1$ for all $t \in [a,b]$, it is easy to see from (15.6) that $||\pi_n|| = 1$. Also, $\pi_n x(t_i^{(n)}) = x(t_i^{(n)})$ for $i = 1,...,n$ and $\pi_n x(a) = x(t_1^{(n)})$, $\pi_n x(b) = x(t_1^{(n)})$. Hence

$$
(15.9)
$$

$$
\pi_{n}x(t) = \begin{cases}\nx(t_{1}^{(n)}) , & \text{if } t < t_{1,n} \\
x(t_{1}^{(n)}) + \frac{x(t_{1}^{(n)}) - x(t_{1-1}^{(n)})}{t_{1}^{(n)} - t_{1-1}^{(n)}} (t - t_{1-1}^{(n)}) , & \text{if } t_{1-1}^{(n)} \leq t \leq t_{1}^{(n)} , \\
x(t_{n}^{(n)}) , & \text{if } t > t_{n}^{(n)}\n\end{cases}
$$

We show graphically some $x \in C([a,b])$ and $\pi_n(x)$

Figure 15.1

partition, and assume that $h_n \to 0$. We show $\pi_n \xrightarrow{p} I$. Let Let $h_n = \max\{t_i^{(n)} - t_{i-1}^{(n)} : i = 1, ..., n+1\}$ be the mesh of the $x \in C([a,b])$ and $\epsilon > 0$. Find $\delta > 0$ such that $|s-t| < \delta$ implies $|x(s)-x(t)| \leq \epsilon$, and choose n_0 such that $n \geq n_0$ implies $h_n \leq \delta$. Then

$$
|\pi_n x(t) - x(t)| = \begin{cases} |x(t_1^{(n)}) - x(t)| < \epsilon \quad \text{for} \quad t < t_1^{(n)} \\ \vdots \\ |x(t_n^{(n)}) - x(t)| < \epsilon \quad \text{for} \quad t > t_n^{(n)} \end{cases}
$$

and for $t_{i-1}^{(n)} \leq t \leq t_i^{(n)}$, we have

$$
|\pi_n x(t) - x(t)| \le \frac{\left| \left[x(t_{i-1}^{(n)}) - x(t) \right] (t_i^{(n)} - t_{i-1}^{(n)}) + \left[x(t_i^{(n)}) - x(t_{i-1}^{(n)}) \right] (t - t_{i-1}^{(n)}) \right|}{t_i^{(n)} - t_{i-1}^{(n)}}.
$$

$$
= \frac{\left| \left[x(t_{i-1}^{(n)}) - x(t) \right] (t_i^{(n)} - t) + \left[x(t_i^{(n)}) - x(t) \right] (t - t_{i-1}^{(n)}) \right|}{t_i^{(n)} - t_{i-1}^{(n)}} \times \left[\epsilon(t_i^{(n)} - t) + \epsilon(t - t_{i-1}^{(n)}) \right] / (t_i^{(n)} - t_{i-1}^{(n)})
$$
\n
$$
= \epsilon.
$$

Thus, $||\pi_n x - x||_{\infty} \le \epsilon$, and we see that $\pi_n \xrightarrow{p} I$. If $x \in C^1([a, b])$, i.e., x is continuously differentiable on [a,b], then the above argument shows that $||\pi_n x - x||_{\infty} \le ||x'||_{\infty}$, by the mean value theorem.

We consider some special choices of the nodes $t_i^{(n)}$ in [0,1]. 1. $t_i^{(n)} = \frac{i}{n}$, i = 1, ..., n.

Figure 15.2

Similarly, $t_i^{(n)} = \frac{i-1}{n}$, i = 1,..., n,

Figure 15.3

Figure 15.5

4. Compound two point rules. Let n be even, $n = 2m$. Let r_1 and r_2 be such that $-1 \le r_1 \le r_2 \le 1$, and consider the nodes $2j-1+r_1$ $2j-1+r_2$ $\frac{1}{n}$ and $\frac{2}{n}$ in the interval $\left[\frac{2j-2}{n}, \frac{2j}{n}\right]$, $1 \le j \le m$. $t_i^{(n)} = \begin{cases} (i+r_1)/n, & \text{if } i = 1,3,\ldots,n-1 \\ (i-1+r_2)/n, & \text{if } i = 2,4,\ldots,n \end{cases}$ $rac{2}{n}$ 4 n $\frac{n-2}{n}$ 1 Thus

Figure 15.6

280

Some specific cases are worth mentioning. We have the compound Gauss two point rule when r_1 and r_2 are the roots of the Legendre polynomial $\frac{3}{4}\sqrt{10}(t^2-\frac{1}{3})$ of degree 2, i.e., $r_1 = -1/\sqrt{3}$ and $r_2 = 1/\sqrt{3}$. Next, if r_1 and r_2 are the roots of the Tchebychev polynomial of the first kind $\frac{2}{\sqrt{2\pi}}$ (2t²-1) of degree 2, then and we have the compound Tchebychev two point rule.

Similar examples can be given for 3 point and 4 point rules. These repeated quadrature rules give, in general, better approximations than ordinary quadrature rules.

(iii) Cubic spline interpolation. Consider the partition

$$
0 = t_1^{(n)} \langle t_2^{(n)} \langle ... \langle t_{n-1}^{(n)} \rangle t_n^{(n)} = 1
$$

of $\lceil 0,1 \rceil$, and let

$$
C_n = \left\{ x \in C^2([0,1]) : x_{\mid [t_1^{(n)}, t_{i+1}^{(n)}] } \text{ is a polynomial of}
$$

degree ≤ 3 , i = 1,...,n-1}

 C_n is called the <u>set of cubic spline functions on the given partition</u>. The dimension of the subspace C_n of $C([0, 1])$ is $n+2$, as can be verified by noting that a cubic polynomial on each of the $(n-1)$ intervals has 4 degrees of freedom, which are constrained by 3 continuity conditions at the $(n-2)$ points $t_2^{(n)}, \ldots, t_{n-1}^{(n)}$. In fact, it can be shown that for $i = 1, ..., n$, there is unique cubic spline function $x_1^{(n)} \in C_n$ such that $x_1^{(n)}(\tau_j^{(n)}) = \delta_{j,j}$ and which has zero derivatives at 0 and 1. For $x \in C([0,1])$, let, as usual,

$$
\pi_{n} x = \sum_{i=1}^{n} x(t_i^{(n)}) x_i^{(n)}.
$$

If $t_i^{(n)} = \frac{i-1}{n-1}$, $i = 1,...,n$, then for $t \in \left[\frac{i-1}{n-1}, \frac{i}{n-1}\right]$, we have, in fact

$$
(15.10) \quad \pi_{n}x(t) = \frac{1}{6(n-1)} \left[a_{i+1}[t - \frac{i-1}{n-1}]^{3} + a_{i}[\frac{i}{n-1} - t]^{3} \right] + \frac{1}{(n-1)} \left[x(\frac{i}{n-1})[t - \frac{i-1}{n-1}] + x(\frac{i-1}{n-1})[\frac{i}{n-1} - t] \right] - \frac{(n-1)}{6} \left[a_{i+1}[t - \frac{i-1}{n-1}] + a_{i}[\frac{i}{n-1} - t] \right].
$$

where
$$
a_1, ..., a_n
$$
 satisfy
\n
$$
\begin{bmatrix}\n2 & 1 & & & \\
1 & 4 & 1 & 0 & \\
& & \ddots & & \\
& & & 1 & 2\n\end{bmatrix}\n\begin{bmatrix}\na_1 \\
\vdots \\
a_n\n\end{bmatrix}\n=\frac{1}{(n-1)^2}\n\begin{bmatrix}\nx(\frac{1}{n-1}) - x(0) \\
\vdots \\
x(\frac{1}{n-1}) - 2x(\frac{1-1}{n-1}) + x(\frac{1-2}{n-1}) \\
\vdots \\
-x(\frac{1}{n-1}) - x(\frac{n-2}{n-1})\n\end{bmatrix}
$$

THEOREM 15.5 Let
$$
h_n = max\{t_i^{(n)} - t_{i-1}^{(n)} : i = 1, ..., n\}
$$
, $\tilde{h}_n = min\{t_i^{(n)} - t_{i-1}^{(n)} : i = 2, ..., n\}$, and $r_n = h_n / \tilde{h}_n$. Then

$$
||\pi_n||_{\infty} \le 8r_n^2 + 1
$$
.

and if x is continuously differentiable on $[0,1]$, then

 $\|\pi_{\text{n}}\mathbf{x} - \mathbf{x}\|_{\infty} \leq 4(\mathbf{r}_{\text{n}}+1) \|\mathbf{x}'\|_{\infty} \mathbf{h}_{\text{n}}$.

In particular, if $h_n \to 0$ and (r_n) is bounded, then $\pi_n \xrightarrow{p} I$.

For a proof, we refer the reader to p.l44 and Problem 5.26 of [CR].

Other end conditions such as $x''(0) = 0 = x''(1)$ for $x \in C_n$ can also be used to define pointwise convergent interpolatory projections using the cubic spline functions. (See [LS], p.l69}.

Problems

15.1 Let $T \in BL(X)$, and (π_{n}) , $(\widetilde{\pi}_{n})$ be sequences of projections in BL(X) such that $\pi_n \xrightarrow{p} I$ and $\widetilde{\pi}_n \xrightarrow{p} I$. Let $T_n = \pi_n T \widetilde{\pi}_n$. Then $T_n \xrightarrow{p} T$. If T is compact, then $T_n \xrightarrow{cc} T$, and if, in addition, $\pi_n^* \xrightarrow{p} I$ as well as $\pi_n^* \xrightarrow{p} I$, then $T_n \xrightarrow{||\cdot||} T$.

15.2 Let t_1, \ldots, t_n be distinct points in [a,b], and let $x_1, \ldots, x_n \in C([a, b])$ be such that $\det(x_i(t_j)) \neq 0$. Then there exist unique $u_1, \ldots, u_n \in \text{span }\{x_1, \ldots, x_n\}$ such that $u_i(t_i) = \delta_{i, i}$, $i,j = 1,...,n$.

15.3 Let $a = t_0^{(n)} \langle t_1^{(n)} \rangle \langle \ldots \langle t_n^{(n)} \rangle = b$, and h_n denote the mesh of this partition. If $X = L^{\infty}([a, b])$, the <u>averaging projection</u> $\pi_n : X \rightarrow X$ is defined by

$$
\pi_n x(t) = \int_{t_1(n)}^{t_1(n)} x(s) ds / (t_1^{(n)} - t_{i-1}^{(n)}) , \quad t_{i-1}^{(n)} < t \leq t_1^{(n)} , \quad i = 1, ..., n .
$$

If X denotes the set of all bounded complex-valued functions on $[a,b]$ with the sup norm, and for $i = 1, ..., n$, $s_i^{(n)} \in (t_{i-1}^{(n)} , t_i^{(n)}]$, then the <u>piecewise constant interpolatory projection</u> $\pi_n : X \rightarrow X$ with nodes at a and $s_i^{(n)}$, i = 1,..., n, is defined by

$$
\pi_{n}x(a) = x(a)
$$
, $\pi_{n}x(t) = x(s_{i}^{(n)})$, $t_{i-1}^{(n)} < t \leq t_{i}^{(n)}$, $i = 1,...,n$.

Then for every $x \in C^1([a,b])$, $\|\pi_n x - x\|_{\infty} \leq \|\xcdot\|_{\infty} h_n$. If $h_n \to 0$, then for every $x \in C([a,b])$, $||\pi_n x - x||_{\infty} \to 0$. Is this true for every $x \in X$?

Let $T \in BL(X)$ be such that $R(T) \subset C([a, b])$. Then $T_n^P = \pi_n^T \xrightarrow{p} T$, and if T is compact, then $T_n^P \xrightarrow{|| || ||_1} T$, provided $h_n \rightarrow 0$.

15.4 Let $X = C([a,b])$. For $i = 1, ..., n$, let $s_i^{(n)} \in (t_{i-1}^{(n)}, t_i^{(n)})$, where $a = t_0^{(n)} \lt t_1^{(n)} \lt \ldots \lt t_n^{(n)} = b$. Consider the <u>piecewise</u> quadratic interpolatory projection $\pi_n : X \to X$, where $\pi_n x \mid [t_{i-1}^{(n)}, t_i^{(n)}]$ is the unique quadratic polynomial which agrees with x at $t_{-1}^{(n)}$, $s_i^{(n)}$ and $t_i^{(n)}$, $1 \le i \le n$. Then $\pi_n \xrightarrow{p} I$ need not hold even if $h_n \to 0$, where $h_n = max\{t^{(n)}_i - t^{(n)}_{i-1} : i = 1, ..., n\}$. However, if there exist constants α and β such that

$$
0 < \alpha \leq (t_i^{(n)} - s_i^{(n)}) / (s_i^{(n)} - t_{i-1}^{(n)}) \leq 1/\beta
$$

for all $n = 1, 2, ...$ and $i = 1, ..., n$, and if $h_n \to 0$, then $\pi_{n} \xrightarrow{p} I$.

15.5 Let $0 = t_1^{(n)} \leftarrow ... \leftarrow t_n^{(n)} = 1$. For $i = 1, ..., n$, there is a unique cubic spline $\tilde{x}_i^{(n)} \in C_n$ such that $\tilde{x}_i^{(n)}(t_j^{(n)}) = \delta_{i,j}$, $j = 1, \ldots, n$, and which has zero second derivatives at 0 and 1. For $x \in C([a,b])$, let $\widetilde{\pi}_{n}^{x} = \sum_{i=1}^{n} x(t_i^{(n)}) \widetilde{x}_i^{(n)}$. If $t_i^{(n)} = \frac{i-1}{n-1}$, i 1, ...,n, then $\widetilde{\pi}_{n}$ has the same expression as $\pi_{n}(x)$ of (15.10), except that $a_1 = 0 = a_n$, while a_2, \ldots, a_{n-1} are determined by

$$
a_{i-1} + 4a_i + a_{i+1} = [x(\frac{i}{n-1}) - 2x(\frac{i-1}{n-1}) + x(\frac{i-2}{n-1})]/(n-1)^2
$$

as before.