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11. ERROR BOUNDS FOR ITERATIVE REFINEMENTS

A customary way for approximating eigenelements A,¢ of T € BL(X)
is to consider a nearby simpler operator To ., solve the eigenvalue

problem
T0¢0 = N9 0 # 20 €X, AO €C,

of T, successively to obtain

and refine the eigenelements AO’¢O 0

approximations of A,¢ .

In this section we develop some refinement schemes of this type
when XO is simple. We also show that two main iteration schemes lead
to a simple eigenvalue A of T ; a region of isolation for A from
the rest of o(T) is also found. We conclude this section with a
discussion of the power method, the inverse iteration and the Rayleigh
quotient iteration.

We shall assume throughout this section that AO is a simple
eigenvalue of Ty € BL(X) ., and ?0 (resp.. ¢3) is an eigenvector of
TO (resp., T;) corresponding to AO (resp., XO) such that
<¢O,¢§> =1 . Let PO and SO denote, as usual, the spectral
projection and the -reduced resolvent associated with To and ko ,
respectively. We let Vo =T - TO .

an eigenvector ¢ of T which satisfies the same condition :

so that T = To + V0 , and seek

<¢,¢§> =1

We recall the notations introduced in (10.16):

Mg = uv0¢0u s Py = Hwoﬂ . Sg = HSOH s

a, = HVbSOH s Mg = max{noposo . ao} .
Note that if T = 0, then Mo = 0= a, . so that VOPO =0 = VOSO ;
this implies V., =0 We discard this trivial case.

0
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The following function will prove to be very useful:
(1-d1-4¢c)72¢ , if 0 < el < 1/4 ,

(11.1) g(t) =
1 , if t=0,

where Y denotes the principal value of the square root function. It

can be seen that g has the power series expansion

s _ .k

g(t) = ) at .

k=0

which converges for |t| £ 1/4 , and
k
2k)!

(11.2) ay =1, 2a = i§1 23-1%k-1 T [k+1)'K!

Also, we note that g(1/4) =2 , and

1< lg(e)l <2
{11.3) I[g(t)-1]/t] < 4 for 0 < |t] < 1/4 .
|[g(t)—1—t]/t2l < 12

Note that g(t) is a real-valued increasing function of t .

Often it is possible, and also desirable, to develop an iteration
scheme which approximates an error vector ¢ - 20 rather than an
eigenvector ¢ itself. We now study two schemes of this type. For the
first, we take a clue from the Rayleigh-Schriodinger approach developed
in Section 10, and in particular, the formula

k-1
*(e) = So| Vo e * 3 Aoy een)

for the k-th coefficient of the series (10.7).



177

IEMMA 11.1 Let

k-1
(11.4) Y1y = Voo » and Yy = -VOSO¢(k_1) + 121 A(i)so¢(k—i) ’

for k =2,3,... , where
% %
(11.5) A(l) = <VO¢O,¢O> , and A(k) = (Vosow(k_l), ¢O> .
For j=1,2,... , let
.= + ...+ oy s
Yi =Y Y(5)
(11.86) ’
A, = A A e N,y s .= + S, .
it *NG) v %57 %0t SoYy

Then Aj and ¢j are the j—th partial sums of the Rayleigh-Schrodinger

series (10.4) and (10.7) for T =T, + Vo - respectively.

0
If (wj) converges in X to Y , then (¢j) converges in X to
an eigenvector ¢ of T satisfying <¢,¢g> =1, and (Aj) converges

to the corresponding eigenvalue A = (T¢,¢§> . For j=12,...,

1.

)
i

J

(11.7)

>
I

{Te. > .

: %
3 5-1-%0
Proof Let ¢(O) = ¢q and for k =1,2,... ,

=S )
?x) = So¥(x)
Then for k=1,2,... ,

k-1

(118 Yoo = Voraen * 2 Myt

Clearly, ¢j and Aj are the j—th partial sums of (10.7) and (10.4).
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Now. let the sequence (wj) converge to Y in X , i.e., let

the sum of the series 2 w(k) be Y . Since S0 and VOS0 are

continuous linear operators, it follows that the two series

€0

+ z ¢(k) and AO + z k(k)

converge to ¢ = ? + Sow and to A, say., in X and C,
respectively. We show that A and ¢ are, in fact, eigenelements of
T and that <¢,¢§> =1.

First,

9.9 = 9> + Sghue> =1+ 0=1.

Next,

Te (T +V

()

1}

o0

T A, I + A + Vv .
kzl (To2oDe) * 2o kzo ?(k) kzl 0® (k-1)

But by (11.8). we have for k =1,2,...

(ToAoD)e ey = (ToagDSo¥ )

(I—Po)W(k)

1}

Yy A(k)"’o

Vo (-1) * z N1)P-1) + Mxy%o
k
= Voraen 2 NayPaen

Hence

A

I

To WP * A Z ?(k)

>~ 8 ﬁ}\48
oy
’_"—|

N4N‘N R

A

[

(1)¢(k—1)]

e
I}
(@)
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Now, series 2 ¢(k) and 2 A(k) converge in X and € to ¢ and

0

A respectively, and the Cauchy product series z [ Z A(1)¢(k 1)]
k=0

converges in X to T¢ . Hence by Abel’s theorem, T¢ =Ap , i.e., ¢
is an eigenvector of T corresponding to the eigenvalue A .

To prove (11.7). we note that by (11.8)

%=¢o*%L§¢mﬂ
k-1
+ 2 A

1
= vt 2 So[Vorgeny 6]

=95 ~ SV % Pe-1) " % Z N1)So?(k-1)

%0 ~ So¥o?5-1 * igl A(i)SO[kgi ¢(k—i)]

J
= ¢y = Sp(T-To)esy + i§1 (7251080954

+

So(ToApD)e; g * So[—(T-A11)¢__1 + .§2 OV NI

-1t SO[—(T—NiI)¢j_ + Z (AN 1)¢J 1] .

since S (T —AOI)wj_l = (I—Po)tpj__1 = v._l - - Also, since

<TS Xy = <S > = NSSp¥y_y o> =0,

£ 3
0¥3-1°%0 owj—l’To¢o 0

A, = A .+ A

. + A + .
3= %N C)
E 3 3 k3
= <TO¢O,¢O> + <VO¢O,¢O> + i§2 <VOSO¢(1—1)’¢O>
E3 3
= (TgHglegep> + (T-To)Sbs ;.90
E 3 *®
= <T¢O,¢o> + <TSOwj_1,¢O>
3
= <T(¢O+SO¢. 1),<p0>

=<T(P > .

3-1+%0

This completes the proof. //
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PROPOSITION 11.2 For k =1,2,... , let w(k) be defined by (11.4)

and (11.5). Then

k-1
(11.9) "w(k)" < aknovo
Let wj , i=1,2,... , be defined by (11.6). If O < 7 < 1/4 ,
then (wj) converges to some Y in X , and we have
(11.10) liyll £ no[g(wo)—l]lvo < 4no ,
(11.11) Iy 1l < no[g('vo)—ao—...—ajw('])]/'ro < 3n(4v)? .

for j=1,2,...
Proof We prove (11.9) by induction on k . Since

"W(l)" = HV H =14 >

we see that (11.7) holds for k=1 . Now, let k > 2 and assume that
(11.7) holds for all positive integers { k — 1 . By the definition of
¢(k) ,

k-1

u\p(k)u < So‘”(k 1)u + ‘2 I)x(i)l sl "“’(k—i)"

The induction hypothesis now gives

k 2 k—l
i-2 :
(1) nopo ® D\( ) 1770 O PO , i =2,...,k1 .
Hence for i =1,...,k -1, we have by (11.2)

k-1
D\(i)l IEN nw(k_i)u $ay qa_iMy7

Iy, Il < [ + kil a N
(O S SR i-1%-1]"0"0 = %0"0
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Thus, (11.9) is established for all k =1,2,...

1}

Let, now, O < "o < 1/4 . Then

kzl Wl < 79 21 vy = "o[kz1 ak”o]/"o

= no[g(qo)_l]/'yo < 4770

by (11.3) . Since X is a Banach space , every absolutely convergent

o
series is convergent in X ([L]. 8.2). Hence ) ¥y ~converges to

some Y in X . The bound given in (11.10) for Il is now immediate.

Also, for j =1,2,... ,

]
=yl <Y iy,
37 g ()
S k-1 5 k
N e
0 54 X0 o k=j+1_ak 0|70
= no[g(wo)—ao—...—ang]/wo .
. J j+1 .
But since 0 < o { 1/4 and [g(t) - ag " e T ajt /¢ is an

increasing function of t € (0,1/4] , we have for j =1,2,... ,

5 ’+1 i ‘+1
[g(wo)—ao—...—angjlwg < [g(1/4)—-a0—...—aj'vg)]/(lﬂl)J

78

4j+1[g(1/4)—ao

= 43 o1-1/47 = 3(40) .

I~

—a1/4]

This proves (11.11). /7

The above estimates were first considered in [R]. See also [LN],
Proposition 3.1.

Before we turn to another iteration scheme which approximates ¢ -
¢g » We prove a lemma which shows a connection between the existence of

an eigenvector of T and a fixed point of an appropriate function.
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IEMMA 11.3 (a) Let ¢ € X . Then the following conditions are

equivalent:
(i) ¢ 1is an eigenvector of T and <¢,¢3> =1
(ii) ¢ 1is a fixed point of the function
%
(11.12) F(x) = ¢y + SO[—Vox + (Vox,wo>x] , x €X

(iii) P =95+ Sow for some fixed point ¢ of the function

~ %
(11.13) F(x) = —V0(¢O+Sox) + (VO(¢O+SOX),¢O>SOX

(b) Let ¢1 €X,

\PJ =F(\PJ._1) , J =2.3,..., <pj =«po+so\llj , J=1,2,...

If (wj) converges in X to ¢ , then (¢j) converges in X to an
eigenvector ¢ of T satisfying <¢,¢;> =1. For j=12,...,
Q. = ¢j_1 + SO[—T¢j_1 + ij._l] , where

h j
(11.14)

3%
)\j = <Ttpj_1,(Po> B

Proof (a) Let (i) hold. Then T¢ = A¢p for some A € C . Taking

*
scalar product with ¥y oOn both sides, we have

<T¢,¢;> x<¢,¢§> =2,

so that T¢ = <T¢,¢3>w , i.e.,

>
(TO+VO)¢ <(TO+VO)¢.¢O>¢

I ¢ b3
<¢,T0¢O>¢ + Vo9, 9509

*
Ao¢ + <V0¢,¢O>¢ .
Hence

*
(TO—AOI)¢ = —VO¢ + <VO¢,¢O>¢ .
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Applying SO on both sides, we see that
%
¢ -9y = (I—PO)¢ = SO(TO—AOI)¢ = SO[—VO¢ + (VO¢,¢O>¢] ,

i.e., ¢ = F(¢) . Thus (ii) holds.

If (ii) holds, and we let

¥o= Ve + <VO¢,¢3>(w—wo) .
then
P + Sg¥ = ¢y + Spl-Vye + <V0w,¢:>¢] =F(e) = ¢,
and also,
F(4) = Vo + Vgo.0p0S0 = Vo + Vgp.og>(9-9,) = ¥ .
i.e., (iii) holds.

Next, let (iii) hold. Then

* 3* t .3
P9y = SpptSg.eg> = <pg.9p> =1 .

Also,

Te = (T-Toe + (TyAyI)e + Agp

VO¢ + (TO—AOI)¢ + k0¢ .
Now,
(TO—AOI)w = (TO—AOI)(¢O+SOW)
(To—}\OI)SO'I:"(\#)
%

E3
(I-P) (-Vgpt<V e, 90 09)

£
= Voo + <V0w,w0>¢ .
Hence

% %
Ty = (VO¢,¢O>¢ + Row = <T¢,¢O>¢ s

X £ * % %,
since VO =T - TO , and <TO¢.¢O> = (w,TO¢O> = Ao<¢,¢0> = AO .

¢ 1is an eigenvector of T and <¢,¢g> =1, i.e., (i) holds.

Thus,

(b) Let vy eXx, v, =Fy, ), §=23..... If ¥;=>¢ in

X , then clearly, ¢ = §(¢) , i.e., ¢ 1is a fixed point of F .

Now,
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wj = ¥q + So¢j , converges to ¢ = %0 + SO¢ , which is an eigenvector
of T satisfying <¢,¢z> =1, by part (a).

Finally, for j =1,2,... ,

3

©
|

.
20 * SolVoPyo1 * V510907511

%
9o + SO[—T«pj_1 + <T¢j_1,¢o>¢j_1 + (TO—AOI)wj_l]

>
vt SO[—T<pJ._1 + <ij_1,¢o>¢j_1] + (I-Po)qoj~1

>
Qj_l + So[_ij_l + <T¢j_1s¢0>¢j_1] >

which proves (11.14). /7

PROPFOSITION 11.4 Let O < "9 < 1/4 . Then the function F given by

{11.13) has a unique fixed point ¥ in X such that

(11.15) il < nole(r)-11/7g < 4, -
Let
(11.16) ¢1 = —V0¢O ) ¢j = F(wj_l) . i = 2,3,...

Then for j =1,2,...,
. 1 .
(11.17) H¢—wjﬂ < no[g(vo)—1—70][270g(70)]J /70 < 3n0(470)J ,

so that ¢j =y as j oo

Proof Let r = no[g(wo)—lj/wo and E={x€X : Ixll {r} . If
o = 0, then Y =0 1is the unique fixed point of ¥ in E . DNow,

assume 1 #0 . Then for x € E ,

"%(X)” < Mo + @t + MgPeSoT + aoposor2

2 2
< + 2. + Tor /no

o 0

{r,
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no[(1—270) - 41—410] no[(1—2vo) + 41—470]
if 5 <r{ P s
270 270
i.e., no[g(wo)—ljlwo {r( no[1—70-70g(70)]/7g . Thus, for Ixll {r ,
we have H?(x)" {r,ie., F maps E into E . Now, for x,y € E ,
~ by 3
Fx) - Fv) = VgSp(xy) + Vog.00980(x)
* %
+ Vg8, () 08y + VgSgx. e So(xy) .
so that
IF(x) - F(y)Il £ (a0+nop0so+a0posor+aoposor)Hx—y"
2
< 2(7O+10r/no)ﬂx—yﬂ
= 2(70+70[g(70)—1])ﬂx—yﬂ
= 270g(7O)Hx—yH = (14 —470)Hx—yu .
Since 7 < 1/4 , we have 1 - 41—4«0 <1 and F is a contraction
from E to E . By Banach’s contraction mapping theorem ([L], p.322),

F has a unique fixed point ¥ in E .

proving (11.15).

Next, ¥ = —Vo<po = ?(0)

”¢"¢j"

Now,

v o= = F¥) - v

and hence

Then Il {r = no[g(wo)—l]/vo .

lies in E . Also, for j

I ()-F w0
[210g(wo)]ﬂw—¢j_lﬂ

78N

I~

[270g(70)]j—1ﬂ¢—¢lﬂ .

* *
—VOSO¢ + <V0¢O,¢O>SO¢ + (VOSO¢,¢O>SO¢ :
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2
nw—wlu_g (ao+noposo)r + agPSoT

I

2 2
270r + T /no

IN

r -1,

Tlo[g(qo)—l—‘yo]/'vo .

Thus, the first inequality in (11.17) holds for j = 1,2,... . The

remaining part follows from (11.3). V4

We are now ready to state and prove an important result about the
two iteration schemes, one based on the Rayleigh-Schrodinger series and

the other on the fixed point principle.

THEOREM 11.5 For j =1,2,..., let ¢j be defined either by (11.7):

J
(11.18) ¢, =9, ; + So[—(T—AII)wj_l + 122 (xi—xi_1)¢j_i]

or by (11.14):
(11.19) ¢ =9,  + S[-To, ; + Ao 1]

where, in both cases,

Let 0K " < 1/4 . Then (¢j) converges to an eigenvector ¢ of
T satisfying <¢,¢g> =1, and (Aj) converges to the corresponding

eigenvalue A = <T¢,w;) . We have

H¢—¢OH < noso[g(vo)—l]/70 < 4noso .
(11.20)
llg= 1l < 3ngso(4g)? + = 1.2,...
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a
0
Rl $ mgpo[1 + 72 [etr0)-11] € gpestg) € 2ngpg

a
0
(11.21) =2 1 < mgpg ;S-Eg(ﬂo)-ll < mgpole(rg)-11 < 4mgpyrg -
- -1 .3 b5
Ix Ajl < 3ngpeo(47) $ T gPo(H7g)” - 3 =2.3,...

Proof Since " < 1/4 , it follows by Proposition 11.2 and Lemma 11.1

in case the ¢j s are defined by (11.18), and by Proposition 11.4 and
Lemma 11.3 in case the ¢j's are defined by (11.19), that wj - ¢ and
%j = AN such that T¢ = A¢ and <¢,w3> =1 .

The bounds in (11.20) are immediate from (11.10) and (11.11) in the
first case, and from (11.15) and (11.17) in the second, since
¢ =95+ Sow and wj =95 * Sowj , 3 =1,2,... . (Since
wl = —(T- O)¢O and SoTotpO = AOSO¢O =0, the case j =1 follows.)

Similarly, the bounds in (11.21) follow if we observe that

2% %*

A - AO (Tw,wo) - <T0¢0,¢0>
* %
<(T—To)¢0,¢o> + <T(¢—¢0),¢o>

E 3 3¢
UT-Tg)eg. 0> + (T-Ty)Sgt. 9>

>

!
>
I

%
= <T(¢-¢j_1).¢o>
3*
<(T—T0)(¢-wj;1)s¢o>
3
{((T—TO)SO¢,¢O> , if j

ol . .
<(T_To)so(‘p_‘pJ_1)!‘Po> . if

]
-,

2,3,... . V4

The iteration scheme (11.19) was considered along with some error
estimates, and its comnection with Newton’s method was discussed in
[RO] . See also [A], p.145, where the iteration scheme (11.19) is

denoted by DCAl.
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.Now we consider the question about the simplicity of A and its
isolation from the rest of o(T) . In this connection, we first prove

some preliminary results.

LEMMA 11.6 ([LN], Lemma 3.3 ) Let T € BL(X) and ¢ be an
eigenvector of T corresponding to an eigenvalue A . Let x: € X

with <¢,x:> =1 . Consider the projection
%
Qx = <x,x0>¢ , X €X .
If we let (I-Q)(X) =Z , then
o(T) C {\} U a((I—Q)TIZ) .

If A€ p((I—Q)TIZ) , then A is a simple eigenvalue of T .

Proof Note that Q is a projection since <¢,x:> =1. As ¢ is an
eigenvector of T corresponding to A, we have TQ = ANQ . Hence

QTQ =ANQ and (I-Q)TQ

0, so that

-3
]

[Q + (I-Q)]T[Q + (I-Q)]
= NQ + QT(I-Q) + (I-Q)T(I-Q) .

Let A = (I—Q)T|Z . If z#AN and z € p(A) , then we can verify that

z € p(T) ; in fact,

R(T.z) = goe+ & R(A.z)(I1-Q) , g(A,2)(1-Q) .

Z AN

Hence o(T) C {A\} U o(A) , as desired. (Cf. Problem 6.6.)

Let, now, N\ € p(A) . Since 0o(A) is a closed set, we see that A
is an isolated spectral value of T . Let a curve I' in p(T)
separate A from o(A) . Then by integrating the above expression for
R(T.z) over T , we see that the spectral projection PA associated

with T and A is given by



Hence PA(X) CQ(X) . But Q is of rank 1 by definition, and Py #0 .
Thus, PA(X) is also of rank 1 , i.e., A 1is a simple eigenvalue of

T . /7

PROFOSITION 11.7 (Cf. [LN], Theorem 3.4.) Let ¢ be an eigenvector of
T corresponding to an eigenvalue A satisfying <¢,¢:> =1 . Assume

that oy + aopoﬂw—woﬂ <1 . Then the disk

1 - oy - aopoﬂ¢—¢ou}
0=

(11.22) A = {% €c : lzayl < %

contains no spectral point of T other than A . If A € AO , then A

is simple.
Proof Let
Qx = <x,<p’(j>(p L x€X, (I-Q)(X) =Z . and A= (I-Q)T|, .
By Lemma 11.6, it is enough to show that
AO C p(A) .

First we show that the centre AO of the disk AO

p(A) . Note that (I—PO)(X) = (I-Q)(X) =Z , and hence

belongs to

A = [(I-Py)=(Q-Fy) I[Ty+(T-Tp) 1|,
= A1 + A2 + A3 ,
where
Ay = Tolg » Ay = (IR (T-T) |, - and Ay = (Q-Py)Py(Ty-T) |, -

as (Q—PO)(I—PO) =0 and TO

spectral decomposition theorem (Theorem 6.3) we see that AO € P(Al) .

commutes with I - PO . Now, by the

In fact,
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-1
(AT =85 -

But

-1
r_(Ay(A;-AT) ) < T ((T-TQ)Sy) < e < 1,

so that by Theorem 9.1, AO € p(A1+A2) .

and by (9.10),
1 1 1-k
(A+A,NT) T = (AAGT) k§0 [-A5 (A AT) 7T .
Hence

(11.23) (AprAAgD) (1P = Sokzo [(Ty-T)S,T* -

This shows that

(11.24) u(A1+A2—xOI)'1(I—Po)u < s/ (1-ap) -
Since a, <1 . we see by (11.23),
-1 g k
(T, ~T) (A +A,-A.I) " (I-P)Il = I(T.-T)S T -T)S.1°1
oA A R = (TGS, 3 [T TS, ]
< aO/(l—ao) .
Also,
uAB(A1+A2—x01)“1u < HA3(A1+A2—AOI)—1(I—PO)H
= I(Q-Py)P(T-Tg) (A +Ay-A 1) (I-B )1l
(11.25) < H¢—¢0Hpoa0/(1—ao) .

But ﬁo = H¢—¢0Hp0ao/(1—a0) <1, by assumption. This shows that
AO € p(A1+A2+A3) = p{(A) ., and
©
aan7! = (A1+A2—x01)'1k§o [—A3(A1+A2-x01)‘1]k )
Hence

(11.26) (A-A 1) (I-By) = (A;+A,-A D)™ (1) kio [-Ag(A A N T) T
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Let, now, z € AO . To conclude z € p(A) , it is enough to prove

that
-1
Iz—AOl < 1/r0((A—AOI) ) .

But by (11.26), (11.24) and (11.25), we have

r ((AND)TY) = 1 (A D) N (I-B,)) < H(A-NT) T (=PI

I~

sO/(l—aO)(l—BO) = so/(1~ao—aopoﬂ¢~¢oﬂ) .

. -1
Since z € AO , we have lz—AOI < (l—ao—aopoﬂ¢—¢oﬂ)/so < 1/H(A—AOI) .

The proof of the proposition is now complete. 7/

THEOREM 11.8 Let O < v,{ 1/4 . Both the iteration schemes (11.18)

0]
and (11.19) give the same eigenelements A and ¢ of T :; A isa
simple eigenvalue of T ,
1 - 41—470
|)\—7\0| < T ,

and there is no other spectral value of T lying in the disk

1+ 41—470 }

2s

(11.27) D, = {é €C: lzayl <
0

0
In particular, A 1is the nearest spectral value of T f{from KO .

Proof For both the iteration schemes, we have by (11.20),

H¢—¢OH < noso[g(wo)—lj/wo s

so that

N

1- o - aOpOH¢—¢OH L=~ aonoposo[g(ﬁo)—l]/wo

v

1- ’ro - 70[g(70)_1]
1 - ‘Yog("{o) = (1 + \11—4’1'0)/2 >0 .

1}
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Thus, we see that the disk D0 is contained in the disk Ao of

Proposition 11.7. Also, for both the schemes, we have by (11.21),

1 -4, 1-{1%&
A < (v.) = 0 ¢ 0
o' = MoPo® 7o) = MoPo vy PR

since 1,P,S, < o - This shows that A € DO . Hence A is a simple
eigenvalue of T and there is no other spectral point of T in D0 .
In particular, this says that both the iteration schemes yield the same

eigenvalue. Also, since this eigenvalue is simple and the corresponding

eigenvector ¢ satisfies the same constraint <¢,¢0> =1, we see that

the two schemes yield the same eigenvector as well. V4

REMARKS 11.9 (i) It is interesting to note that although the
iteration scheme based on the Rayleigh-Schrodinger procedure and the one
based on the fixed point principle are completely different in their
approach to the eigenvalue problem, Theorem 11.5 gives the same
condition 7 < 1/4 for the convergence as well as the error estimates
for both of them. Also the isolation region for A as given in Theorem
11.8 is identical for the two schemes. It is worthwhile to notice that
the essential part of Theorem 11.8 was proved in Theorem 10.5 by an

entirely different method.

(ii) If the perturbation operator Vo =T - T0 satisfies the
conditions POVOPO =0 = SOVOSO ,  then one can obtain convergence of

the iteration scheme (11.18) under the weaker condition ToPoS0% < 1/4
(or "o < 1/2), and sharper error estimates are available. We leave

these considerations to Problem 11.6.

(iii) Note that the first iterate Al = <T¢o,¢:> is the generalized

Rayleigh quotient of T based at (¢o,¢;) . If we let

T, = PyTP, + (I-Py)T(I-P) .
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S . _ * % = %
then it is easy to see that T = A1¢O and leo = Alwo ., so that

1¥0
Al (resp., Xl) is an eigenvalue of T1 (resp., TT) with ? (resp.,

wz) as a corresponding eigenvector such that (¢O,¢3> =1 . In Lemma
. % 3 T
11.6 if we let T = Ty we=95. X5 =9, and Z = (I Po)(X) . then

Al would be a simple eigenvalue of T provided Al € p((I—PO)TlZ) .

1°
Since A, € p(TOIZ) ,

sufficiently close to AO . Finally, since

A, would also belong to p(TO|Z) , if it is

(I_PO)TIZ = To‘z + (I“ 0)(T—To)|z s

A, would be in p((I—PO)TIZ) as well, if ra((I“PO)(T—TO)lz) <1. In
practice this is often the case when TO is sufficiently close to T .

Let us then assume that Al is a simple eigenvalue of T1 . Then the

spectral projection associated with T1 and Rl is Po itself. Now,

T=T1+V1,

where V1 = POT(I—PO) + (I—PO)TPo = POT + TP0 - 2POTPO ., which has rank

at most 2 , although T1 may not be of finite rank. We can carry out

the two iterative processes discussed earlier with Al and ¢O as the

initial terms. In this case, we have POVIPO =0 = slvlsl , Wwhere S1
is the reduced resolvent associated with T1 and Al . (Note that
SIPO =0 = POS1 .} Accordingly, a better convergence criterion and

sharper error estimates are available, as pointed out in (ii) above.
(iv) We have seen in (11.21) that
IR—AOl < 2nop0 , while |K—A1| < 4n0p070 .

Thus, if ~. 1is small, we have a better estimate for IA—AII than for

0]
Ik—kol . We give another estimate for A - Al as follows. We have

3¢ ¥ 3¢ %
A - 7\1 = <(T—TO)((p_‘1‘)O)s‘po> = <‘P-‘P03(T _TO)<PO> :
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Let
% 3. 3 3% 3 3. ¢ % % %
My = (T -TO)¢0H s @ = T —TO)SOH s g = max{noposo,ao}
then

3¢ 3
IA—AII < H¢—¢0Hno < 4nonoso .

Again, if n; is small, then the above upper bound for IA—AII is
better than the one for IA—Aol . This suggests that if we are
interested in a higher order accuracy for eigenvalue approximation but
are satisfied with a lower order accuracy for eigenvector approximation,
then we should carry out two iteration processes simultaneously: one on
Ao,wo and the other on XO,¢§ , and at the j—th step consider the

generalized Rayleigh quotient of T based at (¢j,¢§) :

E 3 E 3
=T o> S Lp oD,
95 ?5%3 25?3

provided <¢j,¢§> #0 . If 7, <1/4 and 13 <1/4 . then ¢ >¢ and

¢ £

¢j - ¢ , where (w,w*) # 0 since ¢ and w* are eigenvectors of T
3% -

and T  corresponding to the simple eigenvalues A and A ,

respectively. Hence (wj,¢§> # 0 for éll large j . We then have by

(8.11),

¥ % *
Mg, < UT=ATN o= Il e ~o 1l / |<p.,¢.>
| qJI < oo il Ny -y ! 9509 I

(11.28)

I~

= j E3 *J 3
IT-ATU[3n,s0 (470) 13ngso(475) 1 7 1< 00> ]

* 2 % Jm 3
9nonoso(161owo) WT-AIll / |<¢j,@j>l

In case TO and Vo are self-adjoint operators, there is only one

3¢
procedure on A0’¢O to be carried out, and since 10 = 10 , Wwe see
that qj is an approximation of A with guaranteed double accuracy as

compared with Aj . Moreover, it is available without any extra work!

(v) All the above procedures are useful if " < 1/4 . If this is
not the case, then one has to look for a sharper error analysis. We

merely mention that error bounds in terms of the following quantity
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(11.29) € = max{H(VOSo)2H LB ag/2ﬁé/2} ,

where BO = TMgPySg » can be given for the Rayleigh-Schrodinger
iteration scheme (11.18) as well as for the fixed point iteration scheme

(11.19): Let Jeo <1/4 . Then for j =0,1,... ,

- - = Je2d
llp ¢2j" PR szl = O(mg(4leg)™
(11.30)
- _ - [22d
Il ¢2j+1" . IA A2j+1l = O(n070(4 €))7 -

Note that e, < 72 . If Yeg < 174, but 72 174, then we have
better bounds for the successive iterates at every other step. See
Problems 11.1 and 11.4. (See Table 19.4, Rayleigh-Schrodinger and fixed

point schemes. )

We have seen in Lemma 11.3 that ¢ € X 1is an eigenvector of T

1 if and only if

and satisfies <¢,¢;>

*
= (PO + So[_ O‘p + <V0‘P-‘PO>‘P} .

h)
|

Let us assume now that ¢ is an eigenvector of T satisfying

<¢,w:> =1, and that the corresponding eigenvalue A = (T¢,¢:> of T

is not zero. Then ¢ = T¢/<T¢,w:> , and the above equation becomes
2
SO <VOT¢,¢O>T¢
o = (po + T _VOT‘P + Ve
<To. 90> <Te.¢y>

This leads us to consider the following fixed point iteration scheme:

B3
o =0+ ?Q-I—V To . <VOT¢j_1,¢O>T¢j_1
i~ "o A, 0" "j-1 ’
J AL
J
%
= i = ce e s i . 0.
where Aj <T¢j_1,¢0> for j 1,2, provided AJ #

Substituting VO =T - T0 and noting that
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3
) T To,. ..0->Te, S T,
9 -0 yrre gl O - N e S
x. [To™s-1 =, [(TgATes 1= — "% -
AL J J
J
we have
T ST <T >
3= X x. ?5-1 ~. g
J J J
(11.31)
A, = <T ">
J - ‘p.] 1)‘po )
provided Aj #0 for j=1.2,... . We now prove the convergence of

the above modified fixed point iteration scheme, and give error bounds

for H¢—¢jH and |A—Ajl in terms of the quantity H(T—TO)TH . Notice
that the iterate ?; of (11.31) can be obtained from the iterate 25
of (11.19) if we replace . by Te, /N, .

( ) P 951 By Tes g/
THEOREM 11.10 Let ¢ be an eigenvector of T corresponding to a
simple eigenvalue A # O , which satisfies <¢,¢3> =1 . Let P
denote the spectral projection associated with T and A . Suppose

that there is a constant c¢ such that

. _ _ _ AL

(11.32) =Ag 1L He—epgll < ell(T-T)PH < Zpo I
1

(11.33) H(T—TO)TH < I
0

where

2s 2 In HITH
O . 2cliTil liPH Tl 0
dO - m+ [rriei [po + 250 + 2poso[l)\[ + ——ITI—'F ITH + !?\l]]

a2

Then 2 and Aj are well defined by (11.31), and kj # 0 for
j=1,2,... ; also

- _ _ b
ll=p Il < cli(T TO)PH[dOH(T TO)TM] .
(11.34)

N1 < epglIT-Tgll (T TO)PH[dOH(T TO)TH] .

In particular, if H(T—TO)TH < 1/do . then 5 - ¢ and Aj - A .
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Proof We prove by induction that for j =0,1,2,...

(1) lgmp,li < cdgIl(T-T)PIl I(T-T)TIY
(ii) IR 1< cdgp,lITIl I(T-T)PI H(T-T,)TH?
(iii) lxj+1| > IAl72 .

Let j =0 . Then (i) holds by the initial assumption, and (ii) follows

since
3%
|R—A1| = |<T(¢~¢0),¢O>l < chHTH H(T—TO)PH .

Since cpylITHl I(T-T,)PIl < INI/2 . we see that [A-A;| < INI/2 and
hence Ikll > IN[/2 . Now assuming (i), (ii) and (iii) for j , we
prove these statements for j + 1 .

Noting that (TO—)\OI)SO =1I- PO , )‘j+1 #0 , and

%
POT(—Aj+1T¢j + <T2¢j,¢o>¢j) =0 , we have

(ToANT) e +
070" N4 Mg

T TT.,
(To oD% 541 [

. [ <T2¢.,¢;>T¢
T .-T)Te, - ATo. | + —i—0J
Nt (ToMTey = Ay wJ] —5
j+1
1
1 % b3 2 %
5 [<T2(wj—w).¢0>T(¢j—¢)+<T2¢,¢O>ij+<T (¢j—¢)’wo>T¢

j+1

+

Now, since T¢ = A¢ , we can verify that

%
(TO—T)Tw (T2¢,¢O>ij ATo,

0 7J
+ - - (T,-AI)e
Aje1 x?+1 TSI
2 2,5
_ ()\—)\j+1)(T0_7\OI)(p . (A _)\Oxj‘l'l)T(‘Pj @)+ (N >‘j+1)‘P
Aj+1 Az

j+1
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Hence

(TO-KOI)(«pJ. 4179 = ﬁ; [(TO-T)T(¢j~«p) + (7\-7\j+1)(T0-7\OI)<P]

+

1 * 2
3 [[9% 0. + g, )
j+1

+ N0 ~0) 05> + NAA,, ) o]

Applying SO on both sides and noting that Po(wj+1—¢) =0 and

SO¢O =0, we have
(Pj'*‘l - = SO(TO_)\OI)(<PJ~+1—‘P)
1
= X;l— [SO(TO-T)T((PJ.—M + (7\-7\j+1)(¢—<po)]
1 2 3
+ 3 [[<T (9570). 95> + MARG) + MMy, 1) IS8T (2 5~e)
j+1

+ AT (p,70). 0> + NN, ) I8 00v) | -

We see that a bound for each term has the common factor

. 1
cdéH(T—TO)PH II(T-—TO)TIIJ .

and the sum of the other factors is

2s 4In.1

O, cliPll | 2 % 3 4 0 2
TXT-+ T [TXT-pOHTH + |x|2 pOSOHTH + T sOHTH + —T;TE-pOSO”T"
4 2
+ TXT—pOsoHTH + 4pOSOHTH] s

which equals d, . This can be proved by using the induction

0
hypothesis, (11.32), (11.33), and noting that since A is semisimple, we

have TP = AP , so that H(T-Ty)Pll = W(T-T)TPI/IN] < H(T-T,)TH
IPII/IA] . Thus, we have

_ j+1 . 9 j+1
llg ¢j+1” < cd0 (T TO)PH (T TO)TH .

which proves (i) with j replaced by j + 1 . As a consequence,
Ij+1

_ - = * 1 qdt] " -
A >\j+2l = |[<T(¢ ‘Pj+1)"°o>' < edg " Tp T N(T-T,)PIl H(T-T)TI
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< Al we see

Also, since H(T—TO)TH < 1/d, . and 2chHTH H(T—TO)PH

0

that IA—Aj+2I < IAN/2 , so that |A | > INl/2 . This completes the

j+2
induction proof of (i), (ii), (iii). The proof of (11.34) is complete

if we note that
> %
A=Ay = <Tlemey_q)h09> = (T-Tp)(eme; ;). 00> -

It is easy to see that if dOH(T—TO)TH <1, then Aj - A and

@j - . /7

REMARK 11.11 It follows from Theorem 11.10 that the estimates for the
eigenvalue approximation Aj and the eigenveqtor approximation wj
given by the scheme (11.31) are of the same order if "T—TOH and
H(T-TO)TH are of the same order of magnitude. If, on the other hand,
HT—TOH is not small but H(T~T0)TH is small, we have a better
guaranteed accuracy for ¢j than for Aj ; in particular the Rayleigh
quotient Al = <T¢o,¢:> may not improve upon AO , while ¢, may very
well improve upon %o -

We shall point out in Section 16 some practical situations where
the conditions (11.32) and (11.33) are satisfied for TO = Tn , when
(Tn) is an approximation of a compact operator T .

We remark that the iteration scheme (11.31) is considered in [DL]

and is only slightly different from the Ahués iteration scheme

~ Te. ;ST
(11.35) (pj = ——-J——-?\j + )T' [—T‘Pj“l + ?\jq?j_l].

(See [C]. (5.26) on p.26, and [A], DCB2 on p.149.) However, (11.31)
sometimes gives much better numerical results. (See Tables 19.3, 19.4

and 19.5.)
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We conclude this longish section by considering what is perhaps the
most simple-minded and the most well-known iteration scheme for finding
eigenelements of T .

Let ¢ be an eigenvector of T corresponding to a nonzero

%

X0 € X* is such that <¢,x*> =1, then

eigenvalue A . If 0

o =Te / <T<p,x:> ,

3¢
i.e., ¢ 1is a fixed point of the function G(x) = Tx/(Tx,wo> s

%
assuming that the denominator <Tx,¢o> does not vanish for x in an
appropriate set.

Starting with some X0 € X , we can define the iteration scheme

2 .
Xy = ij—l / <ij_1,xo> . J=12,... ,

provided <ij_1, g) # 0 ; in that case it follows by induction on j

that

_7d J ko
x, =T Xg / LT X0s%

5 O) , J=1,2,...

This is why the above iteration is known as the power method. The main
limitation of this method is that for most starting vectors Xg and
x: , the sequence (Xj) converges to an eigenvector ¢ of T
corresponding to an eigenvalue of largest absolute value, whereas the
iteration schemes developed earlier can approximate an intermediate
eigenvalue of T , mnamely the one which is closest to the starting
eigenvalue AO .

We say that an isolated spectral value A of T 1is dominant if
it is the only spectral value of T satisfying [A] = rU(T) . It

follows by (8.1) that A is the dominant spectral value of T if and

only if X 1is the dominant spectral value of T* .
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THEOREHM 11.12 Assume that O # T € BL(X} has the dominant spectral
value A , which is a pole of order ¢ of the resolvent operator
R(T,z) . Let P and D be respectively the spectral projection and

the quasi-nilpotent operator associated with T and A .

Let Xq € X and x: € X* be such that (De—lxo,x;> # 0 , vhere

DO = P . Then for all large j , <zj0,x;> # 0, so that

N N, j 5
{11.36) Xg = ij—l / <ij_1, Yo T x5/ <T xo,xo>

- £-1 £-1 *
converges to the eigenvector D x0/<D xo,xo> of T, and

_ % J 3¢ j-1 *
(11.37) Aj = <ij_1,x0> = Tk ,x0> / <T xo,x0>

converges to A .
Proof Since D = (T-A)P , we have
T=TP + T(I-P) = \P + D + T(I-P) .

Also, since P commutes with T ,

1 = oeedpd + [TI-P)P L 5= 1.2, ..
Let Y =R(P) and Z =7Z(P) , so that X =Y ® Z and

T(I-P) =0 ® le .

By the spectral‘decomposition theorem (Theorem 6.3), we see that

o(T(1-P)) = {0} U o(T|,)
= {0} U {z€o(T) : uw#A} .

Since A # 0 is the dominant spectral value of T ., we have

0 < r (T(I-P)) < IAl
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If we let
A=T({-P) /A,

we see that ra(A) <1 and hence IATI 50 as j=® by (5.8) or

i_\dfp. [0 300,
(5.10). Now, TY = A [P + [1] ot et [—l] = +A] ., so that
By 5] Xo 112 %
TXO=7\[PX0+[1]T+...+[e_1]-;\-é:—l—+AXo],
%
Dx.,x.>
By s o * , (1] Zo¥o
T xo,xo> =N [(Pxo,x()) + {1] ~
19 x>,
e ¥ [e—l] 1t A o>]
A
; i ox ; <De_1x0,x;>
But A X0 =0, <A xo,xo> -0 as j->®, and [9—1] 7\2—1 is
the dominating term in the expression for <TjXO’ :)/)\j , as j =
Since <De_1x0,x:> # 0 , we see that (zjo,x:> # 0 for all large j ,
T‘jx De_lx
0 0 . .
and x, = 3 71 % as j-=®. Since
T xo,xo> <D xo,xo)
2-1 £2-1 £-1 2-1 2-1
T(D xo) = (T-AI)D X + AD Xy = {T-AI)PD Xg + AD X0
2 2-1 2-1
-on+)\D xo..7\D X

we see that De_1x0/<De_1xo,x:;> is an eigenvector of T corresponding

to A . Also, for all large j , it can be seen that

5 = xS 7 il S

Ay = Txio10% 0°*0 0 *0” *

where the numerator equals
2-1 *

3¢
. .y <Dx,,x.0 . D7 Tx.L.xAD R
Ad {(Pxo,x§> + [ﬂ B [331] T <AJx0,x;>]
A

The denominator is obtained by replacing j by j - 1 . Hence ?\j = A

as j = V4
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REMARK 11.13 (a) It is significant to note that the dominant
eigenvalue A 1is assumed to be a pole of the resolvent operator, but it

need not be of finite algebraic multiplicity. The only condition

required of the starting vectors Xq and x; is that <De—1x0,x;> #0
when A 1is a pole of order & of R(T.z) . In case A is a simple
eigenvalue, we have &€ =1 , De—1 =P, and Px = (x,¢*>¢ , Where ¢

3 3
(resp., ¢ ) 1is an eigenvector of T (resp., T'}) corresponding to A

(resp.., X) satisfying <¢,¢*> =1 . Thus, the condition
<De_1x0,x;> # 0 1is equivalent to <xo,¢*> # 0 and <¢,x:> # 0 . Since

*

an arbitrary choice of X0 € X and Xg € X* is most likely to satisfy

these conditions, such a random choice is made in practice. A more
appropriate procedure for the choice of X0 and xg is as follows.
Let TO be a known 'nearby’' operator having a simple eigenvalue AO .
and such that

r_(Py(P-Py)) < 1,

where Po is the spectral projection associated with TO and AO .
% % . X
Then Pox = (x,w0>wo , where ?0 (resp., ¢O) is an eigenvector of To
(resp., Tg) corresponding to AO (resp.. Xo). Now, in Lemma 9.5,
is invertible.

letting P=P, and Q =P, we see that POPl

0 Py(X)

Since % € PO(X) and ? # 0 , we have
' 2 % % %
0 # POP¢0 = <P¢O,¢O>¢O = <¢O,¢ ><¢,¢O> = <P¢O,¢o> .

. % *
This shows that we can choose Xo = 9o and Xg = 9g -

REMARK 11.14 While the power method is relatively simple to implement
and the conditions on the starting vectors %o and xg are not
stringent, the main limitation of the power method is that it
approximates only the dominont eigenvalue. If we replace the operator

T by T-2z.,I , where Zy is a scalar, then the power method applied

(o
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to T - ZOI will approximate an isolated eigenvalue A of T which
satisfies Ih—zol > lk'—zol for all N € o(T) , A #£A , provided
such A exists. However, the choice of such a scalar zZ, is difficult
to make unless one has a good knowledge of the entire spectrum of T .
Also, if o(T) has real spectrum and one wishes to use only real

scalars then one can hope to approximate only the largest and the

Zy s
smallest eigenvalue of T in this manner.
If T 1is invertible, has a spectral value A of the smallest

modulus, and if A 1is a pole of the resolvent operator, then the power

method applied to T—1 (known as the inverse power method) will

approximate this A , because 1/A is then the dominant eigenvalue of
T_1 , and it is a pole of the resolvent operator
R(T—l,w) = —%TR(T,%) , WwWE€ p(T_l) . More generally, let A be an

isolated spectral value of T which is a pole of R(T.z) . =z € p(T)
If we can find a scalar zy € p(T) such that IA—zOI < lk'—zol for
every AN € o(T) . AN # A, then the inverse power method applied to

T - zoI will approximate A . The scalar =z is usually found as an

0
initial approximation of A by some other method: either as an
eigenvalue of a nearby operator TO ., or by one of the methods
described in Section 12.

We note that in the inverse power method with a shift Zo . We

need not calculate (T—ZOI)—lx for x € X . It is only necessary to

solve equations involving the operator T :

Let x. €X, x: €X' be such that <D lx x> % 0, where D
0 0 0’70
is the nilpotent operator associated with T and A . (See Problem
7.7.) For j=1,2,... , find §J. € X such that
(11.38) (T—ZOI)xj =%
X,
and put Xj = f:aljz— . Then (Xj) converges to the eigenvector
<KL, Xa2
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2-1 2-1 > . *
D X0 / <D xo,xo> of T, and if we let Aj = <ij—1’x0> , then
Zgy + 1/7\j converges to the corresponding eigenvalue A . This is known

as the inverse iteration.

Instead of considering a fixed shift =z one can vary it at each

0

step. Let X be a Hilbert space, and let # 0 be an approximation

%o
of an eigenvector x of T . Then the minimum residual property (8.9)
of the Rayleigh quotient q(xo) = {Tx ,xo> / HxOH2 says that q(xo) is
a judicious choice for an approximation for the corresponding

eigenvalue. The inverse iteration principle then says that we should

consider a shift by q(xo) . Repetition of this process gives the

Rayleigh quotient iteration: For j =1,2,..., let
zy = q(xj_l) ,
11.39 T-z )X, = x,
(11.39) (T-2,D)%; = x;_;
X,
¥, = e
IE
j’’o
Problems
11.1 ([LN], Proposition 3.1) Let ., k=1,2,..., be defined by
(k)
(11.16), and €y be as in (11.29). Then
akno(\leo)k—1 . k odd
il I <
Yoo < k-2
aknoﬂo(JES) , k even ,
: k
akno(JES) , k even
"VOSOw(k)" <

aknoao(Jeo)k_1 . kodd .
Hence the estimates in (11.30) can be deduced. Also,

|7\—7\0 |

I

2{e( 1+~E3)/(1+ao)so .

H¢—¢OH < JES(1+JES}/(aO+eO)pO .
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11.2 ([LN], Theorem 3.4.) Let A (resp., A, ¢) be eigenelements

o’ %o

of T, (resp., T) and let A, be simple. Let B, = H[T—TO)So]2H .

0
and assume that 60 + po(ao+60)ﬂw—¢oﬂ <1 . Then the set

1 - 60 - po(ao+5o)ﬂ¢—¢oﬂ}

A =4z e¢C : lz=n,l <
0 { 0 so(1+ao)

contains no spectral value of T , except possibly A . If A€ XO ,
then A 1is simple. (Note that the set AO given by (11.22) is
contained in KO) . Hence Theorem 11.8 can be improved as follows:

Let Jeo < 1/4 . Then

1+JE;

I)\—7\o| < 2‘125 W

and there is no other spectral value of T in

N 1+ley
DO =49z €C : |Z—7\0| < (1—2‘!6—0) mag)—sg

11.3 Let 0O < 7o < 1/4 and
2
no[g(vo)—l]/wo <r< (1—210)n0/270 .

Then the map F given by (11.13) is a contraction from
{x € X : lxll {r} onto itself, the constant of contraction being

2(70 + 1§r/no) . Consider the special case 7o = ({2-1)72 and r = 2n0

to obtain error bounds similar to (11.20) and (11.21).

11.4 Let y, ., j=12,... be defined by (11.16), and let {ey <174,

where €0 is defined by (11.29) . Then wj >y , with

Il < 16(1+ag)ny/5

!I\IJ-\IJOII < oo lI\]J-\Iflll < Cpeo -

(the constant c¢ depends on T * "o and € ), and for j =2,3,... ,
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-yl (4leg)d . j even
I <
-y, I(e) ™ L 5 oad .

Hence the estimates in (11.30) can be deduced.

11.5 For both the iteration schemes (11.18) and (11.19), the first

iterate 2] is given by 9o~ SOT‘po (and hence Az = Al - <TSOT¢O,¢;> ,

while Po =P SOT<p1 + Alsowl for (11.18), and Po =9 SOTqJ1 +
ASge; for (11.19).
Let AO # 0 and TOVO(po = 0 . Then Al = AO and ¢ = T¢O/KO .

11.6 Let POVOPo =0 = SOVOSo , and MoPoS0% < 1/4 . Then for the

iteration scheme (11.18), we have

and for j=1,2,... ,

Ix—x2jl

- = llo— J
llp ¢2j—1" = llg ¢2j" < n0s0(4noposoa0) .

_ J
A-Rgj41! € P (4MGPpSe%0) " -

Thus, the iterations converge if 7 <172 .

11.7 Let T € BL(X) . Assume that To € BL(X) has a simple

eigenvalue A, and let 9g ° wz , S, have usual meanings. For

0 0
j=1,2,... , let

%
Aj = <T¢j_1,¢o

(TO—AOI)uj = rJ._1 . ¢j = wj—l + uj .

>, = A9, - T
r jP5-1 ~ T

j-1 J-1

If H(T-TO)SOH and N(T-T 1l H¢;H ISl are less than 1/4 , then

0% 0

¢j -, Aj - A such that T¢ = Ap , <¢,¢:> =1 . Morerover, A is

a simple eigenvalue of T and it is the nearest spectral point of T

from ko . (Compare Problem 9.2.)



