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A customary way for approxin~ting eigenelements ~-~ of T E BL(X) 

is to consider a simpler operator T0 , solve the eigenvalue 

problem 

and refine the eigenelements ~o-'Po of T0 successively to obtain 

approximations of A,<p • 

In this section 11re develop some refinement schemes of this type 

when is sirrtpLe. We also show that two main iteration schemes lead 

to a eigenvalue A of T a region of isolation for A from 

the rest of a(T) is also found. We conclude this section with a 

discussion of the power method, the inverse iteration an.d the Rayleigh 

quotient iteration. 

We shaH assume throughout th:ils section that is a simple 

eigenvalue of T . E BL(.X) 0 . and is an eigenvector of 

T0 (resp. , T~) corresponding to A0 (resp. , ~0 ) such that 

* <<P0 .<P0> = 1 Let P0 and s0 denote, as usual, the spectral 

projection and the·reduced resolvent associated with and 

respectively. We let v0 = T - T0 , so that T = r0 + v0 , and seek 

an etgenvector ~ of T which satisfies the same condition 

* <<P.'Po> = 1 

We recall the notations introduced :in (10.16): 

* Tlo = !IV 0 'P0 11 , Po = ll<r0 11 , s 0 

o:O = !IVOSOII , 'YO = max{T)OpOsO 

Note tb..at if = 0 then so that = 0 

this implies V0 0 We discard this trivial case. 
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The fol function wi U prove to be very useful: 

(11.1) g(t} 

1 if t = 0 ' 

where ..f denotes the pri.ncipal value of the square root function. It 

can be seen that g has the power series expansion 

00 

g( t) I aktk 
b:O 

which converges for It! 5: 1/4 , and 

(11.2) 

Also, we note that g( 2 , and 

r 1 < lg{ 

{2k)! 
(k+l)!k! 

(11.3) 1 l[g(t)-1]/tl 

ll [g( t)-l-t]/t2 1 

for o < I t1 ::; 1/4 . 

~ 12 

Note that g(t) is a real-valued increasing function of t . 

Often it is possible, and also desirable, to develop an iteratton 

scheme which approximates an error vector ~ - ~O rather than an 

eigenvector ~ itself. We now study two schemes of this type. For the 

first, we take a clue from the Rayleigh-Schrodinger approach developed 

in Section 10, and in particular, the formula 

for the k-th coefficient of the series (10.7). 
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LEMMA 11.1 Let 

k-1 
(11.4} ~(1) = -VO~O • and ~(k) = -VOSO~(k-1} + i!1 A(i)SO~(k-i) • 

for k = 2,3, ... , where 

{11.5) 

For j 1.2.... let 

(11.6) 
~j = ~(1) + ... + ~(j) • 

Aj·= AO + A( 1) + ... + A(j) 

Then Aj and ~j are the j-th partial sums of the Rayleigh-Schrodinger 

series {10.4) and {10.7) for T = T0 + v0 , respectively. 

If (~.) converges in X to ~ , then 
J 

* an eigenvector ~ of T satisfying <~.~0> = 

* to the corresponding eigenvalue A = <T~.~0> 

(11.7) 

Proof Let ~(O) = ~O and for k = 1,2, ... , 

Then for k = 1,2, ... , 

k-1 

(~.) converges in X to 
J 

1 , and (A.) converges 
J 

For j = 1,2, ... , 

(11.8) ~(k) = -VO~(k-1) + i!1 A(i)~(k-1) 

Clearly, ~j and Aj are the j-th partial sums of (10.7) and (10.4). 



Now, let the sequence 

the sum of the series I 
k=l 

continuous linear operators, 

ro 

+ I 
k=l 

(>/1 .) 
J 

it 

'P(k) 
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converge to ,P in X , 

be ,P • Since 

follows that the two series 

00 

and + I 
k=l 

converge to <p = + s0..p and to A , say, in X and ~ , 

let 

respectively. We show that A and 'f' are, in fact, eigenelements of 

T and that <<P,<fl~) = 1 . 

First, 

Next, 

00 00 00 

I 'P(k) + I VO~(k-1' . 
k=O • k=l 1 

But by (11.8), we have for k = 1,2, ... 

Hence 

(TO-AOI)SO,P(k) 

(I-PoH(k) 

= ..P(k) + A(k)'~'o 
k-1 

= -Vo<P(k-1) + I A{i)'P(k-i) + A(k)<Po 
i=l 
k 

= -VO'{I(k-1) + I i)'P(k-1) . 
i=l 

00 

+ Ao I <P(k) 
k::O 
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00 00 

Now, series I ~(k) and I A(k) converge in X and ~ to ~ and 
k::() k::() 

A respectively, and the Cauchy product series k!o [i!o A(i)~(k-i)] 
converges in X to T~. Hence by Abel's theorem, T~ =A~, i.e., ~ 

is an eigenvector of T corresponding to the eigenvalue A . 

To prove (11.7), we note that by (11.8) 

~j = ~o + 8o[J1 >P{k)] 

i [ k-1 ] 
= ~0 + k!1 80 -VO~{k-1} + i!1 A{i}~{k-i) 

. . k 

= ~o - 8ovo t ~(k-1} + t .I A{i}8o~{k-i} 
k=1 k=1 1=1 

= ~0 - SOVO~j-1 + it1 \i)so[Ji ~(k-i}] 
= ~0 - SO(T-TO}~j-1 + .! (Ai-Ai-1)SO~j-i 

1=1 

= ~0 + SO(TO-AOI)~j-1 + so[-(T-A1I)~j-1 + ! (Ai-Ai-1)~j-i] 
i=2 

= ~- 1 + s0 [-(T-k1 I)~. 1 + ! (A.-A. 1 )~ .. ] J- J- i=2 1 1- J-1 

since s0(T0-A0I}~j-1 = (I-P0}~j-1 = ~j-1 - ~O . Also, since 

* ** * <TOSO,Pj-1'~0> = <SO,Pj-1'TO~O> = Ao<SO,Pj-1'~0> = O' 

Aj = AO + A( 1) + ... + A(j) 

= <To~o·~~> + <Vo~o·~~> + it2 <VOSO,P(i-1)'~~> 
* * = <(TO+VO)~o·~o> + <(T-TO)SO,Pj-1'~0> 

* * = <T~o·~o> + <TSo>Pj-1'~o> 

* = <T{~O+SO,Pj-1)'~0> 

* = <T~j-1'~0> 

This completes the proof. // 
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PROP<EITiaf 11.2 For k = 1,2, ... , let ,P(k) be defined by (11.4) 

and (11.5). Then 

(11.9) 

Let j = 1,2, .... be defined by (11.6). 

then (>/1.) converges to some ,P in X , and we have 
J 

{11.10) 

(11.11) 

for j = 1,2, ... 

Proof We prove (11.9) by induction on k . Since 

If 0 < ~O ~ 1/4 , 

we see that (11.7) holds for k = 1 . Now, let k ~ 2 and assume that 

{11.7) holds for all positive integers ~ k- 1 . By the definition of 

k-1 
II,P(k)ll ~ IIV0s0,p(k-1 )11 + i!1 1\i) I IIS0 11 II,P(k-i)ll . 

The induction hypothesis now gives 

Hence for i = 1, ... ,k- 1 , we have by (11.2) 
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Thus, (11.9) is established for all k 1,2, .... 

Let, now, 0 < "'o S: 1/4 Then 

by (11.3) Since X is a Banach space , every absolutely convergent 

00 

series is convergent in X ([L], 8.2). Hence l ..J;k converges to 
k=l 

some ..jJ in X The bound given in (11.10) for II..J;II is now irmnediate. 

Also, for j 1,2, ... ' 

li>f;-;,1; .II S: 
J 

. "+1 
But since 0 ( -ro s 1/4 and [g(t) - ao - ... - a. tJ]/tJ is an 

J 

increasing function of t E '1/4] we have for j = 1,2, ... 

j / j+l s; [g{l/4)-a0- ... -aj-r0], (1/4) 

"+1 s; 4J [g(l/4)-a0-a1/4] 

= 4j+l[2-1-1/4] = 3{4j) 

This proves (11.11). // 

The above estimates were first considered in [R]. See also [LN], 

Proposi ticm 3.1. 

Before we turn to another iteration scheme which approximates \o -

'Po we prove a lemma which shows a connection between the existence of 

an eigenvector of T and a fixed point of an appropriate function. 
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LEMMA 11.3 (a) Let ~ E_X . Then the following conditions are 

equivalent: 

{i) ~ is an eigenvector of T 1 

{ii) ~ is a fixed point of the function 

{11.12) 

{iii) ~ = ~0 + so~ for some fixed point ~ of the function 

{b) Let ~1 E X , 

~j = F(~j-1) ' j =2,3, ... , ~j = ~0 + SO~j ' j = 1,2, .... 

If converges in X to ~ , converges in X to an 

eigenvector ~ of T satisfying Forj=1,2, ... 

{11.14) 

Proof (a) Let {i) hold. Then T~ = A~ for some A E ~ . Taking 

. * scalar product w1th ~O on both sides, we have 

* so that T~ = <T~.~o>~, i.e., 

Hence 

* (To+Vo>~ = <(To+Vo>~·~o>~ 

** * = <~.To~o>~ + <vo~·~o>~ 

* = Ao~ + <Vo~·~o>~ 
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Applying S~, on both sides, we see that 
l_y 

i.e.~ ~' Thus (ii) holds. 

If ii) holds, and we let 

the:n 

a:n.d also, 

i.e., (iii) holds. 

+ 

+ S [-V <•> + 0 0' 

Next, let (iii) hold. Then 

Also, 

+ + 

Now, 

Hence 

1 . 

+ + 

] 

~~ .... :i~ ~li -~, since vo = T - To and ·'Po/ <,r, T~cpo> ·<flo/ = t..o 

'{' is an eigenvector f r~ 

1L'1.d (<p, = 1 i.e., (i) holds. 0- 1 

Let ,p € X '#. 1 J 
F('fJ. , ) j = 2, 3~". ~ If •f.t. 

J- .. J 

X then clearly, ,p ::: 'FU,) i.e., '/J is a fixed point of 

Thus, 

-> ~J in 

F Now, 
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<P j = '~'o + s0 ,J; j , converges to <p = <Po + s0,p , which is an eigenvector 

of T satisfying (p, 1 by part (a). 

Finally, for j = 1,2, ... 

=<Po+ ) + <Vo('Po+SO,Pj-l),<p~)SO;J;j-1] 

='Po+ SO[-VO'~'j-1 + <VO<pj-1' 

which proves (11.14). // 

J.'ROPOSITION 11.4 Let 0 < "YO < 1/4 . Then the function F given 

(lL 13) has a unique fixed point ,P :i.n X such that 

(11.15) 

Let 

{11.16) j "'2,3, .... 

Then for j 1,2, ... , 

(11.17) 

so that '~. _,. .p as j ~ oo . 
J 

then ,P = 0 is the unique fixed point of F in E 

assume Tlo ¢ 0 Then for x E E , 

IIF(x)ll 
2 

~ Tlo + aOr + TloPOSOr + a0p0s0r 

2 2 
~ 11o + 2--ror + --ror /TJo 

::; r , 

Now, 
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if 
110[(1-2"10 } - H-4-y0 J 110[(1-2-r0 ) + ~l-4-r0] 
--"-----=---::2::------'=-- ::; r ::; 2 

2-ro 2-ro 

i.e.' Thus, for llxll ::; r , 

we have IIF(x)ll ~ r , Le., F maps E into E Now, for x,y e E 

F(x) - F(y) = -v0s0 (x-y) + <V0cp0 ,<p~>S0 (x-y) 
* * + <v0s0 (x-y),<p0>soY + <v0s0x,<fJ0>s0 (x-y) 

so that 

IIF(x) - F(y}ll :s; (a0+1?0p0 s 0+a0p0 s 0r+a0p0 s 0r)llx-yll 

2 
~ 2(-y0+-y0r/1?0 )ilx-yll 

= 2(-r0+-r0 [g(-r0 )-l])llx-yll 

= 2·rtfo("~0 )11x-yll = (1-~1-4'Y0 )ilx-yll 

Since ~f0 < 1/4 , we have 1 - ~1-4"Y0 < 1 and F is a contraction 

from E to E . By Banach's contraction mapping theorem ( [L], p. 322), 

F has a unique fixed point 'fi in E . Then II>J;II :;: r = T?0 [g(-y0 )-l]h0 , 

proving (11.15). 

Next, ~l = -V0cp0 = F{O) lies in E Also, for j 1,2, ... , 

ll._p--,j!.i! IIF( ,p }-F( 'iJ. 1) II 
.] J-

:;: [2..,0g(-r0 )]11>J;->J;j_1 11 

Now, 

a._nd hence 
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2 
11'1/J-->11111.~ (ao"~TioPoso)r + aoposor 

2 2 
~ 2-ror + -ror /Tio 

~ r - 110 

= 11o[g(-ro)-1--ro]/-ro 

Thus, the first inequality in {11.17) holds for j = 1,2, .... The 

remaining part follows from {11.3). // 

We are now ready to state and prove an important result about the 

two iteration schemes, one based on the Rayleigh-Schrodinger series and 

the other on the fixed point principle. 

11IIDREII 11. 5 For j = 1,2, ... , let ~- be defined either by {11.7): 
J 

{11.18) ~- = ~- 1 + s0 [-{T-A1 I)~. 1 + f {A.-A. 1 )~ .. ] J J- J- i=2 1 1- J-1 

or by {11.14): 

{11.19) ~- = ~- 1 + 80[-T~. 1 +A.~. 1] ' J J- J- J J-

where, in both cases, 

Let 0 < -r0 < 1/4 . Then (~j) converges to an eigenvector ~ of 

T satisfying <~.~~> = 1 , and (Aj) converges to the corresponding 

* eigenvalue A = <T~.~o> We have 

{11.20) 
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(11.21) 

I'rocf Since <, 1/'4 it follows by Proposition 11.2 and Lemma 11.1 

in case the s are defined by (11.18), and by Proposition 11.4 and 

Lemma 11. 3 in case the are defined by (11.19), that 

-J> A such that T<P = Ap and ('fl, = 1 

The bounds in (11.20) are immediate from (11. 10) and (11.11) in the 

first case, and from (11.15) and (11. in the second, since 

and <p. = 
J 

'{! = + + ' j 1,2, ... (Since 

~1 = -(T-T0 )p0 &id s0T0p0 = A0s0p0 = o , the case j = 1 

Similarly, the bounds in (11.21) follow if we observe that 

A - <T<fJ,p~) - <T0p0 ,<p~) 

<(T-To)<Po·<P~> + <T(p-po)·<P~> 

and for j = 1,2, ... , 

A- A. 
J 

* = <T(q>-'Pj-l),pO) 

if j = 1 

follows.) 

<(T-T0 ) ( <P-<P j-'-1 L <P~> 

J<(T-T0)s0~.p~> , 

l<(T-T0)S0(~-~j-l),p~> if j = 2,3, ... 

The iteration scheme (11.19) was considered along with some error 

estimates, and its connection with Newton's method was discussed in 

[RO] . See also [A], p.l45, where the iteration scheme (11.19) is 

denoted by DCAl. 

// 
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Now we consider the question about the simplicity of A and its 

isolation from the rest of a(T) . In this connection, we first prove 

some preliminary results. 

LEIUIA 11.6 ([LN], Lemma 3.3 ) Let T E BL(X) and <P be an 

eigenvector of T corresponding to an eigenvalue A . * Let x0 EX 

with Consider the projection 

* Qx = <x,x0>cp , x E X • 

If we let (I-Q)(X) = Z , then 

a(T) c {A} U a((I-Q)Tiz) . 

If A E p((I-Q)Tizl , then A is a simple eigenvalue of T . 

Proof Note that Q * is a projection since {cp,x0 > = 1 As cp is an 

eigenvector of T corresponding to A , we have TQ = AQ . Hence 

QTQ = AQ and (I-Q)TQ = 0 , so that 

T = [Q + (I-Q)]T[Q + (I-Q)] 

= AQ + QT(I-Q) + (I-Q)T(I-Q) 

Let A= (I-Q)Tiz . If z #A and z E p(A) , then we can verify that 

z E p(T) in fact, 

R(T,z) = _Q_ + QT R(A,z)(I-Q) + R(A,z)(I-Q) 
A-z z-A 

Hence a(T) C {A} U a(A) , as desired. (Cf. Problem 6.6.) 

Let, now, A E p(A) Since a(A) is a closed set, we see that A 

is an isolated spectral value of T . Let a curve f in p(T) 

separate A from a(A) Then by integrating the above expression for 

R(T,z) over f , we see that the spectral projection PA associated 

with T and A is given by 
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= Q + Qlr 4 ~ T R(A,z)(I-Q)dz] . 
2nJr z-A 

Hence P, (X) c Q(X) But 
1\ 

Q is of rank 1 definition, and 

Thus, PI'~.(X) is also of rank 1 
' i.e. • A is a simple eigenvalue of 

T // 

[LNJ, Theorem 3. 4.) Let <P be a:n. eigenvector of 

T corresponding to an eigenvalue I\ 

Then the disk 

(11.22) {z € [; 
< 1 - ao - aopo!ip-<jJoli} 

so 

contains no point of T other than A . If A E .&0 , then A 

is simple. 

Proof Let 

<x, x Ex , (I-Q)(X} = z , and A= (I-Q)Tiz . 

By Lemma 11.6, it is enough to show that 

c p(A) . 

First we show that the centre x0 of the disk 110 belongs to 

p(A) Note tr..at ( 

A 

where 

lz · 

(X) = (I-Q)(X} = Z , and hence 

[(:J:-P0)-{Q-P0) 

+ A2 + A 
3 

as (Q-P0 )(I-P0 ) = 0 and T0 commutes with I - P0 . Now, by the 

spectral decomposition theorem {Theorem 6.3) we see that i,0 E p(A1) 

In fact, 
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But 

Hence 

'"" 
(lL (A1+A2~A0I)-1 (I-P0 ) = s0 I [(T0-T)S0Jk 

k::::O 

This shows that 

(11. 

Since a0 ( 1 , we see by (11.23}, 

Also, 

(11.25) 

00 

II(T0-T)(A1+A2-A0I)-1(l-P0 )11 = !I(T0-T)S0k~O [(T0-T)S0]kll 

~ a 0/(1-a0 ) . 

IIA3 (A1+A2-/\0I)-lll ~ II~(A1+A2-A0I)-l(I-P0)!1 
~1 

ii(Q-P0)P0(T-T0)(A(~A2-A0I) (I-·P0)11 

~ ll'f'-<pollp0a 0/(1-a0 ) . 

But (30 = il.p-'f'0 llp0a 0/(1-a0 ) < 1 , by assumption. This shows that 

AO € p(A1+A2+~) = p(A) , and 

Hence 
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Let, now, z E A0 . To conclude z E p(A) , it is enough to prove 

that 

But by (11.26), (11.24) and (11.25), we have 

ra((A-A0I)-1) = ra((A-A0I)-1(I-P0)) ~ II(A-A0I)-1(I-P0 )11 

~ s0/(1-a0)(1-f30) = s0/(1-a0-a0p0 11<P-<P011) . 

Since z E A0 , we have 

The proof of the proposition is now complete. // 

THEOREM 11.8 Let 0 < ~0< 1/4. Both the iteration schemes (11.18} 

and (11.19) give the same eigenelements A and <P of T ; A is a 

simple eigenvalue of T , 

and there is no other spectral value of T lying in the disk 

(11.27) 

In particular, A is the nearest spectral value of T from A0 . 

Proof For both the iteration schemes, we have by (11.20), 

so that 

1 - a0 - a0p0 11<P-<Poll l 1 - ~O - aOT)OpOsO[g(~0)-1]h0 

l 1 - ~o - ~o[g(~o)-1] 

= 1 - ~~c~0) = (1 + ~1-4~0)12 > o 
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Thus, we see that the disk D0 is contained in the disk A0 of 

Proposition 11.7. Also, for both the schemes, we have by (11.21), 

1 - ~1-4-Y 1 - ~1-4"1' 
IA-Ao I ~ TJ<f~( "~'o> = TJoPo -----,2=-,..,-o-o~ ~ 2so o 

since 1J0p0s0 ~ "~'o . This shows that A € D0 . Hence A is a simple 

eigenvalue of T and there is no other spectral point of T in D0 . 

In particular, this says that both the iteration schemes yield the same 

eigen:value. Also, ~since this eigenvalue~ is simple and the corresponding 

eigenvector ~ satisfies the same constraint 1 • we see that 

the two schemes yield the same eigenvector as well. // 

REMARKS 11.9 (i) It is interesting to note that although the 

iteration scheme based on the Rayleigh-Schrodinger procedure and the one 

based on the fixed point principle are completely different in their 

approach to the eigenvalue problem, Theorem 11.5 gives the same 

condition '""o < 1/4 for the convergence as well as the error estimates 

for both of them. Also the isolation region for A as given in Theorem 

11.8 is identical for the two schemes. It is worthwhile to notice that 

the essential part of Theorem 11.8 was proved in Theorem 10.5 by an 

entirely different method. 

(ii) If the perturbation operator v0 = T - T0 satisfies the 

conditions P 0 V 0P 0 = 0 = s0 V 0s0 , then one can obtain convergence of 

the iteration scheme (11.18) under the weaker condition 1J<f0 s0a0 < 1/4 

(or "~'o < 1/2), and sharper error estimates are available. We leave 

these considerations to Problem 11.6. 

(iii) Note that the first iterate A1 = <T~0 .~~> is the generalized 

* Rayleigh quotient of T based at (~0 .~0 ) . If we let 
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then it is easy * * - * to see that T1cp0 = A.1cp0 and T1cp0 = A.1cp0 , so that 

A.1 {resp., ~1 ) * is an eigenvalue of T1 {resp., T1) with cp0 {resp., 

* <Po> * as a corresponding eigenvector such that <cp0 ,cp0> = 1 In Lemma 

* * 11.6 if we let T = r 1 , cp = cp0 , x0 = cp0 and Z = {I-P0 ){X) , then 

A.1 would be a simple eigenvalue of T1 , provided A.1 € p{{I-P0)Tiz> 

Since A.0 € p{Tolz> , A.1 would also belong to p(Tolz> , if it is 

sufficiently close to A.0 Finally, since 

practice this is often the case when T0 is sufficiently close to T 

Let us then assume that A.1 is a simple eigenvalue of T1 . Then the 

spectral projection associated with T1 and A.1 is P0 itself. Now, 

which has rank 

at most 2 , although T1 may not be of finite rank. We can carry out 

the two iterative processes discussed earlier with A.1 and cp0 as the 

initial terms. In this case, we have P0V1P0 = 0 = s1v1s1 , where s1 

is the reduced resolvent associated with T1 and A.1 {Note that 

s1P0 = 0 = P0s1 .) Accordingly, a better convergence criterion and 

sharper error estimates are available; as pointed out in {ii) above. 

(iv) We have seen in {11.21) that 

Thus, if 7 0 is small, we have a better estimate for IA.-A.1 1 than for 

IA.-A.0 1 . We give another estimate for A.- A.1 as follows. We have 
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Let 

then 

Again, if is small, then the above upper bound for is 

better than the one for IA-AO I . This suggests that if we are 

interested in a higher order accuracy for eigenvalue approximation but 

are satisfied with a low:er order accura~y for eigenvector approximation, 

then we should carry out two iteration processes simultaneously: one on 

and the other on and at the j-th step consider the 

generalized Rayleigh quotient of T based at 

/ (cp j' 

provided * (.p j ,<p / # 0 If 'Yo < 1/4 and * 'Yo < 1/4 , then -) <P and 

where (q;, # 0 since <P and are eigenvectors of T 

and T* corresponding to the simpLe eigenvalues A and X , 

respectively. Hence j We then have by 

(8.11), 

{11.28) 

In case T 
0 

and vo are self-adjoint operators, there is only one 

procedure on Ao,<Po to be carried out, and since * '~'o ...,.0 we see 

that qj is an approximation of A with guaranteed double accuracy as 

compared with A. 
J 

Moreover, it is available without any extra work! 

(v) All the above procedures are useful if < 1/4 . If this is 

not the case, then one has to look for a sharper error analysis. We 

merely mention that error bounds in terms of the following quantity 
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{11.29) 2 3/2!31/2} 
f3o ' ao 0 ' 

where = TJ0p0s0 , can be given for the Rayleigh-Schrodinger 

iteration scheme (11.18) as well as for the fixed point iteration scheme 

(11.19): Let ~ ( 1/4 Then for j = 0,1, ... 

(11.30) 

Note that H ,~ < 1/4 , then we have 

better bounds for the successive iterates at every other step. See 

Problems 11.1 and 11 .4. (See Table 19.4, Rayleigh-Schrodinger and fixed 

point schemes.) 

We have seen in Lemma 11.3 that <p € X is a:n, eigenvector of T 

and satisfies if and only if 

Let us assume now that ~o is an eigenvector of T satisfying 

<<P,<f~) = 1 , and that the corresponding eigenvalue A = <T<p,<p~> of T 

is not zero. Then 'P = T<p/(T<P, and the above equation -becomes 

<p 

This leads us to consider the following fixed point :iteration scheme: 

where for j = 1,2, ... ' 

Substituting v0 = T- T0 and noting that 

provided A..# 0 
J 
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T<P 
] - <Po , 

we ha.ve 

+ A. ' 
J 

(11.31) 

provided A.-;!; 0 for j = 1,2, .... We now prove the convergence of 
J 

the above modified fixed point iteration scheme, and give error bounds 

that the iterate of (11.31) can be obtained from the iterate 

of {11. if we replace ~j-l 

THEORIEJ!! 1L 10 Let 'fi be an eigenvector of T corresponding to a 

simple eigenvalue A #- 0 , which satisfies (<p, 

denote the spectral project:l.on associated with T and 1\ 

that there is a constant c such that 

(11.32) 

(11.33) 

where 

IJ\-1\0 I ' ll<p-<poll ~ cii(T-To)Pll ~ 2;~IIITII 

II(T-T0 )Tii ~ d~ 

Let P 

Suppose 

Then 'fl. and 
J 

are well defined by (11.31), and A. ¢ 0 for 
J 

j = 1,2, ... ; also 

llp-p} :i cii(T-T0 )Pii [d0 ii(T-T0 )T11Jj , 

{11.34) 

In particular, if II{T-T0 )TII < then -• <p and 



197 

Proof We prove by induction that for j:::: 0,1,2, ... 

(i) l!<p-<j) j!! s: cd~II(T-T0 )PI! I!(T-T0 )TI!j 

(ii) !X-1\j+l! S: cd6p0 11T!I II(T-T0 )PI! II(T-T0 )TIIj 

{iii) II\ .. 1 1 
JT :?: l/\l/2 

Let j = 0 . Then (i) holds by the initial assumption, and (ii) follows 

since 

Since cp0 11TII ii(T-T0 )P!I ~ II\ we see that ::;; l/\l/'2 and 

hence li\1 ! l l/2 . Now assuming (i), (ii) and (iii) for j , we 

prove these statements for j + 1 . 

and 

Now, since T<P = i\<P we ceill verify that 

(T0-T)Tcp 
----+ 

)\j+l 



Hence 

Applying 

1 
= "-­

j+l 

+ _1_ 
2 

"j+l 
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[E<T2(<Pr:P). 

+ /\[ <12( <P .-'§)), 
J 

) (TO~f\,OI)<P] 

+ /\2·-?-.0/\j+l]T(tpj-'P) 

s0 on both sides a:rnd noting that P0 (<P. 1. -,p) = 0 and 
]+ 

we have 

<Pj+l - 'P = SO(To-1\oiH•Pj+C<P) 

= -1--- [s (T -T)T(<p.-<p) + (/\-1\J.+l){<P-<Po)] 
1\j+l 0 0 J 

+ A~ [[<-f2(pj-<p), + + 

j+l 

+ + 

We see that a bound for each term ltas the common factor 

and the sum of the other factors is 

which equals a0 . This can be proved by using the induction 

hypothesis, (11.32), (11.33), and noting tltat since A is semisimple, we 

rove TP = i\P , so that II(T-T0 )PI! = II(T-T0 )TPII/!/\i :::; li(T-T0 )Tll 

liP II/ I/\ I . Thus, we rove 

ll<,o-<pj+lll S: cdg+lli(T-T0)P!I II(T-T0)TIIj+l , 

whtch proves (i) with j replaced 

li\-A. 2 1 
J+ 

j + 1 . As a consequence, 
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Also, since II(T-T0 )T!i :;; 1/d0 , and 2cp0 11TII II(T-T0 )PII ~ IAI we see 

that IA-Aj+2 1 S IAI12 , so that 1Aj+2 1 2 IAI12 . This completes the 

induction proof of (i), (ii), (iii). 'fhe proof of (11. is complete 

if we note that 

It is easy to see that if d0 11 

II 

< 1 ' then A . .., A ac!d 
J 

REMARK:lLU It follows from Theorem 11.10 that the estimates for the 

eigenvalue approximation 7\j and the eigenvector approximation ~j 

given by the scheme (11.31) are of the same order if iiT-T0 11 and 

II(T-T0 }Til are of the same 'order of magnitude. If, on the other hand, 

IIT-T0 !1 is not small but lt{T-T0 )TII is small, we have a better 

guaranteed accuracy for than for in particular the Rayleigh 

quotient while 'Ill may very 

well improve upon <Po . 

We shall point out in Section 16 some practical situations where 

the conditions (11.32) and (11.33) are satisfied for T0 = Tn , when 

(T ) is an approximation of a compact operator T n 

We remark that the iteration scheme (11.31) is considered in [DL] 

and is only slightly different from the Ahues iteration scheme 

(11.35) 

(See [CJ, (5.26) on p.26, sBd [A], DCB2 on p.l49.} However, (11.31) 

sometimes gives much better numerical results. (See Tables 19.3, 19.4 

and 19.5.} 
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We conclude this longish section considering what is perhaps the 

most simple-minded and the most well-known iteration scheme for finding 

eigenelements of T . 

Let ~ be an eigenvector of T corresponding to a nonzero 

eigenvalue A . If € x* is such that then 

i.e., <p is .a fixed point of the function G(x) = Txi'<Tx, 

appropriate set. 

Starting with some x0 € X , we can define the iteration scheme 

j 

provided in that case it follows by induction on j 

that 

j 1,2, .... 

This is why the above iteration is known as the J?.Ower method. The main 

Hmi tat ion of this method is that for most :starti.ng vectors 

the sequence (x.) 
J 

converges to an eigenvector <p of T 

and 

corresponding to an eigenvalue of largest absolute value, whereas the 

iteration schemes developed earlier can approximate an intermediate 

eigenvalue of T namely the one which is closest to the starting 

eigenvalue AO 

We say that an isolated spectral value A of T is dominant if 

it is the only spectral value of T satisfying IAI = r (T) 
a 

It 

follows by (8.1) that A is the dominant spectral value of T if and 

l - f T* . on y if A is the dominant spectral value o 
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~ 11.12 Assume that 0 ¢ T E BL(X) has the dominant spectral 

value A which is a pole of order 2 of the resolvent operator 

R(T,z) Let P and D be respectively the spectral projection and 

the quasi-nilpotent operator associated with T and A 

Let x 0 EX and * xo € be such that .£-1 * (D' x 0 ,x0> ;1. 0 where 

Do = P 0 * 
Then for all large j 

' 
<TJx0 .x0> ;1. 0 so that 

(11.36} 

£-1 l!-1 * converges to the eigenvector D x0/<D x0 .x0 > of T and 

(11.37) A. 
J 

converges to A 

Proof Since D = (T-A)P , we have 

T = TP + T(I-P) = AP + D + T(I-P) 0 

Also, since P commutes with T , 

[AP+D]j + [T(I-P)]j j 1,2, ... 0 

Let Y = R(P) and Z = Z{P) , so that X = Y m Z a11d 

T(I-P) = 0@ Tlz o 

By the spectral decomposition theorem (Theorem 6.3), we see that 

a(T(I-P)) = {0} U a(Tiz1 

= {0} U {M E a(T) M ¢ 

Since A ¢ 0 is the dominant spectral value of T , we have 
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If we let 

A = T(I-P) I A , 

we see that < 1 and hence IIAjll ~ 0 as j -" 00 by {5.8) or 

But is 

the dominating term in the expression for as j ...,. 00 

Since we see that ¢ 0 for all large j 

and xj Since 

= (T-AI)Dll-lx0 + 

I! Jl-1 
= n x0 + w- x 0 

we see that -l!-1 2-1 D x0/<D x0 is an eigenvector of T corresponding 

to A . Also, for all large j it can he seen that 

<Tx. 1 
j * I 

j-1 *, 
J- <T xo,xo> (T x0 ,x0.; 

where the numerator equals 

-l!-1 * 

[<Px0 ,x~> + [~~1] 
<D x0 ,x0> 

<Ajx0 ,x~>] + ... + 
Al!-1 

+ 

The denominator is obtained by replacing j j - 1 Hence _,.A 

as j ~ 00 II 



203 

]F!~ 11.13 (a) It is sig;n:iificant to note that the dominant 

eigenvalue /', is assumed to be a pole of the resolvent operator, but it 

ar~d * that xo xo is 

when A is a pole of order l! of R(T, In case A is a simpLe 

n, E-1 eigenvalue, we have l! = 1 , u n 
" 8J!!d Px = (x,<fl where f! 

* p ) is an eigenvector of T * . , T ) corresponding to A 

satisfying (<.p, = 1 Thus, the condition 

is equivalent to ;t 0 and Since 

an arbitrary choice of x0 E X and E is most likely to satisfy 

these condit:i.ons, such a rzmdom choice is made in practice. A more 

appropriate procedure for the choice of and is as follows. 

Let be a lmO\jlil 'nearby' operator having a simple eigenvalue :A0 , 

and sucl:1 that 

where r0 is the projection associated with 

Then where 

co:rrespondin..g to 

letting and Q = P 

Since E P0 (X) and # 0 

(resp., 51:0 ). 

we see that 

is an eigenvector of 

Now, in Lelll!!la 9. 5, 

is invertible. 

This shows that we can choose and * 'Po 

Wh.ile the power method is c"elatively simple to implement 

* and the conditions on the starting vectors are not 

stringent, the ma:in limj_ tat ion of the power method is tbat it 

approxirnates only the do;ninant eigenvalue. If we replace the operator 

where z 
0 

is a scalar, then the power method applied 
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to T - z0I will approximate an isolated eigenvalue A of T which 

satisfies I > lA' for all A.' € 

such /\ exists. However, the chol.ce of such a scalar is difficult 

to nnke unless one has a. good of the ;ent:i.r's spectrum of T . 

Also, if a(T) has real spectrum and one wishes to use only real 

scalars z 
0 

then one can to approxi.l!1'3.te the and the 

smallest eigenvalue of T this m>:J.rmer. 

If T is invertible, has a value /,.., v:f the smallest 

modulus, H A is a of the resolvent operator, then the 

method applied to T-l 

approximate this because 1/A is then the dominant eigenvalue of 

T-1 and :i.t is a of the resolvent operator 

,w) 1 ' ---TR(T, ;;,.) ) o More , let 4\ be an 
"~N w· 

isolated spectral value o:f T which is a pole of z E 

1 f we can find a scalar z0 <E such that < lA' for 

then the :ii.nverse power method applied to 

The scalar 'is 1J..ll.Sl..il.a.lly f oun.d as an 

initial approximation of A by some other method: <et ther as an 

eigenvalue of a operator or loy one of the methods 

described in Section 12. 

We note that in the inverse uower method with a shift z we 
A." 0 ~ 

need not calculate 'T-z I \ 0 for X E X . It is only necessary to 

solve equations involving the operator T 

be such that ¢ 0 ' where D 

is the nilpote11t operator associated with T and A . (See Problem 

7.7.) For j 1,2,, .. , find € X such that 

(1L38) 
j 

and put Then converges to the eigenvector 



205 

then 

z0 + 1/l'j converges to the corresponding eigenvalue A . This is known 

as the inverse iteration. 

Instead of considering a fixed shift z0 one ~~~vary it at each 

step. Let X be a Hilbert space, and let x0 # 0 be an approximation 

of an eigenvector 1£ of T 111en the minimum residual property (8.9) 

a judicious choice fm· an approximation for the corresponding 

eigenvalue. The inverse iteration principle then says tr~t we should 

consider a shift by q(x0 ) . Repetition of this process gives the 

RayleigQ quotient iteration: For j = 1,2, ... , let 

(11.39) 

11. 1 ([LN], 

(11.16), and 

zj = q(xj_1) , 

(T-z .I);;:. = x. 1 J J J-

Proposition 3.1) Let >P(k) ' 

e.o be as in (11.29). Then 

{ {L k-1 ~Tio( co) 
I!>P(k)!l ~ 

k-2 
~Tio"o(~) 

IIV0s0,p(k} II ~ 

[~'~o(~)k 

l kk-1 ~Tioao( ~o> · 

k 1 ,2, ... , be defined by 

k odd 

k even 

k even 

k odd . 

Hence the estimates in (11.30) can be deduced. Also, 

IA-A0 1 s 2~(1+~)/{1+a0)s0 
11<~~-<~~oll :<;: ~(1+~)/(a0+e0)p0 
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11.2 ([LN], Theorem 3.4.) Let A0 , (resp., A,~) be eigenelements 

of T0 (resp., T) and let be simple. Let 

contains no spectral value of T , except possibly A . If A € 

then A is simple. (Note that the set given by (11.22) is 

contained in A0 ) Hence Theorem 11.8 can be improved as follows: 

Let ~ < 1/4 . Then 

and there is no other spectral value of T in 

11.3 Let 0 ~ ( 1/4 and 

Then the map F given by (11.13) is a contraction from 

{x EX: llxll ~ r} onto itself, the constant of contraction being 

2(~0 + 7~:r/~0 ) Consider the special case 70 = (~-1)/2 and r = 2~0 
to obtain error bounds similar to (11.20) and (11.21). 

11.4 Let ~j , j = 1,2, ... be defined by (11.16), and let ~ < 1/4, 

where e0 is defined by (11.29) . Then ~- ~~, 
J 

11~11 ~ 16(1+a0 }YJ0/5 , 

11~-~011 ~ c~o'Yo ' 11~-~1!1 s c~oto ' 

with 

(the constant c depends on ~O, 7 0 and e0 ), and for j = 2,3, ... , 
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~ {"-o"<•-r.;;;)J 
11-lr-..Pll! ( 4~) rl 

Hence the estimates in (11.30) can be deduced. 

j even 

j odd . 

11.5 For both the iteration schemes (11.18) and (11.19), the first 

iterate ~1 is given 

while ~2 = ~l - S0T.p1 + A.1S0p 1 for (11.18), and <P2 = 

A.2S0<p1 for (11.19). 

Let A.0 # o and T0V0<P0 = o . Then A.1 = A.0 and 

' * ,TsoT<Po·'~'o> 

- SoT<Pl + 

11.6 Let P0v0P0 ~ 0 ~ s0v0s0 , and ~0p0s0a0 < 1/4 . Then for the 

iteration scheme (11.18), we have 

and for j 1,2, .... 

IA.-A.2j+l I ~ ~opoao(4~oposoao)j 
11<~>-<P2} ~ ~o5o<4~oposoao)j 

Thus, the iterations converge if 'YO < 1/2 . 

11.7 Let T E BL(X) . Assume that T0 € BL(X) has a simple 

eigenvalue A.0 and let 

j = 1,2, ... , let 

If 

* '~'o , '~'o , s0 b~ve usual meanings. 

rj-1 = Aj<pj-1 - T<pj-1 

<p.=tp.l+u .. 
J J- J 

For 

then 

~J. ~ ~ , A. --+ A such that T~ = A'f' 
J 

* (.p,'f'0> 1 . Morerover, A is 

a simple eigenvalue of T and it is the nearest spectral point of T 

from A0 . (Compare Problem 9.2.) 


